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Abstract— With the rapid development of spaceborne imaging
techniques, object detection in optical remote sensing imagery
has drawn much attention in recent decades. While many
advanced works have been developed with powerful learning
algorithms, the incomplete feature representation still cannot
meet the demand for effectively and efficiently handling image
deformations, particularly objective scaling and rotation. To this
end, we propose a novel object detection framework, called
Optical Remote Sensing Imagery detector (ORSIm detector),
integrating diverse channel features extraction, feature learning,
fast image pyramid matching, and boosting strategy. An ORSIm
detector adopts a novel spatial-frequency channel feature (SFCF)
by jointly considering the rotation-invariant channel features
constructed in the frequency domain and the original spatial
channel features (e.g., color channel and gradient magnitude).
Subsequently, we refine SFCF using learning-based strategy
in order to obtain the high-level or semantically meaningful
features. In the test phase, we achieve a fast and coarsely scaled
channel computation by mathematically estimating a scaling
factor in the image domain. Extensive experimental results
conducted on the two different airborne data sets are performed
to demonstrate the superiority and effectiveness in comparison
with the previous state-of-the-art methods.
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I. INTRODUCTION

GENERALLY speaking, optical remote sensing imagery
is collected from airborne or satellite sources in the

range of 400 ∼ 760 nm. As a large amount of multispectral
images or a very high-resolution red, green, and blue (RGB)
images are freely available on a large scale, there is a grow-
ing interest in various applications, such as dimensionality
reduction [1], [2], segmentation [3], [4], unmixing [5]–[8],
data fusion [9]–[11], object detection and tracking [12]–[14],
and classification or recognition [15]–[18]. In recent years,
geospatial object detection has been paid much attention due
to its importance in environmental monitoring, ecological
protection, hazard responses, and so on. However, optical
remote sensing imagery inevitably suffers from all kinds of
deformations, e.g., variabilities in viewpoint, scaling, and
direction, which results in performance degradation of the
detection algorithm. In addition, objects in optical remote
sensing imagery [19]–[23], such as cars and airplanes in Fig. 1,
are generally small relative to the ground sampling distance
with cluttered backgrounds. To overcome these challenges,
object detection in the remote sensing community has been
extensively studied since the 1980s.

Many benchmarks available in public, e.g., TAS aerial car
detection data set1 and NWPU VHR-10 data set2 [24], [25],
have contributed to spurring interest and progress in this
area of remote sensing object detection. As the diversity
of the database, many robust methods are born one after
another in order to further improve the detection performances.
Existing detection methods can be roughly categorized as
follows [13]: template matching-based, knowledge-based,
object-based, and machine learning-based methods and other
variants. These approaches mostly fail to describe object
features in a complete space with a densely set of scales.

1http://ai.stanford.edu/ gaheitz/Research/TAS/tas.v0.tgz
2The Vaihingen data were provided by the German Society for Photogram-

metry, Remote Sensing and Geoinformation (DGPF).
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Fig. 1. Some seeds used in this paper for cars and airplanes object
detection.

In our case, the so-called complete space should involve
different properties robustly against various deformations, e.g.,
shift and rotation. Moreover, a good image descriptor should
be able to capture substantial image patterns with a coarse
image pyramid. We will detail them close to this paper and
clarify the similarities and differences as well as pros and cons
in Section II.

A. Motivation and Objectives

Object deformation (e.g., rotation and translation) in recog-
nition or detection task is a common but still challenging
problem. In particular, the remote sensing imagery is prone
to have a more complex rotation behavior (see Fig. 1), due to
its “bird perspective.” Although the learning-based methods,
such as deep neural networks (DNNs) and deep convolutional
neural networks, have been proposed to learn the rotation-
invariant (RI) features by manually augmenting the training
set with different rotations, yet it is inevitably limited by the
presetting rotation angles. This could be difficult to adaptively
address the rotation problem of the fractional angle, thereby
yielding a performance bottleneck. Another important factor
that has a great effect on detection performance is the feature
itself, which can be manually designed or extracted by DNN.
However, such powerful learning approaches fail to provide a
richer representation without the strong support of large-scale
labeled training samples.

Consequently, we mainly make our efforts to artificially
develop or optimize the features toward the more discrimi-
native RI representations under the seminal object detection
framework presented by Viola and Jones (VJ) [26], rather than
the learning-based methods in this paper.

B. Method Overview and Contributions

To effectively address the aforementioned issues, the self-
adaptive RI channel features [27] are first constructed in polar
coordinates, which has been theoretically proven to well fit the
rotation of any angles. Furthermore, the shift-invariant channel

features in Cartesian coordinates [e.g., color and gradient
magnitude (GM)] are also extracted for the channel extensions
in order to fully explore the potential of the feature representa-
tion, yielding a joint spatial-frequency channel feature (SFCF).
We then step toward feature learning or refine [e.g., subspace
learning and aggregated channel features (ACF)] to further
refine the representations. Such features are finally fed into a
boosting classifier with a series of depth-3 decision trees.

