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Abstract: We follow the idea of learning invariant decision functions for remote sensing 

image classification with Support Vector Machines (SVM). To do so we generate 

artificially transformed samples (i.e., virtual samples) from available prior knowledge. 

Labeled samples closest to the separating hyperplane with maximum margin (i.e., the 

Support Vectors) are identified by learning an initial SVM model. The Support Vectors 

are used for generating virtual samples by perturbing the features to which the model 

should be invariant. Subsequently, the model is relearned using the Support Vectors and 

the virtual samples to eventually alter the hyperplane with maximum margin and 

enhance generalization capabilities of decisions functions. In contrast to existing 

approaches, we establish a self-learning procedure to ultimately prune non-informative 

virtual samples from a possibly arbitrary invariance generation process to allow for 

robust and sparse model solutions. The self-learning strategy jointly considers a 

similarity and margin sampling constraint. In addition, we innovatively explore the 

invariance generation process in the context of an object-based image analysis 

framework. Image elements (i.e., pixels) are aggregated to image objects (as represented 

by segments/superpixels) with a segmentation algorithm. From an initial singular 

segmentation level, invariances are encoded by varying hyperparameters of the 

segmentation algorithm in terms of scale and shape. Experimental results are obtained 

from two very high spatial resolution multispectral data sets acquired over the city of 

Cologne, Germany, and the Hagadera Refugee Camp, Kenya. Comparative model 

accuracy evaluations underline the favorable performance properties of the proposed 

methods especially in settings with very few labeled samples.  

Keywords: Classification, Support Vector Machines, Self-Learning, Active Learning 

Heuristics, Very High Spatial Resolution Imagery. 
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1 Introduction 

Developing methods for information extraction from remote sensing imagery has been one of 

the major tasks of the scientific remote sensing community in the past decades. Thereby, 

different strategies are followed to derive thematic classes from the image data. Due to their 

comparatively robust and accurate information extraction properties, supervised methods 

belong to the most popular group of classification approaches. The idea of such approaches is 

to infer a decision rule (e.g., a function) from limited but properly encoded prior knowledge 

(i.e., labeled training samples) to allow for an accurate association of class labels for unseen 

(i.e., unlabeled) samples. However, it is generally very challenging to choose the best method 

(most likely in terms of classification accuracy) from dozens of different existing approaches 

for an individual classification problem (Fernández-Delgado et al., 2014). This can be related 

to the No Free Lunch Theorem, which states, briefly speaking, that if a strategy is more 

favorable in a certain subdomain then it must be less favorable in another subdomain 

(Wolpert, 1996; Duda et al., 2001). Nevertheless, for the subdomain of supervised 

classification problems jointly dealing with i) a small amount of labeled training samples, ii) a 

high number of features, and iii) complex, nonlinear class distributions, a number of non-

parametric machine learning algorithms can be considered as a viable option in general. Their 

algorithm properties make them in particular relevant for this situation. 

For instance, Random Forests (Breiman, 2001) grow multiple decision trees on random 

subsets of the training samples. The high variance among individual trees, letting each tree 

vote for the class assignment and determining the respective class according to the majority of 

the votes, allows the accurate and robust classification of unseen samples with little need for 

tuning, even when many noisy variables are existent (Stumpf and Kerle, 2011). Alternatively, 

Support Vector Machines (SVM) is a very popular approach in this application context since 

they also offer the capability of effectively handling complex remote sensing classification 

problems (Melgani and Bruzzone, 2004; Camps-Valls and Bruzzone, 2009). They are based 

on the structural risk minimization principle, which suggest a tradeoff between the accuracy 

of an approximation and the complexity of the affiliated approximation function. SVM 

determine a suitable set of parameters to fit a decision surface, the so-called hyperplane, 

between different classes of labeled samples. To deal with nonlinear problems, the labeled 

samples are mapped through a nonlinear transformation ϕ(·) from the input space into a space 

of higher dimensionality. In that space, the optimal separating hyperplane maximizes the 

margin between the patterns of the different classes and the hyperplane. The maximized 

margin can be described by two additional, marginal hyperplanes that border the samples 

closest to the separating surface, the so-called support vectors (SVs) (Burges, 1998; 

Leinenkugel et al., 2011; Geiß et al., 2016a). Only those samples are needed to define the 

model, what allows for building robust models with a high generalization capability based on 

a comparatively small number of labeled training samples. Simultaneously, this algorithm 

property opens the opportunity to encode further prior knowledge in the classifier in a very 

efficient way: When learning a classification model from labeled samples it is preferable that 

the solution is robust with respect to changes in the representation of the objects in the data. 

Those might occur when objects in the data are transformed, e.g., due to perturbations and 

variations in size, alignment or noise level of the affiliated signal (Camps-Valls et al., 2014). 
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The incooperation of such properties into the classification model (i.e., here decision 

functions) renders an algorithm “invariant” (Izquierdo-Verdiguier et al., 2013). In this sense, a 

suitable approach should account for a tailored regularization scheme to allow for a high 

generalization capability of learned decision functions also for unseen data with a 

considerable share of transformed objects. 

From different options to encode invariances in SVM as e.g., discussed in (Decoste and 

Schölkopf, 2002), we consider in this paper the idea to generate artificially transformed 

samples (i.e., virtual samples) from the training samples to augment the set of labeled samples 

which the model is learned from. Recently, data augmentation strategies are frequently 

implemented in the context of deep learning procedures (Wang and Perez, 2017). Such 

techniques normally need a large pool of training data to generalize well. Consequently, ideas 

were followed to crop, rotate, or flip image data used for training to enlarge the training data 

and enhance the model accuracy (Yu et al., 2017; Nogueira et al., 2017; Audebert et al., 

2018). However, as indicated, SVM allow for a very efficient way to add artificially 

transformed samples into the model (in contrast to e.g., neural networks), since frequently 

only a few samples are needed from the whole set of available labeled samples to define the 

model. As such, artificially transformed samples are generated only from a subset of the 

labeled training samples (i.e., those samples that become a Support Vector after a preliminary 

model run). This renders the approach in particular feasible from a computational point of 

view.  

Interestingly, the idea to augment the training set by using virtual samples in order to render a 

SVM model invariant was introduced quite recently to the context of remote sensing image 

classification. In this manner, the authors of (Izquierdo-Verdiguier et al., 2013) encode 

invariances to rotations and object scales in the context of patch-based image classification 

(i.e., in relation to square-shaped image subsets representing objects of interest). There, 

invariances are pre-engineered by an expert and added to the model without further 

constrains.  

