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Abstract—Global navigation satellite systems need
a stable and robust system time in order to provide
services with high accuracy. A well established approach
for the generation of such a time scale is the composite
clock method. Differently from single clock approaches,
a set of clocks is used to define a system time scale
by generating a weighted average of their single contri-
butions. The clocks are measured with respect to each
other and the measured signals are fed into a Kalman
filter, which implicitly provides the system time of the
ensemble, in terms of the implicit ensemble mean (IEM),
a so called paper clock. The IEM generally exhibits a
better stability than every single clock in the ensemble
for all sample intervals. However, this quantity is not
directly available in hardware, but can be realized by
steering a clock with a dedicated control loop containing
a second Kalman filter and a regulator. The output
of the steered clock provides in this way a physical
realization of the IEM.

The system realizing the IEM is quite complex and the
resulting performances depend on a variety of factors.
Furthermore, the resulting behavior can only be evalu-
ated after a sufficient amount of data is collected, which
can take a long time. For these reasons, it is desirable
to have a tool for simulating this system and thus
analyzing the resulting IEM before launching extensive
measurements. This paper describes how such a system
can be simulated, by providing a flexible environment
to prove a given setup of clocks and settings.

The simulation algorithm is tested with scenarios of
increasing complexity: firstly, for validation purposes,
the simulation results are compared with real mea-
surements. Secondly, different compositions of mixed
ensembles are simulated. Then, the simulation is run
by using different regulators and different parameters.
Finally, the effects of mismodelling on the resulting IEM
and its realization are assessed.

In light of the long term goal of setting up a mixed
clock ensemble in hardware, these analyses can reduce
the invested time, as well as pointing out which aspects
of the composition algorithm must be researched with
particular care.

Index Terms—Timing, clocks, time measurement,
simulation, satellite navigation systems.

I. Introduction

Many applications today need a stable and precise time
scale to ensure correct operation, such as navigation sys-
tems, finance and information systems. The composite
clock technique based on Kalman filters, proposed by
Brown [1], is a promising concept to achieve these require-
ments. Instead of relying on a single master clock which
supplies the system time, this technique considers a set of
clocks, all contributing to the generation of a time scale.
The clocks are measured with respect to each other and the
measurements are fed into a Kalman filter which estimates
the clocks’ states. The filter also provides a weighted
average of the contribution of each clock, called Implicit
Ensemble Mean (IEM). The IEM generally outperforms
each clock in the ensemble in terms of overlapping Allan
deviation (OADEV) and it shows an enhanced robustness,
since a failure in a clock can be compensated by the
remaining clocks [2], [3]. However, the IEM is only a
paper clock, in fact it computation requires knowing the
unobservable phase state of each clock. It can be computed
in a simulation, but in a real case, in order to have a
physical realization, a clock signal has to be steered to the
IEM by a dedicated control loop [2]. A second Kalman filter
is needed to provide the input to a regulator, so that a
clock signal is steered to the IEM and thus can be used as
a physical realization for the system time.

The aim of this work is to simulate the generation and
realization of the IEM of a mixed ensemble, that is, a set
of clocks of different types. In the simulation it is possible
to test different scenarios, for example involving different
ensembles, different steering techniques and steering pa-
rameters. This reduces the need of running extensive and
time consuming measurement campaigns. Furthermore, the
simulation allows to test and study new techniques and
algorithms, as well as mitigate unwanted effects, such as
the additional noise introduced by the steering action.

This paper is structured as follows. In Section II the
system under study is described in detail. Section III
describes the general process of the simulation, which can
be divided in blocks. Each block is introduced and their
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detailed description is contained in the following sections:
Section IV deals with the generation of the clocks’ models,
Section V lists the steps followed in the main simulation
process, while Section VI describes how the results are
evaluated. Section V is further divided, so that each sub-
section describes one block of the system: the generation of
the measurements (Section V-A), the first Kalman filter
(Section V-B), and the second Kalman filter with the
regulator (Section V-C). The performances of the simu-
lation algorithm are tested in Section VII: the validation
is described in Section VII-A, the realization of mixed
ensembles in Section VII-B, the realization using different
regulators in Section VII-C and the effects of mismodelling
in Section VII-D. Finally, Section VIII concludes this work
and describes its outlook.

