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Elastic Structure Preserving (ESP) Control for
Compliantly Actuated Robots

Manuel Keppler, Dominic Lakatos, Christian Ott and Alin Albu-Schäffer

Abstract—Physical compliance can be considered one of the
key technical properties a robot should exhibit to increase its
mechanical robustness. In addition, the accompanying temporal
energy storing capabilities enable explosive and energy effi-
cient cyclic motions. But these advantages come at a price,
as compliance introduces unwanted intrinsic oscillatory dynam-
ics, underactuation, and reduces the natural frequency of the
plant. These aspects make control of the link configuration
variables a challenging task. This work presents two novel control
methods for implementing link-side motion tracking capabilities
and injecting a desired damping characteristic to suppress link
vibrations along the reference trajectory for compliantly actuated
robots with nonlinear elastic characteristics. We prove their
uniform global asymptotic stability by invoking a theorem by
Matrosov. Both approaches, namely ESP and ESP+, have in
common that they preserve the link-side inertial properties and
the elastic structure of the original plant dynamics, hence the
name Elastic Structure Preserving control. Apart from that, ESP
control focuses on preserving the inertial properties of motor
dynamics. While ESP+ control aims at minimizing the dynamic
shaping on the motor side. The performance of the feedback
control laws have been evaluated on the variable stiffness robot
arm DLR Hand Arm System, where the stiffness in each of its
joints is highly nonlinear. To the best of our knowledge, this is the
first experimentally validated tracking controller for compliantly
actuated, multi-joint robots with nonlinear elastic elements.

Index Terms—Tracking Control, Damping Control, Passivity-
Based Control, Variable Stiffness Joints, Compliant Robots.

I. Introduction

In order to increase the mechanical robustness against
impacts and unknown contact forces, robot design recently
evolved from rigid towards compliant actuators. While me-
chanical compliance provides many benefits it also comes at a
price; the plant dynamics is under-actuated as the number of
dimensions of the configuration space is twice the number of
dimensions of the control input space. Moreover, to improve
energy storing capabilities and efficiency in general, compliant
actuators are often designed such that damping and friction in
parallel to the spring is negligible. These intrinsic oscillatory
dynamics can be exploited, for example for cyclic tasks like
locomotion, hammering or drumming. For positioning tasks,
however, these unwanted dynamics need to be handled in a
proper manner to achieve positioning performances that come
close to that of rigid manipulators. In addition, many variable
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Fig. 1. DLR Hand Arms System [1]. (b) The first four arm joints, namely the
elbow and the three shoulder joints, are implemented by Floating Spring Joints
(FSJ) [2]. Joint stiffness characteristics for various stiffness adjuster positions
σ = [ 0, 2.5, 5.0, 7.5, 10 ] deg are shown. (c) Under arm rotation is realized
by a Bidirectional Antagonistic Variable Stiffness (BAVS) joint [3]. Joint
stiffness characteristics for different levels of co-contraction of the springs
σ = [ 0, 2.5, 5.0, 7.5, 10 ] deg are shown. (d-e) Simplified working schemes of
the FSJ and BAVS joint are shown, respectively.

stiffness robots feature highly nonlinear elasticity, see e.g
Fig. 1(b). This is what makes control of the link configuration
variables a challenging task.

Regulation controllers for the link configuration variables of
flexible joint robots (FJR) have been proposed in [4], [5], [6],
[7] and a generalization to the case of nonlinear joint elastici-
ties (often appearing in variable stiffness actuators (VSA) [8])
has been proposed in [9]. The above controllers consider only
feedback of control-input-collocated variables. Therefore, the
damping performance of these approaches is lower compared
to the regulation controllers reported in [10], [11], [12] which
feedback also control input non-collocated variables. While
[10] provides a comprehensive stability analysis for constant
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controller gains, the closed-loop dynamics of [11] and [12] are
not accompanied by a rigorous stability proof.

Tracking controllers for the link configuration variables of
robots with elastic transmissions are reported in the pioneer-
ing works [13], [14], [15]. Further solutions to the tracking
problem are based on cascaded structures [16], integrator
backstepping [17], [18, Chap. 6.2], extensions of the well
known controller by Slotine and Li [19] to the flexible joint
case [20], feedback linearization [13], [21], [22], and integral
manifold control [13]. All of the tracking controllers above,
[13]-[21], are formulated for linear elasticities with one excep-
tion: the method of [22] also applies to robots with nonlinear
elasticities. Most of the tracking controllers above have been
verified only in computer simulations.

Our primary objective is to develop an effective control
approach that simultaneously achieves motion tracking and
assignable damping for the link configuration variables of
compliantly actuated robots, with nonlinear elastic transmis-
sions, that is theoretically well founded (proof of global, uni-
form, asymptotic stability), practically feasible and achieves
impressive performance (validation by experiments on a multi-
VSA robot). This article presents a control concept — called
Elastic Structure Preserving (ESP) control — that satisfies
these goals. The development of the underlying idea was
strongly driven by practical experience. Years of hands-on
experience on the Hand Arm System indicated that approaches
that change the elastic behavior and the dynamics in general,
respectively, to a ’high’ degree — albeit being theoretically
sound — are prone to fail in practice. The main reasons for
this are limited robustness to unmodeled dynamics, parameter
uncertainties, actuator bandwidth and amplitude limitations.
This insight led to the idea of designing a control approach
that relies on the fundamental concept of changing the original
dynamics only to a minimal extent and in particular of pre-
serving the (nonlinear) elastic structure; hence the name ESP
control. And, indeed, we can show on the basis of a theoretical
analysis for a single joint, that our approach changes the plant
dynamics significantly less than feedback linearization-based
full state feedback (FSF) control and hence, suffers less from
the aforementioned issues.

Interestingly, the dynamics gravity cancellation control law
for flexible robots proposed in [23] is contained in our ap-
proach.

The ESP control concept was first introduced in our previous
work [24]. It relies on adding only damping and feedforward
terms to the dynamics of the link variables while neither
changing the plant inertia properties nor the structure of the
nonlinear springs. By introducing new coordinates that reflect
these damping and feedforward terms and a corresponding
coordinate transformation of the motor dynamics, we achieved,
through means of feedback control, a closed-dynamics which
structurally equals the dynamics of the original coordinates,
but with the added link damping. To achieve, in addition, the
desired tracking (and disturbance rejection) behavior of the
link coordinates we implement pure PD regulation control in
the new motor coordinates.

The work [25], further extends the concept of ”minimalistic”
feedback control to solve the damping and tracking problem

for the link configuration variables of compliantly actuated
robots. This is done by avoiding the scaling of the motor inertia
to constant values in the new coordinates which is a non-
passive control action for itself.1 We refer to this approach as
ESP+.

This article introduces the underlying concept in greater
detail (see Sec. III), compares the ESP and ESP+ control
approaches, and extends the stability analysis. In our previ-
ous works [24], [25] we have shown global stability of the
corresponding closed-loop dynamics. The main result of this
work extends these statements to global, uniform asymptotic
stability, which is presented in Sec. VI. On the basis of the
ESP and ESP+ controller formulation introduced in this paper,
we show that in the limiting case of rigid actuation (i. e., the
stiffness parameters approach infinite values) the classical PD+

controller [27] results for both approaches. In this paper we
show that in contrast to many state of the art FJR controllers,
no high-gain design results in this limiting case (cf. [28, chapt.
4.1]). Moreover, we conceptionally proove that our approach
performs less dynamics shaping than feedback linearization-
based FSF control.

The paper is structured as follows: the underlying idea
is presented in Sec. III and the problem is formulated in
Sec. II. Sec. IV proposes the ESP and ESP+ controller designs
and provides a short discussion. Sec. V proves passivity
of the closed-loop dynamics. Sec. VI contains an extensive
stability analysis. Finally, experimental validation is provided
in Sec. VII and Sec. VIII briefly concludes the work.

A. Notation and Terminology

Throughout the text, when talking about the boundedness
of vectors and matrices we refer to it in the sense of bounded
Euclidean norms, ||.||, and bounded eigenvalues, respectively.
Let Ω be a domain and I a set. Consider a quadratic matrix
A(t,x), defined for all (t,x) ∈ I × Ω, then λ

¯
(A) and λ̄(A)

denote its minimum and maximum eigenvalue, respectively,
i.e.

λ
¯
(A(t,x)) ..= inf

t∈I,x∈Ω
λ(A(t,x)),

λ̄(A(t,x)) ..= sup
t∈I,x∈Ω

λ(A(t,x)).

Analogously, σ
¯
(A) and σ̄(A) denote the minimum and max-

imum singular value of A, respectively. Ck denotes the space
of k-times continuously differentiable functions.

II. Problem Statement

Throughout this paper, we consider a simplified model of
a n-link robot with compliant joints which is based on the
model proposed by [13] and assumes that the angular part of
the kinetic energy of each rotor is due only to its own rotation,
and is given by

M (q)q̈ +C(q, q̇)q̇ = −g(q) +ψ(θ − q) + τext (1)

Bθ̈ +ψ(θ − q) = u. (2)

1The concept of inertia scaling was first introduced in [26].
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Herein, q ∈ Rn and θ ∈ Rn represent the link angles and
motor angles, respectively. M ∈ Rn×n is the inertia matrix of
the rigid links, B ∈ Rn×n is the diagonal matrix of the actuator
inertias reflected through the respective gearboxes2. They have
the following properties:

Property 1. The mass matrices M (q) and B are symmetric,
positive definite.