In contrast to that, we establish a procedure that first identifies labeled samples closest to the 

separating hyperplane with maximum margin - the SVs – from learning an initial SVM 

model. Those SVs are the basis for generating artificially transformed samples, i.e., virtual 

samples, by perturbing the features to which the model should be invariant. In previous 

works, the model is relearned using SVs and virtual samples to eventually alter the hyperplane 

with maximum margin and enhance generalization capabilities of decisions functions. This 

approach is called Virtual Support Vector Machines (VSVM) (Decoste and Schölkopf, 2002; 

Izquierdo-Verdiguier et al., 2013). However, it is very challenging and critical to add valuable 

virtual samples to a model with a high degree of automatization (i.e., minimizing the amount 

of necessary prior knowledge). If virtual samples are not properly generated and selected, they 

can introduce divergence and thus reduce classification accuracy of a relearned model 

(Izquierdo-Verdiguier et al., 2013). Moreover, only few informative virtual samples should be 

considered to enable improvements in model generalization capability while keeping 

simultaneously computational complexity low. To address the aforementioned considerations, 

we follow a self-learning strategy to eventually prune virtual samples from an arbitrary 
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invariance generation process to subsequently establish robust and sparse model solutions. To 

this purpose, generated virtual samples are evaluated first with respect to the Euclidean 

distance in feature space to their affiliated SVs and are pruned from the set of training 

samples if they exceed an empirically determined class-specific distance. Second, residual 

virtual samples are also evaluated with respect to their position to the margin and are pruned 

from the set of training samples if they exceed a specific margin distance. The model is 

relearned using SVs and residual virtual samples to establish an invariant SVM model. 

Thereby, determination of hyperparameters of the self-learning constraints is rendered as a 

further minimization objective. The term Virtual Support Vector Machines with self-learning 

strategy (VSVM-SL) is used in the subsequent paper when referring to this technique. 

The self-learning strategy can be interpreted as an active learning procedure (Tuia et al., 

2009), where the iterative human-machine interaction is substituted in favor of a singular 

machine-machine interaction. Related ideas were exploited in the context of semi-supervised 

classification approaches. Such methods iteratively label unlabeled samples based on a 

preliminary trained learning machine to enhance generalization capabilities in subsequent 

model learning stages and enable faster convergence (i.e., obtain higher accuracies for the 

same amount of encoded prior knowledge compared to purely supervised approaches) 

(Bruzzone et al., 2006). Thereby, active queries (Tuia et al., 2011) aim to enable the selection 

of few relevant unlabeled samples. This is done to only consider highly informative samples, 

for instance uncertain samples close to the border of the hyperplane (Demir et al., 2011). In 

this way significant improvements in accuracy become possible without taking a large 

number of unlabeled samples into account, and thus increase computational complexity. In 

addition, an unconstrained selection of unlabeled samples may lead to reduced accuracies if 

they add noise and blur distinctive class patterns in feature space (Dópido et al., 2013; Li and 

Zhou, 2015; Lu et al., 2016).  

Besides the actual model learning procedure, we innovatively explore the invariance 

generation process in the context of an object-based image analysis (OBIA) framework 

(Blaschke, 2010; Geiß and Taubenböck, 2015; Geiß et al., 2016b). There, the aim is to 

aggregate image elements (i.e., pixels) to meaningful image objects (as represented by 

segments/superpixels) with a segmentation algorithm. From an initial singular segmentation 

level, invariances are encoded by varying hyperparameters of the segmentation algorithm in 

terms of scale (i.e., by establishing a hierarchical multi-level segmentation; (Bruzzone and 

Carlin 2006; Taubenböck et al., 2010) and shape (i.e., by considering multiple segmentation 

levels as obtained with varying shape-related hyperparameters).  

The proposed method can be considered in particular relevant in situations where the ground 

sampling distance is much smaller than the objects of interest and the spectral resolution is 

limited as it is the case for multispectral imagery. This is related to the fact that geospatial 

variations of representations of objects are considered here for learning a model. Such a 

principle is less relevant if objects of interest are equal to the ground sampling distance (i.e., 

an image element corresponds to an object of interest and, thus, pixel-by-pixel techniques are 

more appropriate) or if objects of interest are smaller than the ground sampling distance (i.e., 

an image element covers multiple objects of interest and, thus, sub-pixel techniques are more 
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2.1 Virtual Support Vector Machines 

VSVM represent a modification of the popular SVM approach (Cortes and Vapnik, 1995). 

The latter solves a minimization objective to establish a separating hyperplane with maximum 

margin between labeled samples of different classes (Fig. 2a-b). Let us consider an image � 

and corresponding labeled samples � = {��, ��}���
� , with ��  ∈ ℝ�  and ��  ∈ {−1, +1} . The 

imagery is mapped through a nonlinear transformation ϕ(·) to a space with a higher 

dimensionality. Then, the minimization objective is formulated as follows:  

min
�,��,�

�
1

2
‖�‖� + � � ��

�

���

� (1) 

subject to  

                                                  ��(〈�(��), �〉 + �)  ≥ 1 − ��    ∀i = 1, …, n (2) 
                                                                                 �� ≥ 0 ∀i = 1,…, n (3) 

where w is the normal perpendicular to the optimal separating hyperplane and b is the nearest 

distance to the origin (O) of the coordinate system. These two parameters constitute a linear 

classifier, which separates the labeled samples of different classes with maximum margin. To 

enhance generalization capabilities and reduce over-fitting, positive slack variables ��  are 

introduced, which account for labeled samples lying on the incorrect side of the respective 

margin boundary. The constant C determines the trade-off between maximizing the margin 

and the number of incorrectly classified samples (training errors). The minimization objective 

of equation (1) is reformulated from its primal form to its dual form by introducing Lagrange 

multipliers, so that it can be solved efficiently with quadratic programming techniques 

(Schölkopf and Smola, 2002). Finally, a decision function is given that allows assigning a 

class label to an instance of unknown class membership �∗  

�(�∗) = sgn �� �����(��, �∗) + �

�

���

� (4) 

with �� being the Lagrange multipliers and � being a kernel function. The kernel function � 

is expressed as the dot product of mapped instances ����, ��� = 〈�(��), �(��)〉 . The 

Lagrange multipliers are determined by optimization and feature nonzero values for instances 

lying on the margin – the SVs (Cortes and Vapnik, 1995; Camps-Valls and Bruzzone, 2009; 

Geiß et al., 2016a). 
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The VSVM approach builds upon an initially learned SVM model. This model is used to 

extract labeled samples that became a SV. Extracted SVs govern the encoding of invariances 

by altering previously modelled objects and recomputing affiliated features, which are added 

to the feature space as virtual samples (Fig. 2c). Those virtual samples are deployed in 

conjunction with SVs to relearn the model, which eventually alters the hyperplane with 

maximum margin (Fig. 2 d). In previous works, virtual samples as induced by SVs are called 

Virtual Support Vectors (VSVs). However, to allow for an unambiguous terminology, we 

only refer to VSVs if virtual samples become a sample closest to the separating hyperplane 

with maximum margin after the second model run. 

