
Scientific Developers v/s Static Analysis Tools:
Vision and Position Paper

Rohan Krishnamurthy∗, Thomas S. Heinze∗, Carina Haupt†, Andreas Schreiber†, and Michael Meinel†
∗Institute of Data Science

German Aerospace Center (DLR)
Jena, Germany

rohan.krishnamurthy@dlr.de, thomas.heinze@dlr.de
†Simulation and Software Technology

German Aerospace Center (DLR)
Berlin and Cologne, Germany

carina.haupt@dlr.de, andreas.schreiber@dlr.de, michael.meinel@dlr.de

Abstract—Usability and the use of automated static analysis
tools in the software development process have been an evolving
subject of research in the last decades. Several studies shed light
on issues like high false positive rates and low comprehensibility,
which hinder tool adoption for even software engineers. Yet, the
tools’ perceived usefulness and ease of use play a much larger role
when it comes to untrained software developers, as is usually the
case in scientific software development. In this paper, we outline
a multi-stage interview study to learn more about how scientists
come to accept and use static analysis tools.

I. INTRODUCTION

Developing software is a vital part of scientific research
today. While research results and their reproducibility are
depending on the quality of research software, the usage
of software engineering practices is still not widely spread
among research facilities and individual researchers [1], [2].
This also applies to the use of static analysis tools, which
could though provide an effective measure to the development
of quality software, e.g., by identifying defects and code
smells or enforcing common coding standards. In particular
scripting languages, which are frequently used for scientific
software, should benefit from static analysis tools [3], since
safety guarantees as provided by statically typed programming
languages are otherwise missing due to their dynamic nature.

Unfortunately, known issues like high false positives rates,
low comprehensibility of analysis results, and missing process
integration restrain the use and acceptance of static analy-
sis tools also among professional software developers. The
identification of factors which help in increasing the tools’
acceptance is therefore an even more important premise for
their widespread adoption in the scientific software domain.
In this paper, we outline our multi-stage interview study to

c©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

DOI 10.1109/CHASE.2019.00029

learn more about how scientists come to accept and use static
analysis tools when developing software.

II. TECHNOLOGY ACCEPTANCE AND USE

There exist different models for explaining user adoption
and use of IT in the research literature, where Davis’ Tech-
nology Acceptance Model (TAM) [4] is among the most
prominent ones [5]. In TAM, an user’s intention to use a
certain IT system, and thus its actual usage, is predicted by
basically two variables: perceived usefulness and perceived
ease of use. The former one denotes the degree to which an
individual believes that the use of the system will help in
accomplishing a task. The latter one denotes an individual’s
belief in how less effort is required for using the system. The
model also states that the influence of external variables, e.g.,
the system’s UI design, are mediated by these two variables.

Several studies have shown empirical support for TAM [5].
Later extensions identified additional variable determinants
(TAM2, TAM3 [5]) or integrated them with other models into
the Unified Theory of Acceptance and Use of Technology
(UTAUT) [6]. In UTAUT, social influence is, besides perceived
usefulness and ease of use, the other main construct deter-
mining an user’s intention to use a system, while facilitating
conditions, e.g., training, also predict actual system usage.

III. STUDIES ON STATIC ANALYSIS USE

Use of static analysis has been researched by several authors
and also has drawn wider attention [7] lately. Due to space
constraints, we here just sketch a few representative studies.
Also note, that we are not aware of work that addresses the
use of static analysis in scientific software development.

Johnson et al. conducted interviews with 20 experienced
software developers [8]. The authors were interested in the
shortcomings of static analysis tools. Besides the high num-
ber of false positives and poor understandability of analysis
results, both relating to perceived usefulness and ease of use,
they found the weak integration with developers’ workflows
as barrier for wider adoption. The same line of thought is



followed in [9], where 375 Microsoft developers answered
questions on their perspective on static analysis tools. The
interviews showed again the importance of precision and
comprehensibility. Process integration, configuration, and a
supporting team policy, i.e., facilitating conditions, have also
been identified as crucial for the adoption of static analysis
tools. In addition, the beneficial effect of an instantaneous
analysis has been revealed, which is further emphasized with
respect to just-in-time analysis and IDE integration in [10].
Social influence and facilitating conditions, in terms of orga-
nizational factors and communication channels used to spread
static analysis tools, are also discussed in [11] and [12].

Beller et al. combined developer surveys with repository
mining and found the common but not ubiquitous use of
static analysis tools in popular open source projects [3]. The
authors also stressed the importance of process integration and
found that the static analysis tools are more widespread among
scripting languages compared to statically typed languages.
While, on the one hand, a scripting language seemingly
requires more static analysis, on the other hand, its dynamic
nature makes static analysis hard and the high false positives
rate a bigger issue. As another observation, they found that
static analysis tools are rarely customized, showing either the
good fit of the tools’ default configurations or rather indicating
missing expertise, or at least awareness, among analysis users.

