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ARTICLE INFO ABSTRACT

Keywords: Coastal habitats provide a plethora of ecosystem services, yet they undergo continuous pressure and degradation
Posidonia oceanica due to the human-induced climate change. Conservation and management imply continuous monitoring and
Seagrass mapping of their spatial distribution at first. The present study explores the capabilities of the Copernicus

Coastal habitat mapping
Satellite-derived bathymetry
Sentinel-2

Super-resolution

Sentinel-2 mission and the contribution of its coastal aerosol band 1 (443 nm) for the mapping of the dominant
Mediterranean coastal marine habitats and the bathymetry in three survey sites in the East Mediterranean. The
selected sites have shallow to deep habitats and a high variability of oceanographic and seabed morphological
conditions. The major findings of our study demonstrate the advantages of the downscaled Sentinel-2 coastal
aerosol band 1 for both optically shallow habitat and satellite-derived bathymetry mapping due to its great water
penetration. The use of Sentinel-2 band 1 allows detection of Posidonia oceanica seagrass beds down to 32.2 m of
depth. Sentinel-2 constellation with its 10-m spatial resolution at most of the spectral bands, 5-day revisit fre-
quency and open data policy can be an important tool to provide crucial missing information on the spatial
distribution of coastal habitats and on their bathymetry distribution, especially in data-poor and/or remote areas
with large gaps in a retrospective, rapid and non-intrusive manner. As such, it becomes a crucial ally for the
conservation and management of coastal habitats globally.

1. Introduction

Marine plants form seagrass meadows which constitute the founda-
tion of the biodiversity and human well-being. These provide several
ecosystem services such as carbon sequestration, nursery and feeding
grounds for fisheries, coastal protection from erosion, and hotspot of
biodiversity (Cullen-Unsworth and Unsworth, 2013; Vassallo et al., 2013).
However, according to Waycott et al. (2009), seagrass beds have lost 29%
of their global extent since 1879. This implies that almost 1/3 of the
provided ecosystem services has already been lost. Engineered by the
endemic Posidonia oceanica between 0-40 m, the Mediterranean meadows
form the basis for a key marine habitat/ecosystem in the region
(Boudouresque et al., 2012). Knowledge of their spatial distribution is an
important prerequisite information towards the proper management of
habitats (Levin et al., 2014). Several mapping programs have focused on
coastal seabed mapping while a wide range of methods has been utilized
for mapping seagrasses (Borfecchia et al., 2013; Eugenio et al., 2015;
Hamana and Komatsu, 2016; Hossain et al., 2014; Sagawa et al., 2010;
Traganos et al., 2018b). Satellite remote sensing has been employed for
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the mapping of seagrass meadows and coral reefs in several areas
(Goodman et al., 2013; Hedley et al., 2016; Knudby and Nordlund, 2011;
Koedsin et al., 2016; Lyons et al., 2012). The present study evaluates the
quality of the Copernicus Sentinel-2 (S2) mission for mapping the major
Mediterranean coastal marine habitats with focus on the dominant P.
oceanica seagrass and bathymetry in three survey sites in the south Ae-
gean Sea. The selected sites, Marathon Schinias National Park, Samaria
National Park and Gavdos Island, include shallow to deep habitats and a
highly variable oceanographic and seabed morphology, allowing the de-
velopment and testing of a comprehensive pre-processing procedure. The
procedure uses a combination of empirical image-based, semi-analytical
and analytical methods, including the downscaling of the coarser re-
solution S2 bands to 10 m, sunglint correction, ratio-based satellite-de-
rived bathymetry, depth-invariant indices and analytical water column
correction. Integral in the current study is the downscaling approach of
the coastal aerosol band 1 (443 nm; Brodu, 2017) which due to its great
water penetration is expected to benefit the coastal habitat mapping
(CHM) and satellite-derived bathymetry (SDB) in an extreme bathymetric
range for spaceborne approaches.
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2. Materials and methods
2.1. Study areas

The selected sites are in water bodies with different oceanographic
and topographic characteristics (SoHelME, 2005). This variety allows
comparisons for the capabilities of Sentinel-2 in seabed mapping in
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areas with medium and low productivities. The National Park of
Marathon-Schinias (hereafter Schinias) covers a landscape of 56 km? in
the marine body of the Petalioi Gulf, at the outlay of the South Evoikos
Gulf. The studied area is the coastal zone of the park where seagrass
meadows are present between 2 and 20 m (Fig. 1a). Samaria National
Park (hereafter Samaria) is located in the West part of the island of
Crete; it was declared as a National Park in 1962. The selected area lies
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Fig. 1. Location of survey site in (a) Schinias Marathon National Park, (b) Samaria National Park, (c) Gavdos Island, and (d) Greece.