II. Description of the System
The system can be roughly divided in two parts: the first

part consists of the clock ensemble and its estimation, while
the second is responsible for IEM realization and contains
the feedback loop. The scheme of the system can be seen
in Fig. 1. The black solid part describes how the clock
ensemble is estimated. A set of N clocks of different types
are measured with respect to the first clock, leading to
a set of NZ = N − 1 measurements. These are fed into
a Kalman filter, which estimates the states of each clock
based on the stochastic clock models. The red dashed part
is responsible for the realization of the IEM, as proposed
in [2]. The signal coming from a clock of the ensemble (or
an external additional clock) is splitted and then steered
by a microphase stepper. The steered signal is the physical
realization of the IEM. The feedback loop consists of a
second Kalman filter which estimates the states of the
steered clock, and the estimation is used by the regulator
to compute the control action.

III. Simulation Setup
The simulation algorithm in MATLAB allows a flexible

environment in which the realization setup can be tested
and validated. It is composed of the following steps:

1) Definition of the parameters: in the beginning the user
has to set the values of all the parameters which define
the simulated scenario. In particular, the ensemble
must be formed (number and type of clocks), the
measurement noise, the steering parameters and the
length of the simulation must be set;

2) Generation of the models: with the parameters previ-
ously defined, in this step the matrices of the models
and the noise vectors are generated. Three clock mod-
els are used: the ‘generation model’ defines how the
real clocks and their measurements are simulated, the
‘estimation model’ is used in the first Kalman filter
to estimate the clock states and the ‘steering model’
is used in the second Kalman filter in the feedback

loop. Having different models for generating the mea-
surements and estimating the clock states reflects the
real case, where the clock model in the Kalman filter
is always affected by uncertainty with respect to the
real behavior of the clocks;

3) Allocation of the variables: pre-allocating the memory
space for the resulting variables greatly reduces the
simulation time. The size of the variables can be
computed depending on the simulation parameters;

4) Execution of the simulated process: here the composi-
tion algorithm is run step by step in a loop simulating
a discrete time operation. In particular, at each time
step, the actions described in Section V are executed;

5) Post-processing and data visualization: the data col-
lected in the simulation loop are processed to gen-
erate meaningful descriptions of the performance. In
particular, plots of the OADEV of various signals are
generated.

The following sections will describe these steps with more
details.

IV. Definition of the Parameters and Genera-
tion of the Models

In the beginning, the user defines all the desired pa-
rameters for the simulation. In particular, the ensemble
composition is set by listing the types and order of the
clocks. The first clock is considered to be the reference
clock, to which all the other clocks are measured, while
the last one is the steered clock, whose signal corresponds
to the IEM realization and it is not part of the ensemble.

The clock ensemble is modelled with a stochastic linear
dynamic model, namely the 2-state model with constant
frequency drift, as described in [4]. In particular, at the
time step tk, the states of the clock i at the next time step
tk + τ0 can be computed as

(1)xi(tk + τ0) = Φixi(tk) + Di + Biu(tk) + wi(tk) ,

where τ0 is the time discretization, xi is the state vector
(containing the phase deviation, part of frequency deviation
and possibly a set of Markov processes), Φi the state
propagation matrix, Di the drift vector, Bi the input
matrix, u the steering action and wi the noise vector. The
latter is normally distributed wi ∼ N (0, Qi(τ0)):

Qi(τ0) =
[

iσ
2
1τ0 + iσ

2
2

τ2
0
3 iσ

2
2

τ2
0
2

iσ
2
2

τ2
0
2 iσ

2
2τ0

]
, (2)

where the matrix can be possibly expanded to account
for a set of Markov processes. In (2), iσ1 and iσ2
are the noise parameters defining the clock model, to-
gether with the drift id and the parameters of the
Markov processes iU, iR. The set of parameters is
{iσ1, iσ2, id, [iU1, iR1, ] , . . . , [iUM , iRM , ]}, where a set
of M Markov processes is considered. For more details, the
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Figure 1: Scheme of the IEM realizazion.

reader can refer to [4], [5]. The clock ensemble is generated
by staking the state vectors of the single clocks

xT =
[
xT

1 , . . . , xT
i , . . . , xT

N

]
,

so that the overall state equation can be formed:

x(tk + τ0) = Φx(tk) + D + Bu(tk) + w(tk) , (3)

where the matrices and vector are computed by appropri-
ately using the respective terms of the single clocks:

Φ = diag (Φ1, . . . , ΦN ) , DT =
[
DT

1 , . . . , DT
N

]
,

w ∼ N (0, Q(τ0)) , BT =
[
BT

1 , . . . , BT
N

]
,

Q(τ0) = diag (Q1(τ0), . . . , QN (τ0)) .

