
Data in brief 25 (2019) 104005
Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier .com/locate/dib
Data Article
The SEOSS 33 dataset d Requirements, bug
reports, code history, and trace links for entire
projects

Michael Rath a, b, *, Patrick M€ader b

a DLR Institute of Data Science, Jena, Germany
b Technische Universit€at Ilmenau, Ilmenau, Germany
a r t i c l e i n f o

Article history:
Received 11 January 2019
Received in revised form 8 May 2019
Accepted 9 May 2019
Available online 24 May 2019

Keywords:
Mining software repositories
Data collection
Data mining
Requirements analysis
Traceability
Bug localization
Issue tracking
Changeset data
* Corresponding author. DLR Institute of Data Sc
E-mail address: michael.rath@tu-ilmenau.de (M

https://doi.org/10.1016/j.dib.2019.104005
2352-3409/© 2019 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

This paper provides a systematically retrieved dataset consist-
ing of 33 open-source software projects containing a large
number of typed artifacts and trace links between them. The
artifacts stem from the projects' issue tracking system and
source version control system to enable their joint analysis.
Enriched with additional metadata, such as time stamps,
release versions, component information, and developer com-
ments, the dataset is highly suitable for empirical research, e.g.,
in requirements and software traceability analysis, software
evolution, bug and feature localization, and stakeholder
collaboration. It can stimulate new research directions, facili-
tate the replication of existing studies, and act as benchmark for
the comparison of competing approaches. The data is hosted on
Harvard Dataverse using DOI 10.7910/DVN/PDDZ4Q accessible
via https://bit.ly/2wukCHc.

© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
ience, Jena, Germany.
. Rath).

ier Inc. This is an open access article under the CC BY-NC-ND license (http://

https://doi.org/10.7910/DVN/PDDZ4Q
https://bit.ly/2wukCHc
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:michael.rath@tu-ilmenau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2019.104005&domain=pdf
www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
https://doi.org/10.1016/j.dib.2019.104005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dib.2019.104005


Specifications Table

Subject area Computer Software

More specific subject area Software Development Artifacts
Type of data Tables, SQLite databases
Data format Raw, processed and analyzed
How data was acquired Automatic software repository mining and ex- traction
Data format Raw, filtered, analyzed, etc.
Experimental factors Two automated mining algorithms captured software artifacts from

open source software.
Experimental features A heuristic technique created trace links among the discovered artifacts.
Data source location The original data are stored in respective project issue tracking systems

and version control systems.
Data accessibility Hosted on Harvard Dataverse

DOI: 10.7910/DVN/PDDZ4Q
URL: https://bit.ly/2wukCHc

Related research article A subset of the data was used in Rath, M., Lo, D. and M€ader, P., Analyzing requirements
and traceability information to improve bug localization. IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, 442e453 [11].

Value of the Data
� Empirical research in the software engineering domain lacks appropriate data. For example, available datasets used for

studying software traceability, i. e. the relationships among different development artifacts, are highly restricted in terms
of contained artifact types, traces and their overall size. Scientists studying software feature localization and bug locali-
zation, bug prediction, or software traceability often propose both: a novel technique and an accompanying dataset. This
dataset overcomes the listed limitations and may establish a common baseline and enable direct comparison for
benchmarking.

� Large amounts of data is required to perform solid scientific investigations. Especially novel approaches building upon
machine learning (ML) and information retrieval (IR) techniques require datasets for training, validation, and testing. This
dataset supports these approaches offering development data with z300.000 issue tracker artifacts, z 350.000 version
control (source code) artifacts and z200.000 trace links among them.

� This dataset spans 33 open-source projects from different domains including application servers, databases, web
frameworks and widely used programming libraries. The complete timestamped history of each project in terms of
typed artifacts (bug reports, feature requests, improvements, source code changes), manifold artifact properties (texts,
stakeholder data), and trace links among these artifacts retrieved from issue trackers and source code repositories is
included.

� On project level, the dataset combines issue tracking systems and version control systems using trace links. The joint
analysis of both systems permits studies that span whole software development processes. This includes bug localization
[7,11,15], bug prediction [9], feature localization [3], requirements traceability [2], and studying social aspects [8] of
software development.