For the geospatial object detection in remote sensing,
we propose a variant of VJ object detection framework,
called an Optical Remote Sensing Imagery detector
(ORSIm detector). Unlike previous models in [27] and [28]
that are sensitive to translations and rotations, the ORSIm
detector is a more general and powerful framework robustly
against various variabilities, particularly for remote sensing
imagery. Additionally, a fast pyramid method is adopted
to effectively investigate the multiscaled objects without
sacrificing the detection performance. Fig. 2 outlines the
basic framework of the ORSIm detector. The main highlights
of this paper are threefold.

1) We propose a novel ORSIm detector by following
the basic VJ framework by integrating SFCF, feature
learning or refine, fast image pyramid estimation, and
ensemble classifier learning (Adaboost [29]).

2) An SFCF is designed by simultaneously considering the
invariance of rotation and shift in order to handle the
complex object deformation behavior in remote sensing
imagery.

3) An image pyramid generative model is simply but effec-
tively embedded into the proposed framework by fast
estimating a scaling factor in the image domain.

The remainder of this paper is organized as follows.
Section II briefly reviews the previous work closely related to
ours. Section III describes the proposed framework, including
multiple domain feature exaction, feature stack, feature learn-
ing, training, and testing. The experimental results on two data
sets are reported in Section IV. Section V concludes this paper
and briefly discusses future work.

II. RELATED WORK

In this section, several advanced techniques in object detec-
tion are introduced with the applications to remote sensing
imagery. We also emphatically clarify our superiority com-
pared with three kinds of similar approaches partly associated
with this paper.

A. Channel Features

Channel features refer to a collection of spatially dis-
criminative features by linear or nonlinear transformations
of the input image. Over the past decades, channel features
extraction techniques have been received an increasing interest
with successful applications in pedestrian detection [28], [30]
and face detection [31]–[33]. Owing to their high repre-
sentation ability, a variety of channel features have been
widely used in geospatial object detection. Tuermer et al. [34]
utilized the histogram of oriented gradients (HOG) [35] as
orientation channel features for airborne vehicle detection in
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Fig. 2. Pipeline of the ORSIm detector, which is a concatenation of RI descriptor with low-sampled image pyramid and boosting tree model learned with
respect to diverse tasks.

a dense urban scene. Unfortunately, using orientation features
alone is prone to hinder the detection performance from further
improving. Inspired by the ACF [28], Zhao et al. [36] extended
the channel features by additionally considering the color
channel features [e.g., gray scale, RGB, hue, saturation, and
value (HSV), and luminance and chromaticity coordinates
(LUV)] to detect aircrafts through remote sensing images.
However, these methods usually fail to achieve desirable
performances due to the sensitivity to object rotation. For that,
although many tentative works have been proposed to model
the object’s rotation behavior [37], [38], yet the performance
gain is still limited by the discrete spatial coordinate system.

With a theoretical guarantee, Liu et al. [27] proposed
a Fourier HOG (FourierHOG) with a rigorous mathemati-
cal proof. It models the RI descriptor in a continuous fre-
quency domain rather than in the discrete spatial domain
using a Fourier-based convolutionally manipulated tensor-
valued transformation function D = P(r)eimϕ . This function
transfers the tensor-valued vectorized features (e.g., HOG [39])
to a scalar-valued representation, so as to make the features
invariant with a maximized information gain. In contrast with
HOG-like approaches that discretely compute the features
(or descriptors) in the locally estimated coordinates from pose
normalization, FourierHOG uses a smooth continuous function
for fitting the statistical features in a continuous coordinate,
as shown in Fig. 3. Furthermore, such a strategy can also
avoid artifacts in the gradient binning and pose sampling of the
HOG descriptor.

Despite the superiority in representing rotation-invariance,
FourierHOG ignores the importance of feature diversity.
To this end, the proposed ORSIm extends the single-channel

Fig. 3. Illustration of the discrete and continuous HOG distribution function
of a cell (13 × 13 pixels). (Left) Reference HOG. (Right) 10◦ rotated HOG.
A property-rotated gap between the two discrete HOGs can be filled by
shifting their corresponding continuous HOGs with 10◦.

features toward spatial-frequency joint ones, thereby further
enriching the representations. On the other hand, FourierHOG,
in fact, simplifies a challenging problem of object detection
to that of object recognition. More specifically, the task of
detecting boundary box of the object is converted into that of
recognizing the central pixel to be either object or nonobject,
as shown in Fig. 4(a).
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Fig. 4. Simple sketch map of training feature points extracting in [27] and
feature channel scaling in [28]. (a) Training feature point. (b) Feature channel
cubic.