Property 2. The singular values of M (q) and B are bounded
above and bounded below away from zero, thus both M−1(q)
and B−1 exist and are bounded.

These conditions are fulfilled for all pure rotational and pure
prismatic joint robots and in some special cases for robots
that feature a mix of rotational and prismatic joints, see [29]
for an in-depth discussion. We denote the vector of Coriolis
and centrifugal forces by C(q, q̇)q̇. Vector g(q) represents the
gravitational forces. As suggested by [20], we define C(q, q̇)
via the Christoffel symbols, such that model (1)-(2) features
the following properties:

Property 3. Since C(q, q̇) is bounded in q and linear in q̇,
C is bounded for bounded q̇. The matrix Ṁ (q)− 2C(q, q̇) is
skew symmetric for all (q, q̇) ∈ Rn × Rn.

The dynamics (1)–(2) represents an under-actuated mechan-
ical system in which only the generalized motor coordinates θ
can be directly actuated via the generalized motor forces u ∈
Rn, which will serve as the control input. The link coordinates
q can only be indirectly actuated via the generalized elastic
forces ψ which are derived from the spring potential function
Us. This form of under-actuation is the major challenge in the
control of the states q, q̇. We assume the following properties
for Us:

Assumption 1. The elastic potential function Us(φ) ∈ C4

is strongly convex and positive definite for all φ ∈ Rn, i.e.
Us(φ) = 0 =⇒ φ = 0.3

Assumption 2. The generalized elastic forces ψ(φ) can be
derived from the spring potential function Us

ψ(θ − q) ..=

(
∂Us(φ)
∂φ

)∣∣∣∣∣∣
φ=θ−q

∈ Rn. (3)

Strong convexity of Us ensures that a constant c > 0 exists
such that

inf
φ∈Rn

λ
¯

(
∂ψ(φ)
∂φ

)
> c, ∀φ ∈ Rn. (4)

Loosely speaking, ψ is strictly monotonic in its argument.
As the Jacobian determinant of ψ is nonzero due to (4),
the inverse function theorem guarantees that ψ is a global

2More precisely, the motor inertias about their principal axis of rotation
are multiplied by the square of the respective gear ratios, see [13] for further
details.

3The strong convexity is no limiting condition from a practical point of
view, as a lower bound for the joint stiffness is necessary such that the
robot does not collapse under it’s gravitational weight and thus becomes
uncontrollable.

diffeomorphism. The local stiffness, i.e. the Hessian of the
spring potential Us, is denoted as follows

κ(φ0) ..=

(
∂2Us(φ)
∂φ2

)∣∣∣∣∣∣
φ=φ0

=
∂ψ(φ)
∂φ

∣∣∣∣∣
φ=φ0

∈ Rn×n. (5)

τext represents the generalized external forces which are ex-
hibited by the manipulators environment.

In this paper we address the problem of finding a control
concept that achieves the following characteristics. In absence
of external disturbances, it achieves uniform global asymptotic
link-side motion tracking behavior. Further, it adds a velocity
proportional damping term D ˙̃q on the link side.4 For the
tracking case, this damping acts on the velocity tracking error
˙̃q. While achieving this, the intrinsic compliance and the
inertia properties of the system shall be preserved.

Loosely speaking, we aim at deriving a control concept that
enables compliant robots to interact via their environment with
their intrinsic compliance but in a damped fashion; see videos
of the experiments in Sec. VII.

III. Design Idea

This section presents the basic design idea that underlies
the proposed control laws. We consider a single robotic joint
featuring a linear-elastic transmission as depicted in 2(a). In
order to keep the presentation of the design idea simple we
consider the simplified case of a linear-elastic element in this
section only. The general case of nonlinear elastic elements is
treated in Sec. IV. The corresponding dynamic model is given
by

Mq̈ = K(θ − q) (6)
Bθ̈ + K(θ − q) = u. (7)

The control input u is a generalized force acting on the
motor inertia B which drives the link inertia M via an
intermediate spring with stiffness K. The generalized spring
force is given by K(θ − q), where θ and q are the motor and
link coordinates, respectively.

First, we consider the gravity-free, link-side regulation case.
Thereafter, we extend the concept to the link-side tracking
case.

A. Link-Side Damping and link-side Regulation

We consider the problem of finding a feedback control u that
adds a desired link-side damping behavior and regulates the
link position q to a desired link position qd, while preserving
the intrinsic stiffness K and inertial properties of the plant.

With this in mind, we consider a reference joint that fea-
tures link-side, velocity-proportional damping, but otherwise
equal inertial and elastic properties; as shown in Fig. 3. The
according dynamics model is given by

Mρ̈ =K(η − ρ) − Dρ̇ (8)
Bη̈ + K(η − ρ) =ū, (9)

4We are convinced, due to the reasons mentioned in the introduction, that
being able to add link-side damping via control is essential in order to make
compliantly actuated robots practically feasible.
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Fig. 2. (a) Visualization of the Elastic Structure Conserving (ESC) control concept for a single joint with constant stiffness K and control input u. The steps for
the regulation approach (Fig. 2.(b–c)) can be interpreted as follows. First, we inject damping to the link side. To this end, we introduce new motor coordinates
and an intermediary control law, such that the resulting intermediary system, written in the new coordinates, structurally equals the original dynamics. Second,
we shape the potential energy of the rotor of the intermediary system by introducing a spring with stiffness KP. An additional velocity-proportional damper
is introduced to modify the convergence behavior of the motor. The link equilibrium point of the resulting system is unique and coincidences with the
desired link position if ηd = qd . For the tracking case we proceed in an analog way. With difference being, that some pseudo feed-forward terms are added
to the coordinate transformation and the intermediary control input. The resulting error dynamics are represented graphically in Fig. 2(d). As desired, the
corresponding unique equilibrium lies at the origin, i.e. η = q̃ = 0. Note, the systems elastic structure is being conserved in all cases, Fig. 2(b–d), hence, the
name ESP control. For both, the regulation and tracking case, the stiffness of the real physical spring acts as proportional gain to drive the link position.
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Fig. 3. Joint with damped link.

where η and ρ are the motor and link coordinates, respec-
tively. The damping behavior is characterized by the positive
damping gain D.

If we manage our original system to behave equivalently to
this reference system, we would have accomplished our first
design goal. Thus, we ask the question: can we find a control
input u for our original joint (6)–(7), such that it behaves like
the damped joint (8)–(9) with control input ū? In particular,
we want the link of the original system to behave identical to
the damped link of the reference system. As such, we impose
equality of the link coordinates

q(t) !
= ρ(t), ∀t ∈ [t0,∞). (10)

We assume that such control input u exists and proceed. First,
we force equivalence of the link dynamics (6) and (8). To this
end, under consideration of eq. (10), we equate the RHS of (6)
and (8). This yields the following coordinate transformation

θ = η − K−1Dq̇, (11)

Next, we aim to achieve equivalence of the motor dynamics
(7) and (9). For this purpose, we introduce the following
intermediary control law

u = ū − BK−1Dq(3) − Dq̇. (12)

System (6)–(7) under control law (12) and under consideration
of the coordinate transformation (11) (substitution of θ and θ̈)
gives the following intermediary closed-loop dynamics

Mq̈ =K(η − q) − Dq̇ (13)
Bη̈ + K(η − q) =ū. (14)

Figure 2(b) shows the corresponding graphical representation
of the dynamics (13)–(14). With (10) in mind, we have
confirmed our assumption.

Up to this point, we have achieved that system (6)–(7),
under the action of the intermediary control law (12) — cf.
eq. (13)–(14) — is equivalent to the reference system (8)–(9).
As such, for all time t ∈ [t0,∞) and for any control input ū(t),
the link position of the original system (6)–(7) under control
action (12), and that of the damped reference system (8)–(9)
evolve equivalently; under the assumption that both systems
are initialized equally, i.e. q(i)(t0) = ρ(i)(t0), ∀i ∈ {0, 1, 2, 3}.
This completes the proof of our initial assumption and the
first part of our control design.
Remark 1. Thus far, u is composed of terms that are just suf-
ficient to achieve equivalence of systems (6)–(7) and (8)–(9).
In that regard, we have modified the dynamics to a minimal
extend.

So far ū is still open to further control design and allows us
to fulfill the second design goal of adding link-side regulation
behavior. For any command ū, the intermediary closed-loop
dynamics (13)–(14) and the damped reference system (8)–(9)
evolve exactly the same. With this in mind, a natural and
simple way to add link-side regulation behavior is motor PD
control in the new motor coordinate

ū = −KDη̇ − KP(η − ηd), (15)

with ηd
..= qd, constant. Note, that the resulting closed-loop

dynamics

Mq̈ = K(η − q) − Dq̇ (16)
Bη̈ + K(η − q) = −KDη̇ − KP(η − ηd) (17)

can still be interpreted as a multi-spring-damper system. A
graphical representation is shown in Fig. 2(c). The proportional
gain KP [indicated by the blue spring in Fig. 2(c)] drives
the system to its new equilibrium state — the desired link
regulation behavior q→ qd for t → ∞, is achieved. Formally,
global, asymptotic stability of the unique equilibrium state
η = θ = qd, q = qd can be shown by invoking La’Salles
theorem [30].5

Remark 2. Now, the second fundamental design idea becomes
clear. We add simple motor PD control to achieve regulation
and later tracking behavior. As such, the link and motor remain
connected via the original elastic transmission (highlighted in
red in Fig. 2(a–c.). In other words, we use the stiffness of the
real physical spring as the proportional controller gain to drive
the link position.