� The data is provided in the form of relational databases facilitating convenient access, as requested by researchers [6], and
easy to embedded in existing approaches.

M. Rath, P. M€ader / Data in brief 25 (2019) 1040052
1. Data

The data stems from 33 open-source projects and their respective issue tracking system (ITS) and
version control system (VCS). Fig. 1 shows an example of issue HHH-44891 of project HIBERNATE as
represented in the ITS Atlassian Jira.2 The VCS captures the evolution of a project's source code in form
of changesets such as the example3 from project HIBERNATE shown in Fig. 2. The retrieval process of all
ITS and VCS artifacts is shown in Fig. 4. This process also reliably discovers traceability links among
changesets of the VCS and referenced issue artifacts in the ITS. All issues, changesets and respective
properties are part of the dataset on a project level and key figures are reported in Table 2. To unify
1 https://hibernate.atlassian.net/browse/HHH-4489.
2 https://www.atlassian.com/software/jira.
3 https://bit.ly/2L4L5Sp.

https://doi.org/10.7910/DVN/PDDZ4Q
https://bit.ly/2wukCHc
https://hibernate.atlassian.net/browse/HHH-4489
https://www.atlassian.com/software/jira
https://bit.ly/2L4L5Sp


Fig. 1. Example of Jira issue of type improvement in project HIBERNATE. It shows all available data fields (title, description, status, etc)
and the unique issue identifier HHH-4489 (marked red). Additionally, the improvement has a vertical trace link to issue HHH-8074.
Individual-related data such as reporter is obfuscated for privacy reasons.

Fig. 2. Example for a git changeset in project HIBERNATE. It shows the unique commit hash 625d781… (marked red), a time stamp, the
changed source code file, and the line-by-line modifications. The commit messages also contains a reference to an issue tracker
artifact (HHH-4489, marked red). Individual-related data is obfuscated for privacy reasons.

M. Rath, P. M€ader / Data in brief 25 (2019) 104005 3



Fig. 3. Issue category distribution according to mapping defined in Table 1. Details are shown in Table 2.

M. Rath, P. M€ader / Data in brief 25 (2019) 1040054
project specific differences, the typed issues, e. g. New Feature or Bug Report, are mapped to five issue
categories (see Table 1) resulting in the distribution shown in Fig. 3. An individual relational database
consisting of nine tables (see Table 3) per project is used to store the projects data. Fig. 5 shows the used
database schema.

The trace links allow to navigate from the ITS artifacts to VCS artifacts and vice-versa. They serve as a
building block for manifold active research areas supporting tasks like defect prevention, change
impact analysis, coverage analysis and building recommendation systems.
2. Experimental design, materials, and methods

This section introduces the Software Engineering in Open Source Systems (SEOSS 33) dataset and
provides an overview and descriptive statistics of the contained projects, artifacts, and their origin.



Fig. 4. The applied data collection process per project in the dataset. Infor-mation from each project's ITS and VCS is processed and
stored into a combined database.

M. Rath, P. M€ader / Data in brief 25 (2019) 104005 5



Table 1
Mapping from Jira issue types and their description to issue categories used in this paper. Both, the original issue type and the
mapped typed, are contained in the dataset.

Issue Category Mapped Jira issue types Issue Category Description

Bug Bug A problem which impairs or prevents the
functions of the product.

Feature Feature, New Feature, Feature Request A new feature of the product.
Improvement Improvement, Enhancement An enhancement to an existing feature.
Task Task, Sub-task A task that needs to be done.
Other various: e. g. Brainstorming,

Umbrella, Patch, Wish
miscellaneous

M. Rath, P. M€ader / Data in brief 25 (2019) 1040056
2.1. Project selection

We first settled on one combination of issue tracking system and version control system used by the
projects to be potentially included in our dataset. We selected Atlassian Jira4 and git5 based on their
popularity studied in various surveys,6,7 and due to their tight integration. Focusing on one combi-
nation of ITS and VCS simplified the development of our data collection process. We also required that
the projects in the dataset should bemajorly written in one programming language easing analysis and
tooling of scientist using the dataset. Considering programming language ranking polls,8,9 and internet
searches10, we chose Java as main language. Given the tooling restrictions, we considered three major
and publicly available hosting providers: the Apache Software Foundation, JBoss, and the Atlassian
Cloud. We ran a pre-study, to get a quantitative overview of artifacts and traceability links across all
Java projects hosted by these providers. We further narrowed the selection based on the following
criteria:

1. A project shall capture a rich set of development artifacts, but at least requirements, bug reports,
and source code.

2. A project shall continuously capture vertical and horizontal trace links among these artifacts.
3. A project shall be under active development for at least three years and shall have deployed stable

releases.