59



D. Poursanidis, et al.

Table 1
Characteristics of Sentinel-2 A images.

Survey site Schinias Samaria & Gavdos
Granule 34SGH 34SGD
Acquisition date 15 June 2017 26 April 2017
Acquisition time 09:05 am UTC 09:10 am UTC
Mean solar zenith angle 20.4° 25.3°

Mean solar azimuth angle 132.6° 142.7

up to 38m deep and features mainly patchy seagrasses (Fig. 1b).
Gavdos island (hereafter Gavdos) is in the southernmost point of
Europe and Greece. The studied area concerns the coastal part of the
island where seagrass meadows thrive between 5 and 25m of depth
(Fig. 1c).

2.2. Sentinel-2 data

Copernicus Sentinel-2 A (S2-A) L2A satellite data from the first of
the two polar-orbiting satellites, have been selected and downloaded
from the Sentinel Scientific Data Hub for the present study (ESA, 2015).
L2A data have been corrected from L1C using the rural (continental)
aerosol type, a mid-latitude summer atmospheric profile, a value of 331
Dobson Units for ozone concentration, a land-average value for water
vapor over water, a visibility of 40 km and an adjacency range of 1 km.
Here, we have processed and analyzed two S2-A images (Table 1); one

Int J Appl Earth Obs Geoinformation 80 (2019) 58-70

for Schinias, and one for Samaria and Gavdos, as one S2 tile covers both
areas.

2.3. In situ data

Field data for the three distinctive Mediterranean coastal habitats in
the selected three sites (Fig. 2) have been collected with various ap-
proaches. These are: a) P. oceanica seagrass meadows (Fig. 2a, c); b)
rocky bottoms covered by photophilous algae (Fig. 2b); c) soft/sandy
bottoms (Fig. 2d). For the sites located in Crete, we collected the data in
summer 2013 during research activities for the ecological status of the
seagrass meadows (Poursanidis et al., 2014) in Samaria and Gavdos
Natura 2000 site, and updated them in summer 2017.

We collected the data by snorkeling between 0-5m and SCUBA
diving between 5-45 m. In both cases, the field scientist used a water-
proof GPS unit (GARMIN GPSMAP series) either on a buoy or on hand
and collected the data. In each site (Samaria and Gavdos), we acquired
20 POIs per habitat for use in image classification. Bathymetric data
were collected only in Samaria by using a Lowrance HDS5 gen2 with a
single beam sonar head placed 15cm below the water surface. We
collected 107 field points in total in Gavdos and 79 field points in
Samaria. In the case of Schinias, we extracted 64 field points by in-
terpreting high-resolution aerial images by the National Cadaster &
Mapping Agency S.A. from 2010 and open access high resolution
images between 2010-2016 in Google Earth.

Fig. 2. The habitats of the selected sites. (a) Posidonia oceanica meadows at 30 m, (b) Rocky reef covered by photophilic algae, (c) Posidonia oceanica meadows at 5m,

and (d) Soft sandy bottom.