B. ESP Control vs. Feedback Linearization

In this section we perform a gain analysis where we
compare ESP control in full state feedback (FSF) form with
feedback linearization-based FSF control. We perform this
analysis exemplary on the basis of the DLR Hand Arm
System. Its inertia is highly configuration dependent, it varies
significantly throughout its workspace. Let us consider the
first five joints of the right arm. The first joint faces an
inertia M that depends on the configuration of the other joints
as visualized in Fig. 4. More specifically, M ranges from
Mmin = 0.01 kg m2 (left pose) to Mmax = 1.1 kg m2 (right
pose). Similarly, the stiffness K of the first joint (cf. Fig. 1)
varies between Kmin = 40 Nm rad-1 and Kmax = 900 Nm rad-1,
depending on the stiffness setting σ and the external load.

For our analysis, we consider again a single robotic joint
as shown in Fig. 2(a), but this time we assume that the link
inertia and joint stiffness can take a range of values, i.e.
M ∈ [Mmin,Mmax] and K ∈ [Kmin,Kmax], as it would be the
case for the first axis of the DLR Hand Arm System.

We can write the ESP Control approach for the gravity-free
regulation case in full state feedback (FSF) form with state
vector x = [ q q̇ q̈ q(3) ]. To this end, we solve (6) for θ and

5One feasible, physically-motivated Lyapunov function candidate is V =

1/2
(
Mq̇2 + Bη̇2 + K(η − q)2 + KP(η − ηd)2

)
; its time derivative along the so-

lutions of (16)–(17) is V̇ = −Dq̇2 − KDη̇
2 ≤ 0.
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q1 q1

Fig. 4. The minimum and maximum inertia configurations with respect to
the first joint of the DLR Hand Arm System are shown.

substitute that relation in (11) to yield a relation between η
and q, and its time-derivatives, only

η = K−1Mq̈ + K−1Dq̇ + q. (18)

Substituting this relation in (15) allows us to re-write controller
(12) in full state feedback form. Without loss of generality we
assume ηd = qd = 0 and choose the damping coefficients as
follows6: D = 2ξ1

√
MK and KD = 2ξ2

√
BK, with ξ1 = ξ2 =

0.7, this results in

u = −kdx, (19)

where kd is the gain matrix with the following components

kd
1 =KP (20)

kd
2 =2(1 +

KP

K
)ξ1
√

MK + 2ξ2
√

BK (21)

kd
3 =2

D
K
ξ1
√

MK +
KP

K
M (22)

kd
4 =2

B
K
ξ
√

MK + 2
M
K
ξ2
√

BK. (23)

We now derive a feedback linearization-based FSF con-
troller. By solving (7) with respect to θ̈ and substituting it
in the second time derivative of (6), we can re-write system
(7)–(6) in the form of the following 4-th order differential
equation

q(4) =
K

BM
u − K

(
1
B

+
1
M

)
q̈. (24)

In order to input-state linearize the system, we choose the
control input u as7

u f =
BM
K

v + (B + M)q̈, (25)

resulting in the following linear controllability canonical form

ẋ =

[
03×1 I3×3

0 01×3

]
x +

[
03×1

1

]
v, (26)

where x is the new state vector and v is the new control input.
Again, we choose full state feedback control

v = −kx, (27)

6See Sec. VII-A for details about the damping design.
7To assure controllability we have to assume K > 0 and BM < ∞.

where k = [ k1 k2 k3 k4 ]. Substituting (27) in (25) gives the
final control law

u f = −k fx = −
BM
K

[
k1 k2 k3 −

K
BM (B + M) k4

]
x, (28)

where k f = [ k f
1 k f

2 k f
3 k f

4 ]. We now choose k1, . . . , k4 such that
kd equals k f for the case that the link inertia and joint stiffness
assume the following reference values: Mre f = 0.1 kg m2

and Kre f = 200 Nm / rad, respectively, i.e. k1 = KP
Kre f

BMre f
etc.

The reference values were chosen such that they are located
magnitude-wise in the center of their respective range. As
such, for the reference case Mre f and Kre f , both controllers are
identical; hence they achieve the same closed-loop dynamics.
Starting from this reference point we are now interested in how
the gains kd and k f change if the link inertia and joint stiffness
deviate from their respective reference values. Figure 5 and 6
show the results of this analysis. The white sphere marks the
reference case, where M and K assume their reference values
and kd and k f coincide.
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Fig. 5. kd and k f as a function of the link inertia M and joint stiffness K.
Clearly, the feedback linearization gains k f vary significantly stronger with
changing inertia and stiffness values than the ESP gains kd .

Clearly, the elements of k f vary significantly stronger
than those of kd. This has several theoretical and practical
implications. Compared to feedback linearization, ESP is less
susceptible to input saturation and shows less sensor noise
amplification. Moreover, from experience we know that gains
on q and q̇ as high as 5 × 104 N m/rad and 3 × 103 N m/rad,
respectively, are not realizable on the Hand Arm System. It is
also clear that uncertainties in K and M have a much larger
impact on the gains for feedback linearization than for ESP
control. These findings allow the conclusion that ESP control
shapes the plant dynamics significantly less than feedback
linearization.

C. Link-Side Damping and Link-Side Tracking

We now adopt the design ideas introduced for the regulation
case III-A, to find a control law, that simultaneously achieves
link-side damping and asymptotic, link-side tracking, for the
system (6)–(7).
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Let qd(t) ∈ C4 be the desired nominal motion trajectory.
Instead of studying the deviation of q(t) from qd(t) for the
controlled system, we transform the stability problem into an
equivalent one that studies the temporal variation of the motion
error q̃(t) ..= q(t) − qd(t). Thereby, we simplify the control
problem to finding a control input that stabilizes the origin.
Again we try to change the dynamics of the original system
to a minimal extent. Therefore, we extend the link-dynamics
solely by a damping term and pseudo8 feed forward terms
that ensure tracking performance. With that in mind, in the
following, we derive a control input u for (6)–(7), such that
the link behavior of the resulting compensated system equals

M ¨̃q = K(η − q̃) − D ˙̃q (29)

Compared to the regulation case, we choose a more straight
forward approach9 and start with the coordinate transformation
right away. The link dynamics (6) and (29) are equivalent if
and only if

K(θ − q) = K(η − q̃) − D ˙̃q + Mq̈d. (30)

8In fact, for the 1 DoF case with linear spring, Mq̈d ,Dq̇d ,Kqd actually are
feed forward terms, but this won’t be the case for the general, multi-dof case
with nonlinear transmissions, cf. (38).

9This way is superior for the general case described in Section IV as it
helps to keep the equations more compact.

This time, the new motor coordinate η reflects the desired
damping and tracking behavior. It can easily be verified that
the system (6)–(7) under the intermediary control law

u = ū−BK−1Dq̃(3) − D ˙̃q︸                 ︷︷                 ︸
damping terms

+BK−1Mqd
(4) + (B + M)q̈d︸                             ︷︷                             ︸

tracking terms

(31)

and under consideration of the coordinate transformation (30),
results in the following intermediary, closed-loop dynamics

M ¨̃q + D ˙̃q = K(η − q̃) (32)
Bη̈ + K(η − q̃) = ū. (33)

Thus, the problem is reduced to finding a control input ū that
drives η and therefore q̃ to the origin. Analogously to the
regulation case, we choose a PD control in the new motor
coordinates10

ū = −KDη̇ − KPη. (34)

This leaves us with the following closed-loop dynamics

M ¨̃q − K(η − q̃) + D ˙̃q = 0 (35)
Bη̈ + K(η − q̃) = −KDη̇ − KPη. (36)

Again the closed-loop dynamics can be represented by a multi-
spring-damper system as visualized in Fig. 2(d). This provides
us with an physically intuitive understanding of the closed-
loop behavior.

D. Outlook

The remainder of the paper applies these basic ideas to
general robotic systems
• with nonlinear elastic transmissions,
• with multiple degrees of freedom,
• that are subject to gravity.

In addition we extend the concept of minimizing the dynamic
shaping from the link to the motor side, which is relevant for
systems with nonlinear joint elasticities.

IV. Controller Design
This section extends the control concept presented in Sec.

III to general robotic systems that are subject to gravity and
feature multiple degrees of freedom and nonlinear elastic
transmissions.

A. Desired Link-Side Dynamics

We extend the link-side dynamics solely by a damping
term and pseudo feed forward terms that ensure tracking
performance. With that in mind, in the following, we derive
a control input u in (2), such that the link-side behavior of
the resulting compensated system equals the following desired
dynamics11

M (t, q̃) ¨̃q +C(t, q̃, ˙̃q) ˙̃q = −D ˙̃q +ψ(η − q̃) + τext, (37)

10Albeit the structure of the PD control laws (15) and (34) being the same,
they differ due to the differing coordinate transformation.