It is important to note that hyperparameters of the VSVM model must not be optimized by 

cross-validation for the second model run. This is related to the circumstance that the number 

of virtual samples is always a multiple of the number of SVs (cf. Section 2.3), and thus it is 

possible to fit the model dominantly to virtual samples, while SVs lose influence. In addition 

to that, virtual samples are likely to show feature characteristics that resemble their 

corresponding SV. Hence, a consistent separation and simulation of unseen data in a cross-

validation procedure might be violated when using a training set that contains virtual samples 

(also known as data leakage). That is why we use the holdout method (Foody, 2009) instead 

of cross-validation for model selection with optimal hyperparameters and consider it as an 

intrinsic part of the VSVM approach. Consequently, from the pool of labeled samples a 

training set ������ = {��, ��}���
�

∈ �  and test set ����� = {��, ��}�����
� ∈ �  is drawn, 

whereby samples of the training set must not be included in the test set, i.e., ������ ∩ ����� =

∅. To account for spatial autocorrelation, ������ and ����� should be also compiled in a strict 

spatially disjoint way to allow for unbiased estimates of model generalization capabilities 

(Geiß et al., 2017a). The procedure to learn VSVM is also described in the pseudocode under 

Algorithm 1. 

__________________________________________________________________________ 

Algorithm 1 Virtual Support Vector Machines 

___________________________________________________________________________ 

Inputs:  

Pool of labeled samples: ������, �����  

Output: 

VSVM: SVM classifier retrained with training set ������� 

1. Learn SVM model with ������ 

2. Extract SVs and add them to a pool ������
��  

3. Perturb features based on ������
��  to generate a pool of virtual samples ��� 

4. Compile training set ������� = ������
�� ∪ ��� 

5. Learn SVM model with ������� and select model with optimal hyperparameters based 

on ����� 

___________________________________________________________________________ 
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2.2 Self-Learning Strategy 

To eventually prune uninformative virtual samples from the features space, a two-step self-

learning strategy is followed by consecutive consideration of a similarity and margin 

sampling constraint.  

1) Similarity constraint: To only employ virtual samples that encode similar properties as 

their corresponding SVs, the Euclidian distance � between a virtual sample and its SV 

is computed in the feature space first (Fig. 3a) (Lu et al., 2016). Thereby it is assumed 

that virtual samples which show a large distance in the feature space with respect to 

their corresponding SVs do not represent reliable invariances, and are highly prone to 

induce divergence in the model. The distance measure ��� is computed as follows:  

��� = ��(���
�� − ���

��)²

�

 (5) 

where ��
��, � = {1,2, … , �} denotes the �th virtual sample derived from ��

��; ��
�� is the 

�th SV, � = {1,2, … , �}, and � denotes the number of features. To eventually prune 

virtual samples, a maximum distance threshold � is introduced. Since distances in the 

feature space are highly dependent on the scene characteristics and thematic class of 

interest, � must be adjusted for an individual classification problem and a considered 

thematic class. To adjust �  in an automated manner, it is calculated per class as 

follows:  

�� =
2

��(�� − 1)
� � ��(�

��

��� − �
��

���)²

�

�

�����

����

���

 (6) 

where �� is the number of SVs per thematic class �, and �
��

���and �
��

��� denote the �th 

and �th SV, respectively, of class �. In other words, �� is the mean distance in feature 

space between all SVs that belong to the same thematic class �. However, it can be 

beneficial to narrow ��  in situations, where already a large amount of information 

content is encoded in ��� , typically induced by a high number of SVs, or to 

alternatively widen it in the contrary case. To introduce this flexibility to the model, 

we multiply �� with a factor �:  

��� = �� ∗ � (7) 

Thereby, smaller numeric values of � establish a more progressive pruning of virtual 

samples compared to larger numeric values. Finally, virtual samples are pruned from 

��� according to:  

����

�� = ��� ∩ ���
������ ≤ ���� (8) 

where the pool ����

��  contains only virtual samples that lie within the radius of ��� with 

respect to their corresponding SV.  
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___________________________________________________________________________ 

Algorithm 2 Self-learning strategy  

___________________________________________________________________________ 

Inputs:  

Pool of SVs: ��� 

Pool of virtual samples: ���  

Output: 

A pool of constrained virtual samples: �� �� 

For � =  1 to � in ��� 

1. Compute Euclidean distance ��� between ��
�� and ��

��; 

End 

2. Compute class-specific maximum distance thresholds ��� according to (6) and (7); 

3. Remain virtual samples which satisfy ��� ≤ ���, and prune the others from ��� 

according to (8) to establish a pool ����

�� , which contains only virtual samples that lie 

within the radius of ���; 

For � =  1 to � in ����

��  

4. Compute distance to hyperplane for class � with decision function according to (9); 

End 

5. Remain virtual samples which satisfy the maximum acceptable distance �, and prune 

the others from ����

��   to establish a final pool of constrained virtual samples �� ��; 

___________________________________________________________________________ 

 

2.3 Invariances  

As stated in Section 1, encoding of invariances is established within an OBIA framework 

(Blaschke, 2010). There, in general, real-world objects are modelled with a segmentation 

algorithm and are represented as segments (i.e., superpixels). Given a complex classification 

scenario and very limited labeled samples, it is very likely that objects of thematic classes of 

interest are represented solely by a subset of its existing object variations in the training set. 

This is related to the circumstance that only a very limited number of objects are labeled, and 

optimal representation of all objects with corresponding segments is very challenging to 

achieve due to over- and undersegmentation (Taubenböck et al., 2010). To address the latter 

problem, approaches were designed to create an optimized single segmentation level from 

multi-level segmentation objectively (Geiß et al., 2016a). However, it remains very 

challenging to ensure an optimal object representation within a single segmentation level 

especially in complex environments such as urban areas due to a large variety of objects with 

completely different size and shape properties (Geiß et al., 2017b). Consequently, we follow a 

strategy to encode invariances by altering the hyperparameters of a segmentation algorithm 

(details on the segmentation algorithm and affiliated parametrization can be found in Section 

3.2, where the experimental setup is described), which generates the segment-based 



PREPRINT; FINAL PAPER PUBLISHED @ ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 
VOL. 151, PP. 42-58, MAY 2019   

12 
 

representation of objects, with respect to size (i.e., scale) and shape characteristics. From the 

segmentation level with an initial parameterization, object features are computed, an SVM 

model is learned, and corresponding SVs are extracted. In parallel, segmentation levels based 

on altered parameterizations with respect to the initial parameterization are generated (cf. 

process “segmentation with altered parametrization” in Fig. 1). Subsequent to that, SVs are 

located in the image domain and segments from the different segmentation levels are selected 

if they contain an SV (cf. Fig. 4 in the subsequent Section). Those segments are used to 

compute object features, which are represented in the feature space as virtual samples (cf. Fig. 

