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Abstract— A physically-motivated friction model with a para-
metric description of the nonlinear dependency of the temper-
ature and velocity as well as the dependency on external load
is presented. The fully parametric approach extends a static
friction model in the gross sliding regime. We show how it can
be seamlessly integrated in standard dynamic friction models
such as Lund Grenoble (LuGre) and Generalized-Maxwell-Slip
(GMS). Parameters of a Harmonic Drive CSD 25 gear are
experimentally identified and the final model is evaluated on a
dedicated test-bed. We show the integration and effectiveness in
dynamic simulation, friction compensation, and external torque
estimation.

I. INTRODUCTION

Actuation performance in robots with gears is always
affected by frictional effects. In robotic drivetrains friction is
omnipresent and by nature hinders motion, which is in many
cases a restrictive effect. A precise knowledge of the friction
in the system helps to improve the mechatronic design,
increase precision, and gain a more accurate simulation.
Recently this topic has got increasing attention in research
for industrial robots [1]-[3] , but also for lightweight service
robots knowledge of friction is advantageous, especially
when physical human robot interaction plays a major role.

Our primary interest is on lightweight service robots where
during typical task execution very different actuator states
are present. We want to model the friction of the robot
DLR David [4], especially in the main actuators FSJ [5]
that have Harmonic Drive gears (HD) as the main source
of friction [6]. Typical motions consist of many reversals
as well as high and low velocities. Also varying loads
affect the system due to gravitation, different payloads,
and accelerations. Furthermore, the varying motions directly
affect the actuator femperature by the heat of the frictional
losses, which consequently has a significant variance.

The aforementioned demands are not fully covered in the
well known static or dynamic friction models [7]-[11]. Cur-
rent research addresses the importance and the inclusion of
temperature, velocity, and load in static friction models [1],
[31, [12]-[15]. Since we have trajectories with many reversals
and low velocity portions we aim on a dynamic friction
model.

The proposed method in this paper is an extension to a
static friction model that can be integrated in common dy-
namic friction models. The model includes nonlinear viscous,
nonlinear thermal, and load dependency. In contrast to the
previous approach presented in [16], it is a fully parametric
model and includes load dependency. Our proposed method
is fully based on experimental identification and is also
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verified on hardware. We show the extended dynamic friction
model working in experiments. To our knowledge, there
is no parametric approach that is able to combine all the
aforementioned properties in one model. Not covered in our
model are position dependency of actuators like in [3], HD
resonance frequencies [17], and HD ripple [18].

We apply and verify our approach on three major robotic
applications where a precise friction model can significantly
improve the behavior:

¢ dynamic simulation
o friction compensation
o external torque estimation

The paper is organized as follows. Section gives an
overview on the underlying standard methods for this work.
Section [[II| contains the proposed methods. The testbed setup
is described in Section and the results are presented in
Section [Vl The conclusions can be found in Section [V1l

II. BACKGROUND
A. Static Friction Model

The typical description of friction torque is a combination
of certain aspects representing the basic friction characteris-
tics in the sliding regime, such as static friction, Coulomb
friction, viscous friction, and Stribeck effect [19]. Generally,
static friction can be modeled as an arbitrary function. A
common form of the static friction model is expressed as

Tr,S(Q) =g(q) + s(q)

9(d) = sign(d) (Fe -+ (F — Foje™li/1"). v
The function s(g) expresses the velocity strengthening that
is well known as viscous friction, and typically it is linear
proportional to the relative velocity ¢ as s(q) = Fyq,
with the constant viscous coefficient F\,. The function g(q)
contributes as the velocity weakening of the friction torque.
The function g(q) is alternatively called the Stribeck curve
because it captures the Stribeck effect, where F. is Coulomb
friction, Fj is static or stiction friction, vy is Stribeck velocity,
and J5 is the exponent parameter of the Stribeck nonlinearity.
In the Gaussian parametrization as used in [19] and [20]
the exponent parameter is d; = 2. Parameters of the total
friction torque 7, can be identified easily using the static
map between the friction torque and the relative velocity.