After applying the information oriented selection strategy Maximum Variation Cases [5] to draw
representative samples with varying project characteristics, we eventually selected 33 open-source
projects. The detailed project list (File projects.csv) formatted as comma-separated values (CSV) is
part of the dataset [12]. It provides the project name, a short description of the project, a link to its
webpage, and the name of the database created by the data collection process.
2.2. Issue tracking systems (ITS)

All projects contained in the dataset use the web-based life-cycle management tool Atlassian Jira to
manage requirements, defects, and traceability links. In Jira, the fundamental artifact is an uniquely
identifiable issue capturing a set of properties like a type, a short textual summary, a long description and
information about the stakeholder that created it (see Fig.1). Issues are typed to adapt them to different
phases of a development project. The predefined list of issue types contains bug, improvement, new
4 https://www.atlassian.com/software/jira.
5 https://git-scm.com.
6 https://project-management.zone/ranking/category/issue.
7 https://insights.stackoverflow.com/survey/2018#work-version-control.
8 https://octoverse.github.com/.
9 https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages.

10 https://www.tiobe.com/tiobe-index/.

https://www.atlassian.com/software/jira
https://git-scm.com
https://project-management.zone/ranking/category/issue
https://insights.stackoverflow.com/survey/2018#work-version-control
https://octoverse.github.com/
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://www.tiobe.com/tiobe-index/


Table 2
Key figures for the projects of the dataset. Issue links represent vertical and issue to change links horizontal trace links. The time
period specifies the range between first and last artifact per project.

Project Time Period
[month]

Issues Comments Change
Sets

Issue
Links

Issue to Change
Set Links

Linked Change
Sets [%]

1 ARCHIVA 162 1929 5050 8006 510 2275 26.42
2 AXIS2 164 5796 17,146 31,114 484 2609 18.93
3 CASSANDRA 106 13,965 96,007 23,592 3363 7263 37.03
4 DERBY 160 6969 59,829 8156 3529 7263 83.17
5 DROOLS 146 5103 9763 11,117 633 5528 47.24
6 ERRAY 99 1060 1216 7645 40 638 8.11
7 FLINK 43 8100 69,570 12,419 1895 5328 41.98
8 GROOVY 173 8137 23,345 12,378 987 4901 37.91
9 HADOOP 150 39,086 453,765 27,776 23,626 29,309 97.13
10 HBASE 131 19,247 249,923 14,331 7694 13,379 90.06
11 HIBERNATE 172 11,971 39,339 8173 3110 6942 82.20
12 HIVE 113 18,025 132,548 11,179 9110 11,058 96.34
13 HORNETQ 158 3286 6274 11,121 732 2283 19.37
14 INFINISPAN 106 8422 17,382 10,654 2350 7499 68.55
15 IZPACK 108 1337 964 5489 73 1804 30.73
16 JBEHAVE 162 1234 256 3282 4 1546 46.53
17 JBOSS-T.-M. 145 2887 6217 2204 814 1615 71.64
18 JBPM 159 10,397 28,631 4919 2211 1133 22.06
19 KAFKA 78 6219 32,960 4426 1699 2893 63.17
20 KEYCLOAK 54 5523 7856 10,106 1408 5443 51.73
21 LOG4J 117 2114 13,355 9792 488 3309 32.13
22 LUCENE 197 17,329 158,194 28,995 4923 19,111 63.12
23 MAVEN 183 5073 17,298 10,315 1971 2596 24.10
24 PIG 123 5234 29,896 3134 1479 2980 92.85
25 RAILO 101 3326 7428 3990 45 989 24.36
26 RESTASY 119 1649 4565 3684 280 1345 34.77
27 SEAM2 147 5031 12,574 11,309 953 3024 25.88
28 SPARK 93 22,205 76,966 20,829 8070 14,306 61.72
29 SWITCHYARD 86 3010 9513 2928 882 2428 80.29
30 TEEID 196 4899 16,808 7266 723 5858 72.38
31 WELD 115 2518 5341 8086 665 2555 30.45
32 WILDFLY 203 24,566 59,719 36,711 11,033 22,388 57.71
33 ZOOKEEPER 116 2907 31,251 1600 966 1423 87.12