The clock measurement device is modelled with the mea-
surement equation

z(tk) = Hx(tk) + v(tk) , (4)

where z is a vector of size 1 × NZ containing the measure-
ments, H the measurement matrix and v the measurement
noise. The noise has distribution v ∼ (0, RZINZ

), where
RZ is the noise covariance and Ii indicates an identity
matrix of size i. The measurement matrix describe how the
clocks are measured: in this case the first clock will be used
as a reference, to which all the other signal are measured.
Each measurement consists of the difference between the
phase components of each clock and the first clock. This
models the current setup of the hardware measurement
unit, which uses the first channel as reference, to which
all others are measured. By changing the H matrix, other
setups can be modelled. If no Markov process is considered,
then

H =


−1 0 1 0 0 0 . . . 0 0
−1 0 0 0 1 0 . . . 0 0
...

−1 0 0 0 0 0 . . . 1 0

 .

The actual number of zeros on each row depends on the
number of Markov processes that are used to model the
different clocks. The gain matrix of the regulator K can
be computed by using control theory techniques, once the
model of the steered clock is defined. In this work, the
approaches of pole placement (PP) and linear-quadratic
Gaussian regulator (LQG) are considered. As described
in [6], [7], [8], these are two promising techniques for clock
steering, which have been already extensively tested. Their
usage in clock steering is described in [7], where a similar
analysis is conducted, but for the case of a clock being
steered to another one. Other works on the topic are for
example [9], [10], [11], [12], [13], [14]. In the case of PP, the
user can set the desired position of the closed-loop poles by
choosing the parameter 0 < λ < 1. For the LQG method,
the weights WR and W Q must be set. WR is a scalar weight
for the control value, while W Q is a matrix of weights for
each of the states of the steered clock. Both methods yield
the gain matrix K, which is multiplied by the estimated
states of the steered clock x̂N (tk) produced by the second
Kalman filter to obtain the control action:

u(tk) = −K · x̂N (tk) .

The set of matrices and parameters which completely
describe the system is defined as

Mj = {Φj , Dj , Bj , Qj , Hj , jRZ} .

As already mentioned, three models of the clock ensemble
are generated: the model Mg is used to generate the mea-
surements, Me is used in the first Kalman filter, while Ms

is used in the second Kalman filter and for the regulator’s
design.

V. Simulation of the Process

The main part of the simulation consists of a loop which
is executed at every time step. Within the loop, all the



Initialization
x̂(t1) = 0NS

u(t1) = 0 1P (t1) = eRZ INS
;

Prediction step
x̂−(tk) = Φe x̂(tk−1) + De + Be u(tk−1);
1P −(tk) = Φe 1P (tk−1) ΦT

e + Qe;
Correction step

1K(tk) = 1P (tk)− HT
e ·

·
[
He 1P −(tk) HT

e + eRZ INZ

]−1
;

x̂(tk) = x̂−(tk) + 1K(tk) ·
[
z(tk) − He x̂−(tk)

]
;

P̃ (tk) = [INS
− 1K(tk) He] 1P −(tk);

IEM generation
a(tk) = P −1

ϕϕ(tk) 1
1T P −1

ϕϕ(tk) 1 ;
IEM(tk) = a(tk) · [ϕ( tk )−ϕ̂( tk )];

Covariance reduction
P R = S P̃ (tk) ST ;
1P (tk) = 1

2

(
P R + P T

R

)
;

