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Decoupled Control of Position and / or Force of Tendon Driven Fingers
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Abstract— In contrast to underactuated robotic hands the
DLR AWIWI II hand of the David robot is fully controllable
because each finger with 4 joints is actuated by 6 or 8 tendons
respectively. For such fingers all joint angles (generalized
positions) or joint torques (generalized forces) can be controlled
independently. Usually, the specifications in joint space are
converted to desired tendon forces or motor torques, which are
regulated by an inner loop impedance controller. However, this
conversion typically exhibits couplings between the components
of the joint angle vector or the joint torque vector respectively,
which arise when using the well known equations. Therefore the
usual force control and position control schemes are reviewed
and a generic computation of the desired tendon forces is
presented. This is also done for the control of the Cartesian
position and force at the finger endpoint. Thus the main
contribution of the paper is the inhibition of couplings in joint
space or at the Cartesian endpoint. This is demonstrated in
simulations of the index finger of the DLR David hand.

I. INTRODUCTION

In contrast to robot arms with motors located in the joints,
with robot hands there is not sufficient space for actuators
within each finger joint. Therefore for most robotic hands, as
e.g., [1], [2], [3], [4], [5], [6], [7], [8], the motors are placed
distant from the joints. This has been a main design criterion
for the DLR Hand Arm System, see [9], [10], in which the
motors are located in the forearm. Then the actuation of the
joints is by tendons.

However, such arrangements cause couplings, because
tendons to distant joints pass by the more proximal joints. In
this way it is not trivial to control the joints in a decoupled
way [11], [12], [13], [14], [15], [16]. In particular it is
shown in this paper that existing approaches for decoupled
joint torque control, e.g. [11], offer couplings of the finger
joints when being applied to joint angle control. Therefore
modified controllers are proposed here that apply for both,
torque control (generalized force control) and angle control
(generalized position control).

In contrast to very popular underactuated setups, this paper
concentrates on fully controllable systems. Then, for a finger
with n joints at least n + 1 tendons have to be specified
[11], [17]. Otherwise the tendons may become slack or the
independent control of the joints not possible. According to
the classification in [18], [15], a controllable tendon driven
mechanism is assumed, which besides the number of tendons
includes a nonsingular routing.

The contributions of this paper apply to all such fingers.
As an example the index finger of the AWIWI II hand of the
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Fig. 1. DLR David hand (AWIWI II hand)

DLR David robot (formerly called DLR Hand Arm System,
see Fig. 1) is considered which offers m = 8 tendons for
n = 4 joints.

This paper subdivides control in
• the determination of the m desired motor torques or

tendon forces from the n desired joint torques or joint
angles and

• the dynamic control of the tendons by impedance con-
trol

and concentrates on the former with the emphasis on decou-
pling. This means that given a step of a single joint torque or
joint angle, only this joint will change its state even though
several tendons are involved which are connected to other
joints as well.

For control, an impedance controller with the desired ten-
don forces as input is assumed (see Fig. 2), as implemented
for the DLR David hand. Alternatively, an inner loop position
control can be considered (see Fig. 3), as it is used, e.g., for
the Robonaut 2 [19]. Position control is preferred whenever
tendon forces cannot be measured accurately enough or
whenever the motors do not allow torque control, as with
step motors. For brevity it is not discussed here.

For a finger in contact, surely the joint torques have
to be controlled, whereas the joint angles partially arise
depending on the geometry of the touched object. On the
other hand, before the contact is reached, the joint angles will
be controlled exclusively and in doing so the joint torques
will be zero. Thus the argumentation within this paper differs
from approaches which use the same desired values for both,
such that the finger speed depends on the desired gripping
force.

Besides, alternatively to the joint values, the Cartesian
position and force at the finger endpoint are considered, as
in [20], [21]. Also for this case those desired motor torques
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Fig. 2. Control with desired tendon forces ftd (or desired motor torques
τmd) as input to the inner loop.
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Fig. 3. Control with desired motor angles θd (or desired motor side tendon
positions utd) as input to the inner loop.

or tendon forces are derived that decouple during both, force
and position control. Endpoint control is important for pinch
grasps in which contact to the grasped object is intended at
a single contact point for each finger. Its force or position is
more important than the individual joint values. For example,
couplings in Cartesian position control mean that the fingers
do not move in the expected way to their future contact
points.

In this way the main contribution of this paper is the pre-
sentation of the desired tendon forces for different scenarios,
such that the joint or Cartesian characteristics respectively
are decoupled.