SUM 278,536 1,702,949 358,726 96,750 204,593 57.03

M. Rath, P. M€ader / Data in brief 25 (2019) 104005 7
feature, and task. New issue types and properties can be created as needed for a project. The exact
naming of issue types differs among the projects, e.g. some projects use enhancement instead of
improvement, both expressing the same underlying concept. For generalization purposes, we apply a
mapping between Jira issue types and a reduced set of five issue categories (see Table 1). However, the
original issue type still is available in the dataset, along with the issue category. As depicted in Fig. 3, a
majority of issues falls into these four categories, representing issue types present in every project.
Examples for issue types categorized as Other are, e. g. “Umbrella” (used in HBASE, SPARK), or “Patch”
(used in HIBERNATE, SEAM2). Similarly, Jira supports the creation and customization of traceability link
types between issue types in addition to a set of predefined link types like relates to and blocks. For
example, the improvement HHH-4489 (see Fig. 1) is linked to bug HHH-8074. Furthermore, comments
can be added to issues providing additional details and facilitating collaborationwith other developers.
Hadoop provides the largest number of issue tracker artifacts in the dataset with z40,000 issues, z
23,000 trace links among them and nearly half a million comments (see Table 2).

2.3. Version control system (VCS)

The projects in the dataset use git as VCS. Upon a change, git stores differences to the previous
version of each altered file as atomic changeset termed commit. Each commit is uniquely identified by a
hash value. Besides the atomic set of modified files, a commit also comprises the person performing the



Table 3
Descriptions of the available tables (see Fig. 5) per project's SQLite database in the dataset.

Table Description

issue This table contains all artifacts extracted from a project's issue tracker. Each issue includes a unique
id, summary, a detailed description, information about type, status, names of people involved, and
time stamps. The people names are available as full names (e.g. “John Doe”) along with used login
names (e. g. “jdoe”) which allows to link them to user profiles used in source code version control
system.

issue_link This table represents vertical, typed trace links between issue tracker artifacts. The column name
classifies the link (e.g. “Duplicate”, “Reference”) and column outward_label informs about the
reading direction from source issue to target issue (e.g. “duplicates”, “relates to”). The field
is_containment is 1, when the target issue is a child of source issue.

issue_comment User comments on the issue. Full names and login names are stored in the same way as for table
issue.

issue_component A mapping table from issue to a software component.
issue_component The mapping table from issue to a version of the software, where the issue was (or will be) fixed.
issue_fix_version The mapping table from issue to a version of the software, where the issue was (or will be) fixed.
change_set This table contains the change sets mined from the projects' source code version control system

uniquely identified by a commit hash value. Additional information like the author, time of change
and a textual description is also stored.

change_set_link A mapping table from issue to change sets, which describe horizontal traces.
code_change All source code changes with file granularity. Every change is linked to a change set and described as

number of added and deleted lines of code. The actual modified file con- tent can be easily retrieved
from the VCS if required. The columns file_path and old_file_path capture file renaming ormoving to
a different directory in the source file tree.

meta A meta table containing detailed information about processed Jira and git repositories for the
project, stored as key value pairs. This includes URLs to the used issue tracking systems and git
repositories along with respective HEAD revision numbers, and the time stamp when the mining
was done.

M. Rath, P. M€ader / Data in brief 25 (2019) 1040058
change, a timestamp, and a commit message stating the purpose of the change (see Fig. 2). A commit
message may contain information about, e.g., a newly implemented requirement, a changed or
enhanced requirement, or a fixed defect. It is common practice that developers tag commits with the
identifiers of issues they were working on when changing the code. In many projects, such as those
hosted by the Apache Foundation, this procedure is demanded in the development guidelines, which,
e.g., state that “You need to make sure that the commit message contains at least [...] a reference to the
Bugzilla or JIRA issue [...]”.11 For example, the changeset 625d78112 of project Hibernate reads “HHH-
4489 needmethod “refresh(String entityName, Object obj)”” andmentions the issue identifier HHH-4489.