B. Feature Channel Scaling

Image multiresolution decomposition is one of the essen-
tial techniques in high-level image analysis, such as object
detection and tracking. The VJ framework is a seminal work
for real-time object detection [26], [40], [41], which runs
at 15 frames/s for an image of 384 × 288 pixels with
a 700-MHz Intel Pentium III processor. Following this frame-
work, HOG [35] yields a higher detection accuracy. Neverthe-
less, the two representative algorithms evenly sample scales
in log-space and construct a feature pyramid for every scale.
This is very time-consuming, and keeping the computational
cost low is a significant challenge. Inspired by fractal statistics
of natural images [42], Dollár et al. [28] proposed a fast
pyramid generative model by only estimating a scale factor,
basically achieving a pyramid feature extraction in parallel.
The key technique used in the model can be summarized as
a feature channel scaling, as shown in Fig. 4(b), the goal
of which is to compute finely sampled feature pyramids at
a fraction of the cost by means of the fractal statistics of
images. Furthermore, the features are computed at octave-
spaced scale intervals in order to sufficiently approximate
the features on a finely sampled pyramid. Therefore, these
benefits make the model successfully applied to pedestrian
detection at over 30 frames/s on an eight cores machine Inter
Core i7-870 PC [43]. Similarly, it has been also proven to
be effective in aircrafts detection of remote sensing images
[36]. There is, however, an important assumption in the model,
that is, the feature channels � are supposed to be any low-
level shift-invariant in order to fit the operation of sliding
windows, which makes the fast detection framework sensitive
to angle variation or rotation-induced deformations. For this
reason, Yang et. al. [31] attempted to relax the constraint
by learning varied face properties from multiview images.
The expensive cost of collecting multi-view remote sensing
images still hinders Yang’s algorithm from generalizing well.
Congruously, either color channel features or FourierHOG is
able to facilitate the use of the fast pyramid generative model,
while their joint use (our SFCF) naturally does well.

C. Boosting Decision Tree

In the field of machine learning, the boosting methods
have been widely used with great success for decades in
various applications, e.g., object detection [12], [44], [45],
face detection [26], and pose detection [46], [47]. Unlike
other powerful classifiers [e.g., rotation-based support vector
machine (SVM) [48], structured SVM [49], and rotation

Algorithm 1: ORSIm Detector
Input: Training data T r = [I1, . . . , IN ], and parameters.
Output: Model (detector), detection results

1 Step 1: Feature Extractor
2 1) Extract pixel-wise spatial channel features by

Eqs. (2-3);
3 2) Extract pixel-wise frequency channel features by

Eq. (10);
4 3) Compute region-based SFCF representation by

Eq. (11);
5 Step 2: Feature Learning or Refine
6 Perform a pooling-like operation and obtain ACF.
7 ACF = Re f ine(SFCF);
8 Step 3: Training Ensemble Classifier
9 while ε → 0 do

10 for t = 1 to T do
11 Wt = TreeIni tiali zation();
12 εt = Ada Boost (ACF,Wt);
13 βt = εt/(1 − εt );
14 Wt = U pdateWeights(Wt , βt );
15 end
16 ε = ∑T

t=1 εt;
17 end
18 Step 4: Test Phase with Feature Channel Scaling
19 1) Estimate the scale factor λ by Eq. (12);
20 2) Obtain the feature pyramid of different scales;
21 3) Feed these features into the learned model

(detector);

forest [50]], the boosting-based ones iteratively select weak
learners from a pool of candidate weak classifiers to deal with
hard examples from the previous round, which can be treated
as an enhanced model integrating former results and greedily
minimizing an exponential loss function. Each weak learner is
able to make the sample reweighed; then, latter weak learners
would more focus on those examples that are misclassified by
former ones. Using this, a strong classifier can be learned with
higher generalization ability and parameter adaptiveness.

The performance of boosting-based classifiers mainly relies
on the discriminative ability of the feature and the number
of weak classifiers. In Section III, we will introduce the
proposed unified framework (ORSIm detector) in semantically
meaningful feature extraction, feature stack, and learning as
well as parameter selection of the boosting classifier.

III. METHODOLOGY

The proposed ORSIm detector starts with a feature extractor.
At this stage, SFCFs are jointly extracted, including color and
GM channels from the spatial-domain and RI features from the
frequency domain. The features can be further refined by sub-
space learning or ACF, and then, they can be fed into boosting
decision tree for a better training and detection. Algorithm 1
details the main procedures of the ORSIm detector.

A. Spatial-Frequency Channel Features

Commonly, the feature is limitedly represented in one
single domain, and this motivates the joint extraction of more
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discriminative features from the spatial and frequency domains
to enrich the feature diversity.