IV. RESEARCH AGENDA

As a research organization, the German Aerospace Center
(DLR) has a rich source of scientific software developers,
who come from different domains and backgrounds and thus
provide a heterogeneous population in regard to their knowl-
edge and expertise in software engineering [2]. Our main
objective is to better understand, what factors influence the
usage of static analysis tools for this particular group and
what are resulting opportunities for intervention to increase
static analysis adoption. We will develop our research in a
three-stage interview study to inspect these questions:

Stage 1: At DLR, we have the opportunity to conduct a
pilot study, limited to a maximum of 50 participants coming
from scientific software development. We are interested in the
first place in the developers’ software engineering background,
used programming languages, and notions of code quality.
Though, prior experience in using static analysis tools, which
can range from not present at all to the use of simple linters
or more advanced analysis, and sources for developers’ initial
exposure to the tools, will also be asked for. The collected
data will be used to prepare the other stages of our study.

Stage 2: We will then prepare a workshop on static anal-
ysis tools and small development tasks which are related to
their usage, e.g., refactor a code snippet while keeping the
number of introduced defects low. The tasks will be tailored
specifically to the domain and programming languages of the
scientific developers, where we cover statically typed as well
as dynamic languages. In the workshop, developers will be
asked to perform the tasks and report in a qualitative interview

about their experiences in doing so. We are in particular
interested in the tools’ perceived usefulness and ease of use:

• How do scientific developers perceive false positives, bad
comprehensibility, batch-style analysis?

• Which kinds of tools are perceived most effective?
• Do developers apply evasive strategies, e.g., straight on

ignoring tool warnings, introducing bypasses?
• Are there differences in the experiences for statically

typed and dynamic programming languages?
The experiment will comprise a control group, which is asked
to do the same tasks without static analysis tools, such that we
can compare the effectiveness in task solving for both groups.

Stage 3: In order to learn even more about the adoption
of static analysis tools by scientific software developers, we
will ask the workshop attendees to participate in a long-term
survey. Voluntaries will be asked to deploy a live survey com-
ponent into their development platform, either implemented
as a plugin in a popular IDE, such as Visual Studio, Eclipse,
PyCharm, or as a hook into a CI pipeline, if available. The
live survey will be triggered when a developer applies the
supported static analysis tools within the development plat-
form and will interrogate about comprehensibility of analysis
results, etc. We plan to provide repetitive assistance in terms
of newsletters and reminders in addition. This way, besides
gaining more detailed data on usefulness and ease of use of
static analysis tools, as perceived by the participants, we hope
to also address questions about the effect of other variables,
i.e., facilitating conditions and social influence:

• How good do the static analyis tool integrate with work-
flows in scientific software development?

• What is the effect of training and social environment?
• What is the team/developer’s notion of code quality?
• Are there configurations/policies used for static analysis?

ACKNOWLEDGMENT

We would like to thank the reviewers for their constructive
and helpful suggestions on improving the paper.

REFERENCES

[1] A. N. Johanson and W. Hasselbring, “Software Engineering for Com-
putational Science: Past, Present, Future,” Computing in Science and
Engineering, vol. 20, no. 2, pp. 90–109, 2018.

[2] C. Haupt, T. Schlauch, and M. Meinel, “The Software Engineering
Initiative of DLR: Overcome the obstacles and develop sustainable
software,” in SE4Science@ICSE. ACM, 2018, pp. 16–19.

[3] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software,” in SANER. IEEE, 2016, pp. 470–481.

[4] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology,” MIS Quarterly, vol. 13, no. 3,
pp. 319–340, 1989.

[5] V. Venkatesh and H. Bala, “Technology Acceptance Model 3 and a
Research Agenda on Interventions,” Decision Sciences, vol. 39, no. 2,
pp. 273–315, 2008.

[6] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User
Acceptance of Information Technology: Toward a Unified View,” MIS
Quarterly, vol. 27, no. 3, pp. 425–478, 2003.

[7] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from Building Static Analysis Tools at Google,” Commun.
ACM, vol. 61, no. 4, pp. 58–66, 2018.



[8] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge, “Why
Don’t Software Developers Use Static Analysis Tools to Find Bugs?”
in ICSE. IEEE, 2013, pp. 672–681.

[9] M. Christakis and C. Bird, “What Developers Want and Need from
Program Analysis: An Empirical Study,” in ASE. ACM, 2016, pp.
332–343.

[10] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. R. Murphy-
Hill, “Just-in-time static analysis,” in ISSTA. ACM, 2017, pp. 307–317.

[11] E. R. Murphy-Hill and G. C. Murphy, “Peer Interaction Effectively, yet
Infrequently, Enables Programmers to Discover New Tools,” in CSCW.
ACM, 2011, pp. 405–414.

[12] S. Xiao, J. Witschey, and E. R. Murphy-Hill, “Social Influences on
Secure Development Tool Adoption: Why Security Tools Spread,” in
CSCW. ACM, 2014, pp. 1095–1106.