11With better readability in mind and to emphasize the
explicit time dependency of the closed-loop link dynamics,
we use the short forms M (q̃, t) ..= M (q) = M (q̃ + qd(t)),
C(q̃, ˙̃q, t) ..= C(q, q̇) = C(q̃ + qd(t), ˙̃q + q̇d(t)) and g(q̃, t) ..= g(q) =
g(q̃ + qd(t))).
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where q̃ := q − qd(t) ∈ Rn is the link-side tracking error. The
desired trajectory has the following properties:

Assumption 3. qd(t) ∈ C4, with ||qd ||, ||q̇d ||, . . . , ||q
(4)
d || being

bounded.

η ∈ Rn are suitable motor coordinates, that reflect the
desired link-dynamics. They will be introduced later.

The damping matrix D allows to realize a desired link-
side damping behavior, such that ˙̃q → 0. D has to meet the
following conditions:

Assumption 4. The damping matrix D ∈ Rn×n is positive
definite, lower and upper bounded. D might even be a C2

function of η, q̃ and t. In this case, to satisfy the condi-
tions of the implicit function theorem, such that η can be
(locally) expressed as a function of the other coordinates,
det

(
∂n
∂η (t,η, q̃, ˙̃q)

)
≥ 0 must be fulfilled for any t,η, q̃ and

˙̃q, cf. (38).

B. Coordinate Transformation

Note, that the link-side of the new system (37) behaves like
the original system (1) without gravity but with additional
damping and tracking properties. We introduce new motor
coordinates that reflect this behavior. To this end, we impose
equivalence of (1) and (37) to find an implicit relation

ψ(θ − q) = ψ(η − q̃) + n(t, q̃, ˙̃q) (38)

between the new motor coordinates η and the original system
states θ, q of (1)-(2), where

n(t, q̃, ˙̃q) ..= g(t, q̃) −D ˙̃q +M (t, q̃)q̈d(t) +C(t, q̃, ˙̃q)q̇d(t).
(39)

Since the inverse of ψ is usually not analytically available,
(38) cannot be solved directly and η has to be determined
numerically.12 Differentiating (38) with respect to time gives
us a differential relation between the old and new motor
coordinates13

κ(θ − q)(θ̇ − q̇) = κ(η − q̃)(η̇ − ˙̃q) + ṅ(t, q̃, ˙̃q). (40)

See (5) for the definition of κ. Solving (40) for θ̇ gives us14

θ̇ = κ−1(θ − q)κ(η − q̃)η̇ + ˙̃q + q̇d(t)

+ κ−1(θ − q)γ(t,η, q̃, ˙̃q, ¨̃q),
(41)

where

γ(t,η, q̃, ˙̃q, ¨̃q) ..= − κ(η − q̃) ˙̃q + ṅ(t, q̃, ˙̃q). (42)

With (38), we can re-write θ̇ as a function of the new states
only

θ̇ = A(t,η, q̃, ˙̃q)η̇ + a(t,η, q̃, ˙̃q, ¨̃q). (43)

12For the implementation in our robot system we use fixed point iteration.
13Higher derivatives of q, such as q̈ and q(3), are calculated based on the

model of the plant. In the end, the controller solely depends on [η, q̃] and
[η̇, ˙̃q]. In order to better understand which terms depend in the first instance
on higher derivatives, we do not make these substitutions.

14The singular values of κ(φ) are bounded and bounded away from zero.
Thus, κ−1 exists and is again bounded.

See Appendix for A and a. Differentiating (43) with respect
to time yields

θ̈ = A(t,η, q̃, ˙̃q)η̈ + Ȧ(t,η, q̃, ˙̃q)η̇ + ȧ(t,η, q̃, ˙̃q, ¨̃q). (44)

The relations (38) and (44) allow us to perform a coordinate
transformation [θ, q] 7→ [η, q̃] for the robot dynamics (1)-(2).
Obviously, for the link dynamics we yield the desired dynam-
ics (37). For the transformed motor dynamics we get

BAη̈ +BȦη̇ +Bȧ +ψ(θ − q) = u (45)

Based on the transformed dynamics we introduce two control
approaches which differ on the achieved closed-loop motor
dynamics. Both approaches have in common that they preserve
the link-side inertial properties and the elastic structure of
the original plant dynamics. Apart from that, ESP control
focuses on preserving the inertial properties of motor dynamics
(see Sec. IV-C). While ESP+ control aims at minimizing the
dynamic shaping on the motor side (see Sec. IV-D).

C. ESP Control

We design the controller in three steps, such that the
resulting controller u = uESP is composed of three components

uESP
..= ǔESP + ûESP + ūESP. (46)

First, we pre-compensate some nonlinear terms by

ǔESP = B
(
Ȧη̇ + ȧ

)
, (47)

resulting in the following intermediary dynamics

BAη̈ +ψ(θ − q) = ûESP + ǔESP. (48)

Second, we shape the motor inertia such that the original,
constant motor inertia B results. In addition, we transform
the spring torques into the new coordinates. Clearly,

ûESP = ψ(θ − q) −BAB−1ψ(η − q̃) (49)

yields the intermediary dynamics

Bη̈ +ψ(η − q̃) = BA−1B−1ūESP. (50)

At last, we choose PD control in the new motor coordinates

ūESP = −BAB−1(KDη̇ +KPη). (51)

to achieve link-side motion tracking. In the end, we yield the
following closed-loop motor dynamics

Bη̈ +ψ(η − q̃) = −KDη̇ −KPη. (52)

Fig. 7 presents the block-diagram that corresponds to the
ESP control law. For the PD gains we assume:

Assumption 5. KP,KD ∈ R
n×n are bounded, symmetric and

positive definite. Note, that KD can also be a function of the
states η, q̃.
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Fig. 7. ESP control scheme.

D. ESP+ Control

Pre-multiplying (45) by AT yields the following trans-
formed motor dynamics

Bηη̈ +Cηη̇ +ATψ(θ − q) +ATBȧ = ATu, (53)

where

Bη(t,η, q̃, ˙̃q) ..= AT(t,η, q̃, ˙̃q)BA(t,η, q̃, ˙̃q) (54)

and

Cη(t,η, η̇, q̃, ˙̃q, ¨̃q) ..= AT(t,η, q̃, ˙̃q)BȦ(t,η, q̃, ˙̃q) (55)

can be considered as naturally arising inertia and Corio-
lis/centrifugal matrices, respectively. Compared to the ESP ap-
proach, we keep the Coriolis/centrifugal terms and refrain from
shaping the motor inertia. Again, we derive the control law in
three steps, such that the resulting control input u = uES P+ is
composed of three components

uES P+
..= ǔES P+ + ûES P+ + ūES P+. (56)

We start by canceling some nonlinear terms by

ǔES P+
..= Bȧ. (57)

We proceed with transforming the spring torques into the new
coordinates

ûES P+
..= ψ(θ − q) −A−Tψ(η − q̃). (58)

Finally, we choose PD control in the new coordinates

ūES P+
..= −A−T (KDη̇ +KPη). (59)

to achieve link-side tracking behavior. In the end, the following
closed-loop motor dynamics

Bηη̈ +Cηη̇ +ψ(η − q̃) = −KDη̇ −KPη (60)
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Fig. 8. ESP+ control scheme.

results. For KD and KP we make the same assumptions as
above. Fig. 8 depicts the block-diagram that corresponds to
the ESP+ control law.

Through the coordinate transformation, state-dependent vir-
tual mass and Coriolis matrices naturally arise on the con-
trolled motor side. The resulting closed-loop dynamics have
some beneficial properties, such as the skew-symmetry of
Ḃη − 2Cη, which will be exploited later in the stability proof.
Physically, this can be interpreted as energy conservation
properties of the motors, i.e., the time derivative of the total
virtual kinetic energy 1

2 η̇
TBηη̇ of the motors15 is equal to the

virtual power provided by the springs ψ(η − q) and the PD
control input ū

1
2

d
dt

(η̇TBηη̇) = η̇T(−ψ(η − q̃) + ū). (61)

By observing

B = BT =⇒ Ḃη = ȦTBA +ATBȦ = CT
η +Cη, (62)

one can easily show the skew symmetry of Ḃη − 2Cη

η̇T(Ḃη − 2Cη)η̇ = η̇T(CT
η −Cη)η̇ = η̇T(−CT

η +Cη)Tη̇

= −η̇T(CT
η −Cη)Tη̇.

(63)

Bη also shares the symmetry and positive definiteness with
standard mass matrices. Latter can be shown by establishing
a lower bound for the eigenvalues of Bη. We can write Bη

as product of two positive definite Hermitian matrices and by
applying repetitively Lemma 2 we get

λ
¯

2
(
Bη

)
≥ λ

¯

(
ATB1/2

)
λ
¯

(
(ATB1/2)T

)
≥λ

¯
2
(
ATB1/2

)
≥ λ

¯
2 (A) λ

¯
(B) > 0.

(64)

15The positive definiteness of Bη is shown at the end of this section.
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For that A, B and B1/2 have to be Hermitian and non-
negative. Since κ is derived from a positive definite potential
function, see Ass. 1, we know that that κ, and therefore A,
are symmetric and positive definite.16 From Property 1, the
same can be shown for both B and B1/2.