The paper is organized as follows: In Sect. II tendon driven
systems are reviewed, introducing the notation of the setup
and the control. Then Sect. III discloses couplings when con-
trolling joint torques or joint angles and proposes modified
computations of the generalized force of the motors. Sect. IV
then extends the joint control methods to control of the finger
endpoint. Finally simulations are reported in Sect. V.

II. TENDON DRIVEN SYSTEMS

In this section the setup and the notation of tendon driven
fingers are reviewed, including their control.

A. Setup of tendon driven fingers

A robot finger (see Fig. 4) with n joints with angle q ∈ Rn

and torque τ ∈ Rn is considered. They are moved by m
tendons, actuated by m motors with angle θ ∈ Rm and
torque τm ∈ Rm. At the joints the tendon position xt ∈ Rm

and force ft ∈ Rm are expressed by

xt = Rq (1)
τ = RT ft (2)

where R ∈ Rm×n is the routing matrix. This matrix contains
the radii of the pulleys of the joints, where |rij | is the radius
of the pulley of tendon i at joint j. The tendon routing is
represented by the signs of the rij , where rij > 0 means that
∆qj > 0 increases the tendon position xti, whereas rij < 0
represents the opposite routing. rij = 0 means that tendon
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Fig. 4. Notation, shown for a single joint with two tendons.

i ends before joint j or that it is routed through the axis of
joint j.

The routing matrix of most fingers of the DLR David hand
is represented by

R =



R1 R1 0 0
−R1 R1 0 0
R1 −R1 0 0
−R1 −R1 0 0
R4 0 R2 0
−R4 0 −R2 0
R5 0 R3 R3

−R5 0 −R3 −R3


. (3)

Column 1 represents adduction / abduction in the MCP joint
whereas the other columns stand for flexion / extension in
joints MCP, PIP, and DIP, respectively. In the sequel, the indi-
vidual degrees of freedom (dof) represented by the columns
are denoted as joints. In order to reduce the couplings, R4

and R5 are smaller than the other radii. The zeroes in the
lower part of column 2 mean that tendons 5 to 8 are routed
through the axis of joint 2.

In contrast to [17], [22], [23] a constant routing matrix
(R 6= R(q)) is assumed. This means that for all joint angles
all tendons are in contact to the pulleys. This is reached by
an extra turn around the pulley as shown in Fig. 4.

It is assumed that a minimum tension of all tendons is
guaranteed by springs between the motors and the joints.
Therefore the notation has to be extended by another tendon
position. Besides the tendon position at the joint xt, the
tendon position at the motor is denoted by ut ∈ Rm, where
the same tendon force ft > (ftmin

) > 0 is exerted as at the
joint.1

At the motors

ut = Rmθ (4)
τm = Rmft (5)

where Rm ∈ Rm×m is the diagonal matrix with the radii of
the motor pulleys.

1The notation (ftmin ) means a vector with identical elements.



The relation between the two tendon positions xt and ut

is given by

∆ft = Kt (∆ut −∆xt) (6)

where ∆ denotes the difference between two values that are
close together, as between sampling steps. Kt ∈ Rm×m

is the diagonal matrix of the tendon stiffness with positive
elements kti which may depend on ft.

A pinch grasp is considered in which the finger is in
contact or tries to get contact to a grasped object at a single
contact point x ∈ R3, the endpoint. There a contact force
f ∈ R3 is exerted. For this paper it is assumed that the
endpoint with respect to the finger is known and thus the
endpoint Jacobian J(q) ∈ R3×n is given. Then,

∆x = J∆q (7)
τ = JT f . (8)

B. Control of tendon driven fingers

Equation (1) computes the joint-side tendon position xt

whenever the joint angles are given. However, for control,
the tendon force ft has to be known, but (2) does not allow
to compute the tendon force ft ∈ Rm from the given joint
torque τ ∈ Rn since because of m > n there are infinite
solutions. [11], [15] therefore define

ftd = R+T τ d + ft0 (9)

for the specification of desired tendon forces ftd from the
desired joint torques τ d, using the pseudoinverse according
to Appendix A.

In order to ensure that the pretension ft0 does not con-
tribute to the joint torque, i.e.

RT ft0 = 0, (10)

[11] specifies ft0 as

ft0 = R1ft1 (11)

with rank(R1) = m− n and RTR1 = 0, e.g.