60



D. Poursanidis, et al.

2.4. Pre-processing steps

Fig. 3 provides an overview of the designed methodology for the
processing and classification of S2-A images. As a panchromatic band is
absent in Sentinel-2, a different approach than pan-sharpening is
needed to increase the spatial and spectral information of the coastal
aerosol band 1 (443nm). Band 1 is of significant importance in the
remote sensing of coastal waters (Mouw et al., 2015) due to its deeper
penetration than the other visible bands. Brodu (2017) developed a
downscaling method, namely super-resolution, for multispectral, multi-
resolution imagery as the Sentinel-2 satellites. We run the downscaling
algorithm using the Sen2Res plugin in ESA’S Sentinel Application
Platform (SNAP) Version 5.0 for all survey sites (Fig. 4) in order to
downscale all spectral bands at 10 m. We use the downscaled Short-
wave Infrared SWIR band 11 at 1610 nm to mask all terrestrial features
in all survey sites by classifying the image into water and land with an
Iso Cluster Unsupervised Classification. We correct sunglint using the
method of Hedley et al. (2005). We also implement the Lyzenga depth-
invariant indices (DIV) (Lyzenga, 1978, 1981) to empirically address
the influence of variable depth on optically shallow seabed. We esti-
mate three DIV (bl-b2, b2-b3, b1-b3) for all three survey sites.

2.5. Analytical water column correction — Bathymetry estimation
In contrast to the empirical image-based technique of Lyzenga

(1978, 1981), semi-analytical and analytical water column corrections
are expected to increase classification accuracies by minimizing the

Sentinel-2 L2A
Schinias

Sentinel-2 L2A
Gavdos
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water column interference on the signal of the submerged habitats in a
more efficient manner. We implement the analytical water column
correction model of Maritorena et al. (1994), while for the bathymetry
estimation we employ the ratio method of Stumpf et al. (2003).

2.6. Classifications and uncertainty estimation

We utilize the machine learning classifiers of Support Vector
Machines (SVM) and Random Forests (RF) - widely used in the remote
sensing of optically shallow habitats (Eugenio et al., 2015; Traganos
and Reinartz, 2017a, 2017b; Zhang, 2015). We employ both classifiers
on all types of reflectance composites - the first three Sentinel-2 A bands
in 10-m resolution (bands 1-3) in all three survey sites: a) Atmo-
spherically corrected L2A imagery (R); b) deglinted L2A imagery (R”);
c¢) DIV; d) substrate remote sensing reflectance composites (Rrs?) in the
case of Samaria. SVM are a group of universal machine learning algo-
rithms based on the statistical learning theory of Vapnik (1995),while
RF comprise an ensemble method for supervised classification based on
classification and regression trees (CART) and were developed by
Breiman (2001). To increase understanding as well as interpretation of
our classification results, we decided to output them as class probability
estimates (soft classification) instead of the typical multi-class hard
classification outputs. To estimate per pixel probabilities, binary RF-
and SVM-derived decision values are first transformed into binary
probabilities according to Platt (2000) and then into class probabilities
following the pair-wise coupling approach (one-against-one) of Wu
et al. (2004). All experiments with SVM/RF and probability estimates

Sentinel-2 L2A
Samaria

Super-resolution

!

Sunglint correction

!

Depth-invariant indices

|

Bathymetry estimation
Field data (ratio algorithm)
Support Vector
Machines
%
Analytical water column correction

Uncertainty Random

%

Forests
Rrs? - Band 2
Class probability Op tically. Accuracy Rrs® - Band 3
P shallow habitat
estimates maps Assessment

Fig. 3. Schematic methodological workflow.
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were run in EnMAP-Box (van der Linden et al., 2015). We utilise
Shannon entropy (H) (Shannon, 1948) to output per-pixel uncertainty
as a function of class probabilities. We evaluate the hard classification
results (the coastal habitat maps) by calculating overall (OA), producer
(PA) and user accuracy (UA) of every class per survey site.

3. Results
3.1. Pre-processing results

Fig. 4 displays Sentinel-2 A L2A 4-3-2 composites from our three

Int J Appl Earth Obs Geoinformation 80 (2019) 58-70

survey sites along with the coastal aerosol band (443 nm) over each site
in its initial and super-resolved resolution (60 and 10-m correspond-
ingly). The pink and yellow polygons in 4(e) and (f) display selected
super-resolved pixels (sandy and rocky seabed) with same reflectance
as the initial 60-m initial pixel - 00,489 + 00,009 (rocks) and
00,629 * 0003 (sands) - demonstrating that super-resolution pre-
processing does not impact the sensor radiometry. Deglinted L2A 3-2-1
composites are depicted in Fig. 5. Especially in the Schinias (Figs. 5a, b)
and Gavdos (Figs. 5e, f, g, h), benthic features were spectrally enhanced
following the sunglint correction of Hedley et al. (2005). Fig. 6 shows
the image-based DIV (Lyzenga, 1978, 1981) in all three field sites. Light