(a) First Kalman filter

Initialization
ξ̂(t1) = 0NS

; ũ(t1) = 0; 2P (t1) = sRZ INS
; ` = 1;

if (tk mod Tu == 0) then
Prediction step

ξ̂
−

(t`) = Φs ξ̂(t`−1) + Ds + Bs ũ(t`−1);
2P (t`)− = Φs 2P (t`−1) ΦT

s + Qs;
Correction step

2K(t`) = 2P (t`)− HT
s ·

·
[
Hs 2P (t`)− HT

s + sRZ INZ

]−1
;

ξ̂(t`) = ξ̂
−

(t`) + 2K(t`) ·
[
z̃(tk) − Hs ξ̂

−
(t`)

]
;

P̃ (t`) = [INS
− 2K(t`) Hs] · 2P (t`)−;

Covariance reduction
P R = S P̃ (t`) ST ;
2P (t`) = 1

2

(
P R + P T

R

)
;

Compute steering
u(tk) = ũ(t`) = −K ξ̂

−
S (t`);

` = ` + 1;

else
u(tk) = 0;

(b) Second Kalman filter

Figure 2: Steps in the two Kalman filters

blocks shown in Figure 1 are processed. In particular, the
simulation follows these steps:

1) the clocks and their measurements evolve according to
the generation and steering models;

2) the clocks’ states are estimated by the first Kalman
filter based on the generated measurements and on
the estimation model. Additionally, in this Kalman
filter the IEM is computed. This value only serves for
postprocessing purposes and not for steering, since it
can not be recreated in real hardware;

3) the measurement of the steered clock is modified to
achieve the realization of IEM;

4) the states of the steered clock are estimated by the sec-
ond Kalman filter based on the modified measurement
and on the steering model;

5) the control action for next step is computed.
These steps are described in more details in the following
subsections.

A. Generation of the Measurements
The simulated states of the clocks and their measure-

ments are generated by following the (3) and the (4), using
the generation model Mg. These quantities are considered
as being the real states and measurements:

xk = Φgxk−1 + Dg + Bguk−1 + gwk−1s ,

zk = Hgxk + gvk ,

where the noise vectors gw and gv are normally distributed:

gwk ∼ N
(
Qg

)
, gvk ∼ N (gRZINZ

) .

B. First Kalman Filter
The first Kalman filter estimates the states of the clocks

in the ensemble based on the estimation model Me and
on the measurements. It can either use generated mea-
surements or real measurements, obtained from the cor-
responding hardware ensemble being simulated. Two steps
in the Kalman filter are of great importance: firstly, the
IEM has to be generated using the real and estimated
states and the covariance matrix. Secondly, the covariance
matrix must be reduced, since the clock ensemble is an
unobservable system, as described in [5]. Please note that
the step for IEM generation is possible only when using
generated states and measurements, since in hardware only
phase and frequency differences are available. Let ϕ be
a vector containing the phase component of each clock
from the states vector, and P ϕϕ a matrix containing only
the elements corresponding to the phase component of
each clock from the covariance matrix P̃ k. Then, the first
Kalman filter follows the steps depicted in the algorithm
of Fig. 2a, where S is a diagonal matrix deleting the phase
components in the covariance matrix P̃ [5], 1 is a column
vector of ones, and NS the number of states in x. The hat •̂
notation indicates the a posteriori estimation of a quantity,



while the minus •− indicates the a priori estimation. The
subscripts aim to distinguish quantities of the first and
second filter and different clock models.

C. Second Kalman Filter and Regulator
The second Kalman filter estimates the states of the

clocks by considering a modified measurement of the
steered clock. In particular, following [3], the new measure-
ment is defined as:

z̃k = [zk,1 . . . zk,NZ −1 zk,NZ
+ x̂k,1]T .

In other words, the last component of the measurement
vector (corresponding to the steered clock) is summed with
the estimated first state, that is the estimated phase of
the reference clock. The modified measurement is used to
estimate a new set of states in the second Kalman filter.
The second Kalman filter computes the control action,
instead of the IEM. It is not executed at each step, but
only when the control action has to be applied, that is every
Tu steps. This happens at the step k if k is a multiple of
the control interval Tu. The steps of the filter are listed in
Fig. 2b, where ξ̂

−
S (t`) is the last part of the vector ξ̂

−
(t`),

with the states of the steered clock. Please note that the
prediction step does not use the last value of u, but that of
ũ. While the vector u contains zeros at the time steps where
the control is not computed, ũ contains only the values
computed in the second Kalman filter (ũ ⊆ u). The control
value is stored and applied at the next step, so that the
feedback loop is closed.

