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New research activities on DLR’s EC135 ACT/FHS research helicopter has led to new

challenges for the automatic flight control software of this testbed. Noise abatement flights,
innovative automatic approach trajectories and other topics all require the helicopter to follow
a set of waypoints as precisely as possible.
This paper presents a new algorithm which is capable of generating curvature-continuous
trajectories. A modification of the natural cubic spline algorithm is presented, which allows
to incrementally fit cubic splines with defined boundary conditions through subsets of the way-
point list. By joining several of these splines with matching boundary condition, a continuous
trajectory is obtained. This approach allows to distribute the computational load of the cubic
spline calculation over several execution cycles of the real-time system. Based on these results,
a state feedback and a carrot chasing controller are developed and compared in terms of their
ability to reduce and stabilize the distance between the trajectory and the helicopter. The
approach is verified in DLR’s Air Vehicle Simulator (AVES).

I. Nomenclature
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Fig.1 DLR’s ACT/FHS Helicopter.

I1. Introduction

DLR’s EC135 Active Control Technology / Flying Helicopter Simulator (ACT/FHS, see Fig. [I) is used for a variety
of research topics. These include validation of novel control and identification techniques, pilot assistance systems,
noise abatement and innovative autonomous approach and landing techniques amongst others.
A lot of this research requires the precise following of trajectories which are typically defined and supplied as a list of
waypoints. In this context, waypoints are defined as physical locations in space which the vehicle shall pass through.
Trajectories on the other hand are mathematical curves defining a continuous flight path which the vehicle shall follow.
One example for such a research topic is the autonomous approach and landing research in Degraded Visual Environment
(DVE) scenarios. Hereby, the helicopter shall follow a trajectory communicated via a list of waypoints, which have
to be followed exactly to avoid collision with ground obstacles. Additionally, due to dynamic obstacle detection and
recalculation of the waypoint list, the ACT/FHS has to be able to cope with dynamic updates of the supplied waypoints.
Many other research applications also supply trajectories defined by waypoint lists for their respective target. This
illustrates the requirement for the Automatic Flight Control System (AFCS) of the ACT/FHS:

1) The ability of the AFCS to quickly plan and replan a trajectory through a given set of waypoints

2) The ability of the AFCS to follow this trajectory with little error

Trajectory generation and path following have been extensively studied for various fixed and rotary wing aircraft
both manned [1]] and unmanned [2f], ground-based vehicles [3]], and robotic arm manipulators [4]. Current autopilots
often use simple line-and-circle methods based on the Dubins Car Model [S] or extensions of this model [6]. While
these approaches are simple, robust, and computationally inexpensive [[7] the transition between a straight line and
a segment of a circle, introduces a discontinuity in the curvature of the trajectory. This C? discontinuity then leads
to a step in the demanded roll angle. Different techniques exist to address this drawback, for example by introducing
clothoid segments in the transition between straight line and arc segments [7]].
Another approach to generate trajectories between waypoints are spline segments such as Bezier curves [8]]. However, the
curvature at the interface of two Bezier segments is again discontinuous. This problem can be alleviated by employing
a special case of Bezier curve with zero-curvature at the initial and end point which is then inserted between two
adjacent straight-line segments [4]] or by using higher order Bezier curves and an optimization approach to generate
curvature-smooth trajectories [3} 9]
A different method to generate curvature-smooth trajectories from waypoint lists is to use piece-wise defined cubic
splines similar to Bezier curves, and matching first and second order derivatives by solving a linear equation system
[10]. While offering the advantage of a trajectory which is C°, C!, and C? continuous, the problem scales with the
number of waypoints. Therefore large number of waypoints imply a high computational burden.
Once the trajectory is generated, the vehicle has to be controlled in such a way that it stays on the calculated trajectory.
Typically, the problem is broken down in an inner loop controlling the body rates and angles of the aircraft, and an
outer loop, generating commands for the inner loop. The outer loop generates commands based on path deviations such
that the vehicle stays on the desired trajectory. In the following, we will assume that an adequate inner loop has been
designed, which simplifies the problem of designing a suitable trajectory controller.
Trajectory control design has been the subject of extensive studies. Examples are PID control [11], LQR control [12],
nonlinear Model Predictive Control with and without learning components [[13} [14], nonlinear guidance laws adapted to
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Fig. 2 Schematic of the control system structure of the ACT/FHS [19].

this problem [[15]], vector-field based control approaches, [16]], and algorithms known as "carrot chasing" or "rabbit
chasing" [17] amongst others. A good overview over a selection of algorithms is provided by [17]] which explores the
different properties of these algorithms.