B. Disturbance Observer

Consider the robot dynamics of the form

M(q)G+n(q,q) + Text =T, (2)



with the generalized joint coordinates g and the positive
definite inertia matrix M (q). The function 1(q, ¢) includes
the Coriolis C'(q, ¢) and the gravity forces 74(q), as well
as the friction torques 7. Furthermore, the terms T, Text
describe the generalized joint forces and external forces,
respectively. The total disturbance imposed on the robot
manipulator is expressed as

Tdis = T](qa q) + Text
=7—-M(q)q.

For sake of brevity, the following analysis considers the
motion of a single joint with an inertia J. Hence, 1(q, ¢) =
74(q) + 7. However, the same is applied for a multi DoF
system in a straight forward manner [21], [22]. The velocity
based disturbance observer presented in [23] is based on the
transformation of variables, in which the intermediate state is
selected as a linear combination of the unknown disturbance
Ta4is and the measured velocity ¢. Accordingly, the estimated
disturbance torque 74 can be obtained from the actuator
velocity and the commanded torque.

3)

. B .

Tdis (3+5) (T+5JQ)
where s is the Laplace operator. 3 is the cut-off frequency
of the filtered disturbance 74;5 through Q(s), which also de-
termines the bandwidth of the torque sensing, see [21]. This
structure of the disturbance observer is widely used in motion
control systems. The accuracy of external torque estimation
with this observer strongly depends on the knowledge of
friction in (3). Thus it can benefit from a precise friction
model such as the one presented in this paper.

= BJq=Q(s)Tais, 4

III. PROPOSED METHODS
A. Friction Model Refinement

The proposed friction model refinement addresses the
gross sliding regime. The nonlinear viscous friction as
well as the nonlinear temperature dependency mainly affect
the gross sliding regime. We modify s(¢) and ¢(¢) of
Equation (I) with an according nonlinear term to integrate
them into Lund-Grenoble model (LuGre) [9] or Generalized-
Maxwell-Slip model (GMS) [10].

B. Nonlinear Viscous Friction

An expression that describes the viscous part of a static
friction model could be arbitrarily formulated depending on
the system behavior, e.g. [19], [24].

We use an exponential shaping factor ¢, in the nonlinearity
of the viscous part of the static model:

s(q) = Fy sign(q) 4> . (5)

In previous work this expression was found to be well suited
to model HD viscous friction [16].

C. Nonlinear Temperature and Load Dependency

The friction of the HD is highly dependent on the tempera-
ture [25]. In [16] we showed that the temperature dependency
could be assigned only to the viscous part and the model
still qualitatively represents the behavior. We adapted the

most general physically motivated static friction curve in
[A] and to be continuously valid at different operating
temperatures. We experimentally validated that the static
model in Equation (I) with nonlinear viscous part (3)) can
be used to express the friction at a single temperature value.
Now we formulate the model parameters in a generic
polynomial form with respect to the temperature and the
load. In this way we keep the good representation for the
whole velocity range including near zero velocity region (the
Stribeck effect) and at the same time map the temperature
and load nonlinearities. Adding the temperature and the load
dependencies, the friction torque can be expressed as

Tr,s(dv ga TL) = g(Qa fa TL) + S(Qv ga TL) . (6)

Now ¢(¢,&,7) is the temperature and load dependent
velocity weakening function (Stribeck curve), s(g,&,7r) is
the temperature and load dependent velocity strengthening
function (viscous friction), £ is the temperature, and 7, is
the load torque. The individual parameters can be formulated
as

Nfe,¢ Nfe,rr, )
Fo(¢ 1) = Z fo €'+ Z fe,Ti
Mgy, € nfv TL
Fy(6.m) = Z fof 4 Z fo,7l
Noyg,& nvs,ﬂ'L (7)
Us(§7TL) = Z ’USiSL + Z /USjTi
i=0 j=1
Nuyg,& Novg,7p,
o0v(&,71L) = Z 5y, 68+ Z Oy, 7L -
=

Fe, Fy, vs, and d,, are the original four parameters that char-
acterize the static friction behavior at a single temperature-
load point (1)) in polynomial form, depending on temperature
and load. Expressing the dependencies in the individual pa-
rameters allows us enough flexibility to map the temperature
and load dependencies based on our experimental observa-
tions. The order of the polynomial n of each dependency i, j
can be chosen in each single parameter according to the
system behavior and the required accuracy of the friction
estimate. One example is shown in Fig. [3] The approach is
to scale the velocity dependent static model depending on
temperature and load by simply modifying its parameters
with respect to these dependencies in a polynomial fashion.