E. A Discussion of the ESP and ESP+ controllers

In both cases, we modified the link dynamics to the same
minimum extent, kept the structure and elastic coupling of
the original dynamics intact and added only tracking terms.
In each case, the closed-loop system can be interpreted as
a multi-spring-damper system – it can be thought of as an
n-link chain where each link is compromised of an element
shown in Fig. 2(d). Thereby, the passivity property is obviously
retained (see Sec. V for details) and it allows us to find a
physically motivated, virtual energy-based Lyapunov function
for the stability proof (see Sec. VI for details). The ESP+

controller extends the concept of minimizing the dynamical
shaping to the motor side, by keeping the naturally arising
inertia, Coriolis- and centrifugal terms, therefore the extra ’+’
in its name.17

Observe, that in both cases the PD control terms are
state-dependent and model-based.18 Note, that ūESP contains
A−T , while ūES P+ contains BAB−1. More about how these
differences manifest in practice follows in Sec. VII.

For linear elasticities, with some constant stiffness K ∈

Rn×n, such that κ(φ) = Kφ, ESP and ESP+ control are
equivalent, and we simply refer to it by the name ESP control.
The resulting control law is significantly shorter. Figure 9
presents the corresponding block diagram. Interestingly, the
pure damping part of the controller (û + ǔ) does not rely on
measurement of the motor positions or their time derivatives.
The measured link positions and velocities only come into
play via the inertia, Coriolis-/centrifugal and gravity terms as
part of the pseudo-feedforward torque n.

In general, opposing to feedback linearization, no compen-
sation of the centrifugal and Coriolis terms is performed.

F. Quasi-rigid Manipulators

Interestingly, for the ’quasi-rigid’ limit case, that is, when
the stiffness approaches infinitely large values, i.e. σ

¯
(κ)→ ∞,

both, the ESP and ESP+ controller result in the popular
PD+ controller [27]. For the case of nonlinear elasticities
we spare the straightforward, but cumbersome computations
to show this. In case of linear elasticities, the calculations
simplify significantly. In fact, we can draw conclusions for
the transition to the ’quasi-rigid’ case, simply by analyzing the
corresponding block diagram in Fig. 9 under the assumption
K−1 → 0.

16Note, the inverse of a symmetric, p.d. matrix is also symmetric, p.d. and
and the product of two Hermitian matrices p.d. is again p.d..

17The ’+’ was chosen with regard to the analogy to the PD+ control, for
which the original Coriolis and inertia matrices are present in the closed-loop
error dynamics.

18The state-dependence come into play via A(t,η, q̃, ˙̃q). The calculations
of η and η̇ explicitly require terms from the model of the robot.

V. Passivity Analysis
In this section we analyze the passivity properties for the

time-variant closed-loop dynamics (37), (60).19

M (t, q̃) ¨̃q +C(t, q̃, ˙̃q) ˙̃q = −D ˙̃q +ψ(η − q̃) + τext, (65)

Bη(t,η, q̃, ˙̃q)η̈ +Cη(t,η, η̇, q̃, ˙̃q, ¨̃q)η̇ +ψ(η − q̃)
= −KDη̇ −KPη.

(66)

Remark 3. The ESP control related closed-loop dynamics (65),
(52) can be considered as a special case of the ESP+ control
related closed-loop dynamics given above, with constant motor
inertia Bη = B and Cη = 0. As such, it is sufficient to deduce
passivity and stability (see Sec. VI) statements for the latter.

We prove that the link-side dynamics (65) and motor dy-
namics (66) of the closed-loop system can be interpreted as an
interconnection of passive subsystems, see Fig. 10. According
to the definition in [31], we have to show that for any period
of time, the system cannot output more virtual energy at its
ports of interaction than has in total been injected into for that
period of time and has initially been stored. With Fig. 2(d) in
mind, it is natural to choose

S q̃
..=

1
2

˙̃qTM (t, q̃) ˙̃q (67)

as storage function for the closed-loop link-side dynamics (65)
and

S η
..=

1
2
η̇TBη(t,η, q̃, ˙̃q)η̇ + Us(η − q̃) +

1
2
ηTKPη, (68)

as storage function for the closed-loop motor dynamics (66).
Eq. (67) represents the virtual kinetic energy of the link.
Accordingly, the first term on the RHS in (68) represents the
virtual kinetic energy of the controlled motor. The other two
terms can be interpreted as the potential energy of the spring
and a virtual potential energy of the control, respectively.

For the analysis of the passivity properties, we express
the time derivative of (67) along the solutions of (65). By
exploiting Prop. 3 we get

Ṡ q̃ = − ˙̃qTD ˙̃q + ˙̃qTψ(η − q̃) + ˙̃qTτext. (69)

We can identify three terms in (69). The first one represents
the dissipation of energy due to the damping assignment
on the link side. The latter two are corresponding to an
interconnection port with the closed-loop motor dynamics
and the environment, respectively. As visualized in Fig. 10,
˙̃qTψ(η− q̃) represents the interconnection with the motor side
and ˙̃qTτext represents the interconnection with the environ-
ment. Correspondingly, by exploiting the skew symmetry of
Ḃη − 2Cη, we can write the time derivative of (67) as follows

Ṡ η = −η̇TKDη̇ − ˙̃qTψ(η − q̃). (70)

Again, we can identify a dissipation term. This term is
related to the introduced damping on the motor side. The
interconnection term between link and motor dynamics also
appears again (cf. (69)). The analysis so far motivates the
following proposition:

19Recall, the coordinate transformation (38) imposes equality of (1) and
(37).
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ǔ u

∑−

∑
∑

KD

KP

−

∑ū
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Fig. 10. The closed-loop dynamics (65)-(66) can be represented as an
interconnection of passive subsystems. For the tracking case the link side
interacts with the motor side via the power port ˙̃qTψ(η − q̃) and with a
passive environment via the power port ˙̃qTτext .

Proposition 1. The closed-loop system (65)-(66) represents a
passive map from the generalized external forces τext to the
generalized velocities of the link-side tracking error ˙̃q.

Proof. Consider the storage function S = S q̃ + S η comprising
(67) and (68). Its time derivative is given by the sum of (69)
and (70)

Ṡ = − ˙̃qTD ˙̃q + ˙̃qτext − η̇
TKDη̇ ≤ ˙̃qTτext, (71)

which completes the proof. �

Note that for the regulation case passivity with respect to
the physically more intuitive power port q̇, τext is given. Nev-
ertheless, situations may arise in practice where passivity with
respect to the power port ˙̃q, τext will be of importance. More
specifically, there exist situations where the environment or
the interacting object move synchronously to the link reference
trajectory. One such scenario would be object manipulation on
a conveyor belt. In that case, the proposed tracking controlled
robot would passively interact with the object.

VI. Stability Analysis

In this section we analyze the stability properties for the
time-variant closed-loop dynamics (65)-(66). First, we formu-
late the main result of the paper in form of the following
theorem.

Theorem 1. Consider the closed-loop dynamics (65)-(66)
in absence of external, generalized forces τext. Under the
assumptions made in Sec. II, the origin of the closed-loop
system is uniformly globally asymptotically stable.

The proof of Theorem 1 relies on Lyapunov theory and
exploits Matrosov’s Theorem [32]. For convenience, it is given
below. Consider the differential equation

ẋ = f (t,x), (72)

where x ∈ Rn, t ∈ R is the time and f is a continuous function
f : I×Ω→ Rn, where I = [t0,∞) for some t0 ∈ R and Ω is an
open connected set in Rn, containing the origin. We assume
that f (t,0) = 0 ∀t ∈ I, so that the origin is an equilibrium
point for the differential equation (72). Matrosov’s theorem
then states:

Matrosov’s Theorem (Rouche [32]). Let there there exist two
C1 functions V : I×Ω→ R, W : I×Ω→ R, a C0 function V∗ :
Ω → R, three functions a, b, c of class K and two constants
S > 0 and T > 0 such that, for every (t, x) ∈ I ×Ω

(i) a(||x||) ≤ V(t,x) ≤ b(||x||);
(ii) V̇(t,x) ≤ V∗(x) ≤ 0; E ..= {x ∈ Ω : V∗(x) = 0};

(iii) |W(t,x)| < S ;
(iv) max(d(x, E), |Ẇ(t,x)|) ≥ c(||x||) 20;
(v) ||f (t,x)|| < T;

20d(x, E) is the minimum distance of point x to set E, i.e. inf
y∈E

(||x − y||)
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choosing α > 0 such that B̄α ⊂ Ω, let us put for every t ∈ I

V−1
t,α = x ∈ Ω : V(t,x) ≤ a(α). (73)

Then
(i) for any t0 ∈ I and any x0 ∈ V−1

t0,α, any solution x(t)
of (72), passing through (x0, t0) ∈ I × Ω, tends to zero
uniformly in t0 and x0, as t → ∞.

(ii) the origin is uniformly asymptotically stable.

The foundations for this theorem were published in [33].
What is interesting about this theorem is that it states condi-
tions under which a Lyapunov function with negative semi-
definite time derivative is sufficient to proof asymptotic stabil-
ity. Its central idea relies on the appealing usage of a bounded
auxiliary function that ensures that the system cannot get
stuck in the problematic set where the time-derivative of the
Lyapunov function is zero.