All these algorithms were developed for unmanned aircrafts either in simulation or in real flight-tests. Additionally,
most of these algorithms are designed for a constant velocity of the vehicle and have to be retuned for different velocities
[6}14}115]]. For full size helicopters, these algorithms have to be adjusted as seen in the results of the flight-tests with
a full-sized Blackhawk helicopter using a modified "carrot chasing" algorithm which was implemented to steer the
helicopter along a given trajectory [18].

This study aims to develop an incremental real-time interpolation method based on cubic splines, along with a suitable
outer loop guidance and control algorithm. Both together can be used to generate and fly along trajectories with
smooth curvature suited for manned helicopter applications in a real-time environment. The 2D case in the x-y plane is
considered in the following.

III. The Control System of DLR’s ACT/FHS

DLR’s EC135 ACT/FHS is a light, twin-engine helicopter with bearlingless main rotor and fenestron (Fig. [T)). It
features a full-authority fly-by-wire/fly-by-light primary control system, which allows an experimental control system to
manipulate the controls of the helicopter.
The core control strategy of the ACT/FHS uses a Model-Based Control (MBC) approach in which the control system
imposes a specified model behavior to the closed-loop system [[19]. This can be a model which offers easy-to-control and
favorable flight characteristics or emulates a different helicopter. A schematic of the MBC structure is displayed in Fig.
[2l Hereby, the Command Model generates reference states which are used to control the ACT/FHS via a Feedforward
and a Feedback Controller. An Autopilot is acting on the states of the Command Model to enable low-level stabilization
and control. The Navigational Module provides high-level commands to the Autopilot based on the spatial position of
the helicopter.
A Model-Based Control approach can be of great use to reduce the workload of the pilot by specifying an easy-to-fly
control model or to test a new helicopter designs before production, which also motivates the name "Flying Helicopter
Simulator". For normal flight, the control system is configured to emulate an easy-to-fly, decoupled helicopter with
ADS-33 level-1 handling qualities. This model artificially couples the body rates p, g, and r in order to achieve
coordinated turns in fast forward flight. During hover, this coordinated turn coupling is disabled.
A consequence of this coupling is that during coordinated turns, the roll angle ¢ is directly related to the course angle
change y
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which will be useful for the design of the Navigational Module in Chapter[V] The parameter g denotes earth’s gravitational
acceleration.

IV. Cubic Spline interpolation of a waypoint list
A list of N + 1 waypoints Po, e Py in Cartesian space (X,y) serves as input for the following algorithms and is
considered given. Each waypoint Py is a two-dimensional vector consisting of the x- and y- component xz and yx. A
trajectory is denoted by I' and consist of piece-wise defined cubic splines v connecting the waypoint P, with the next
waypoint Pyy1.

A. Cubic Spline Algorithm
A piece-wise defined trajectory I' can be constructed by using N parametric vectors consisting of a two-dimensional
vector polynomial function

Xi(s)

Yi(s) = Yels)

)=Ek+§k-s+5k~s2+5k~s3, SE[O,]]. (3)

The parameters ¥, f_\)k, Ek, ék, and Bk being two-dimensional vectors. The subscript k denotes the k-th polynomial of
the trajectory I'. Parameter vectors are defined as

dx
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The symbol a; indicates the x-component of the k-th parameter of Kk. All other parameter vectors are constructed
similarly. Each parameter is only valid on the interval from waypoint k to waypoint k + 1 with k < N. The parameter s
is defined on the interval ranging from 0O to 1.

Derivatives of this function can be determined:

X/ . . .
¥i(s) = () =B +2-Cr-s+3-Dg-s° (5)
v(s)
XH N N
’7;{’(5‘) = k(S) =2-C¢+6-D-s (6)
Y/’ (s)
The flight-path azimuth angle of a path segment is defined by:
Y/(s)
tan(y) = 3, @
X/(s)
The curvature of this path is defined by:
X (s)-Y[(s) = Y/(s) - X' (s)
K(s) =~ ()

(X((s)? + X/ (s)2)3/2

B. Computing Coefficients

The aforementioned parameters f_fk, Ek, 6k, and ﬁk can be determined with the natural spline interpolation method
as described in [20, p. 6]. This algorithm fits a piece-wise defined cubic spline through a list of sampled points with C°,
C', and C? continuity and a zero second-order derivative at the start and end points. This process has to be performed
twice, once for each dimension. The k-th spline coefficients aj(‘, bi , c,’(‘, and d/f can be calculated from the x-value of the
k-th waypoint x; via

ay = xi 9)
by =D} (10)
ey =3(xk41 —xx) —=2- Dy = D, (11)
dy = 2(xx — xg41) + Dy + Dy (12)



The parameters Dy are the first order derivatives of the splines of the x-axis at the start of each cubic spline segment y.
For the y-axis, this parameter is analogously labeled as Dz . By requiring a continuous second order derivative, and with
the help of Eq. () - Eq. (12), the following linear equation system can be derived [20, p. 9] (shown here for the x-axis)

2 1 [ Dy ] [ 3(x—x0)
1 4 1 0 Dy 3(x2 = x0)
1 4 1 Dj 3(x3 = x1)
1 4 1 D} | =| 3(a-x) |, (13)
0 1 4 1| Dy, 3(xn = xN-2)
1 2| | Dy, ] [3(xn —xn-1)]

The solution for the problem is therefore obtained by solving Eq. (T3] and substituting the result into Eq. (@) - Eq. (TT).
This yields the parameters for the x-axis parameters a}, by, ¢, and di'. The parameters a, , b, ¢, , and d; can be
calculated analogously, which is not shown here. Both sets of parameters define the trajectory I'.