VI. Postprocessing
During each step of the simulation, the variables are

saved for their successive analysis. The most important
metric used here is the OADEV [15], that is computed as
function of the sampling interval τ and shown in log-log
plot. In these logarithmic plots it is possible to directly
identify the characteristic noise components of each sig-
nal [4], [15], [16], [17]. In the following, these stabilities are
computed and plotted:

• the OADEV of the clocks σi(τ), computed using the
simulated phase ϕi, or the OADEV of the real mea-
surements;

• the theoretical OADEV σg
i (τ) of the model used to

generate the measurement (Mg);
• the theoretical OADEV σe

i (τ) of the model used to
estimate the clock states (Me).

The theoretical OADEVs are computed starting from the
model parameters [4]:

σi(τ) =

 iσ
2
1

τ
+ iσ

2
2

3 τ + τ2

2 id +
M∑

j=1

iUj

iR2
j τ2 [−3

+ 4 exp(−iRjτ) − exp(−2iRjτ) + 2iRjτ ]

 1
2

.

VII. Testing of the Simulation Algorithm
In this section, the simulation algorithm is validated and

tested. For validation purposes, a set of real measurement
from an IEM realization of an homogeneous ensemble is
used. The same setup is simulated and the results are com-
pared in terms of OADEV. Then, the algorithm is tested
with scenarios of increasing complexity: in the beginning,
various mixed ensemble are simulated; after that, various
sets of parameters are tested on a given ensemble, in order
to evaluate the performances in the different cases: firstly,
the parameters of the regulator are changed, using either
PP or LQG with different coefficients. Secondly, the effects
of clock mismodelling can be assessed by generating the
measurements and estimating the clock states using two
different models.

A. Validation with an Homogeneous Ensemble
In order to validate the simulation algorithm, a real mea-

surement of an ensemble of 3 rubidium clocks (Spectratime
SRO-100) is compared with the results of the corresponding
simulation. A validation involving a mixed ensemble can
not be performed yet, since the hardware realization of
a mixed clock ensemble is still being implemented in our
time lab. However, in this study an Oven Controlled Quartz
Oscillator (OCXO, KL3381 by K+K Messtechnik GmbH)
is steered via a High Resolution Offset Generator (Spectra-
Dynamics HROG-10) to the IEM of 3 rubidium clocks. In
the hardware Kalman filter, the clocks are modelled with
a 2-state clock model without drift or Markov processes
(Rubidium: σ2

1 = 1.53 · 10−23, σ2
2 = 2.8 · 10−27. OCXO:

σ2
1 = 10−24, σ2

2 = 5 · 10−26). The regulator is a LQG
with parameters WR = 1, W Q = diag

(
10−20, 1

)
, applying

a control action every 10 seconds. The modelled measure-
ment noise covariance is R = 10−24. This setup was run for
72 hours and the resulting stability is shown in Fig. 3a. Two
measurement devices are in use: the first is referenced to
an Active Hydrogen Maser (AHM, by KVARZ-VREMYA)
so that the stability of the single clocks can be assessed;
the second device is referenced to the first rubidium, so
that the measurements used in the IEM generation can be
collected. These can be used in the simulation as described
in the following.

The behavior of the OCXO is very abnormal, since it
does not present any drift at long term. The rubidium
instead show an increased drifting behavior. Nevertheless,
the system succeeds in steering the OCXO to the expected
IEM behavior. The steered OCXO is characterized by a
relatively high short term stability and a bump due to the
steering process. Its long term behavior resembles more
an average of the rubidium clocks, rather than an IEM
with improved stability. However, this latter behavior can
be seen also in the simulation in Fig. 3b. The simulation
is setup to resemble the real case as much as possible.
The estimation model corresponds to the one used in
the hardware realization (2-state model without Markov
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Figure 3: Validation of the algorithm by comparing the real measurement and the simulation of the realization of an ensemble of 3 rubidium
clocks.

processes or drift), while the generation model was found
by fitting the measurements [4], producing the behaviors
shown in solid marked lines. The regulator is designed
using LQG with the aforementioned parameters, and the
simulated measurements have a noise with covariance RZ =
R = 10−24. The simulated IEM (and therefore also the
steered clock) shows a behavior at long term which does
not improve the stability of the rubidium clocks. This could
be due to the enhanced drift. It however shows a good
agreement with the real case. A difference with the real
case is the generated measurement noise; in the simulation
the generated noise has the same covariance as in the
estimation model (RZ = R), which could be different in
hardware.