In order to facilitate the verification of condition (iv) we
apply the following lemma by Paden and Panja

Lemma 1 (B. Paden, R. Panja, [27]).
Condition (iv) of Matrosov’s theorem is satisfied if conditions
below are satisfied.
(iv.a) Ẇ(x, t) is continuous in both arguments and depends

on time in the following way. Ẇ(x, t) = g(x, β(t)) where
g is continuous in both of its arguments. β(t) is also
continuous and its image lies in a bounded set K1.
(For simplicity, we assume that Ẇ(x, t) depends on time
continuously through a bounded function.)

(iv.b) There exists a class K function, k, such that |Ẇ(x, t)| ≥
k(||x||)∀x ∈ E and t ≥ t0.

For a proof see [27].

A. Proof of the Main Result (Theorem 1)

It is sufficient to check the conditions of Matrosov’s The-
orem. Most of the computations are straight forward, but
become tedious at times. This is especially true for the part
that checks condition (iv.a) of Lemma 1. In general, the proof
relies heavily on the application of the boundedness theorem,
Lemma 2 and matrix norm properties.

For better readability we will neglect the arguments of
M ,C,D,Bη and Cη if they are not beneficial to promote
understanding. The states are summarized into a new state
vector x ..= [η, η̇, q, q̇]T. Consider the following energy based,
time-variant, Lyapunov function candidate V : [0,∞) ×Ω→ R

V(t,x) = S q̃(t, q, q̇) + S η(t,η, η̇, q) (74)

For now, Ω can be chosen arbitrarily large. Obviously, V is
lower bounded since M ,Bη,KP and the spring potential Us

are positive definite matrices and functions, respectively (cf.
Prop. 2, Ass. 1 and Ass. 5). Thus, in fact, V is positive definite
in x. Later in the text, V is required to be at least three times
continuously differentiable. From (71) we have

V̇(t,x) = − ˙̃qTD ˙̃q − η̇TKDη̇. (75)

V̇ is negative semi-definite due to the positive definiteness of
KD and D. Thus, V is a Lyapunov function of (65)–(66).

Ad Cond. (i) of Matrosov’s Theorem: Clearly, condition (i)
of Matrosov’s Theorem can be satisfied by choosing upper and
lower bounds for V as follows

α(x) =
1
2

(
λ
¯
(M )|| ˙̃q||2 + λ

¯
(Bη)||η̇||2 + λ

¯
(KP)||η||2

)
+ Us(η − q̃)

β(x) =
1
2

(
λ̄(M )|| ˙̃q||2 + λ̄(Bη)||η̇||2 + λ̄(KP)||η||2

)
+ Us(η − q̃)

and invoking [34, Lemma 4.3], which states that there exist
class K functions a and b such that a(||x||) ≤ α(x) and
b(||x||) ≥ β(x). In fact, a and b will be of class K∞, since
α and β are radially unbounded. Note that λ

¯
(Bη) > 0 was

proven in (64).

Proposition 2. The upper and lower bounds on the Lyapunov
function (74), in form of the class K functions a and b, together
with the negative semi-definitness of V̇, imply that the system
(65)-(66) is globally, uniformly stable.

Ad Cond. (ii) of Matrosov’s Theorem: In case D is time-
invariant, we can simply choose V∗(x) = V̇(t,x). Otherwise,
we can select

V∗(x) = −λ̄ (D(t, q̃,η)) || ˙̃q||2 − η̇TKDη̇, (76)

which satisfies Cond. (ii). We now can deduce the problematic
set where V̇ becomes zero, namely E = {x ∈ Ω : ˙̃q = η̇ = 0}.

Ad Cond. (iii) of Matrosov’s Theorem: We denote the
function W : [0,∞) ×Ω→ R as

W(t,x) ..= V̈(t,x). (77)

To ensure that W satisfies Cond. (iii) we have to establish the
boundedness of |W(t,x)|. From (75) we get

W(t,x) = −
(
2 ˙̃qTD ¨̃q + ˙̃qTḊ ˙̃q + 2η̇TKDη̈ + η̇TK̇Dη̇

)
. (78)

We restrict Ω to be an arbitrarily large, but bounded set. As
such, for any starting condition x(t0) ∈ Ω, t0 ≥ 0, Prop. 2
implies that x(t) is bounded ∀t ∈ [t0,∞). We can conclude
directly that all RHS terms of (78), apart from ¨̃q and η̈, are
bounded. The boundedness of ¨̃q and η̈ are shown in Sec. B-A.

Ad Cond. (iv) of Matrosov’s Theorem: To show that W
satisfies condition (iv), we invoke Lemma 1 by B. Paden and
R. Panja. The technical details to verify condition (iv.a) are
contained in the appendix (see Sec. (B-B)).

To check condition (iv.b) of Lemma 1, we compute the time
derivative of W along the solutions of the closed-loop system
(65)-(66) and evaluate Ẇ on the the critical set E

Ẇ(t,x) = − 2
(
ψ(η − q̃) +KPη

)TR
(
ψ(η − q̃) +KPη

)
+ 2ψT(η − q̃)TQψ(η − q̃), ∀x ∈ E,

(79)

where

Q ..=M−TDM−1 = QT

R ..=B−TKDB
−1 = RT.

Property 2 implies that M−1 is non-singular, D is a real-
symmetric, positive definite matrix, hence, Sylvester’s Law of
Inertia [35] can be applied to show the positive definiteness
of Q. Similarly, R can be shown to be positive definite. From
the positive definiteness of Q and R, follows directly that
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Ẇ ≤ 0 ∀(t,x) ∈ [t0,∞)×E, whereby equality hold if and only
if x = 0. Let us define

P (t,x) ..=

[
Q +R RKP

KT
PR KT

PRKP

]
∈ R4n×4n,

with the following Choleski factorization[ √
Q R1/2

0 KT
PR

1/2

]
. (80)

From this follows that P is a positive definite matrix which is
state- and explicitly time-dependent.21 This allows us to write
the absolute value of Ẇ in matrix form

|Ẇ(t,x)| = 2
[
ψ(η − q̃)

η

]T

P

[
ψ(η − q̃)

η

]
, ∀x ∈ E. (81)

We denote

W∗(x) ..=P
¯
||

[
ψ(η − q̃)

η

]
||2, (82)

where

P
¯

..= inf
(x,t)∈E×I

{
λ(

√
Q), λ

¯
(KP)λ

¯

√
R)

}
> 0,

which allows us to establish the following inequality

|Ẇ(x, t)| ≥W∗(x), ∀x ∈ E. (83)

Clearly, W∗ is a time-invariant, positive definite function of
x. According to [34, Lemma 4.3] there exists a function γ
of class K∞, such that W∗(x) ≥ γ(||x||). This completes the
verification of condition 4(b).

From Prop. 2 we know already that x is bounded. This,
together with the continuity of the RHS of (92) and (93) in
x and in time through qd(t) and its time-derivatives we can
conclude that the RHS of (92) and (93) are bounded for all
(t,x) ∈ R+ × Ω for bounded Ω. Moreover, M and Bη are
bounded (see Prop. 2). Thus, f , which is implicitly defined in
(92)–(93), is bounded on R+ × Ω for bounded Ω and the last
condition of Matrosov’s Theorem is fulfilled.

So far all conditions of Matrosov’s Theorem have been
shown to be satisfied. In addition we can use the first inequality
of Cond. (i) to determine the region of attraction. For any
initial condition x0 ∈ R

4n we can find an appropriate α and Ω

via Cond. (i) such that x0 is element of V−1
t,α . Thus, according

to Matrosov’s Theorem, the origin [q̃,η, ˙̃q, η̇]T = 0 is an
uniformly globally asymptotically stable equilibrium point of
the closed-loop system (65)–(66).

VII. Experimental Validation and Performance Analysis

The performance of the control approaches have been
experimentally evaluated on the first five variable stiffness
actuators (VSA) joints of the DLR Hand Arm System [1],
see also Fig. 1. The first four arm joints, namely the elbow
and the three shoulder joints, are implemented by Floating
Spring Joints (FSJ) [2]. The under arm rotation is realized via
a bidirectional antagonistic variable stiffness (BAVS) joint [3].
Here we want to emphasize that the ESP control concept is

21For real-symmetric matrices P , the following statements are equivalent:
(1) P is positive definite and (2) P = BBT for some non-singular B [36].

not limited to one class of VSA joints but works on any type
that fulfills the conditions in Sec. II.

First, we introduce an approach to design the damping
matrix D. For the design of the matrix it should be mentioned
that the proposed control concept allows for any damping ma-
trix that satisfies Assumption 4. However, for the experiments
presented in this paper we apply the approach presented below
which has proven to work well in practice. In the latter part,
Sec. VII-B, we present the experimental results.

A. Damping Design

As the inertia of the robot system is configuration de-
pendent, it varies significantly throughout its workspace. In
addition the stiffness of each joint strongly depends on the
load. As the robot moves through its workspace, the gravi-
tational and dynamical load change constantly and so do the
joints stiffness’s. External forces may additionally affect the
stiffness’s of the joints. As we aim for similar performance
throughout the entire workspace of the robot, we apply a
damping design that takes these effects into account. The
design of the link-side damping matrix D as well as the
controller gain KD are based on modal decomposition.