2c). Consequently, the number of virtual samples corresponds to the number of SVs 

multiplied with the number of segmentation levels considered (cf. Fig. 4 in the subsequent 

Section).  

1) Invariances of Scale  

To generate virtual samples that aim to make the model invariant with respect to scale (i.e. 

size of the objects), we followed a hierarchical multi-level segmentation procedure (Geiß and 

Taubenböck, 2015; Geiß et al., 2016; Bruzzone and Carlin, 2006; Taubenböck et al., 2010; 

Aravena Pelizari, 2018). Thereby, � is partitioned based on a segmentation algorithm with a 

fixed set of shape-related hyperparameters �  at a generic segmentation level ��  in ��� 

segments �
�

��
 (� = 1, 2, … , ���) . To establish an unambiguous hierarchy of segmentation 

levels, the following constraint must be fulfilled:  

� �
�

����
= �

�

��

�
�

����
⊆�

�

��

 
(10) 

This way it is ensured that a segment at segmentation level �� − 1 must be included in only 

one segment at level �� (Bruzzone and Carlin, 2006). The computation of virtual samples is 

based on a series of generated hierarchical segmentation levels �� ∈ {�� − �, … , �� −

1, ��, �� + 1, … , �� + �} from � (Fig. 4). Sizes of segments as generated by different scale 

parameters range between lower bounds (i.e., as obtained with scale parameter�� − �) and 

upper bounds (i.e., as obtained with scale parameter�� + �). The lower bound enables good 

representations of the smallest and most homogeneous real-world objects contained in � while 

inducing oversegmentation for other real-world objects. In contrast to that, the upper bound 

allows for a good representation of the largest and most heterogeneous real-world objects 

contained in � while inducing undersegmentation for other real-world objects. 



PREPRINT;

 

Fig. 4. Example for g

initial parameterization
an SV are selected and object features are computed for segments with 
invariances of scale and shape)

2) Invariances of 

To generate virtual samples that aim to allow for a

the objects, we 

geometrical 

Concordant to the processing scheme of scale invariance, a

established, i.e., 

structure 

same size but different geometries

Generally, the modifications of hyperparameters 

in an exhaustive way 

the imagery

can benefit from more exhaustive modifications of hyperparameters

if under

misleading

PREPRINT; FINAL

Example for generation of virtual samples

parameterization
an SV are selected and object features are computed for segments with 
invariances of scale and shape)

Invariances of 

To generate virtual samples that aim to allow for a

the objects, we modify 

geometrical properties of modelled segments

Concordant to the processing scheme of scale invariance, a

established, i.e., ��

structure cannot be followed

same size but different geometries

Generally, the modifications of hyperparameters 

in an exhaustive way 

imagery for different thematic classes. 

can benefit from more exhaustive modifications of hyperparameters

under- and oversegmentation

misleading virtual samples in an automated manner from the model again.

FINAL PAPER PUBLISHED

eneration of virtual samples

parameterization of the segmentation algorithm
an SV are selected and object features are computed for segments with 
invariances of scale and shape). 

Invariances of Shape 

To generate virtual samples that aim to allow for a

modify hyperparameters of the segmentation algorithm that influence the 

properties of modelled segments

Concordant to the processing scheme of scale invariance, a

� ∈ {���
, ���

cannot be followed.

same size but different geometries

Generally, the modifications of hyperparameters 

in an exhaustive way to capture 

for different thematic classes. 

can benefit from more exhaustive modifications of hyperparameters

oversegmentation

virtual samples in an automated manner from the model again.

PUBLISHED @ 

eneration of virtual samples

of the segmentation algorithm
an SV are selected and object features are computed for segments with 

To generate virtual samples that aim to allow for a

hyperparameters of the segmentation algorithm that influence the 

properties of modelled segments

Concordant to the processing scheme of scale invariance, a

�
, … , ���

}. Thereby, equation (10) is violated since

. Instead, segments are created that feature approximately the 

same size but different geometries (Fig. 4

Generally, the modifications of hyperparameters 

to capture the entire spectrum of object

for different thematic classes. 

can benefit from more exhaustive modifications of hyperparameters

oversegmentation occurs since 

virtual samples in an automated manner from the model again.

 ISPRS JOURNAL OF 

eneration of virtual samples with respect to scale and shape

of the segmentation algorithm, which is used to identify SVs. 
an SV are selected and object features are computed for segments with 

To generate virtual samples that aim to allow for an

hyperparameters of the segmentation algorithm that influence the 

properties of modelled segments while keeping the scale parameter constant

Concordant to the processing scheme of scale invariance, a

Thereby, equation (10) is violated since

segments are created that feature approximately the 

4).  

Generally, the modifications of hyperparameters to establish 

the entire spectrum of object

for different thematic classes. As such, a more complex classification problem 

can benefit from more exhaustive modifications of hyperparameters

occurs since the self

virtual samples in an automated manner from the model again.

OURNAL OF PHOTOGRAMMETRY AND 

with respect to scale and shape

, which is used to identify SVs. 
an SV are selected and object features are computed for segments with 

n invariant model with respect to shape of 

hyperparameters of the segmentation algorithm that influence the 

while keeping the scale parameter constant

Concordant to the processing scheme of scale invariance, a series of segmentation levels is 

Thereby, equation (10) is violated since

segments are created that feature approximately the 

to establish ��

the entire spectrum of object scale and object

As such, a more complex classification problem 

can benefit from more exhaustive modifications of hyperparameters

the self-learning 

virtual samples in an automated manner from the model again.

OTOGRAMMETRY AND 

VOL. 151

with respect to scale and shape. Here, �

, which is used to identify SVs. Segments which contain 
an SV are selected and object features are computed for segments with altered paramet

invariant model with respect to shape of 

hyperparameters of the segmentation algorithm that influence the 

while keeping the scale parameter constant

series of segmentation levels is 

Thereby, equation (10) is violated since

segments are created that feature approximately the 

�� and �� should be 

scale and object

As such, a more complex classification problem 

can benefit from more exhaustive modifications of hyperparameters. Thereby

learning strategy is 

virtual samples in an automated manner from the model again.

OTOGRAMMETRY AND REMOTE 

51, PP. 42-58, M

 
���

 corresponds to

Segments which contain 
parameterization (i.e., 

invariant model with respect to shape of 

hyperparameters of the segmentation algorithm that influence the 

while keeping the scale parameter constant

series of segmentation levels is 

Thereby, equation (10) is violated since a hierarchical 

segments are created that feature approximately the 

should be carried

scale and object shape present in 

As such, a more complex classification problem 

Thereby, it is accept

is designed to prune 

virtual samples in an automated manner from the model again. As such, 

EMOTE SENSING, 
MAY 2019   

13 

 
corresponds to the 

Segments which contain 
rization (i.e., 

invariant model with respect to shape of 

hyperparameters of the segmentation algorithm that influence the 

while keeping the scale parameter constant. 

series of segmentation levels is 

a hierarchical 

segments are created that feature approximately the 

carried out 

present in 

As such, a more complex classification problem 

acceptable 

to prune 

As such, 



PREPRINT; FINAL PAPER PUBLISHED @ ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 
VOL. 151, PP. 42-58, MAY 2019   

14 
 

modification of hyperparameters can be regarded as tradeoff between computational burden 

and exploration of potentially useful information.  