Fig. 4. Downscaling of Sentinel-2 band 1 following Brodu (2017). (a), (d), (g): 4-3-2 composite images of Schinias, Samaria, and Gavdos Island. (b), (e), (h): Original
band 1 (443 nm, 60-m resolution). (c), (), (i): Downscaled band 1 at 10-m resolution. The pink and yellow squares in Fig. 4(f) show the downscaled 10-m pixels over
a rocky and sandy seabed, respectively. The polygon in the three insets of 4(a), (d) and (g) indicates the location of the displayed panels within the extent of each
survey site (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 5. Sunglint correction of Sentinel-2 A images following Hedley et al. (2005). All images are 3-2-1 L2A composites with downscaled band 1 at 10-m resolution.
Yellow polygons indicate pixels selected for the regression. (a), (b): Initial and deglinted image of Schinias. (c), (d): Initial and deglinted image of the centre of
Samaria. (e), (g), (f), (h): Initial and deglinted images of NW and E Gavdos (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article).

blue polygons in the insets of Fig. 6 indicate pixel areas of sandy sub-
strate used in the estimation of the indices. Negative DIV values were
observed and were corrected to cover positive ranges, incorporating an
offset. Essential to both the estimation of accurate depth-invariant in-
dices as well as to the analytical water column correction, the ratios of
diffuse attenuation coefficient k; /ks, ks /ks, and k; /k3 were estimated
as 0.64, 0.53, and 0.33 for Schinias; 0.77, 0.53, and 0.37 for Samaria;
1.18, 0.28, and 0.05 for Gavdos.

3.2. Analytical water column correction and bathymetry estimation

Available field depth data allowed the estimation of substrate re-
mote sensing reflectances (Rrs?) (Fig. 7a). Wavelength-dependent at-
tenuation coefficients (k) of the Sentinel-2 b1, b2 and b3 bands in Sa-
maria were estimated as 0.03m™ %, 0.04m~' and 0.08m~!. These
values were incorporated in Equation (3) to derive Rrs® (S1 file). Fur-
thermore, utilising k, we estimated the ‘effective penetration depth’
(EPD) in the first three visible bands; 74m in 443nm, 57.5m in
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490 nm, and 30.2m in 560 nm. Employing Equations (5) and (6) (S1
file), we produced a 10-m bathymetry (Z) map of the Samaria site
(Fig. 8). The implemented ratio of Equation 6 (S1 file) exploited the
different attenuation of the bl and b3 to retrieve water depths. Ad-
ditionally, we derived a second bathymetry map (not shown here),
utilising Equation (7) and (8) (S1 file), where we used the ratio of the
b2 to b3 band. The validation of both SDBs was assessed with 1658 in
situ depth measurements from the total of 2569 (Fig. 9a). Linear re-
gressions between SDBs and field measurements revealed a superior r-
squared value of 0.85 and a smaller root-mean-square error (RMSE) of
4.31 m following use of the b1-b3 ratio (Fig. 9) in comparison to the r-
squared value of 0.68 and the RMSE of 5.46m of the b2-b3 ratio.
Blending knowledge of the bathymetry and effective penetration depth
of Sentinel-2 imagery, we masked waters below 30.2 m (Figs. 7a). Past
the EPD in 560 nm, the analytical water correction model might be
possibly compromised or not be able to correct the depth effect (e2%)
in Equation (3) (S1 file). We also masked waters below 43 m following
the findings of Poursanidis et al. (2018) which show that the deep limit
of P. oceanica seagrass lies on this depth.
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Fig. 6. Depth-invariant bottom indices (b1-b2, b1-b3 and b2-b3) following Lyzenga (1978, 1981). Light blue polygons indicate regression pixels that represent the
same substrate, sand, in different depths. (a) Schinias, (b) Samaria, (c) Gavdos (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article).