A similar simulation is performed by including the real
measurements: the simulated clocks, Kalman filters and
regulator are setup in the same way, but instead of using the
simulated (generated) measurements to estimate the clocks’
states in the first Kalman filter, the real measurements are
introduced. In this way it is not possible to compute the
IEM, since the real states of the clocks are not available.

The resulting stability of the simulated steered clock can
be seen in Fig. 3c: the short term stability is the same as
the purely simulated case (since the steered clocks are the
same in both cases), but considering the real measurements
increases the magnitude of the steering bump. This could
imply that the steering process in hardware introduces
some additional effects which are not regarded in the
simulation and requires further analyses. Nevertheless, the
three cases show a good agreement in terms of OADEV
of the steered clock, and an almost perfect overlapping at
long terms. The successful comparison of the real measure-
ments and the corresponding simulation serves as an initial
validation of the simulation algorithm.

B. Realization of the IEM of Mixed Ensembles
Various scenarios of mixed ensembles have been simu-

lated. The ensembles are generated by combining clocks
showing good short term stability together with clocks
having good long term stability. This choice produces an
IEM profiting from both clocks and possibly having good
stability for a long set of sampling intervals. The clock with
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Figure 4: Different examples of mixed IEM realizations. The regulator is designed with pole placement (PP), λ = 0.6, control interval Tu = 10 s.
In each plot, the dashed line represents the corresponding IEM, while the solid line without markers is the steered clock.
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the best short term stability in each ensemble is chosen
as steered clock; the reason for this can be understood by
considering the first example in Fig. 4a. The ensemble of
2 OCXOs and 2 rubidium clocks has an IEM shown with
dashed line. The steered OCXO (solid green line) reaches
the IEM at a sample interval of about 103s. However, at
short sample times, the realization has a worse stability
than the IEM. This has two reasons: first, the steered
clock at short terms has the same stability of the original
unsteered signal, since the control feedback can not im-
prove the short term stability, being applied every 10 sec-
onds. Secondly, the steering process introduces some jumps
which, albeit small, worsen the stability of the steered
signal producing a bump at sampling intervals around the
control interval [2]. These two effects can be seen in every
simulation of this paper, as well as in the measurements. If
the goal is to have a steered signal with improved stability,
it is therefore desirable to steer clocks showing a good short
term stability and choosing a control interval having the
smallest possible impact on the resulting OADEV.

Figure 4 shows 4 scenarios with different mixed en-
sembles: in Fig. 4a an OCXO realizes an ensemble of
2 OCXOs and 2 rubidium clocks; in Fig. 4b a cavity-
stabilized laser system (Optical Reference System - ORS)
realizes an ensemble of 2 ORSs and 2 optical clocks based
on molecular iodine (iodine clocks); in Fig. 4c an ORS
realizes an ensemble of 2 ORSs, 2 iodine clocks and 2
AHMs; Fig. 4d shows an extension of the second case, where
an ORS realizes an ensemble of 4 ORSs and 4 iodine clocks.
In all cases, the clock with the best short term stability
is steered and the regulators are designed using PP with
λ = 0.6 and a control interval of 10 s. The case in Fig. 4d
is an extension of the case in Fig. 4b, where the number of
clocks of each type is increased from 2 to 4. The realization
of the ensemble of 4 clocks is shown with the dotted blue
line, while the solid green line is for the ensemble of 8
clocks. It can be noted that increasing the number of clocks
produces an IEM with better stability, but the short term
stability of the steered clock is not improved, due to the
aforementioned reasons.