D. Extension of dynamic friction models

Particularly in the instant of velocity reversal, a smooth
and better description of the friction than in the static friction
model is important. Moreover, the friction phenomenon
by nature exhibits a nonlinear continuous behavior during
velocity zero crossing, unlike the estimated behavior of the
static friction models which is discontinuous at velocity
reversal. Following this demand, we extend the generic form
of a dynamic friction model by adding the nonlinear viscous
behavior, the load and the temperature dependencies. Now
the dynamic friction toque 7; q is a generic nonlinear function



of internal state z (possibly multi-states), ¢, &, and 7, .

Trd = f(zaq'agaTL) (8)

The generic internal state dynamics could be described as
a first order differential with the velocity, temperature, and
load dependencies,

dz

E = G(z7 Q7§7TL) . (9)

This state captures the transient response with respect to
the velocity. If the velocity is constant then the function
G(z,¢,&,7,) = 0 and the function f(z,¢,&, ) will con-
verge to the static friction torque 7y 5(¢,&,71,). As we kept
the generic form of the functions g and s, it is possible
to integrate with different models from the literature. The
LuGre and GMS models were selected among the gener-
alized empirical friction models as they are widely used
in robotic community and promise accurate results, [26]—
[29]. In addition, both model structures provide the ability
to model arbitrary steady state friction behavior in sliding
regime. In fact we will use this property to include the load
and temperature dependencies. The dynamic friction torque
in case of the modified LuGre model can be expressed as

Ted = 002 + 012+ 5(¢,€,71)
dz _ q- 007'@| z
dt g(dagaTL)

where z is the internal friction state and can be interpreted as
the average deflection of the micro bristles, og is the bristle
stiffness, and o, is the micro-damping coefficient.

Similarly, the dynamic friction torque in case of the modified
GMS model given as a parallel connection of N single
state friction models, then z; is the i*" element of the state
vector z. The internal states equations are determined by the
following. In case of a sticking element, the state equation

is given by:

(10)

dZZ'
dt

and the element remains sticking until z; = g;(¢,&, 7). In
case of a slipping element, the state equation is given by:

dZi Z

dt 9i (Q7 53 TL)
where C; is the attraction parameter which is a gain that de-
termines how fast z; converges to g;(¢, &, 71,) and ¢;(¢, &, 1)
is the velocity weakening (Stribeck) function for element 1.
The element remains slipping until the velocity goes through
zero. The friction torque is given as the summation of the
outputs of the N elementary state models plus the viscous
part as

=q (11

= sgn(q)Ci(1 — ) (12)

N
Ted = Z kizi(t) + s(¢, &, 1) - (13)
i=1
The number of unknown parameters in the GMS model is
affected by the number of Maxwell elements comprised.
Each element is characterized by a stiffness k;, an attraction
parameter C;, and a velocity weakening function g; (g, &, 1,).
However, we reduced the number of the unknown parameters
in the implementation by assuming g; = pg and C; = uC,

where p is a scaling factor. In this paper we will assume an
equal scaling among the Maxwell elements, thus = 1/N.
The identification of the parameters of LuGre and GMS
models is carried out in two different regimes, the pre-sliding
and the gross sliding phases.

Fig. 1: The implementation of external torque estimation
includes the proposed model marked in dark gray.