3.3. Classifications and uncertainty estimation

Two machine learning classifiers, SVM and RF, were applied to
three different composites in three survey sites for a total of 24 classi-
fied habitat maps. Except from the case of Rrs’ composites in the
Samaria site, the other classified composites were the S2-A L2A, the
deglinted L2A and the DIV. In Samaria, P. oceanica seagrass occupy
depths up to 32.2m in the eastern part of this site with a 96.8%
probability and 14.7% uncertainty as revealed by the SVM-classified
full-depth Rrs? composite (OA: 75%, PA: 100%, UA: 72.5%) and SDB
(Fig. 8). Generally, SVM exhibited a marginal higher overall accuracy
on classifying the L2A and deglinted L2A composites (+2.5%) than the
Rrs® imagery. In addition, the highest uncertainties are depicted in
deeper areas (> 20 m) which are immersed in noise (Fig. 7e).

In Schinias, the SVM-classified deglinted L2A composite (Fig. 12a)
yielded the best OA of 87.2% (S2 file). This classified composite fea-
tured similar PA of seagrasses (82.6%) to the SVM L2A and RF L2A
composites. On the other hand, the RF-classified DIV composite was the
most accurate product in both PA and UA. Classifier-wise, SVM were
slightly more accurate than Random Forests in the two-class
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experiments here, exhibiting 0.9% better OA. They also displayed 2.9%
greater PA but 1% lower UA in classifying seagrass. Fig. 11d indicates a
lower uncertainty in areas shallower than 10 m.

In Gavdos, the RF-derived deglinted L2A imagery (Fig. 11a) showed
the greatest OA (58.2%) in classifying the benthic habitats of the island
(S2 file). More particularly, as regards to the class of P. oceanica and
overall classifier performance, RF featured a 10.9% better OA than
SVM, a 2.7% lower PA and a greater UA of 13.6%. P. oceanica class
probability seems to be overestimated over optically deep areas
(Fig. 12b), while uncertainty measure reveals a higher certainty on the
eastern and southern part of Gavdos Island in contrast to its western
part (Fig. 12e). While SVM exhibited a marginal difference from RF in
OA by 2.7%, it demonstrated noteworthy greater PA and UA of P.
oceanica seagrass class of 25.9% and 21.1%.

4. Discussion

The present study selected three protected, eastern Mediterranean
sites to evaluate the potential of the Sentinel-2 sensor in coastal habitat
mapping and satellite-derived bathymetry over a variety of seabed
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Fig. 7. Water column corrected S2-A 3-2-1 composite of Samaria survey site, and related probability and uncertainty of habitat distribution. Isobaths are based on a
5 X 5 smoothing of the SDB. (a) Substrate remote sensing reflectance (Rrs?) image up to 30.2 m of depth. (b), (c), (d) SVM-derived probability of P. oceanica, rocky

and sandy substrate (%), respectively.

morphologies and oceanographic characteristics. The coastal aerosol
band 1 of S2 in 443 nm is the common denominator in the two major
findings of our study. Leveraging empirical to analytical corrections and
machine, we first found that S2 can detect P. oceanica seagrasses 32.2-m
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deep into the South Cretan water column (Fig. 10). We mainly attribute
this finding to the high oligotrophic Cretan Sea which features a very
low primary production (Psarra et al., 2000) and a strong pelagic mi-
crobial loop which subsequently reduces particle flux to the sediment



D. Poursanidis, et al. Int J Appl Earth Obs Geoinformation 80 (2019) 58-70

EI Fig. 8. Satellite-derived bathymetry (SDB) of the

Samaria survey site based on the ratio of coastal
~ aerosol to green band. (a) Deglinted L2A 3-2-1 com-
posite of the survey site. In situ depth data (n = 2569)
are shown in light pink. (b) SDB for the whole depth
range (For interpretation of the references to colour in
this figure legend, the reader is referred to the web
version of this article).
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Fig. 9. Linear regression between SDB using the b1-b3 ratio and actual depth measurements from the Samaria site. The SDB was implemented in the analytical water
column corrections.