An additional case has been simulated, which involves
a larger number of clocks. The aim is to reproduce a new
concept for a future GNSS, called Kepler [18], [19], [20], and
to assess which stability can be achieved in such a scenario.
In the Kepler system, 24 navigation satellites carry an ORS
each. The system performances benefit from 6 additional
satellites flying in low earth orbit. They carry the same
ORS in addition to optical clocks based on molecular
iodine. Additionally, an AHM is located at one ground
station. All the satellites are connected via inter-satellite
links (ISL), so that it is possible to tightly synchronize
them to a common system time. Kepler system time (KST)
can be conceived of being the IEM of all the clocks in the
system, profiting from the contribution of in total 37 clocks.
Each satellite produces its local copy of KST, by steering

an ORS signal towards the IEM. This is possible since
the satellite receives the information about the frequency
references on the other satellites thanks to the ISLs. In this
way, the KST is produced onboard each satellite, which
is synchronized to it. The Kepler clock ensemble and its
realization is simulated using PP (λ = 0.6 and Tu = 10 s)
and the resulting stability is shown in Fig. 5. It can be
noted that the IEM shows a stability in terms of OADEV
smaller than 10−15s/s for all computed sampling intervals.
However, the realization has a slightly worse stability than
the IEM at short terms due to the effects of the steering
process. At long terms the IEM shows a behavior which lies
above the stability of the AHM. This is probably because
the difference between the clocks’ stabilities is quite big
(two orders of magnitude) and the contribution of the AHM
to the IEM is smaller compared to the combined weight of
30 ORS.

C. Realization Using Different Designs of the Regulator
In this section, the effect of using different control pa-

rameters is investigated. The ensemble composition is kept
constant and consists of an OCXO which is steered to the
IEM of 2 OCXOs and 2 rubidium clocks. Fig. 6 shows the
effects of changing the control interval Tu on the steered
clock. In the case of PP (Fig. 6a) the λ parameter is set to
λ = 0.6. For LQG (Fig. 6b) the weights are:

WR = 10−8, W Q =

10−20 0
1

0 10−35

 . (5)

As expected, changing the control interval causes a shift
along the τ axis of the bump in the stability curve of the
realization. The PP method appears to be more sensitive
to different control intervals, while the LQG method shows
more consistent results. Please note that the differences
among the curves at long terms are due to the statistical
nature of the simulations.

In Fig. 7, various realizations using different parameters
for regulator design are shown. For PP, the parameter λ
was gradually increased from λ = 0.2 to λ = 0.8. As can be
seen in Fig. 7a, when increasing λ the steering bump moves
to longer sampling intervals. For LQG, the analysis is more
complex, since there are more parameters coming into play
and there exist only rules of thumb for choosing them. In
Fig. 7b, a simplified case is considered, where the Markov
processes are neglected. In this way, there are 3 parameters
to be set: the weight WR and the weights in the matrix
W Q. In total, 18 cases have been simulated by combining
different values of the weights. The resulting realizations
showing similar behaviors are collected together (shown
in the simplified legend with curly brackets). In the first
set of simulations, the weight of the second state is set
to W Q(2, 2) = 1 and the other weights are changed: this
doesn’t influence the realizations, which are overlapping
each other (black solid lines). The red lines show the second
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Figure 6: Effects on the IEM realization by using increasing control intervals: Tu = {1 s, 10 s, 100 s}
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Figure 7: Effects on the IEM realization by using different parameters. In case of PP, an increasing λ = {0.2, 0.4, 0.6, 0.8}. In case of LQG,
refer to the legend. Tu = 10 s.

set of simulations, where WR is changed and W Q set to
2 different values: W Q(2, 2) = 10−10 (dashed lines) and
W Q(2, 2) = 10−20 (solid lines). In both cases, by increasing
WR the stability of the steered clock will be similar to
the unsteered one, since the steering action is reduced.
The realization shows therefore an increase at long terms,
tending to the unsteered OCXO. The change in WR is
more impacting when W Q(2, 2) is higher. Finally, the green
lines show the cases with constant WR. Again, the dashed
lines are for W Q(2, 2) = 10−10 and the solid ones for
W Q(2, 2) = 10−20. In this case, the dashed and solid green
lines are overlapping when the same value of W Q(1, 1) is
used, suggesting that they are not influenced by W Q(2, 2).
An increase of the first weight generates a shift in the
steering bump towards shorter sampling intervals.