Given an RGB remote sensing imagery I ∈ R
L×W×3 as

the input, we denote FSFCF as SFCF, mainly including the
RGB channels, first-order GM channel, and RI channels,
defined as

FSFCF := {�1(I)︸ ︷︷ ︸
RGB

, �2(I)︸ ︷︷ ︸
GM

, �3(I)︸ ︷︷ ︸
RI

} (1)

where {�i (I)}3
i=1 stands for the different feature sets.

1) Pixelwise Spatial Channel Feature: In many tasks related
to remote sensing, a color channel [51], i.e., RGB, shows a
strong ability in identifying certain materials sensitive to the
color (e.g., tree, grass, and soil), which can be denoted as

�1(I) = [FR, FG , FB ] (2)

where F represents the channel features. Moreover, the nor-
malized GM for the RGB image can be regarded as another
important spatial channel features, since it can not only
sharpen the object edge, but also highlight the small mutations
that could be visually ignored in the smooth areas of the image,
which has shown its effectiveness in detecting aerial or space-
borne objects [34]. The resulting expression is

�2(I) = FGM. (3)

2) Pixelwise Frequency Channel Feature: The objects in
remote sensing images, more often than not, suffer from
various complex deformations. It should be noted that object
rotation is one of the major factors that sharply leads to the
performance degradation. Compared with extracting features
in Cartesian coordinates, rotation invariance has been proven
to more effectively analyze in polar coordinates [27] where the
feature can be separated as the angular information and radial
basis P(r), respectively. Let �d� and θ(d) be the magnitude
and the phase of a complex number d = dx + dyi , where dx
and dy are the horizontal and vertical gradients of a pixel in
Cartesian coordinates, respectively. Coincidentally, the Fourier
basis ψk(ϕ) = eikϕ(k = 0, 1, . . . ,m) is an optimal choice for
modeling the angular part (θ(d)), theoretically proven in [27],
where m stands for the Fourier order. The basis functions
[ψ0, ψ1, . . . , ψm ] form harmonics on a circle, called circular
harmonics. In [27], the rotation behaviors g(•) in the Fourier
domain can be modeled by a multiplication or convolution
operator. More specifically, given two kth order Fourier rep-
resentations in polar coordinate ( fkp and fkq ), we have

g( fkp ∗ fkq ) = e−i(kp+kq )αg [ fkp ∗ fkq ] ◦ Tg

g( fkp fkq ) = e−i(kp+kq )αg [ fkp fkq ] ◦ Tg (4)

where Tg is a coordinate transform with a αg relative rotation.
Given any one pixel (p), its kth order Fourier representations

( fkp ) can be further deduced by

fkp = �h, eikpϕ	 = 1

2π

∫ 2π

0
h(ϕ)e−ikpϕ = �dkp �e−ikpθ(dkp )

(5)

where h(ϕ) is the distribution function of current pixel,
which can be modeled by an impulse function with integral
�dkp � [27] : h(ϕ) := �dkp �δ(ϕ − θ(dkp )).

When (5) rotates by an angle αg , according to the rotation
behavior gd := Rgd ◦ Tg [27], we have

g fkp = [�Rgdkp �e−ikpθ(Rgdkp )] ◦ Tg

= [�dkp �e−ikpαg e−ikpθ(dkp )] ◦ Tg

= e−ikpαg [ fkp ◦ Tg]. (6)

In order to make the feature RI, namely fkp = g fkp , we can
set a set of filters (convolution kernels) with the same rotation
behavior, denoted as fkq (k = 0, 1, . . . ,m). Using (4)–(6), this
can be formulated as

g( fkp ∗ fkq ) = e−i(kp+kq )αg [ fkp ∗ fkq ] ◦ Tg (7)

as long as satisfying kp + kq = 0, we can get

g( fkp ∗ fkq ) = [ fkp ∗ fkq ] ◦ Tg (8)

thereby the convolutional features can be seen as the final
RI representation.

Inspired by the above-mentioned theory derivation in terms
of rotation invariance, we construct the RI features including
the following three parts.

1) Using the Fourier transformation on the input remote
sensing images, the magnitude channel image in the kth
Fourier order is naturally a kind of invariant feature,
which is denoted as F1

kp
= ||dkp || (k = 0, 1, . . . ,m) in

a pixelwise (p) form.
2) To make the representation absolutely RI, we get rid of

rotation information from phase one by using (7) and (8).
That is, we generate a series of Fourier basis with equal
and opposite order and use them on the Fourier repre-
sentations of I ( fkp ) by a multiplication or convolution
operation, which can be formulated as F2

kp
= fkp ∗ fkq

and k p = −kq .
3) We also consider a relative RI feature representa-

tion by effectively utilizing the relative phase informa-
tion [52]. Accordingly, this can be developed as a special
RI feature by coupling the convolutional features of
two neighboring kernel-radii (please refer to [27] for
more details), which is formulated as F3

kp
= ( fkp ∗

fkq ,r1)( fkp ∗ fkq ,r2)/||( fkp ∗ fkq ,r1)( fkp ∗ fkq ,r2)|| and
k p 
= −kq . r1 and r2 stand for the different convo-
lutional kernels.