E. External torque estimation

From (3) it can be seen that the estimated disturbance
by the observer is a result of different components, but the
observer is capable to estimate a single output. As we are
interested in the external torque 7., and it is hidden inside
the total disturbance torque 745, the other nonlinear effects
need to be eliminated in order to obtain the external torque
as

(g, q) - (14)

In case of single joint/link 7(q, ¢) equals to gravitational and
friction nonlinearities. The unknown external reaction torque
can be computed as

Teat = Q(8)[T + BJ G —74(q) = 7r,a(¢, &, 7)) = BJG. (15)

For the proposed structure of the external torque estimation,
it is necessary to know precisely the gravity and the fric-
tion torques. In other words, the precision of the external
torque estimation is highly dependent on how accurate the
estimation of the friction effect is, as it is an additional
source of disturbance and having nonlinear effect. In spite
of these, the proposed method can provide a good estimate
of the external torque at different operating conditions as it
is already considered during the estimation of the friction
torque. The proposed integration of the disturbance observer
together with the dynamic friction model is depicted in

Fig. [1}

Text = Tdis —

IV. TEST SETUP

The mechanical design of the test-bed setup is depicted
in Fig. ] For a detailed description please refer to [16].
The gear in this setup is a CSD 25 of Harmonic Drive
AG with gear ratio 1:80 and rated torque of 75 Nm, which
is also the main gear of the FSJ. A Lorenz Messtechnik
GmbH DR-2643 torque sensor with range of £5Nm is
attached to the gear input. At the gear output another DR-
2643 torque sensor with range of +200Nm is connected,
which is attached rigidly to an absolute high resolution
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Fig. 2: FSJ principal axes drive train test-bed setup (bot-
tom) and the corresponding schematic diagram (top). The
mechanical construction of the test-bed allows to build
multi-configuration setups, additional loads can be attached
according to the demand.

25 bit Heidenhain encoder. The setup of [16] was altered by
the following changes. The motor unit is now a ILM50x8,
which is the same as in the FSJ of axis 1 to 4 in the robot
David. Furthermore, the setup is augmented by a lever with
a weight in order to investigate gravitational load effects of
up to 11 Nm on the system. Two temperature sensors of type
MCP9808 are placed on the housing surface of the HD in
order to acquire the gear temperature.

V. RESULTS

A. Nonlinear Temperature and Load Dependent Friction
Model

Intensive experimental measurements have been carried
out to get insight and separate the dependencies in the
velocity, temperature, and load. The collection of thirty-four
different constant velocity points covering the considered
velocity range over different constant temperatures allows
us to discover the exponential velocity strengthening shape
function (3). Moreover, it helps to identify different temper-
ature independent friction curves to have an idea about the
parameters change with respect to the temperature Fig. [3[b).

As it was shown in [16], nonlinear viscous friction is
present in a Harmonic Drive gear. The measurements were
chosen with higher density at low velocities to increase
the accuracy of the identified parameters in this region
that represent both the nonlinearity of the viscous friction
and the Stribeck effect. The temperature deviation during
every individual experiment was kept < £0.1°C, which is
assumed as an acceptable uncertainty.

Despite the number of the parameters that have involved
in the model, our approach is to separate the different effects
and split up the identification problem to relevant parameters.
Thus, the identification process of the model parameters has
been done in three steps.

o The first step is to identify the velocity and temperature
dependencies represented in (6) and (7). The identifica-
tion problem of the model can be formulated in terms
of least squares as

N
p=min Y (7a(d.60) ~ 1a(@: ), (16)
k=1

TABLE I: Identified parameters in case of
second-order temperature dependent static curve.

Fs st
4.48
FC[IO_Q] ch fcl fc2
3583 1028 -0.06
Fv[lo—l] va fvl fv2
2958 -1.15  0.01
v [10_1] Us0 Vsl Vs2
s -53.10 549  -0.07
5 [1072] (;VO 6\/1 6\/2
M 9049 377 0.07

where the parameter vector p € R™ depends on the
order of the assumed polynomials.

« The second step is to fix the velocity-temperature model
parameters and to add the load dependent parameters
fitting the second part of the parameters expressions (7).
The trust-region reflective algorithm that is available
in optimization toolbox of Matlab is employed in the
identification process of the first and the second step
that represent the static friction model (6). The identified
parameters are summarized in Table

e In the third step the dynamical parameters of the
LuGre and GMS models are identified by executing
low velocity experiments that include mainly pre-sliding
phases similar to the one shown in Fig. [5] The pattern
search algorithm has been used to identify the pre-
sliding parameters of the modified LuGre model (T0)
and the modified GMS model (T3).

