Lidar Soundings of Noctilucent Clouds during the PMC Turbo Balloon Mission

N. Kaifler¹, B. Kaifler¹, M. Rapp¹, D.C. Fritts², B. Williams², C.B. Kjellstrand³, C. Geach⁴, A. Miller³, M. Limon³, S. Hanany⁴, G. Jones³, J. Reimuller⁵

¹DLR, Institute of Atmospheric Physics, Oberpfaffenhofen; ²GATS, Boulder, Colorado; ³Columbia University, New York; ⁴University of Minnesota, Minneapolis, Minnesota; ⁵Integrated Spaceflight Services, Boulder, Colorado

ESA-PAC Symposium Essen, Germany 19 June 2019

Knowledge for Tomorrow

Noctilucent Clouds at 83 km Altitude

- Low polar summer mesopause temperatures
- \rightarrow Formation of thin ice layers
- PMC Turbo mission (NASA/DLR)
- →High-resolution observations from a stratospheric platform using the Balloon Lidar Experiment BOLIDE and cameras
- → Study breaking gravity waves, instabilities and turbulence

PMC Turbo Flight from Esrange to Canada in July 2018

Fritts et al., PMC Turbo: Studying Gravity Wave and Instability ..., Journal of Geophysical Research, 2019

- Maximum brightness above 90 ·10⁻¹⁰/m/sr
- Resolution of 20 m x 10 s
- ightarrow more than 25,000 NLC profiles
- + mesospheric gravity waves from T'+ 3,000,000 camera images of NLC

I. Vortex rings on 11 July

DLR

09:00

09:10

Lidar

20

15

10

5

0

09:20

II. Small-scale Vortex Rings on 10 July

2 min period oscillation of lower PMC boundary
→ ~1 km horizontal scale

II. Small-scale Vortex Rings on 10 July

III. Kelvin-Helmholtz Instability on 12 July 70.0 86 85 52.5 (Js/m/₀₁-01) g 17.5 g Altitude (km) 84 83 82 81 0.0 3:50 13:55 14:00 13:00 13:05 13:10 13:15 13:30 13:35 **Breaking GW** induce strong KH instabilities with secondary KHI and inter-billow interaction Camera 4 Camera 7 Fritts et al., JGR, 2019 Camera 5 DLR Camera 6

Model by D. Fritts

III. Kelvin-Helmholtz Instability on 12 July

Kjellstrand et al., in preparation

IV. Mesospheric Bore Event on 13 July

First high-resolution observations of bore dynamics

84

83

82

80

79

Altitude (km)

Summary

- Balloon lidar experiment BOLIDE: First mesospheric lidar on a balloon
- PMC Turbo: High-resolution observations of the Noctilucent Cloud layer for studying breaking gravity waves, instabilities and turbulence
- 6-day flight in the northern hemisphere yielded a unique dataset with a large number of interesting events
- Pre-press: Fritts et al., JGR, 2019
- Instrument and science papers in preparation
- Possible second flight from Antarctica