Therefore, the pixel-based frequency channel feature can be
written by

�3(p)

= [
F1

0p
, . . . , F1

kp
, . . . , F2

0p
, . . . , F2

kp
, . . . , F3

0p
, . . . , F3

kp
, . . .

]
.

(9)

Thus, we have the image-level representation by collecting all
pixel-based features

�3(I) = {�3(p)}L×W
p=1 . (10)
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Fig. 5. Triangular convolution kernel of two domains. Spatial [K1: the
convolution kernel for the spatial aggregation. K2: the convolution kernel for
the local normalization (based on gradient energy)]; U j,k : the basic function
from triangular radial profile and a Fourier basis.

3) Region-Based Channel Feature Representation: Due to
the low spatial resolution of remote sensing imagery, the detec-
tion performance is largely limited by the pixelwise features.
To better capture the semantically contextual information,
we group the pixelwise channel features into region-based ones
with kernel functions of different sizes. As visualized in Fig. 5,
we use the triangular convolution kernels, including isotropic
triangles kernel and local normalization kernel, to extract the
region-based channel features in both the spatial and frequency
domains. Besides that, we additionally design a set of Fourier-
based convolution kernels denoted as U j,k = Pj (r)eikϕ to
construct the region-based RI descriptors on the frequency
domain (please refer to [27] about specific parameter settings
of convolution kernels in detail). Therefore, the resulting final
SFCF is

FSFCF = [�1(I)C1, . . . , �1(I)C j , . . . , �2(I)C1, . . . ,

×�2(I)C j , . . . , �3(I)C1, . . . , �3(I)C j , . . .] (11)

where �i(I)C j is the region-based features using the
j th convolution kernel.

B. Feature Learning or Refine

To effectively eliminate the feature gap between the two
different domains and, meanwhile, to improve its robustness
and representative ability, we are able to learn or refine
the feature cube (see Fig. 6) along the spatial and channel
directions using the following two strategies.

Module 1 [Subspace-Based Learning (e.g., Principal
Component Analysis [53])]: The extracted SFCF features can
be further learned to reduce the computational and storage cost
as well as improve the feature representation ability to some
extent.

Module 2 (Aggregation-Based Pooling): The SFCF can also
be defined by the pooling-like operation (ACF) to dynamically
adjust the support regions with different sizes and, meanwhile,
maintain the structural consistency with the overall image [31].

Fig. 6. SFCFs of an object sample and its region-based feature cubic.

Subsequently, the 2-D ACF is stretched to the 1-D fully
connected feature vector, making it better fitting into ensemble
classifier learning. Inspired by the structurally encoding pat-
tern, we select the ACF during the process of feature refine.

C. Training Phase With Ensemble Classifier Learning

Up to the present, boosting is one of the most popular
learning techniques by integrating a large number of weak
learners to generate a stronger one. The boosting-based method
(e.g., AdaBoost) is built on the fact that those selected
week classifiers should minimize the training errors and
keep or reduce the test errors. For this reason, we apply a soft-
cascade boosting structure with the depth-3 decision trees [28],
which is the capability of discriminating intrasamples and
intersamples more effectively and simultaneously playing a
role in feature selection. Significantly, the learning strategy
is robust against background interference in object detection,
especially in a more complex scene of remote sensing imagery.

D. Test Phase With Feature Channel Scaling

The sliding window is a commonly used detection technique
in the testing phase behind extracting finely sampled image
pyramid. However, it implies a heavy computational cost,
which is not a good tool in the real world. A fast image
pyramid model [28] introduced in Section II-B is implemented
in our framework by automatically estimating the scaling
factor of feature channels, which is expressed as

C(I, s) ≈ �(R(I, s)) = R(I, s) · s−λ� (12)

where I is the input image and R(I, s) is a resampled
image of I by s. λ is a scaling factor to be estimated. The
corresponding channel image at a scale s can be presented
by (12). The different channels can be computed with a
linear or nonlinear transformation of the original image in the
spatial and frequency domains. Using (12), we can quickly
obtain the channels features of all pyramid images using the
given λ value calculated in the training phase.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Optical Remote Sensing Data Sets

In this section, two well-known public optical remote data
sets, car targets in satellite data set3 and airplane targets in

3http://ai.stanford.edu/ gaheitz/Research/TAS/tas.v0.tgz
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NWPU VHR-airplane data set,4 are used to quantitatively
evaluate the performances of the proposed method. In this
paper, 60% samples are assigned as the training set, and the
rest is the testing set for both the data sets. The main focus of
this paper is to create a more robust and discriminative feature
representation, ensuring rotation and translation invariance.
Generally, it is very expensive and time-consuming to collect a
large number of training samples, particularly labeling remote
sensing data. Therefore, it is very meaningful and challenging
for users to assess the generalization performance of the
classifier with a limited training set. To stably evaluate the
performance of the proposed method, we conduct fivefold
cross validation and report an average result below across the
folds.