R1 = (Im −RR+) (12)

and an arbitrary ft1 .
As an alternative to (11) with the square matrix (12), [14]

defines R1 ∈ Rm×(m−n) by unit length column vectors
which are orthogonal to the columns of R. Then an internal
tension vector ft1 ∈ Rm−n is minimized with ftd > (ftmin)
as constraint. In this way, with RT

1 R1 = Im−n, RTR1 = 0,
and

[
R R1

]
being invertible, (9) can be expressed as

ftd =
[
R R1

]−T
[

τ d

ft1

]
. (13)

For a given desired joint torque τ d, (9) or (13) can be
applied directly. Instead, when controlling the joint angle,
its desired value qd specifies the desired joint torque by 2

τ dq = KP (qd − q) + KD(q̇d − q̇) (14)

2In the implementation additional filtering is required.

computed from diagonal gain matrices KP and KD. τ dq is
then used in (9) or (13) instead of τ d. In this way the joint
torque controller is switched to a joint angle controller.

III. DECOUPLING OF JOINT SPACE CONTROL

In this section, first it is verified whether (9) always results
in decoupled control of the joints. Then (9) is modified such
that this applies.

When controlling the tendon force ft, the specified joint
torques will be reached whenever there is a contact such
that joint torques may be applied. This is obvious from (40)
in Appendix A when inserting (9) into (2), provided that
RT ft0 = 0.

τ = RT (R+T τ d + ft0) = τ d (15)

However, for position control it is not possible to specify
a joint angle or a joint trajectory directly. Even a decoupled
computation of τ dq , as e.g. by (14), does not guarantee a
decoupled motion.

For the simplified case with a diagonal inertia matrix of
the motors Mm ∈ Rm×m and equal diagonal elements rm,
mm, and kt of the matrices Rm, Mm, and Kt, Appendix C
shows that without contact

q̈ = r2mm
−1
m (RTR)−1τ dq. (16)

This means that a desired motion in a single component of
qd may result in actual motion of the other joints.

A way out might be

ftd = αRτ dq + ft0 = R+T (αRTR)τ dq + ft0 (17)

instead of (9), where according to (43) in Appendix A, both
formulations of (17) are equivalent. α is a constant that
accounts for the different orders of magnitude of R and
R+T . α can also be seen as part of the controller gains
KP and KD. Then, according to Appendix C, with τ = 0
we get

q̈ = r2mm
−1
m ατ dq (18)

instead of (16), i.e., the joints are decoupled.
Equation (17) is similar to joint-space control in [14]

which is preferred there with respect to tendon-space control
(13).

So with τ = 0, qd is reached on the direct way without
any coupling. However, when being in contact, typically the
joint torques are specified. Then, with (17),

τ = RT ftd = RT (αRτ d + ft0) = αRTRτ d, (19)

which means that the torques are coupled. In this way the
specified joint torque will not be reached or at least not
directly.

In this way the original approach (9) is advantageous for
joint torque control, whereas the modified version (17) is
preferred for joint angle control.

Both equations, (9) for generalized force control and (17)
with (14) for generalized position control, can be combined
by

τ c = τ d + αRTRτ dq (20)



which, as input to (9) and using (43), results in

ftd = R+T τ d + αRτ dq + ft0 . (21)

Now there are two inputs processed, τ d and τ dq , instead of
a single desired torque, as assumed previously. With qd =
q, (21) is (9) and with τ d = 0 it is (17). This allows to
specify joint torques and joint angles independently, at least
for different dofs.

However, even when using (21), the desired values have
to be selected depending on the contact state. For example,
τ d has to be zero without contact. With contact the ratio of
its components is constrained by the contact point. As well,
with contact, qd has to be adapted such that it is reachable.
Otherwise, components of τ d or qd will not be reached
properly. The specifications are easier when considering the
Cartesian space (see Sect. IV).

IV. DECOUPLING OF ENDPOINT CONTROL

Similar control approaches are possible by considering the
finger endpoint instead of the joints. This could be done by
transforming the desired Cartesian values to joint space and
using the equations shown so far. Instead, different equations
are used, which do not define qd. In other words, the joint
angles arise from both, the actual and the desired endpoint
position and force, such that the latter are reached faster.

Equations (7) and (44) from Appendix A result in

∆x = JR+∆xt. (22)

Similarly, (2) and (53) from Appendix B give

f = J+TRT ft. (23)

However, ft cannot be computed directly from this. Thus
an approach as (9) or (17) is needed, i.e.,

ftd = (J+TRT )+fd + ft0 (24)
ftd = αcRJ+fdx + ft0 (25)
ftd = αc(J

+TRT )+J+TRTRJ+fdx + ft0 (26)

with

fdx = KCP (xd − x) + KCD(ẋd − ẋ) (27)

using a Cartesian PD controller with diagonal gain matrices
KCP and KCD and another scaling factor αc.