As shown in Table 2, the dataset contains a total of 350,000 commits, with project Wildfly
contributing the largest share. Depending on the project, varying percentages of changesets are linked
to issues. For example, in the ERRAI project only 8% of the changesets are linked to issues, whereas in the
Hadoop project 97% are linked.

2.4. Data collection process

A sequential capturing process was applied to gather data per project (see Fig. 4). It improves the
technique used to create the “IlmSeven dataset” [13], which aimed mainly to be a traceability dataset.

Analyzing a Project's ITS The Jira platform offers a RESTful web service, which allows to interact
with the system programmatically. We implemented a collector utilizing the provided application
programming interface (API). The collector automatically discovers all artifacts of a project and
downloads them to local files stored in JavaScript Object Notation (JSON) format (1). The downloaded
files are then analyzed to extract artifact data and traceability links among these artifacts (2). These
results are parsed (3) and stored into the respective tables of the project's database (4).
11 https://www.apache.org/dev/committers.html#applying-patches.
12 https://bit.ly/2L4L5Sp.

https://www.apache.org/dev/committers.html#applying-patches
https://bit.ly/2L4L5Sp


Fig. 5. Database schema used for each project in the dataset, primary keys in bold and arrows depict foreign key references among
the tables. The tables highlighted in contain data retrieved from the project's ITS, while tables highlighted in contain data
retrieved from the project's VCS. The table change_set_link contains the trace links connecting the ITS and VCS.

M. Rath, P. M€ader / Data in brief 25 (2019) 104005 9
In Jira, each issue repository uses a common prefix for all contained artifacts, typically derived from
the project name. Usually a project uses a single issue repository and thus all issues are prefixed in the
same manner (e.g. projects GROOVY, MAVEN, and KAFKA). However, some projects in our set use multiple
issue repositories. For example, the Hadoop project uses four repositories13: HADOOP, MAPREDUCE,
YARN, and HDFS, where each repository holds issues just for a specific part of the software. We
determined all issue repositories per project by visiting the projects websites. Relevant meta infor-
mation about all issue repositories is stored in the meta table contained in each project's database (see
Table 3).

Analyzing a Project's VCS A second collector was implemented to download the commit history
held in each project's VCS (5). The retrieved version history is traversed in inverse chronological order,
starting at the latest change (HEAD revision) back to the initial commit (6). During traversal, basic
13 http://hadoop.apache.org/issue_tracking.html

http://hadoop.apache.org/issue_tracking.html


M. Rath, P. M€ader / Data in brief 25 (2019) 10400510
information of every visited commit is captured, including the commit time stamp, the author, and the
list of affected files along with detailed line-by-line change information (7). The content of the source
files is not part of the dataset, because of space and efficiency reasons. However the number of added
and deleted lines per file in each changeset is stored to quantify the overall size of the change. In case
the modified file content is required, it can easily be retrieved using the unique commit hash and file
path to query the publicly available VCS. The command git show epretty ¼ -U <commit_hash>
<file_path> shows the modified file content in commit referenced by the supplied commit hash.

It is a common practice to tag commit messages with issue identifiers and thus to create links
between source code and issues [14]. To retrieve these links, we scan individual commit messages (8)
for Jira identifiers.14 This technique reliably discovers traceability links among the changeset and the
referenced issue artifacts in the ITS [1]. For example, this process extracts the issue identifier HHH-
4489 in the commit message “HHH-4489 need method “refresh(String entityName, Object obj)” ” (see
Fig. 2). Thus, a vertical trace link is created from improvement HHH-4489 to changeset 625d781a. All
captured information is stored in the project's database (9), compressed with bzip2. The command
bzip2 -d <project_name>.sqlite3.bz2 decompresses a file. We selected SQLite15 as relational database
management system. In contrast to client-server databases, SQLite is easy to setup, is directly
embeddable into programs and offers bindings tomany programming languages and tools for machine
learning and statistical analysis, which eases accessing and working with the data. Each database and
thereby project data complies to the same database schema. Depending on the research area
specialized storage formats might be beneficial, such as graph databases for traceability analysis [10].
For example, the authors in Ref. [4] outline multiple data transformations from different input rep-
resentations to a graph database. A similar approach can be applied to this dataset by querying the
main artifact tables issue and change_set as well as the tables issue_link and change_set_link repre-
senting the links between the artifacts (see Fig. 5).