For the damping design we consider the variation of M (q)
to be slow such that its derivative can be neglected. In addition,
we approximate the joint torque ψ(η− q̃) by the local stiffness
κ(η − q̃) times the virtual joint deflection η − q̃. As a result,
the link-side closed-loop dynamics (37) reduces to

M (q) ¨̃q +D(η, q̃) ˙̃q − κ(η − q̃)(η − q̃) = 0. (84)

Since M is positive definite and κ symmetric we can simul-
taneously diagonalize these two matrices by a non-singular
matrix Q ∈ Rn×n, such that QTQ = M and QTΛQ. Matrix
Λ(η, q̃) is diagonal with the positive generalized eigenvalues
of κ with respect to M as its elements. This allows us to
rewrite (84) as

QT(t,η, q̃)Q(t,η, q̃) ¨̃q +D(t,η, q̃)

−QT(t,η, q̃)TΛQ(t,η, q̃) = 0

By choosing the damping matrix as

D = 2QT(t,η, q̃)DξΛ
1/2(η, q̃)Q(t,η, q̃), (85)

where DξD is a diagonal matrix with the modal damping
factors ξD,i ∈ [0, 1] as elements. We now introduce new
coordinates z = Q(t,η, q̃)q̃ in order to obtain a system of
n decoupled equations

z̈ + 2DξDΛ1/2ż + Λz = 0, (86)

where the effects of the damping parameters ξD,i become clear.
For the design of KD we consider the system

Mη(t,η, q̃, ˙̃q)η̈ +KDη̇ + κ(η − q̃)(η − q̃) +KPη (87)

and proceed analogously to above – resulting in a time and
state-dependent damping matrix KD.
Remark 4. This damping design implies the matrix D(t,η, q)
to be a function of the link error-variables q̃ and motor
variables η and an explicit function of time t. As a conse-
quence, in order to calculate Ḋ and D̈ we require the first
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and second time derivatives of the generalized eigenvalues and
eigenvectors. The interested reader can find more details about
this issue in [37] and [38].
Remark 5. Simulations and experiments for the DLR Hand
Arm System have shown, that neglecting all terms that contain
Ḋ and D̈, in the implementation of the control law, has no
significant impact on the control performance. With this in
mind and in order to reduce the computational load we neglect
these terms for the practical implementation.

B. Experimental Results

Throughout all experiments the controller
parameters were kept constant and set as follows:
KP = diag(1000, 900, 750, 750, 750), ξD,i = 0.5, ξKD,i = 0.7,
i = 1, . . . , 5. KP was manually set such that for the medium
stiffness setting none of the control inputs overshoot the
maximal motor torques of 65 Nm for the FSJ joints and
4 Nm for the BAVS joint, respectively.
Remark 6. In standard operational mode, saturation of the
control input never has caused any issues so far. Nevertheless,
to allow a fair performance analysis, the gains were set
such that saturation effects are avoided for the majority of
experiments.

We performed three different experiments. No friction
compensation was active throughout the experiments. Thus,
viscous friction affects the transient tracking performance and
static friction leads to non-zero steady-state errors. For low
stiffness values, friction effects such as stiction have a crucial
impact on the steady-state errors. Sensor uncertainties for
motor and link angles lead to uncertain spring torques and
gravity torques calculations, which again increase the steady-
state errors. Bear in mind, that due to some technical sensor
issues on the second joint the control input for the second joint
is significantly more noisy, compared to the other four joints.

The first experiment shows the disturbance rejection and
damping performances of an ESP and ESP+ controller. They
are compared to the well-known motor PD controller by Tomei
[4]. The setup was as follows: a 3 kg mass that swings on a
rope impacts,in a reproducible manner, with the robot, see
Fig. 11.22 The robot is commanded to keep its pre-impact
position. This experiment has been performed for all three con-
trollers for three different stiffness settings: minimum (σ = 0◦),
medium (σ = 5◦) and maximum (σ = 10◦) stiffness, which
correspond to the outer, middle and inner curves of Fig. 1(b–c),
respectively. The results are shown in Fig. 12. The convergence
rate increases with decreasing joint stiffness settings. This
behavior is as expected, as our control concepts preserve the
intrinsic joint elasticities. Hence, the intrinsic stiffness values
of the physical joints act as PD gains on the link positions. The
differences in convergence rates are less than one might expect.
This is due to nonlinear nature of the elasticities, the local
stiffness depends on the joint deflection and thereby on the
external load, cf. Fig. 13. As a result, joint 4, which faces the
highest external load, reaches relatively high maximum local
stiffness values for all experiments. To emphasize the elasticity

22Below you can find the link to a video that shows this experiment.

Fig. 11. This photo shows the impact experiment setup, the red arrow
indicates the trajectory of ball. The shot was taken during the impact phase.

and oscillatory behavior of the robot system, and the need
for elaborate damping control concepts, the performance of a
simple motor PD controller (Tomei [4]) is shown as reference.
As shown in Fig. 12 its damping performance is very limited.
For the soft stiffness setting the control inputs of the ESP and
ESP+ controller are heavily saturated for an extended amount
of time. Despite these saturations, the stability of the system is
not impaired at all. Furthermore, both control approaches show
impressive damping and disturbance rejection performances
with hardly any overshooting in presence of these saturations.
This is one of the impressive features of ESP and ESP+

control. We did not adapt the controller gains in order to
show how the controllers perform over a vast joint stiffness
range (approx. one order of magnitude variation) with equal
gains. In that regard, the ESP turns out to be superior as
the control signals are significantly less noisy for the soft
stiffness setting, while achieving comparable performance. For
the medium stiffness setting, for which the controllers have
been manually tuned, ESP+ control proves to be superior. The
control input amplitude is significantly lower compared to the
ESP controller. In addition, the ESP+ controller basically does
not overshoot at all. We can conclude, despite the fact that the
joint stiffness values vary in the range of approx. one order
of magnitude the ESP and ESP+ controllers perform excellent
without adapting the gains.

The second experiment highlights the tracking performance.
The results are contained in Fig. 14. The joints reach maximum
angular velocities of q̇T

max = [ 218 79 117 128 329 ] deg/s.
Friction as well as model and sensor uncertainties are sources
of the non-zero steady-state error.

The third experiment shows the disturbance rejection and
damping performance while the robot moves along a tra-
jectory. An external disturbance is applied through physical
interaction with a human. The magnitude of disturbance cor-
relates with the peaks in the corresponding joint torque plots
in Fig. 15. Even while the robot is in motion the ESP and
ESP+ controllers show impressive disturbance rejection per-
formance. Within approximately 0.3 seconds the disturbances
are rejected and the robot returns on its desired trajectory.
The ESP+ controller shows slightly less overshooting as can
be seen graphs of the tracking error q̃.

Below we give direct links to three videos that demonstrate
the performance of the ESP and ESP+ control approaches on
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the DLR Hand Arm Sytem.
• ESP control showcase video:

http://rmc.dlr.de/rm/de/staff/extcms/images/rmc/2016 ICRA Keppler.mp4
• ESP+ control showcase video: among other things, the

ball impact experiment presented above is shown.
https://www.youtube.com/watch?v=PATvv47QfQs

• The following video shows the DLR Hand Arm System
drill hammering into concrete. This task requires both,
precise positioning of the tool center point and vibration
damping. The performance is enabled by ESP control.
https://www.youtube.com/watch?v=JVdufPRK4NI

Remark 7. ESP control allows to compensate virtual or phys-
ical joint-space forces that are due to a C2 potential field.
This allows for several interesting applications, e.g. it can
be exploited to enable compliant robots to interact with the
environment in a desired manner.

VIII. Conclusion

The ESP control approach presented in this paper yields a
globally stable, link-side tracking controller that allows simul-
taneous link-side damping assignment for compliantly actu-
ated robots with nonlinear elastic transmissions. The control
framework incorporates, at a fundamental level, the system’s
inherent physical structure and aims to minimize the dynamic
shaping. This manifests itself in the preservation of the elastic
structure of the original system, i.e., the link of the closed-
loop system remains connected to the motor via the original
elastic element. Therefore we coin the name ’Elastic Structure
Preserving’ (ESP) Control. As such, the stiffness of the real
physical spring acts as proportional gain to drive the link to
its desired position. ESP Control focuses on preserving the
motor-side inertial properties while the ESP+ approach aims
at minimizing the dynamic shaping on the motor side. On the
basis of a theoretical analysis for a single joint, we showed
that our approach changes the plant dynamics significantly less
than feedback linearization-based FSF control.

The physically motivated nature of the design approach
provides several benefits. The resulting closed-loop dynamics
can be represented by a multi-spring damper system. This
provides us with a physically intuitive interpretation of the
controller. In particular, it proves highly valuable for the tuning
stage as the gains can be interpreted as springs and dampers,
respectively.

The controller concept imposes neither lower nor upper
bounds on the controller gains. In addition, it allows the
damping on the motor and on the link side to be state-
dependent. The transition to the rigid robot case, i.e., when
the stiffness values of each joint approach infinity, yields the
well-known PD+ controller [27] and thus no high-gain design.