3 Data and Experimental Setup 

3.1 VHR Multispectral Data 

The experimental analysis was carried out by classifying two test data sets, each covering a 

spatial extent of 1000 x 1000m. Both data sets were taken from VHR multispectral 

(blue/green/red/near-infrared) imagery with a geometric resolution of 0.5m acquired by the 

WorldView-II sensor. 

The first data set was acquired over the city of Cologne, Germany, on January 31, 2014 and 

shows an urban area which is dominated by buildings of commercial use (Fig. 5a). It features 

a complex composition of urban land cover. Shadow areas can be observed primarily adjacent 

to buildings. In addition, the imagery represents an off-nadir acquisition. As such, facades of 

individual buildings can be identified in the direction of the sensor view. To reduce the 

computational burden for the experiments, we resampled the subset with a nearest neighbor 

interpolation to 1000 x 1000 pixels with 1m pixel spacing. The pixels were organized in six 

relevant thematic classes, namely “bush/tree”, “meadow”, “roof”, “facade”, “shadow”, and 

“other impervious surface” (Fig. 5b). The latter class comprises impenetrable surfaces other 

than building-related ones such as roads or parking lots, which feature similar spectral 

characteristics. The thematic classes were determined based on photointerpretation analysis 

under consideration of additional aerial imagery and cadastral maps (Geiß and Taubenböck. 

2015; Geiß et al., 2016b). 
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� =  {10,15,25,30,35,40,50,60,80}  for the Cologne data set and seven additional 

segmentation levels with altered values for � =  {15,20,30,35,40,50,60} for the Hagadera 

data set. When exploring invariances of shape, we used the following alterations of ℎ����� 

and ℎ�������: (0.1;0.9), (0.3;0.7), (0.3;0.5), (0.5;0.7), (0.5;0.5), (0.5;0.3), (0.7;0.3), (0.9;0.1) 

for both data sets. 

Various features were compiled for characterization of modelled objects. Mean and standard 

deviation values of the different image bands were calculated. In addition, the Normalized 

Differenced Vegetation Index was computed. The spectral information was also used to 

compute rotation-invariant texture measures based on the grey-level co-occurrence matrix 

(GLCM) (Haralick et al., 1973), since it was shown that such features can provide 

supplementary information if the spectral resolution is limited and the ground sampling 

distance is much smaller than the objects of interest. Thereby, we selected three measures 

from the set of 14 originally proposed GLCM measures, since some are strongly correlated 

with each other (Pacifici et al., 2009). Namely, the GLCM measures mean, homogeneity, and 

dissimilarity were computed. Lastly, features were computed which approximate the shape of 

objects based on a comparison with two-dimensional geometrical forms such as square, 

rectangle, or ellipse (i.e., rectangular and elliptic fit, roundness, shape index, and 

compactness) (Sun et al., 2015). All features were computed in the software environment 

eCognition (Trimble, 2014) with already implemented or customized protocols. Numerical 

values of the different features using the segmentation with initial parameterization were 

normalized to a 0-1 interval. Feature values from segmentations with altered parameterization 

were aligned correspondingly. 

For the actual SVM learning procedures, we deployed Gaussian RBF kernels, that take the 

form ����, ��� = exp (−��� − ���
�

/2��) , due to their interpretability in accordance with 

favorable performance properties in environmental applications (Volpi et al., 2013). Learning 

the most appropriate C-SVM in conjunction with an RBF kernel requires the definition of the 

cost parameter � and the kernel-width parameter �. We carried out an exhaustive optimization 

of hyperparameters with � = {2��, 2��, … , 2��} and � = {2��, 2��.�, … , 2�}. A one-against-

one SVM architecture was deployed for multiclass problems. Hyperparameters of the self-

learning strategy were optimized as follows: Φ ∈ {�, �};  � = {0.3,0.6,0.9}, � = {0.5,1.0,1.5}.  

In the experiments, we evaluate the methods with respect to both, a binary and multiclass 

classification setting. To address the first, we aim to separate the class “bush/tree” from the 

residual classes for the Cologne data set, and “built-up area” from the residual classes for the 

Hagadera data set. In the multiclass classification setting, we aim to distinguish all six and 

five thematic classes contained in the Cologne and Hagadera data set, respectively. Labeled 

samples were drawn randomly in a stratified manner from the train and test set, whereby the 

same number of labeled samples per class was used for learning and selecting a model. The 

number of samples was varied to test sensitivity with respect to accuracy. To avoid a biased 

quantification of the effect of training set size on prediction accuracy, it was made sure that 

samples contained in one set are also contained in the affiliated set with a larger number of 

samples. Generalization capabilities are evaluated based on global accuracy measures 

comprising κ statistic, weighted mean ��
�  of �� -measures, overall accuracy (OA), average 
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accuracy (AA), as well as class individual accuracies. Results are reported as average of 20 

independent trials with affiliated standard deviation. To get insights into the complexity of 

learned models, we also provide the mean number of samples used for establishing a model.  

4 Experimental results and discussion 

Results are presented for the VSVM with and without self-learning strategy (i.e., VSVM-SL 

and VSVM), respectively. As a benchmark, we present accuracies obtained with an SVM, 

which is learned based on features from the segmentation level with initial parameterization 

(i.e., the model which is used for the extraction of SVs). In addition to that, an SVM is learned 

using multi-level segmentation (i.e., segmentations with altered parameterization; referred to 

as SVM-M), whereby additionally encoded object characteristics are represented in the model 

not as virtual samples but as additional features (a comparable approach can be found in 

(Bruzzone and Carlin, 2006).  

4.1 Experimental results from data set I: Cologne  

Fig. 7 contains obtained accuracy estimates in terms of κ statistic as a function of differing 

numbers of samples used for model learning and selection. To track model complexity and 

evaluate classification accuracy with respect to affiliated number of samples, corresponding 

mean numbers of samples used for establishing a model (i.e., SVs for the SVM-based 

methods and sum of SVs and VSVs for the VSVM-based methods) are also presented. The 

binary classification setting (Fig. 7a) shows a similar accuracy pattern for both types of 

invariances (i.e., scale and shape), whereby the VSVM-SL approach clearly allows obtaining 

higher accuracies compared to the other methods in situations where solely very few labeled 

samples are available. Simultaneously, a plateau on a high accuracy level is reached more 

rapidly. Generated models are also more robust as indicated by narrower standard deviations 

of κ statistics, and need considerably less samples for establishing a model compared to the 

unconstrained VSVM. Results from 20 realizations with 40 and 34 samples per class for 

model learning and selection regarding the scale and shape invariances, respectively (Table I), 

unambiguously underline the superior solutions provided by VSVM-SL in this example. With 

this model almost all accuracy measures achieved highest values, and e.g., mean κ statistics 

exceed the other methods constantly by more than five percentage points. These numbers are 

also mirrored in the corresponding classification map (Fig. 8a), where the VSVM-SL 

approach features less errors of commission regarding the class “bushes/trees”, and provides a 

spatially well regularized classification map. This favorable performance pattern can be 

attributed to the fact that the land cover class “bushes/trees” mainly encodes invariances in 

this example, and that the classification problem itself is comparably easy. Consequently, 

class distributions can be generally described well with few samples.  