2.5. Post processing
Similar to issue tracking, a project may use multiple version control repositories (e.g. project

INFINISPAN
16). The authors consulted the respective website to discover these repositories. Relevant meta

information about all analyzed version control repositories is stored in the meta table per project
database, e.g., the latest crawled commit hash (HEAD revision).

In order to facilitate usage of the retrieved data for different research topics, we avoided modifi-
cations of the raw data. This allows specific post processing steps depending on the actual uses case. For
example, these steps may include filtering on artifact level (e. g., requirements, defects), on source code
level (e. g. file names or paths) or on a specific temporal window. To simplify time based filtering, all
time stamps are provided in universal coordinated time (UTC) and in their original time zone
(respective *_zoned columns). All captured text fields are stored as is and may contain markup sym-
bols17 used for structuring.

2.6. Database schema description
Each database and thereby project data complies to the same schema containing of eight related

tables and an additional meta-data table (see Fig. 5). The content of all nine tables is described in Table
3. Generally, date and time values are stored with ISO 8601 encoding18 as text, e.g. 2015-10-
21T07:28:00Z. Numbers and booleans are stored as integer and the remaining information are stored
as column type text.
14 Regular expression pattern for Jira identifiers: https://bit.ly/2L2iZHg.
15 https://www.sqlite.org.
16 https://github.com/infinispan.
17 https://bit.ly/2Fh8Vd8.
18 https://www.iso.org/iso-8601-date-and-time-format.html.

https://bit.ly/2L2iZHg
https://www.sqlite.org
https://github.com/infinispan
https://bit.ly/2Fh8Vd8
https://www.iso.org/iso-8601-date-and-time-format.html


M. Rath, P. M€ader / Data in brief 25 (2019) 104005 11
2.7. Data model design
The chosen data model supports multiple use cases and thus is applicable in different research

areas.
A common approach in bug localization is to use information retrieval (IR) techniques. Thus a bug

report is treated as text document to query the projects source code repository, which forms a list of
documents in IR terminology. The result of the query is a ranked list of the most relevant matches
among all source files (documents). Bug reports are stored the table issue identified by column
type ¼ Bug. The projects source code can be locally cloned using the URL stored in the meta table. In
bug localization, the algorithm performance can be evaluated by comparing the computed ranked list
with the actual set of files modified to fix the bug. This set is built by collecting all file_paths in table
code_change for each bug report with resolution ¼ Fixed using the traversal issue / change_set_link
/ change_set / code_change.

The features (type ¼ Feature) in table issue and their relations (table issue_link) to other issues
define the starting point to study change inpact analysis. The source code, either on file level or even
line level (requires detailed analysis of all code_changes), implementing the feature can be identified
using a similar traversal as described in bug localization. Using this information, recommender systems
can by trained to propose possible code locations that need to be considered in case a feature is altered
or a new one is linked to an existing one. One attempt to create a training and testing is to apply
temporal filtering, i. e. before and after a given point in time, using the stored timestamps on all
involved artifacts.

The core building block for manifold research areas is the navigation between ITS and VCS arti-
facts as briefly outlined by the two examples. One main difference among the applications is the
selection of artifacts [3,15], such as issue types, stakeholder data and texts found in issue de-
scriptions, comments and commit messages for studying social aspects [8] or project evolution based
on time information [2].
Acknowledgments

Our work is funded by the BMBF grants: 01IS16003B, DFG grant: MA 5030/3e1, the EU EFRE/TAB
grant: 2015FE9033, and DLR grant: D/943/67258261.

Transparency document

Transparency document associated with this article can be found in the online version at https://
doi.org/10.1016/j.dib.2019.104005.
References

[1] Adrian Bachmann, Abraham Bernstein, Software process data quality and characteristics: a historical view on open and
closed source projects, in: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software
Evolution (IWPSE) and Software Evolution (Evol) Workshops, IWPSE-Evol ’09. ACM, 2009.