D. Effects of Mismodelling
The Kalman filters and the generation of the measure-

ments are performed using two separate models in order
to reproduce a real case scenario, where it is impossible to
perfectly predict the clock behavior and the model used
in the Kalman filter is approximated. In order to evaluate
the effect of this mismodelling, the simulation has been
run with an intentionally incorrect estimation model. The

first analysis concerns the clock models: in one case, the
estimation model has a worse stability than the one used
to generate the measurements. Every parameter in the
model (except the Markov parameters iRj , setting the
processes’ locations along the τ -axis) has been increased
by 10 times. The models’ stabilities are shown in Fig. 8a
using dashed marked lines. It can be noted that the IEM
(and consequently the realization) is sensible to an increase
of the drift parameter in the estimation model. In the other
case, the estimation model has a better stability than the
generation model. Every parameter in the model (except
iRj) has been decreased by 100 times. The mismodelling
does not significantly change the realization, as shown in
Fig. 8b.

The second analysis focuses on the variance of the mea-
surement noise. It appears in the Kalman filter with the
parameter R, and in the measurement generation with the
parameter RZ . Keeping the latter constant, the value in
the estimation model is increased and decreased by 3 or
6 orders of magnitude starting from Rz. The resulting
realization is compared with the case of a perfect model
(R = RZ): in Fig. 8c Rz is set to 10−21, while in Fig. 8d it is
set to 10−27. It can be noted that if the noise R is modelled
with a lower parameter than the actual one (R � RZ), the
IEM and the corresponding realization are not particularly
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Figure 8: Effects of mismodelling on the IEM realization

influenced by the mismodelling. Conversely, if the noise is
overestimated (R � RZ), the IEM shows an increase in
the steering bump, especially if RZ is higher.

VIII. Conclusion and Outlook
The algorithm for simulating the realization of the IEM

of a mixed clock ensemble is described in this work. It
consists of a very flexible simulation environment, where
ensembling scenarios can be tested in a fast way. In partic-
ular, the user can form an arbitrary ensemble by choosing
the desired number and type of clocks. The simulation
uses three different models, reflecting the uncertainty of
the modelling in an hardware setup. Two different control
strategies are available, namely pole placement and linear-
quadratic regulator, whose parameters can be freely set.
The algorithm simulates each block and step present in a
hardware realization.

The results of simulating a homogeneous ensemble have
been compared to the corresponding hardware measure-
ment: the two realizations show a good agreement, thus
providing a initial validation of the simulation algorithm.
A further validation involving a mixed ensemble has to be
carried out as soon as the hardware for this scenario is
available and running.

Various ensembling scenarios have been simulated involv-
ing different settings. This allows to study the effects of
each parameter on the resulting realization. Firstly, the en-
semble composition is varied. In particular, the generation

of Kepler System Time is simulated with an ensemble of
37 clocks. Secondly, different regulators have been applied
and their steering parameters changed. Finally, some mis-
modelling has been introduced either regarding the clock
models or the measurement noise. The resulting effects on
the realization are shown.

By analyzing the realizations of the simulated scenarios
some aspects can be concluded. To achieve a good stability,
clocks showing complementary properties have to be used
in an ensemble, and the one with the best short term
stability should be steered to the corresponding IEM. The
control strategy and its parameters (λ, Wr and W Q, Tu)
have to be chosen case by case depending on the properties
of the clocks and on the desired results. The mismodelling
analysis showed that overestimating the clocks’ stability
and the measurement noise can lead to increased drift or
bumps in the realization. The IEM generation seems par-
ticularly sensible to the drift (Fig. 8a). It could be therefore
reasonable to have clock models with better stabilities than
the respective measured OADEVs.

This work represents one step towards the hardware
realization of a mixed clock ensemble. Future investigations
cover therefore this objective and complete the previous
works. In particular, new steering techniques and new pa-
rameters could be used to improve the steering performance
and decrease the negative effects of the steering process.
Then, as soon as the hardware for a mixed ensemble



is available, the simulation can be completely validated.
Subsequently, the robustness of the composition must be
assessed both in simulation and in hardware. This leads to
the development and implementation of active techniques
of fault detection and identification, which can make the
system more robust against failures and unpredictable
behaviors.
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