Results from the multiclass classification setting are depicted in Fig. 7b. In this setting, 

VSVM-SL and VSVM perform equally well and consistently outperform the two benchmark 

approaches. The governing principle to represent additional knowledge in the model as virtual 

samples and not as features shows favorable properties, especially in situations with very few 
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labeled samples. This is particularly indicated by the poor accuracies obtained with the multi-

level segmentation approach (i.e., SVM-M) compared to the other methods, and can be 

related to the circumstance that the relation between number of labeled samples and number 

of features can become problematic in such settings (i.e., induces phenomena associated to the 

curse of dimensionality). Intuitively, more labeled samples are needed in the multiclass 

setting compared to the binary setting to reach a plateau on a high accuracy level. There it can 

be observed that both virtual samples-based methods still feature higher accuracies in terms of 

global accuracy measures compared to the two benchmark approaches (Table II). The VSVM-

SL achieves best overall performance for the invariances of scale, whereas the VSVM 

features the best overall results for the invariances of shape, respectively. However, the 

VSVM-SL needs approximately solely half of the number of samples compared to the 

unconstrained approach to establish the models. Corresponding classification maps are shown 

in Fig. 8b. They underline the capability of the virtual samples-based methods to provide a 

spatially smooth and accurate classification map.  

Overall, the results for this data set show the favorable performance properties of VSVM and 

VSVM-SL, whereby the self-learning strategy is particular useful in very small sample 

settings and obtaining sparse model solutions. 
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TABLE I 
STUDY AREA 1 (COLOGNE): CLASSIFICATION ACCURACIES OBTAINED WITH THE DIFFERENT METHODS FOR THE 

BINARY CLASSIFICATION SETTING REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM 

TWENTY REALIZATIONS WITH A VARYING CONFIGURATION OF LABELED SAMPLES. OBTAINED RESULTS FROM A 

SINGLE REALIZATION ARE ALSO VISUALIZED IN FIG. 8A. 
 
Invariance to object scale; number of samples used for model learning and selection: 40  

 

Invariance to object shape; number of samples used for model learning and selection: 34  

 

TABLE II 
STUDY AREA 1 (COLOGNE): CLASSIFICATION ACCURACIES OBTAINED WITH THE DIFFERENT METHODS FOR THE 

MULTICLASS CLASSIFICATION SETTING REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM 

TWENTY REALIZATIONS WITH A VARYING CONFIGURATION OF LABELED SAMPLES. OBTAINED RESULTS FROM A 

SINGLE REALIZATION ARE ALSO VISUALIZED IN FIG. 8B. 
 

Invariance to object scale; number of samples used for model learning and selection: 200 

 

Invariance to object shape; number of samples used for model learning and selection: 200 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Bush/tree 78.99 (± 5.82) 67.39 (± 8.33) 77.21 (± 4.74) 73.52 (± 5.47) 78.59 (± 6.19) 67.18 (± 8.58) 82.52 (± 3.86) 75.56 (± 6.28) 

Other 92.84 (± 2.99) 99.00 (± 0.71) 93.81 (± 1.26) 95.36 (± 2.00) 92.66 (± 3.56) 98.81 (± 0.80) 94.89 (± 1.46) 97.81 (± 1.45) 

κ 72.29 (± 8.24) 71.07 (± 5.89) 71.76 (± 8.87) 77.53 (± 5.14) 
F�
��� 90.61 (± 3.43) 91.14 (± 1.77) 90.40 (± 3.96) 92.90 (± 1.82) 
OA 89.35 (± 4.03) 90.28 (± 1.95) 89.12 (± 4.61) 92.11 (± 2.11) 
AA 83.19 (± 4.07) 84.44 (± 2.91) 83.00 (± 4.23) 86.68 (± 2.95) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Bush/tree 78.23 (± 4.65) 65.93 (± 6.94) 79.6 (± 6.08) 68.21 (± 8.9) 79.36 (± 4.64) 68.79 (± 8.45) 81.82 (± 3.59) 77.15 (± 6.78) 

Other 92.55 (± 2.37) 99.14 (± 0.59) 92.86 (± 3.11) 99.05 (± 0.8) 93.19 (± 2.33) 98.78 (± 1.56) 94.92 (± 1.24) 96.92 (± 1.78) 

κ 71.25 (± 6.59) 72.91 (± 8.65) 72.93 (± 6.56) 76.81 (± 4.69) 
F�
��� 90.24 (± 2.73) 90.72 (± 3.58) 90.96 (± 2.68) 92.81 (± 1.58) 
OA 88.91 (± 3.22) 89.45 (± 4.20) 89.79 (± 3.19) 92.07 (± 1.82) 
AA 82.53 (± 3.34) 83.63 (± 4.35) 83.78 (± 3.74) 87.04 (± 3.06) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Bush/tree 83.64 (±2.41) 80.66 (±2.78) 81.58 (±4.45) 83.59 (±2.51) 82.48 (±2.74) 81.79 (±2.20) 83.27 (±1.96) 80.58 (±3.42) 
Meadow 52.97 (±6.44) 40.30 (±7.95) 55.55 (±11.11) 47.84 (±18.51) 47.30 (±7.38) 33.42 (±7.87) 51.99 (±6.31) 39.26 (±7.20) 

Roof 58.34 (±9.41) 78.78 (±3.88) 67.18 (±7.52) 72.68 (±5.30) 64.84 (±5.16) 80.50 (±1.76) 67.11 (±7.55) 78.99 (±2.77) 
Facade 57.74 (±3.35) 49.56 (±3.96) 56.06 (±4.52) 49.50 (±8.58) 58.91 (±2.39) 52.27 (±3.62) 56.86 (±3.56) 47.99 (±3.83) 

Other imp. surf. 37.62 (±7.25) 27.06 (±6.98) 14.92 (±7.61) 26.20 (±15.01) 44.08 (±6.12) 32.10 (±5.51) 46.09 (±8.21) 37.12 (±8.92) 
Shadow 87.18 (±1.10) 90.63 (±1.50) 84.50 (±1.52) 82.13 (±2.82) 88.17 (±1.04) 91.70 (±1.17) 87.48 (±1.28) 91.52 (±1.35) 