1) Satellite Data Set: This data set was acquired from
Google Earth [54]. The low resolution and the varying illu-
mination conditions caused by the shadows of buildings make
this data set very challenging. In detail, the images contain
1319 manually labeled cars from 30 images with a size of
792 × 636. At the training stage, all car windows are rescaled
to 40×40, due to the average car window that is approximately
this window. Also, their mirror images are used to double
the positive images as data augmentation in all experiments,
which can avoid overfitting and improve the generalization
ability. Meanwhile, the negative images are cropped at random
positions from the 226 natural images without any car objects.

2) NWPU VHR-10 Data Set: This data set consists of ten
different object detection data sets acquired from Google Earth
(a spatial resolution of 0.5–2 m) and the Vaihingen data set
(a spatial resolution of 0.08 m)5 Please refer to [24] and [25]
for more details. To meet our experimental assumption, that is,
we mainly aim at detecting those objects with highly rotation
behavior, the airplane is the proper research object, which
is selected as our another experimental data to effectively
evaluate our method. More specifically, the positive image
set without any outliers is composed of 650 airplane images,
and each of them includes at least one target. The negative
image set consists of 150 images without any class-relevant
targets. The original maximal and minimal windows are set
to 130 × 120 and 40 × 40 pixels, respectively. Additionally,
the number of positive images in the training set is doubled
by mirror processing, while the negative images are randomly
selected from the 100 images without any airplanes.

B. Experimental Setup

All the experiments in this paper were implemented with
Matlab2016 on a Windows 7 operation system and conducted
on an Intel Xeon 2.6 GHz PC (CPU) with 128-GB memory.
Moreover, there are several important modules in the pro-
posed ORSIm framework, such as SFCF extraction, sampling
window, smoothing, feature pyramid, and classifier setting.
We will gradually detail them in the following.

1) SFCF Extraction: The channel features used in our case
mainly consist of two parts: spatial channel features and fre-
quency channel features. The former involves color channels

4http://www.ifp.uni-stuttgart.de/dgpf/DKEPAllg.html.
5The Vaihingen data were provided by the DGPF.

and the corresponding magnitude of gradient channels, and
the latter is the RI feature channels. More specifically, RGB,
LUV, and HSV are selected as the potential color spaces. The
magnitude of the gradient channel is set as the magnitude of
the channel with the maximal gradient amplitude response.
There are three parts in the RI channels, which are the true
RI features (the same Fourier orders, e.g., m1 + m2 = 0),
the magnitude features, and the coupling features across dif-
ferent radii (please refer to [27] for more details). During the
process, two parameters need to be considered, namely the
radii (r ) of convolutional kernels and the number of Fourier
order (m). We assign five scales with six different half-widths
of σ = {3, 4, 5, 6, 7, 8} to the value of r , i.e., σ = 6, r j ∈
{0, 6, 12, 18, 24}, while m is set to 2, 3, 4, and 5, as suggested
in [27].

2) Sampling Window: Due to the fact that objects in a
scene hold the different resolution, it is necessary for objects
(e.g., vehicle and airplane) to be upsampled or downsampled
to a consistent size. Therefore, we attempt to search an optimal
length–width ratio in a proper range, by resizing the cars on
the satellite data set to 28×24, 32×28, 40×36, and 44×40,
as well as the airplanes on the NWPU VHR-airplane data set
to 56 × 56, 64 × 64, 72 × 72, 80 × 80, and 88 × 88.

3) Smoothing: The smoothing operation has been proven
to be effective in improving the representation ability of the
features [28], [31]. Similarly, we perform smoothing before
feature computation (pre-smoothing) and after feature learn-
ing or refine (post-smoothing) with the binomial filter. The
filter radius is set to 1 in our setting.

4) Feature Pyramid: The fast feature pyramid in [28] is
applied in the proposed ORSIm framework by coarsely sam-
pling feature channels in order to speed up the hard negative
mining and the test phase without additional loss of detection
precision. We sample the objects in the four different scales
(s = 1, 2, 4, 8) with the sampling rate of 2−(1/n Per Oct). The
smallest pyramid image is determined by the size of sampling
window, and the largest one has the same size as the original
image.

5) Classifier Setting: AdaBoost [55], which is a boosting-
based ensemble classifier learning, is used to train the classi-
fier. To train a stronger learner, we use a weighted majority
voting to generate the boosting decision tree by combining the
hypotheses obtained from those diversified weaker learners.
To avoid overfitting, we gradually increase the number of weak
learners from 32 to 2048. It is worth noting that the negative
samples used in the training phase and the testing phase
are selected using a sliding window and a coarsely sampled
image pyramid instead of point-based operators as presented
in [27].