The pseudoinverse of J+TRT is computed as right inverse
according to Appendix B. Thus (52) in Appendix B discloses
that (25) and (26) are equivalent. So the force control law
(24) and the position control law (25) can be combined by

fc = fd + αcJ
+TRTRJ+fdx (28)

which, instead of fd is taken as input to (24).
Whenever there is contact, fd is the desired contact force

which is specified in order to reach a stable grasp. Otherwise
it is zero. Depending on the task, the desired position xd is
set to x as soon as a stiff contact with friction is realized. Or
it can then be specified in order to move the contact point.
Then the value of αc determines the desired stiffness at the
finger endpoint. Thus the Cartesian desired values are more

intuitive than the joint space specifications. The resulting
joint configuration then arises from the setup.

With (28), f = fd = 0, and Kt = ktIm, with (7), (44),
(6), (46), (38), and (48),

ẍ = r2mm
−1
m αcfdx + ∂J/∂xJq̇2, (29)

i.e., with small q̇ the endpoint position is decoupled.
Instead of (24) and (28), Cartesian control is also possible

by (9), but then with

τ c = RT (J+TRT )+(fd + αcJ
+TRTRJ+fdx) (30)

instead of (20). This can be derived by (2), (24), and (28).
In this way (9) can be always used, with (20) and (14) or
(30) and (27) respectively. Note that τ c cannot be computed
by JT fc because control is executed by (9) and not by (24).

Alternatively,

τ c = JT fd + αcR
TRJ+fdx (31)

is found, which is identical with respect to fdx and also
converges to fd with (9) and fdx = 0.

A combination of (20) and (31), e.g.

τ c = JT fd + αcR
TR(J+fdx + β(qd − q)) (32)

may be used in order to suppress a possible null space drift
of q, where β results in the weighting of the joint angle with
respect to qd = J+xd.

V. SIMULATIONS

With the DLR David hand the inner loop control uses
the tendon forces ft as input. Thus (9) can directly be
applied. The motor torque τm is finally computed by an
impedance law using measured values of ft and θ, where
the tendon forces are indirectly measured by the elongation
of the nonlinear springs, see [24].

For a better comparability of the trajectories the ex-
periments are simulated. For that matter the same control
software as for the hardware is used, including the inner loop
tendon force controller. In addition, this software features a
null space shift whenever the allowed range of tendon forces
of [12 · · · 100] N is exceeded and equal scaling of all motor
torques such that the range [−3 · · · 3] Nm is not exceeded.
α = 10000 1/m2, KP = 2 I Nm, and KD = 0.0015 I Nms
are selected for the controller in joint space, whereas αc =
15, KCP = 1333 I N/m, KCD = I Ns/m, and β = 100 N/m
are used for Cartesian control. τ dq and fdx are filtered with
a time constant of 20 ms.

The simulated measurements from the hardware are com-
puted by

θ̈ = M−1
m (τm −Rmft) (33)

∆q = (RTKtR)−1RTKtRm∆θ (34)

with τm as the motor torque. ∆ here stands for differences
with respect to the previous sampling step. Equation (34) is
applied for the case in which there is no contact, i.e. τ =
RT ft = 0. See Appendix D for the derivation.
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Fig. 5. Desired and actual joint angles when moving in free space: Generic
control by (21) (here identical to (17)), torque control by (9) with τdq

instead of τd.
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Fig. 6. Desired and actual joint torques during joint control in contact:
Generic control by (21) (here identical to (9)), position control by (9) with
τ c = τ + αRTR(τd − τ ) instead of τd. (With (17) with τd instead of
τdq not even the final joint torque is reached.)

Otherwise, we simulate that all joint angles are constrained
by

q = qd (35)

which might be undue. In both cases, ft is computed by

∆ft = Kt(Rm∆θ −R∆q). (36)

A. Joint control

The tests represent step responses, either of qd in free
space (Fig. 5), or of τ d in contact (Fig. 6). Each time
a change of a single joint is shown because in this way
couplings are seen best. A step of a single joint torque is
not very realistic since, in contrast to the Cartesian case, it
means that the links on both sides of the joint are fixed.
This is a further argument for a simulation instead of a real
experiment. In all cases the step is chosen so small that
saturation effects can be almost neglected.

As expected, the generic approach of (21) works well
in both configurations. Instead, in free space the original
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(30) or (32)), force control by (9) with τ c = JT fdx.
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Generic control by (9) with (31) (which performs as (30) or (32)), position
control by (9) with τ c = τ +αcRTRJ+(fd − f). (τ c = αcRTRJ+fd
has a much too big gain.)

controller (9) shows the couplings from (RTR)−1, which,
with a step of joint 3, affect joint 1 and joint 4. This justifies
another approach besides (9). The experiment with contact
then proves that only (17) is not suitable as well, neither
with (17) and τ d instead of τ dq nor with (17) applied to the
differences. In the former case even the final joint torque is
not reached.

