

B6 Advanced Structure Design for Future Aircraft

Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures

ECO-COMPASS

Jens Bachmann, DLR Xiaosu Yi, AVIC

Scientific & technical goals

- Natural Fibres?
- Bio-based resins?
- Recycled fibres?
- Multifunction?

?

ECO-COMPASS

www.eco-compass.eu

Scientific & technical goals

• ECO-COMPASS

- Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures
- Cooperation of Chinese and European partners
- 2016 2019
- *Identification of applications for eco- and multifunctional composites*
- Development, characterization and simulation of eco-materials to give a broad overview of the possibilities in aviation with leverage to other transport sectors like automotive and railway
- Application / Demonstrators
- Life Cycle Assessment (LCA)

Improvement of fibre properties

Modification of sisal fiber with CNC by (a) electrophoresis, (b) electrostatic adsorption

Treatment	Diameter (µm)	Tensile strength (MPa)	Young's Modulus (GPa)
Untreated	173.3 (31)	529.9 (102)	13.6 (2.9)
CNC-treated	175.3 (32)	511.5(97)	14.4 (3.3)
Alkali-treated	142.6 (18)	692.8 (92)	18.8 (3.0)
Alkali-CNC-EPD	156.4 (23)	614.9 (73)	22.0 (3.1)
Alkali-CNC-ESA	150.2 (20)	716.6 (110)	21.0 (2.6)

Li Y, Yi X, Yu T, Xian G, An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers, Advanced Composites and Hybrid Materials, 2018, 1(2), 231-246

Plasma treatment (rCF, flax)

Hybrid nonwoven (rCF, flax)

Fibre volume content

Techtextil 2019 forum, TTF 9 - sustainable fibre innovations & applications: "Plasma treatment of bio-based and recycled fibres for eco-composites", R Garcia, LEITAT

Aerospace 2018, 5(4), 107; https://doi.org/10.3390/aerospace5040107 Aerospace 2018, 5(4), 120; https://doi.org/10.3390/aerospace5040120

Natural oil based

based Furan based Natural Phenolic and Polyphenolic

Isosorbide

Lignin derivatives Rosin based △Zhu et al. 2004 [17] - n.o.b. ▲Zhu et al. 2004 [17]- p.c. □Gupta et al. 2011 [20] - n.o.b. Supanchaiyamat et al. 2012 [30] - n.o.b. + Ding et al. 2015 [31] - n.o.b. OPark et al. [39] apud Raquez et al. 2010 [114] - n.o.b. ● Park et al. [39]apud Raquez et al. 2010 [114] - p.c. ×Sudha et al. 2017 [41] - n.o.b. Sudha et al. 2017 [41] - p.c. X Manthey et al. 2013 [44] - n.o.b. □Hong et al. 2014 [48] - i.b. Hong et al. 2014 [48] - p.c. - Feng et al. 2011 [49] - i.b. OHu et al. 2016 [60] - f.b. ⊗Hu et al. 2016 [60] - p.c. △ Deng et al. 2015 [61] - f.b. ▲ Deng et al. 2015 [61] - p.c. OTarzia et al. 2018 [74] - n.p.b. Tarzia et al- 2018 [74] - p.c. ♦ Unnikrishnan Thachil 2008 [75] - n.p.b. + Cao et al. 2013 [76] - n.p.b. Shibata and Nakai 2009 [77] -n.p. ▲ Deng et al. 2013 [111] - r.b. Wang et al. 2017 [106] - l.d. Wang et al. 2017 [106] - p.c. OLi et al. [112] - r.b. ●Li et al. [112] - p.c. -Hamerton and Mooring 2012 [10] - epoxy -- Hamerton and Mooring 2012 [10] - Phenolic - Hamerton and Mooring 2012 [10] - Toughened BMI - Hamerton and Mooring 2012 [10] - Cyanate ester Hamerton and Mooring 2012 [10] - Phenolic-triazine r -Hamerton and Mooring 2012 [10] - Polybenzoxazine RTM 6 TDS [113]

Ramon, E.; Sguazzo, C.; Moreira, P.M.G.P. A Review of Recent Research on Bio-Based Epoxy Systems for Engineering Applications and Potentialities in the Aviation Sector. *Aerospace* 2018, 5, 110