Fig. 3(b) represents the behavior of the individual param-
eters with respect to the temperature. The markers indicate
the parameters of the temperature independent models that
have been identified at single temperature values. A second
order polynomial is found to be sufficient to represent the
parameter variation in the temperature (depicted in solid
lines). The load dependency is assumed to be linear for
simplicity since it shows acceptable results as in Fig. [
However, this could be improved by assuming a higher order
load dependency. The overall output of the proposed model
is illustrated in Fig. Bfc) and Fig. [ for the temperature and
load dependencies, respectively.
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Fig. 4: Load dependency experiment at constant velocity.

B. Dynamic Simulation

The identified parameters of the two dynamic friction
models together with the torque constant and the motor
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Fig. 3: The identified static friction models at different individual temperature values with the experimental data are shown
in (a). While (b) depicts the model parameter change with respect to the temperature indicated with markers and in solid
lines the behavior of each parameter using a second order polynomial to map the temperature dependency as in Equation
(7). The output of the temperature dependent static model with the experimental data is shown in (c).

inertia are used to build a dynamical model of the test
setup. The dynamical simulation capabilities are validated
for the modified LuGre and modified GMS with respect to
the experimental measurements. Two chirp signals having
the same increasing frequency, but with different constant
amplitudes, are used as the commanded torque. This results
in one trajectory with low velocity Fig. [5[a-c) and one with
high velocity Fig. [5(d-f). The same signals are used as
input signals for the model. At the same time the measured
temperature and load signals were fed to the model in
order to have similar simulation conditions. The comparison
between the commanded and the applied torque is shown
in Fig. B[a,d), where the applied torque is calculated as the
product of measured current and motor constant.

Fig. B[b,e) shows the open loop velocity responses of
the models and the measured data. It can be clearly seen
that the commanded motor torque is continuous, while the
resulting velocity response is not due to the stiction phases.
The proposed models show high accuracy estimating the
actual velocity response including the discontinuity behavior.

C. Friction Compensation

Model based friction compensation benefits from accurate
friction estimation] The model (8) has been realized to
be compatible with a real-time system. Assuming all the
parameters of the system are known and neglecting the
friction torque in (Z), we can design a simple PD controller
with additional feed-forward terms to compensate the inertial
and gravity torques as

T = JGa + koG + kaq + 74(q) + ¥7ra(z, ¢, 1), (A7)

where § = g4 — ¢ and § = §q — ¢ are the position and
velocity errors, respectively, and ¢ is a logic variable O or 1
to enable the friction compensation. The desired position g4
is assumed to be smooth and with bounded derivatives up to
the second order.

Our goal is to validate the friction compensation capability.
Thus the controller (T7) is implemented in real time with
sampling rate 3 kHz and the gains k, and kq are calculated
to respect the transient time requirements of rise time 0.04 s

Isee also application video https:/youtu.be/TtGtr9OE9tk

and a maximum overshoot of 6% for the step response.
Fig. [6] shows the results of the friction compensation at
low and high velocity in comparison to the uncompensated
scenario. The same controller parameters are used in both
uncompensated experiments and while the friction compen-
sation is active. The proposed dynamic-model based friction
compensation is examined with two different sinusoidal
trajectories q4(t) = agsin(wyt) with a, = {0.4;2.4} and
wq = 1.5 at three different temperature values. Results of
two temperature values are depicted in Fig. [6]

A significant reduction of the tracking error is observed
while activating the friction compensator. The maximum
tracking error of the proposed models with respect to the
desired value is shown in Fig.[7] It can be seen that neglecting
the friction can lead to an position error of 29 % to 35 % from
the commanded position in low velocity case, depending on
the temperature. The remaining position error could be a
result of the parameter uncertainty and measurement noise
as well as additional unmodeled dynamics and effects. More-
over, we observe that the position error of Lugre and GMS is
not significantly different while compensating friction. Note
that, if the back-drivability is desired, GMS based model has
a smoother zero crossing behavior.
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Fig. 6: The experimental results of the friction compensation
using modified LuGre and GMS models. The position errors
at low velocity (peak 0.6rad/s) and two different operating
temperatures 27 °C and 35°C are shown in (a) and (b),
respectively. Similar results for the high velocity case (peak
3.5rad/s) are shown in (c) and (d).