κ 63.49 (±4.62) 63.40 (±3.59) 66.09 (±3.05) 67.25 (±3.94) 
F�
��� 73.54 (±3.46) 73.75 (±2.16) 75.86 (±2.01) 76.35 (±2.76) 
OA 72.73 (±3.78) 73.84 (±2.83) 74.77 (±2.46) 75.77 (±3.24) 
AA 61.16 (±2.96) 60.32 (±3.23) 61.96 (±1.96) 62.58 (±2.18) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Bush/tree 82.94 (± 1.99) 80.58 (± 2.34) 84.83 (± 1.85) 83.88 (± 1.92) 85.84 (± 2.71) 82.72 (± 2.98) 84.73 (± 2.65) 82.21 (± 2.64) 
Meadow 51.02 (± 6.55) 38.31 (± 8.34) 47.14 (± 4.54) 33.42 (± 4.36) 57.62 (± 8.51) 48.53 (± 13.23) 50.69 (± 9.36) 42.09 (± 11.42) 

Roof 55.45 (± 10.75) 78.10 (± 3.61) 64.03 (± 4.80) 76.58 (± 4.58) 67.29 (± 8.58) 78.95 (± 2.46) 68.80 (± 6.56) 75.78 (± 3.43) 
Facade 56.27 (± 4.49) 48.48 (± 5.96) 56.02 (± 4.17) 47.72 (± 5.1) 58.60 (± 2.69) 55.53 (± 4.10) 54.37 (± 3.87) 45.50 (± 5.09) 

Other imp. surf. 37.24 (± 9.71) 26.86 (± 9.38) 48.02 (± 4.29) 35.67 (± 4.14) 43.70 (± 13.70) 35.07 (± 13.32) 46.07 (± 11.92) 40.73 (± 11.97) 
Shadow 86.90 (± 1.01) 90.21 (± 1.28) 88.65 (± 1.58) 93.33 (± 0.94) 87.91 (± 1.50) 90.04 (± 1.68) 86.93 (± 1.85) 90.93 (± 1.80) 

κ 61.96 (± 5.19) 67.06 (± 2.72) 68.32 (± 5.12) 67.86 (± 4.59) 
F�
��� 72.30 (± 3.80) 76.11 (± 2.07) 77.15 (± 3.44) 76.62 (± 3.06) 
OA 71.49 (± 4.27) 75.40 (± 2.16) 76.76 (± 3.96) 76.38 (± 3.67) 
AA 60.42 (± 2.87) 61.76 (± 2.29) 65.14 (± 4.01) 62.88 (± 4.19) 
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Fig. 8. Visualized results from a single realization with the different methods for the binary (a) and multiclass (b) 
classification setting
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4.2 Experimental results from data set II: Hagadera  

Analogous to the presentation of results from data set I, we also provide obtained accuracies 

as a function of differing number of samples, and corresponding mean numbers of samples 

used for establishing a model for data set II (i.e., SVs for the SVM-based methods and sum of 

SVs and VSVs for the VSVM-based methods) (Fig. 9). For the binary classification setting it 

can be observed that the virtual samples-based approaches show better accuracies in 

comparison to the benchmark approaches (Fig. 9a). Thereby, VSVM and VSVM-SL alternate 

with respect to the best model accuracies until all methods converge to a plateau of maximum 

accuracy when more than 50 samples per class were used for model learning and selection. As 

a further means, results from 20 realizations with 20 and 34 samples per class for model 

learning and selection regarding the scale and shape invariances, respectively are provided in 

Table III. It can be observed that invariances of scale were exploited by VSVM in the most 

beneficial way, and the VSVM-SL method enables the highest accuracies with respect to 

invariances of shape. These numbers are also reflected in the corresponding classification map 

(Fig. 10a). The maps obtained with VSVM and VSVM-SL feature considerably less errors of 

commission regarding the class “built-up area” for both types of invariances while keeping a 

spatially well regularized yet fine-grained classification map. 

Results from the multiclass classification setting are shown in Fig. 9b. In this example, the 

VSVM-based models clearly outperform the other methods for settings with very few labeled 

samples. However, they are directly followed by the VSVM-SL-based models. Analogous to 

the binary classification setting, all methods converge to a plateau of maximum accuracy 

when models are learned and selected with 50 or more samples per class. Nevertheless, Table 

IV documents in detail the beneficial performance properties of the VSVM approach in very 

challenging classification settings with solely 20 samples per class. It permits the most 

favorable global as well as class individual accuracies. Corresponding classification maps are 

provided by Fig. 10b. Generally, it can be observed that there are predominately commission 

errors with respect to the classes “fence” and “shadow”. These can be attributed to their non-

discriminative spectral appearance in the imagery and frequent occurrence in direct spatial 

proximity. However, the VSVM provides least errors of omission with respect to the residual 

land cover classes and also allows for the spatially most homogeneous and consistent 

mapping results. This can be related to the circumstance that the VSVM encodes most 

additional prior knowledge in the model in a beneficial way, what is favorable here to learn 

discriminative functions for multiple complex class distributions. 

In conclusion, also the results for this data set demonstrate the beneficial characteristics of the 

virtual samples-based methods, whereby the unconstrained VSVM particularly allowed for 

the best accuracies in very challenging classification problems. 
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Fig. 9. κ statistics (reported as mean and standard deviation from twenty realizations with a varying 
configuration of labeled samples) and 
methods as a function of sum of training and test samples per class for the Hagadera data set.
binary classification setting; (b) results for the mult
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TABLE III 
STUDY AREA 2 (HAGADERA): CLASSIFICATION ACCURACIES OBTAINED WITH THE DIFFERENT METHODS FOR THE 

BINARY CLASSIFICATION SETTING REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM 

TWENTY REALIZATIONS WITH A VARYING CONFIGURATION OF LABELED SAMPLES. OBTAINED RESULTS FROM A 

SINGLE REALIZATION ARE ALSO VISUALIZED IN FIG. 10A. 
 

Invariance to object scale; number of samples used for model learning and selection: 20  

 

Invariance to object shape; number of samples used for model learning and selection: 34  

 

TABLE VI 
STUDY AREA 2 (HAGADERA): CLASSIFICATION ACCURACIES OBTAINED WITH THE DIFFERENT METHODS FOR THE 

MULTICLASS CLASSIFICATION SETTING REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM 

TWENTY REALIZATIONS WITH A VARYING CONFIGURATION OF LABELED SAMPLES. OBTAINED RESULTS FROM A 

SINGLE REALIZATION ARE ALSO VISUALIZED IN FIG. 10B. 
 