Bucharest, 27-30 May 2019

• Rosin-based curing agent epoxy resin

Property and test condition		Unit	Reference ¹	Test result	Standard
Tensile strength warp	RT/dry	MPa	≥500	707	ASTM D 3039
Tensile modulus warp	RT/dry	GPa	65±8	62.3	
Tensile strength weft	RT/dry	MPa	≥500	557	
Tensile modulus weft	RT/dry	GPa	65±8	60.9	
Compression strength warp	RT/dry	MPa	≥300	509	ASTM D6641
Compression modulus Warp	RT/dry	GPa	58±8	61.2	
Compression strength Weft	RT/dry	MPa	≥280	362	
Compression modulus weft	RT/dry	GPa	57±8	57.7	
Bending strength warp	RT/dry	MPa	≥650	883	ASTM D 790
Bending modulus warp	RT/dry	GPa	58±8	56.8	
Short bean shear strength	RT/dry	MPa	≥50	55.7	ASTM D2344
In plane shear strength	RT/dry	MPa	≥45	72.6	ASTM D3518
In plane shear modulus	RT/dry	GPa	3.5±1	3.84	

¹ A commercial product

Aerospace 2018, 5(2), 65; <u>https://doi.org/10.3390/aerospace5020065</u> Aerospace 2018, 5(4), 110; <u>https://doi.org/10.3390/aerospace5040110</u>

• Flammability

AGMH-1 "Green Honeycomb" is made of plant fiber hybrid paper containing 20% plant fibers.

Items	Compression strength, MPa	Longitudinal shear strength, MPa	Transversal shear strength, MPa	Longitudinal shear modulus, MPa	Transversal shear modulus, MPa
Nomex, I	1.24	1.0	0.55	32.5	19.5
Nomex, II	1.64	1.07	0.58	36	19
GREEN Honeycomb	1.78	1.16	0.75	43.2	29.3

Modelling

Composite Structures 131 (2015): 707-719. DOI: 10.1016/j.compstruct.2015.06.006 Composite Structures 206 (2018): 215-233. DOI: 10.1016/j.compstruct.2018.08.022

Bucharest, 27-30 May 2019

European Commission

Electrical Conductivity Integration via InterWoven Wire Fabrics (IWWF)

Damage analysis CFRP lightning

Dong Qi, Wan Guoshun, Guo Yunli, Zhang Leian, Wei Xiuting, Yi Xiaosu, Jia Yuxi. Damage analysis of carbon fiber composites exposed to combined lightning current components D and C. *Composites Science and Technology*, 179 (2019): 1-9

Potential gaps and challenges

- Fire resistance, especially the Heat Release of NFRP and (bio-based) epoxy resins.
- Long term behaviour
- Assessment of potential environmental impacts of treatments and processes to improve properties of eco-composites

European Commission

Cross-cutting issues (tech. & non-tech.)

- Enhanced links between the European and Chinese entities contributing to the European initiatives in international cooperation
- Many open access publications which made the project data management "FAIR" (findable, accessible, interoperable and re-usable)
- Potential reduction of environmental impacts (e.g. global warming) during all life cycle phases

• Bio-based fibres and resins systems are promising materials for eco-composites in other transport sectors and industries. Successful use in demanding aviation could lead to increased use in other application areas

Impacts

• Reduction of environmental footprint by substitution of synthetic composite materials with bio-based and recycled materials.

- Raw materials (and processes)
- Fuel consumption during use-phase / lower density and multifunctional aspects.
- End-of-Life recycling and energy recovery options
- Numerous publications, conference sessions and news articles
 - Special Sessions (ICCS, ICGC)
 - SCTS and Aerospace Special Issue (book)
 - Euronews "futuris" film

ECO-COMPASS Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures

aerospace

European Commission

Demonstrators

Airbus

AVIC

Useful infos and acknowledgements

TandemAerodays19.20 <u>http://www.tandemaerodays19-20.eu</u> Mrs Claudia Dobre <u>dobre.claudia@incas.ro</u> Tel: +40.769.054.959

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 824238

ECO-COMPASS http://www.eco-compass.eu Contact Jens.bachmann@dlr.de

This project has received funding from: - The European Union's Horizon 2020 research and innovation programme under grant agreement No 690638

- The Ministry for Industry and Information of the People's Republic of China under grant agreement No [2016]92