b) low velocity (0.6 rad/s) at 35°C

— Uncompensaled
PD + (JMS

UU/UD

10

o
o

e
o
]
o
o
&

S
o
5}

Position Error [rad]
o
&
8

s
_Position Error [rad]

S8
S 0

m
S
o

o
N
&
o
b

15
Time [s]
d) high velocity (3.5 rad/s) at 35°C

— Uncompensated|

— PD + Lugre
D @ Q PD + GMS

20 25

o ©
N S o LN
o o
;.o;m

)
o 5

o

Position Error [rad]
Position Error [rad]

S
w
S
w

o
N
3]

15
Time [s]


https://youtu.be/TtGtr9OE9tk

b)‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ c)‘

8 06
sl —— Actual torque Measured velocity 6
Desired torque 04 —— LuGre based model Nl
a4l = —— GMS based model T
g 2 o02f > ol
z2 E z
= =
2o %‘ 0 gor
g 2 2 2
B 2 02f m 2[
4 s
Al 0.4
6F
8 . . . . . . . 06 . . . f . i ! A . . . . .
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0.6 0.4 0.2 0 0.2 04 0.6
d) Time [s] e) Time [s] £ ) Velocity [rad/s]
T T T T 3 T T T T T T T T 10 T T T T T T T
Actual torque | [ Measured velocity
—— Desired torque 2 —— LuGre based model | LuGre based model
— = — GMS based model = 5[ |——GMS based model
£ 3 g
z E z
=]
] 20 S ot
z E 3
= 2 1 &
5t
2 1
. . . . . . . . 3 . . . . . . . . 10 . . . . . . .
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 3 2 -1 0 1 2 3
Time [s] Time [s] Velocity [rad/s]

Fig. 5: The evaluation experiment of drive-train using chirp excitation signal with low (a,b,c) and high (d,e,f) amplitude
resulting in low and high velocity. The commanded and actual torques are shown in (a,d). The measured and modeled
velocities as a result of dynamic friction model (LuGre) with modified nonlinear viscous behavior in comparison with GMS
(b,e). The corresponding estimated friction torques are shown in (c,f).
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08 VI. CONCLUSIONS

A physically-motivated friction model with parametric de-
scription of the nonlinearity of the temperature dependency,
velocity, and on the dependency on external load is presented.
It is shown how this model can be integrated in the dynamic
models of LuGre and GMS. The parameter-identification and

2°C 30°C 35°C 2°C 30°C 35°C evaluation were executed on a dedicated testbed. The model
Fig. 7: The maximum position error as a percentage from  with LuGre and GMS was evaluated in three robotic applica-
the desired position at different operating temperatures are  tions. First it was shown that in a dynamic simulation a very
shown, the thin bars show the corresponding RMSE of the  good correspondence also in the zero crossing behavior was
trajectory. achieved. Second the maximum position error in sinusoidal
movements with friction compensation dropped from 35 % in
the uncompensated case to 6 % and 4 % with the LuGre and

The integration of the disturbance observer is evaluated =~ GMS model, respectively. As a third application the external
with variable velocity and load. The gravitational torque is  torque estimation was investigated with a newly proposed
excluded from (]];5[) and it is assumed to be an unknown integration in the observer structure and showed also a good
external variable load. The link side torque sensor is used to  accuracy with approximately 14 % error.
compare the estimated external torque 7.y With the applied Future work will be on the extension of the experimental
external torque. evaluation to a wider range of temperature, velocity, and

From Fig. [§]it is obvious that including the friction model ~ load. Furthermore, additional hardware units will be exam-
plays crucial role in estimating external torque. The esti- ined with a focus on the variance. Finally, the extended
mated external toque error is less than 1 Nm, which allows dynamic friction model will be implemented on the robot
the implementation of an impedance control or to use the David to improve friction compensation and external torque
estimated external torque in more sophisticated algorithms  estimation.
without the need of an extra torque sensor.

D. External torque estimation
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