(Chronis et al., 1996; Danovaro et al., 1996). Previous S2-based SDB Related errors to the observed detection depth of the deepest P.
estimations in the same basin reached an optical depth limit of 16.5m oceanica bed could arise due to two factors. The first concerns the ef-
(Traganos and Reinartz, 2017a). fective penetration depth of imagery which exploits information on the
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Fig. 10. Probability and uncertainty of P. oceanica seagrass distribution in the Samaria site (south Crete). (a) Rrs® S2-A 3-2-1 composite with deep dense P. oceanica
seagrass patch within yellow polygon. The light blue circle indicates the presence of P. oceanica seagrass as observed in situ. The golden circles depict mean depths of
the in situ depth measurement points that fall within the same pixels. (b) Probability of occurrence of P. oceanica seagrass following SVM-derived classification. (c)
General uncertainty (%). (d) Uncertainties of P. oceanica seagrass distribution lower than 20% are displayed with golden polygons (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).

diffuse attenuation coefficient to estimate the maximum depth for
which an underwater habitat could be identified by optical remote
sensing. A combination of an image-based (Lyzenga, 1978, 1981) and a
semi-analytical approach (Lee et al., 2000) yielded a depth penetration
of S2 imagery at 30.2m in 560 nm. Therefore, the observed detection
depth lies 2m beyond the EPD of the green band (560 nm); past the
EPD in 560 nm, water column correction could possibly produce erro-
neous results as light would be reflected only by the water column and
not by the substrate. The second factor is related to the SDB estimation
using an empirical ratio-based approach. Fig. 9 indicates that the im-
plemented SDB approach here - coastal aerosol to green ratio algorithm
- saturates in depths over 22m in addition to providing a RMSE of
4.31 m (b1/b3), respectively. This could produce an over-estimation of
SDB due to greater water penetration in 443 nm in contrast to 560 nm.
The second major finding concerns the statistical advantage of forming
the ratio of the bl with the green band to derived bathymetry in
comparison to the more widely implemented blue to green band ratio
(Stumpf et al., 2003; Traganos and Reinartz, 2017a).

This is justified by the improved r-squared value, lower RMSE, and
the smaller sensitivity of the former to variation in bottom reflectance
than the latter (Fig. 9). The statistical gains of bl/b3 are clearly
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attributed to the greater water column penetration of bl than b2. The
errors in both ratio approaches derive from the highly steep and diverse
underwater seascape morphology in Samaria. Studies on SDB
(Bramante et al., 2013; Collin and Hench, 2012; Pacheco et al., 2015)
have shown that sensors with coastal aerosol bands perform better in
comparison to those lacking one. Further investigation in different
underwater seascapes (low slopes, homogeneous seabed cover) could
yield more insights into the capability of S2 for coastal SDB, the re-
quirements on the in situ data acquisition, and the exploitation of an
operational semi-automated, cloud-based method for basin- to global-
scale coastal SDB (Traganos et al., 2018a, 2018b).

We summarize this section by reporting some additional sensor- and
method-wise issues which could affect the accuracy of near-future ap-
plications of Sentinel-2 in coastal waters of varying water surface
conditions, water column composition, depth, and seabed reflectance.
First, regarding corrections, the applied atmospheric correction to de-
rive the L2A product, Sen2cor has been designed for land-based ap-
plications and does not estimate water aerosols.