Invariance to object scale; number of samples used for model learning and selection: 20 

 

Invariance to object shape; number of samples used for model learning and selection: 20 

 

 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Built-up area 90.09 (± 4.90) 90.43 (± 7.07) 89.93 (± 5.05) 89.75 (± 7.54) 91.01 (± 4.80) 91.70 (± 7.48) 89.38 (± 8.14) 96.28 (± 3.86) 

Other 94.69 (± 2.85) 94.91 (± 3.05) 94.55 (± 2.85) 95.59 (± 4.11) 95.19 (± 2.79) 95.56 (± 3.51) 95.23 (± 2.67) 92.81 (± 5.52) 

κ 84.81 (± 7.67) 84.56 (± 7.61) 86.27 (± 7.34) 84.79 (± 10.29) 
F�
��� 93.14 (± 3.52) 92.99 (± 3.52) 93.78 (± 3.41) 93.26 (± 4.50) 
OA 93.10 (± 3.57) 92.96 (± 3.52) 93.76 (± 3.42) 93.45 (± 4.03) 
AA 92.67 (± 4.00) 92.67 (± 3.37) 93.63 (± 3.46) 94.54 (± 2.40) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Built-up area 91.98 (± 3.17) 89.94 (± 5.41) 93.12 (± 2.10) 92.21 (± 4.22) 91.59 (± 4.62) 90.11 (± 7.42) 93.39 (± 3.97) 95.49 (± 5.04) 

Other 95.53 (± 1.92) 96.97 (± 1.77) 96.25 (± 1.27) 96.97 (± 1.77) 95.30 (± 2.79) 96.62 (± 2.62) 96.60 (± 2.20) 95.67 (± 2.39) 

κ 87.53 (± 5.05) 89.38 (± 3.34) 86.93 (± 7.34) 90.00 (± 6.15) 
F�
��� 94.33 (± 2.33) 95.19 (± 1.54) 94.05 (± 3.39) 95.52 (± 2.80) 
OA 94.27 (± 2.38) 95.15 (± 1.58) 93.98 (± 3.46) 95.51 (± 2.83) 
AA 93.46 (± 2.81) 94.59 (± 1.89) 93.36 (± 3.93) 95.58 (± 3.12) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Built-up area 89.08 (±4.10) 97.77 (±1.67) 90.86 (±2.30) 97.90 (±1.86) 92.28 (±2.74) 98.42 (±1.55) 89.70 (±4.68) 95.76 (±6.77) 
Vegetation 95.98 (±2.38) 99.60 (±0.25) 96.11 (±1.72) 99.52 (±0.44) 97.07 (±0.87) 99.44 (±0.31) 96.62 (±1.79) 99.36 (±0.51) 
Bare soil 94.32 (±3.03) 93.43 (±4.99) 94.23 (±2.53) 93.95 (±3.44) 96.12 (±2.43) 95.46 (±2.50) 93.76 (±5.27) 94.21 (±3.65) 

Fence 13.10 (±5.20) 7.28 (±3.11) 14.29 (±4.21) 8.00 (±2.62) 19.28 (±7.24) 11.21 (±4.77) 17.01 (±7.52) 9.90 (±5.31) 
Shadow 16.35 (±6.85) 9.46 (±4.56) 18.06 (±7.88) 10.49 (±5.21) 23.53 (±10.93) 14.46 (±8.01) 20.20 (±7.27) 11.91 (±5.15) 

κ 85.20 (±3.87) 86.38 (±2.72) 89.29 (±3.43) 86.57 (±4.90) 
F�
��� 92.59 (±2.18) 93.18 (±1.38) 94.63 (±1.51) 92.84 (±3.30) 
OA 89.70 (±2.79) 90.55 (±1.98) 92.61 (±2.47) 90.74 (±3.38) 
AA 61.51 (±1.62) 61.97 (±0.90) 63.80 (±2.14) 62.23 (±1.85) 

Class 
SVM SVM-M VSVM VSVM-SL 

F1 ACC F1 ACC F1 ACC F1 ACC 
Built-up area 90.42 (±3.77) 97.25 (±1.72) 88.69 (±3.15) 96.78 (±2.25) 93.24 (±2.61) 97.57 (±1.23) 91.64 (±3.21) 97.66 (±1.44) 
Vegetation 96.41 (±1.23) 99.45 (±0.59) 97.48 (±1.57) 99.60 (±0.35) 97.08 (±1.06) 99.62 (±0.27) 96.45 (±1.10) 99.52 (±0.46) 
Bare soil 94.45 (±2.29) 93.70 (±3.47) 93.06 (±2.90) 93.00 (±3.93) 96.45 (±0.96) 96.21 (±2.30) 94.93 (±1.98) 94.55 (±3.00) 

Fence 14.60 (±3.50) 8.17 (±2.11) 13.94 (±4.71) 7.86 (±2.99) 20.37 (±7.45) 11.96 (±5.13) 16.06 (±5.82) 9.14 (±3.63) 
Shadow 18.94 (±6.96) 11.13 (±4.76) 14.04 (±4.29) 7.83 (±2.61) 28.88 (±11.60) 18.12 (±8.43) 22.91 (±7.85) 13.55 (±5.29) 

κ 86.83 (±3.49) 85.52 (±3.59) 90.30 (±2.84) 87.80 (±3.54) 
F�
��� 93.22 (±1.96) 92.55 (±2.04) 95.07 (±1.21) 93.80 (±1.67) 
OA 90.89 (±2.51) 89.96 (±2.57) 93.34 (±2.02) 91.56 (±2.60) 
AA 61.94 (±1.45) 61.01 (±1.54) 64.70 (±2.28) 62.88 (±1.39) 
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Fig. 10. Visualized results from a single realization with the different methods for the binary (a) and multiclass 
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5 Conclusions and Outlook 

In this paper, we proposed a novel learning algorithm based on SVM, which encodes 

additional prior knowledge based on virtual samples to render the decisions functions of a 

classification model invariant. Thereby, we followed a self-learning strategy to eventually 

prune non-informative virtual samples from the training set. This procedure is intended to 

allow for enhanced generalization capabilities particularly in situations with very few labeled 

samples. The proposed technique was applied to two portions of very high spatial resolution 

multispectral imagery acquired by the WorldView-II sensor. Experimental results were 

obtained for binary and multiclass classification problems. They underline the effectiveness of 

the proposed methods, which allow for significantly increased classification accuracies 

compared to related benchmark methods and enhanced spatial consistency of corresponding 

classification maps. The VSVM approach particularly allowed for the best accuracies in very 

challenging classification problems, and the constrained VSVM-SL approach was particularly 

beneficial in very small sample settings while obtaining simultaneously sparse model 

solutions.  

In future works we aim to learn VSVM on a semi-supervised inference scheme to possibly 

further increase classification accuracies in settings with very few labeled samples. In this 

context, the deployed self-learning strategy can be the basis to include only informative 

unlabeled samples in the model in an efficient way. Moreover, we aim to adapt the proposed 

method within an adequate processing framework for classification of hyperspectral data.  
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