6) Evaluation Criteria: Four criteria, precision–recall (PR)
curve, average precision (AP), average recall (AR), and aver-
age F1-score (AF), are adopted to quantitatively evaluate the
detection performances. More precisely, when the rate between
the overlap of the detection bounding box and the ground-truth
box exceeds 50%, it is counted as a true positive (TP); other-
wise, as a false negative (FN). Therefore, the final precision (P)
is computed by (TP/TP + FP), and the recall (R) is com-
puted by (TP/TP + FN), while F1-score can be computed by
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TABLE I

PERFORMANCE COMPARISONS OF EIGHT DIFFERENT METHODS IN TERMS OF AP, AR, AND AF. THE BEST RESULTS ARE SHOWN IN BOLD

F1 = (2 × P × R/P + R). AP is used as a global indicator
to assess the performances of the algorithm.

C. Experimental Results

1) Discussion on Classifier Selection: As listed in Table II,
those methods based on SVMs or random forest (RF) classifier
also achieve the good performances. This motivates us to
have a great interest in investigating the classifier selection.
To this end, three different classifiers (e.g., linear SVM, RF,
and AdaBoost)6 are used to evaluate the detection performance
under four different feature descriptors, that is, HOG, ACF,
FourierHOG, and our SFCF, as detailed in Table II. For a fair
comparison, the parameters used in the three classifiers are
optimally tuned by cross validation on the training set. Over-
all, the linear SVM yields the relatively poor performances
compared with the results of RF because the RF is more
robust than the linear SVM to some extent, especially when
the training samples are limited. Furthermore, the AdaBoost
performs better than the two other classifiers. Two possible
factors could explain the results. On one hand, AdaBoost
is a boosting-based ensemble classifier learning, which can
generate a more robust strong classifier by weighing a large
number of weak classifiers. Consequently, it holds a more
powerful performance than the linear SVM in recognition
and classification. On the other hand, although both the RF
and AdaBoost are based on the boostinglike strategy, yet the
RF equally puts the weights on each subclassifier and the
AdaBoost adaptively weighs each weak classifier by iteratively
updating weights. This makes the resulting final classifier
generated by Adaboost more suitable for the current data set,
thereby yielding a better performance.

2) Overview of Performance Comparison: To quantitatively
assess the detection performances of the proposed method,
we compare several state-of-the-art methods related to our
framework, such as exemplar-SVMs [56], rotation-aware fea-
tures [57], collection of part detectors-based [24], bag-of-
words with SVM (BOW-SVM) [58], fast feature pyramids
[28], you only look once (YOLO2) [59],7 and Fourier-
HOG [27].8 Fig. 7 shows the PR curves of different algo-
rithms on the two data sets, and Table I correspondingly

6AdaBoost [55], also known as AdaBoost-DTree, is used in our framework.
7Similar to [25] and [60], data augmentation by the rotation and translation

of the training samples is performed.
8We select positive and negative samples by sliding windows rather than

points for a fair comparison.

Fig. 7. PR curves of the proposed ORSIm detector in comparison with
the state-of-the-art approaches. (a) Satellite data set. (b) NWPU VHR-
Airplane.

lists the quantitative results in terms of APs and mean
running times. Accordingly, we can make the following
observations. The exemplar-SVMs and rotation-aware methods
have similar performances, as the standard HOG features and
discrete grid sampling are used. Not surprisingly, BOW-SVM
and ACF yield the worst performances because they ignore
the spatial contextual relationships among the local features
and are limited by the rotation-related representation ability.
Although the detection performance might be improved by
modeling a deeper network and embedding anchor boxes,
yet YOLO2 is not robust to tiny object and arbitrary pairs
of objects that are not more than a tiny distance apart.
FourierHOG holds a slightly lower performance than ours but
much better than others on the two data sets, which indicates
that the point-based feature representation is insensitive to
resolution. As expected, the proposed ORSIm detector largely
outperforms the other investigated methods on both the data
sets, which shows its effectiveness and superiority. This can
also be demonstrated in Table II that the precision of the
ORSIm detector is dramatically higher than that of the others
owing to the well-designed SFCF and the use of AdaBoost.
It is worth noting in Table I that the methods with fast
feature pyramid allow for faster detection than those without
it. Despite of slowing down the speed (relatively lower than
ACF and YOLO2),9 the proposed ORSIm detector acquires
the highest detection precision.

Visually, a few roofs are wrongly identified as cars, and
there is also some leak detection in transport cars, as shown
in the first row of Fig. 8. This might result from a limited

9The code is run on the tensorflow using GPU, which is available from the
website: https://github.com/simo23/tinyYOLOv2.



5154 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 7, JULY 2019

Fig. 8. Some visual detection results (false detection in red box, TP in green box, and missing detection in blue box) by using the proposed method on the
two different data sets.