It has demonstrated, however, its efficiency in correcting the at-
mospheric interference over water in areas without sunglint (B. Pflug,
personal communication; 06/09/2017). In the present study, two sites,
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Fig. 11. Probability and uncertainty of habitat distribution in Schinias. Displayed probabilities are the most accurate results (overall accuracy) of machine learning-
based classification. Bathymetric contours derived from the Hellenic Navy Hydrographic Office are displayed in purple. Masked land is displayed in grey colour. (a)
Deglinted S2-A 3-2-1 composite of the survey site. (b) SVM-derived P. oceanica probability. (c) SVM-derived sandy substrate probability. (d) Uncertainty (%) (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Schinias and Gavdos are heavily ‘polluted’ with sunglint (Fig. 5). Ad-
ditionally, the different angle acquisitions of S2 cause granule limits to
be visible (Figs. 1a, ¢, Figure 4 4a, b, c). This appears to be a S2-specific
issue and can hinder image statistical analysis, especially in change
detection studies due to the difficulty behind radiometrically-corrected
composites. Moreover, the sunglint technique following Hedley et al.
(2005) can over-correct very bright reflectances (e.g shallow sands)
due to the contribution of substrate NIR reflectance to the water-leaving
NIR reflectance. We observe this issue in Fig. 11 d with higher un-
certainty (yellow values) over the brighter, shallow sands. Furthermore,
the utilised adjacency effect corrections of Sen2Cor perform in-
adequately for water surface pixels near the shoreline (Dornhofer et al.,
2016). Adjacency effect could, therefore, produce erroneous reflectance
values in both sites in the south of Crete due to their large seabed
slopes. As for 15/10/2017, there is a reported 3% error in the spectral
response function of Sentinel-2 A over coastal aerosol and blue wave-
lengths (both in use here), which can potentially further affect re-
flectances in coastal water applications, wherein these bands are highly
exploited (B. Pflug, personal communication; 06/09/2017). Last but
not least, downscaling b1 (Brodu, 2017) enhances its resolution from
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60- to 10-m/pixel; this exploits the spatial information of bl but in-
troduces relationships between it and the other visible bands which
could possibly obstruct subsequent corrections.

Random Forests and Support Vector Machine algorithms have been
used to derive the probability of occurrence of the three distinctive
habitats in the protected areas, while uncertainty of each class has been
calculated for each site based on Shannon index (Shannon, 1949) to
unveil regions where the presented S2-A-based methodological work-
flow may have succeeded or failed. Both machine learning algorithms
have been extensively used in image classification under several ap-
proaches (Belgiu and Dragut, 2016; Maulik and Chakraborty, 2017).
The use of Shannon’s entropy as a metric of uncertainty is also not
common in the domain of satellite remote sensing. The two algorithms
provide different accuracies in each site. In Schinias, SVM provide the
highest overall accuracy (S2 file) at 87.18%, with a small mis-
classification between the two classes. This misclassification can be
possibly attributed to the mixed pixels which occur in the area between
seagrass and sand. These can occur mainly in the borders of the
meadow as the meadow has a compact form and few patches exit out of
it or after a short storm that has transferred fine sand particles on the
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version of this article).

leafs. In Gavdos, RF produces the highest accuracy of 58.18% which is
somewhat poor. This is maybe due to the fact that Gavdos coastal ha-
bitats are characterized by a highly fragmented seascape where all
three mentioned habitats can exist within one S2 pixel (100 m?). In
Samaria, the highest accuracy in the classification of the seagrass class
is produced from SVM classifier at 100% accuracy with an overall ac-
curacy of 80% (S2 file). There, mixed habitats also exist in a S2 pixel
while the rocky substrate is temporarily covered by sand or small grains
of pebbles which amplifies spectral confusion.

The selected field data were collected from field activities and/or
from the interpretation of high-resolution aerial (1-m/pixel) and sa-
tellite images (2-m/pixel). By using them in an image classification with
10-m/pixel, we expect a mixed-pixel problem - inhomogeneity is in-
troduced from neighboring areas which will be included in the pixel,
thus a random pixel will contain spectral information from different
types of cover. Per pixel level unmixing can be a solution to overcome
such issues (Poursanidis et al., 2015). Another approach could be the
collection of large homogeneous datasets corresponding to the same
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pixel size of Sentinel-2 in the form of polygons or the selection of pixels
directly from the image corresponding to homogeneous areas; a com-
parison with high resolution imagery can support the selection of such
areas. Also, the use of object-oriented analysis can be advantageous
where spatial and texture information is utilized in addition to spectral
information (Ma et al., 2017).

All in all, the full, open and free archive of the Sentinel-2 satellite
constellation allows time- and cost-efficient, highly accurate coastal
habitat mapping and satellite derived bathymetry. This new wealth
of high-quality remote sensing data raises the need for suitable pre-
processing, processing and analysis to extract appropriate quanti-
tative and qualitative information. Standardizing methodologies for
the two herein explored mapping efforts will enable monitoring
from seasonal to decadal scales at regional to global spatial scales;
this, in turn, will allow the development of spaceborne quantitative
indicators for effective ecosystem management and conservation
through the utilization of newly developed cloud environments
(Google Earth Engine, DIAS etc).
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