Besides the couplings, the step response is determined by
the inner loop control of the tendon forces, which accounts
for the time constant and the damping.

B. Endpoint control

In Cartesian space the specified steps are endpoint posi-
tions (Fig. 7) or endpoint forces (Fig. 8), also in a single
component, since in this way couplings can be seen best.

Figs. 7 and 8 show that with the generic approach the
Cartesian target values are reached, whereas the other ap-
proaches show a coupling.



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.05 0.10 0.15 0.20

 j
o

in
t 

a
n

g
le

 [
ra

d
] 

time [s] 

 combined control 1  generic control 1  force control 1

 combined control 2  generic control 2  force control 2

 combined control 3  generic control 3  force control 3

 combined control 4  generic control 4  force control 4
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Fig. 9 shows that apart from (32) there may be a null
space drift of the joint angle during endpoint control. This
is because RTRJ+KCPJ is not full rank. In contrast, the
joint torque does not drift because it is uniquely given by
(8).

VI. CONCLUSION

The simulations verify that the generic approaches (20),
(31), or (32) perform well for torque/force control as well
as for angle/position control, whereas the simpler algorithms
result in couplings. However, improper selection of qd and
τ d or xd and fd may result in an offset or a drift.

APPENDIX

A. Left inverse
For matrices with more rows than columns as the routing matrix

R ∈ Rm×n with m > n, the pseudoinverse R+ ∈ Rn×m is
computed as left inverse by

R+ = (RTR)−1RT . (37)

This results in
R+R = In, (38)

but
RR+ = R(RTR)−1RT 6= Im. (39)

In the same way R+T gives

RTR+T = (R+R)T = In, (40)

but
R+TRT = (RR+)T 6= Im. (41)

However,
R+R+TRTR = In (42)

and
R+TRTR = R. (43)

Thus (1) can be inverted to

q = R+xt (44)

but (2) cannot be resolved to ft.

B. Right inverse
In contrast, for matrices with less rows than columns as the

endpoint Jacobian
J ∈ R3×n (45)

with n > 3, the pseudoinverse J+ ∈ Rn×3 is computed as right
inverse by

J+ = JT (JJT )−1. (46)

Then,

J+J = JT (JJT )−1J 6= In (47)
JJ+ = I3 (48)

JTJ+T = (J+J)T 6= In (49)

J+TJT = (JJ+)T = I3 (50)

J+TJ+JJT = I3 (51)
J+JJT = JT . (52)

Consequently, (7) cannot be resolved to ∆q but (8) can be
inverted to

f = J+T τ . (53)

C. Analysis of joint motion
Without contact, any specified motor torque is used for the

acceleration of the motor and the link(s), where the motor inertia
is dominant because it is multiplied by the square of the gear ratio.
Gravity can be neglected, too. Thus τ = 0. Then, with (1) to (6),
constant Kt, and a stationary start configuration with ft, (9) results
in

Mmθ̈ = Rm(ftd − ft)

üt = RmM−1
m Rm(ftd − ft) (54)

ẍt = RmM−1
m Rm(ftd − ft) + K−1

t f̈t

RTKtRq̈ = RTKtRmM−1
m Rm(ftd − ft) + RT f̈t

q̈ = (RTKtR)−1RTKtRmM−1
m Rm(ftd − ft)

(55)
q̈ = (RTKtR)−1RTKtRmM−1

m Rm

(R+T τ dq + ft0 − ft).

With Rm, Mm, and Kt having equal diagonal elements rm, mm,
and kt, (37) and (2) give

q̈ = r2mm
−1
m (RTKtR)−1RTKt

(R(RTR)−1τ dq + ft0 − ft)

q̈ = r2mm
−1
m (RTR)−1(τ dq + RT (ft0 − ft))

q̈ = r2mm
−1
m (RTR)−1τ dq.

This means that joint motion is coupled by RTR which is not
diagonal.

Instead, with (17) instead of (9), (55) results in

q̈ = r2mm
−1
m α(RTKtR)−1RTKtRτ dq

q̈ = r2mm
−1
m ατ dq

which is decoupled.

D. Derivation of the equations for the simulation
Equation (34) is derived from (6) by

KtR∆q = KtRm∆θ −∆ft

RTKtR∆q = RTKtRm∆θ −RT ∆ft,

similar to the derivation of the pseudoinverse.
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