The approach has been extensively experimentally evalu-
ated on a multi-joint VSA robot arm. It shows impressive
performance and robustness against external disturbances. It
also appears to be quiet robust against input saturations. As
for any link-side tracking controller, a theoretical limitation of
the approach seemed to be the usage of the second and third
time derivative of the measured link position in the control law,
which however turned out not to be a practical limitation, since

the time derivatives could be computed based on an accurate
model of the plant. We plan to investigate if the proposed
control concepts can be generalized to a more general class of
elastic robots in which Assumptions 1 and 2 can be relaxed.

To our best knowledge, this is the first link-side tracking
controller for compliantly actuated robots with nonlinear elas-
tic transmissions, which is theoretically founded and reported
to be experimentally validated on a multi-degrees of freedom
robot.

Appendix A
Function definitions and a Lemma byMerikoski

Applying (38) we can rewrite κ(θ − q) in new coordinates

κ(θ − q) = κ
(
ψ−1(ψ(η − q̃) + n(t, q̃, ˙̃q)

))
=: χ(t,η, q̃, ˙̃q). (88)

Equation (88), together with (41), allows us to define A as

A(t,η, q̃, ˙̃q) := χ−1(t,η, q̃, ˙̃q)κ(η − q̃). (89)

Equations (38), (42) and (88) yield a as follows

a(t,η, q̃, ˙̃q, ¨̃q) := q̃ + qd(t) + χ−1(t,η, q̃, ˙̃q)γ(t,η, q̃, ˙̃q, ¨̃q).
(90)

Lemma 2 (J. K. Merikoski and R. Kumar, [39]). If A and
B are Hermitian and non-negative definite, then we can both
underestimate and overestimate eigenvalues of AB by using
eigenvalues of A and B.

λi(A)λmin(B) ≤ λi(AB) ≤ λi(A)λmax(B). (91)

Appendix B
Boundedness and continuity of some functions

A. Ad Condition (iii) of Matrosov’s Theorem

In Sec. VI we have already established the boundedness of
x. This, together with Ass. 3, implies that q and q̇ are bounded
as well. As M ∈ C2 and q is bounded, the tensors ∂M (q)

∂q and
∂2M (q)
∂q2 are bounded. We can conclude that Ṁ (q) is bounded.

Due to Prop. 2, M−1 exists and is bounded. This, together
with the fact that all terms on the RHS of the closed-loop link
dynamics

M (t, q̃) ¨̃q = −
(
C(t, q̃, ˙̃q) −D(t, q̃,x)

)
˙̃q +ψ(t,x − q̃), (92)

are bounded, implies that ¨̃q is bounded.23 Boundedness of
q̈ results from Ass. 3. This again, implies that M̈ (q) is
bounded.24 Further, ¨̃q is continuous in q̃, ˙̃q,η and in t through
the bounded functions qd(t) and q̇d(t).

The reasoning for the boundedness of η̈ goes along the same
lines as for ¨̃q. For (66) we can write

Bη(t, )η̈ = −Cη(t, )η̇ −ψ(η − q̃) −KPη −KDη̇ (93)

From the analysis so far, we can directly conclude the bound-
edness of the last three terms. We can upper bound the norm25

of Cη

||Cη|| ≤ ||A|| ||B|| ||Ȧ||. (94)

23Note, ||C(q, q̇)|| ≤ kC ||q̇||, for some positive constant kC .
24Which is equivalent to the statement that Ċ is bounded.
25Any matrix norm can be used here.

http://rmc.dlr.de/rm/de/staff/extcms/images/rmc/2016_ICRA_Keppler.mp4
https://www.youtube.com/watch?v=PATvv47QfQs
https://www.youtube.com/watch?v=JVdufPRK4NI
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We now analyze each of the RHS terms. Considering Ass. 1,
the continuity of κ in its arguments, the continuity of χ in
the states and continuity in the time, through the bounded
functions qd(t), q̇d(t), and the boundedness of x, we know
that A is bounded and continuous in time through bounded
functions. B is bounded by model assumptions. For Ȧ we can
write

Ȧ = χ̇−1(t, q̃, ˙̃q)κ(η − q̃) + χ−1(t, q̃, ˙̃q)κ̇(η − q̃) (95)

where χ̇−1(t, q̃, ˙̃q) = −χ−1(t, q̃, ˙̃q)χ̇(t, q̃, ˙̃q)χ−1(t, q̃, ˙̃q). Due to
Ass. 1, the inverse of χ exists, is bounded and continuous
in the states and time through bounded functions qd(t), q̇d(t).
Exploiting Ass. 1, we can argue that χ̇(t, q̃, ˙̃q) is contin-
uous in the states x, in ¨̃q and in time, through bounded
functions qd(t), q̇d(t), q̈d(t). Considering also the boundedness
of x, ¨̃q, q̈d(t) we can conclude the boundedness ofχ̇(t, q̃, ˙̃q).
Analogous statements can be derived for κ(η−q̃) and κ̇(η−q̃).
In the end we can conclude that Cη is continuous in x,
¨̃q and t and depends on time through bounded functions
qd(t), q̇d(t), q̈d(t).

From (64) we know that the inverse of Bη exists and
that it is bounded. Which leads us to the conclusion,
that η̈ is bounded, continuous in the states x, in ¨̃q and
in time t through the bounded functions qd(t), q̇d(t), q̈d(t).

B. Verification of Condition (iv.a) of Lemma 1

In Sec. B-A we have established that ¨̃q, η̈ are continuously
in the tracking errors x and depend continuously on time
through qd(t), q̇d(t), q̈d(t), which are bounded. To verify that
Ẇ satisfies condition (iv.a) of Paden and Panja’s lemma, we
have yet to show that q̃(3),η(3) are continuously in the tracking
errors x and depend continuously on time through a bounded
function.

To show that q̃(3) is bounded we differentiate (65) with
respect to time and rearrange some terms

M (t, q̃)
d
dt

(
¨̃q
)

= −Ṁ (t, q̃) ¨̃q −C(t, q̃, ˙̃q) ¨̃q − Ċ(t, q̃, ˙̃q) ˙̃q

−D(t, q̃,x) ¨̃q − Ḋ(t, q̃,x) ˙̃q + κ(η − q̃)(η̇ − ˙̃q).
(96)

All RHS terms have been shown to be bounded, continuous
with respect to the tracking error and depend continuously
on time through bounded functions.26 As M−1 is bounded,
we can conclude that q̃(3) exists and depends continuously on
the tracking error and continuously on time through bounded
functions qd(t), q̇d(t), q̈d(t).

For η(3) we can proceed in analog fashion. We differentiate
(66) with respect to time and rearrange some terms

Bη(t, q̃)
d
dt

(η̈) = −Ḃη(t, q̃)η̈ −Cη(t, q̃, ˙̃q)η̈ − Ċη(t, q̃, ˙̃q)η̇

− κ(η − q̃)(η̇ − ˙̃q) −KDη̈ −KPη̇.
(97)

The only terms we still have to analyze are Ḃη and Ċη. We can
apply the results from Sec. B-A to argue that Ḃη = 2ATBȦ
is continuous in the states x, ˙̃q and in time through bounded

26See Sec. VI and Sec. B-A.

functions qd(t), q̈d(t), q̈d(t). To give an analog statement for
Ċη = ȦTBȦ + ATBÄ we have yet to analyze Ä. The
straight-forward, but tedious computations, we used to an-
alyze Ȧ can be extended to show that Ä is a continuous
function in x, ¨̃q, q̃(3) and in time through bounded functions
qd(t), . . . , q(3)

d (t). To do so, one only has to the take the
continuity and boundness properties of q̃(3) that we have shown
above and the fact that Us ∈ C

4 additionally into consideration.
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[16] C. Ott, A. Albu-Schäffer, A. Kugi, and G. Hirzinger, “Decoupling based
cartesian impedance control of flexible joint robots,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 2003.

[17] J. H. Oh and J. S. Lee, “Control of flexible joint robot system by back-
stepping design approach,” Intelligent Automation & Soft Computing,
vol. 5, no. 4, pp. 267–278, 1999.

[18] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint
Robots, B. Siciliano and O. Khatib, Eds. Springer, 2008.

[19] J.-J. Slotine and L. Weiping, “Adaptive manipulator control: A case
study,” Automatic Control, IEEE Transactions on, vol. 33, no. 11, pp.
995–1003, 1988.



IEEE TRANSACTIONS ON ROBOTICS 19

[20] M. W. Spong, “Adaptive control of flexible joint manipulators,” Systems
& Control Letters, vol. 13, no. 1, pp. 15–21, 1989.

[21] A. De Luca and P. Lucibello, “A general algorithm for dynamic feedback
linearization of robots with elastic joints,” in IEEE Int. Conf. on Robotics
and Automation, vol. 1, 1998, pp. 504–510.

[22] G. Palli, C. Melchiorri, and A. De Luca, “On the feedback linearization
of robots with variable joint stiffness,” in IEEE Int. Conf. on Robotics
and Automation, 2008, pp. 1753–1759.

[23] A. De Luca and F. Flacco, “Dynamic gravity cancellation in robots with
flexible transmissions,” in Decision and Control (CDC), 2010 49th IEEE
Conference on, Dec 2010, pp. 288–295.

[24] M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schäffer, “A passivity-based
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