Fig. 9. Overlap removal using original NMS and two-step NMS. (a) Original NMS. (b) Two-step NMS.

number of training samples and unbalanced class distribution.
In addition, a weaker visible edge might mislead the classifier
since the transport cars are white. Compared with car detection
in a complex urban scene, false detection of the airplanes
also occurs when the background and targets have similar
shape and color, i.e., the tail of the airplane [see Fig. 9(a)].
But this issue can be well fixed by a two-step nonmaximum
suppression (NMS) algorithm [36]. The improved results can
be found in Fig. 9(b).

D. Sensitivity Analysis
We experimentally analyze and discuss the potential influ-

ences under the different configuration of the proposed ORSIm
detector, making it possible to generalize well in more data
sets. The optimal combination is finally determined by fivefold
cross validation on the training set.

1) Toward Parameter Setting: Figs. 10 and 11 show the
performance comparison of the different parameter setting on
the two used data sets. More specifically, the LUV color
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Fig. 10. Performance comparison of the ORSIm detector under different parameter settings on the satellite data set.

Fig. 11. Performance comparison of the ORSIm detector under different parameter settings on the NWPU VHR-Airplane data set.

TABLE II

PERFORMANCE COMPARISONS OF THREE DIFFERENT CLASSIFIERS. THE BEST RESULTS ARE SHOWN IN BOLD

space performs better than the two others on both the data
sets and even more obvious when using a combination of
the color channels with GM channel. Interestingly, there is
a similar trend after adding the RI feature channels, as shown
in Figs. 10 and 11(c).

We also investigate the effects of the radial profiles (the size
of convolution kernel) and the Fourier orders (k ∈ {0 ∼ m})
as well as the size of sampling windows. As observed
in Figs. 10 and 11(d) and (e), they are relatively insensitive in a
proper range, and as a result, we select them as m = 4 for both
the data sets and r = 6, 32×28 for the satellite data set (r = 8,
80 × 80 for the NWPU VHR-airplane data set). Following
the same strategy with the traditional detection framework,
pre-smoothing and post-smoothing are usually carried out
before and after running the detection algorithms in order to

make the feature locally and globally smooth. The different
filter radii ∈ {0, 1, 2, 3} are selected for smoothing, and the
experimental results are given in Figs. 10 and 11(g) and (h).
We simply set the radius for both pre-smoothing and post-
smoothing as 1, as they are relatively insensitive to the
different radius. In the test phase, the pyramid factor plays an
important role, as shown in Figs. 10 and 11(i). The eight scales
per octave show the best result, which is basically consistent
with [28]. Significantly, the final detection precision would
increase with the number of the weak classifier but so does the
computational cost. As a tradeoff, the value is set as 2048 in
our case.

2) Toward Spatial Resolution: The image resolution is
another important factor that could degrade the detection per-
formance, and therefore, we emphatically evaluate the effects
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Fig. 12. Sensitivity investigation to different spatial resolutions of the image.
(a) Vehicle data set. (b) Airplane data set.

of different resolutions to find a proper boundary condition for
the use of the proposed ORSIm detector. In detail, we adopt the
different sampling rates on the two data sets to investigate the
sensitivity of detection precision. As can be seen from Fig. 12,
the performance may begin to degenerate with around 0.5
sampling rate and gradually decrease after that. It should be
noted that the feature pyramid is usually an indispensable
step in the test phase. Therefore, these detection approaches
are, in fact, not so sensitive to different spatial resolutions,
although the lower resolution inevitably suffers from informa-
tion loss. Furthermore, Fig. 8 shows a visual example to clarify
that the different scaled objects can be basically detected,
demonstrating the effectiveness of the ORSIm detector to the
multiresolution images. That is not to say, however, that the
proposed detector is capable of handling various variations.
For that, we highlight a scene to give some false cases,
as shown in Fig. 9, where the detector confuses the real
airplanes and its tails with a small shadow, leading to some
extra false alarms marked in red color. This is actually a
comparatively common phenomenon in object detection rather
than due to the model’s sensitivity to the spatial resolution of
an input image [36]. A feasible solution for this issue is to
use a two-step NMS, as shown in Fig. 9.

V. CONCLUSION

Object rotation is a common but challenging issue for object
detection and recognition in optical remote sensing. To this
end, we propose a more complete object detection framework
in ORSIm, called the ORSIm detector, by introducing the
discriminative RI channel features (SFCFs), learning-based
feature refining, and fast feature channel scaling technique
as well as boosting-based classifier learning. The extensive
experimental results indicate that the ORSIm detector per-
forms better and is more robust to various deformations
compared with the previous state-of-the-art methods. In future
work, we will focus on tiny object detection and extend the
proposed framework to an end-to-end learning framework
(e.g., deep learning). Additionally, we will expand the binary
classification to multitarget detection.
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