[2] Jane Cleland-Huang, Orlena C.Z. Gotel, Jane Huffman Hayes, Patrick M€ader, Andrea Zisman, Software Traceability: Trends
and Future Directions, ACM Press, 2014.

[3] Bogdan Dit, Meghan Revelle, Malcom Gethers, Poshyvanyk Denys, Feature location in source code: a taxonomy and survey,
J. Softw.: Evol. Process 25 (1) (2013) 53e95.

[4] Randa Elamin, Rasha Osman, Implementing traceability repositories as graph databases for software quality improvement,
in: 2018 IEEE International Conference on Software Quality, Reliability and Security, QRS, 2018.

[5] Bent Flyvbjerg, Five Misunderstandings about Case-Study Research, Qual. Inq. (2006).
[6] Ahmed E. Hassan, The road ahead for mining software repositories, in: Frontiers of Software Maintenance, 2008. FoSM

2008. IEEE, 2008.
[7] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Improving source code lexicon via traceability and information

retrieval, IEEE Trans. Softw. Eng. 37 (2) (2011).
[8] Marco Ortu, Giuseppe Destefanis, Bram Adams, Alessandro Murgia, Michele Marchesi, Roberto Tonelli, The JIRA repository

dataset: understanding social aspects of software development, in: Ayse Bener, Leandro L. Minku, Burak Turhan (Eds.),
Proceedings of the 11th International Conference on Predictive Models and Data Analytics in Software Engineering,
PROMISE 2015, ACM, 2015.

[9] Thomas J. Ostrand, Elaine J. Weyuker, Robert M. Bell, Predicting the Location and Number of Faults in Large Software
Systems, IEEE Trans. Software Eng. (2005).

https://doi.org/10.1016/j.dib.2019.104005
https://doi.org/10.1016/j.dib.2019.104005
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref1
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref1
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref1
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref2
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref2
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref2
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref3
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref3
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref3
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref4
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref4
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref5
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref6
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref6
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref7
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref7
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref8
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref8
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref8
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref8
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref9
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref9


M. Rath, P. M€ader / Data in brief 25 (2019) 10400512
[10] Michael Rath, David Akehurst, Christoph Borowski, Patrick M€ader, Are graph query languages applicable for requirements
traceability analysis?, in: 22nd International Conference on Requirements Engineering Foundation for Software Quality
(REFSQ 2017), 2017.

[11] Michael Rath, David Lo, Patrick M€ader, Analyzing requirements and traceability information to improve bug localization,
in: Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018, 2018.

[12] Michael Rath, Patrick M€ader, The SEOSS Dataset e Requirements, Bug Reports, Code History, and Trace Links for Entire
Projects, 2019. https://bit.ly/2V5Zh1S.

[13] Michael Rath, Patrick Rempel, Patrick M€ader, The IlmSeven dataset, in: 25th IEEE International Requirements Engineering
Conference, RE 2017, IEEE Computer Society, 2017.

[14] Michael Rath, Jacob Rendall, L. Jin, C. Guo, Jane Cleland-Huang, Patrick M€ader, Traceability in the wild: automatically
augmenting incomplete trace links, in: Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, 2018.

[15] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, Dewayne E. Perry, Improving bug localization using structured infor-
mation retrieval, in: 2013 28th IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, 2013.

http://refhub.elsevier.com/S2352-3409(19)30358-0/sref10
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref10
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref10
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref10
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref11
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref11
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref11
https://bit.ly/2V5Zh1S
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref13
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref13
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref13
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref14
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref14
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref14
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref14
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref15
http://refhub.elsevier.com/S2352-3409(19)30358-0/sref15

	The SEOSS 33 dataset — Requirements, bug reports, code history, and trace links for entire projects
	1. Data
	2. Experimental design, materials, and methods
	2.1. Project selection
	2.2. Issue tracking systems (ITS)
	2.3. Version control system (VCS)
	2.4. Data collection process
	2.5. Post processing
	2.6. Database schema description
	2.7. Data model design


	Acknowledgments
	Transparency document
	References