As mentioned before this algorithm generates a natural cubic spline with C°, C!, and C? continuity as well as a second
order derivative equal to zero at the boundaries of the path. An example is shown in Fig. [a| A natural spline was fitted
through waypoints lying on a semicircle with a radius of 550 meters and a constant curvature of x = ﬁ =1.82-1073.
The fitted spline begins with a curvature of 0, then shows an increased curvature of up to 2.3 - 1073 before oscillating
around the mean value of the circle’s constant curvature. Important to notice is the aforementioned CY, C!, and C?
continuity.

The fact that a natural spline has a zero initial curvature as well as its C°, C!, and C? continuity properties are desirable
for trajectory generation based on waypoint lists. However, the disadvantage of this approach is that the entire path has
to be calculated in one step. For many path planning algorithms, this is not an issue as the linear equation Eq. (13)
is not particular expensive to solve especially when path planning is performed offline. For planning systems with
receding horizon, dynamic re-planning of waypoints [21] or very limited computational resources this is not true. In the
particular case of the ACT/FHS, waypoints may be recomputed as soon as new obstacles are detected or other limits are
introduced. Also large sets of waypoints (>200) may violate real-time requirements of the concerning module. In order
to address this shortcoming, the presented cubic spline algorithm is extended.

C. Real-time Adaptation

The idea behind the following algorithm is to stitch several cubic spline trajectories together with defined curvature
k at the interfaces. This approach allows the computation of each segment separately, therefore enabling a distribution
of the computational load over several execution cycles. In order to emphasize the fact that the trajectory now consists
of several sub-trajectories, the indices i is attached to I, such that several trajectory segments I'; can be distinguished.
In order to match two trajectory segments I'; and I';,1, at their boundaries, it is intuitively clear that the curvature x and
the azimuth angle y of the two trajectories have to be the same at the interface waypoint. Therefore by requiring the
curvature and azimuth angle at the beginning of I';, to be the same as the curvature and azimuth angle at the end of I3,
both trajectories will blend seamlessly.
Such a constraint assumption is valid, as these boundary conditions give four new constraints for each trajectory segment
I;, two at each end, which replace the four zero-second-order-derivative constraints defined in Therefore by
inserting (3) - (6) into the curvature equation (8) and the azimuth angle (7), one obtains the curvature ; and azimuth
angle yi for for the segment k:

(b +2cis + 3d;<‘s2)(2ci + 6d]fs) - (bz + ZCI{S + 3d,fs2)(261’<C +6d;s)
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i (s) (B) +2cFs +3d}s22 + (b) +2c)s +3d) s2)P3/2 .
bz + ZCzs + SaYIfs2

Xxk(s) = arctan (4
b +2¢s + 3d;s?

Evaluating equations (T4) and (T3)) at the very beginning of the trajectory, therefore at k = 0 and s = 0 and then inserting
it into each other as well as inserting the coefficients defined in (9) - (I2)), yield the greatly simplified constraint for the



curvature in terms of the required azimuth angle at the interface y(0), and the derivatives of the x- and y- cubic splines

Ef and E|

3((y1 = yo) — tan(x0(0))(x1 — x0)) — E} + E; tan(x0(0))
3(1+ tan?(x (0)0)*2Ey '

As can be seen, Equation is non-affine and non-linear. Normally, the next step would be to incorporate Equation
(T6) into equation system (T3). But this would transform the equation system to a non-linear equation system which also
couples the x- and y-axis. This combined system is not suitable for the sought online solution to the problem. Therefore
an approximation to this problem will be introduced in the following.

k(0) =

(16)

As an alternative, the second-order derivative can be approximated by the following method: As the curvature at the
interface of each trajectory segment I'; can be chosen arbitrarily, it is determined to be the same as a circle fitted through
waypoints k — 1, k, and k + 1. A sketch of this concept is shown in Fig. 5] By calculating an equivalent second order
derivative for the x- and y-axis, this curvature can be approximated. With this idea in mind, some modifications to the
original cubic spline algorithm are performed. At first, the boundary conditions of the natural cubic spline algorithm
has to be altered to allow for a non-zero second order derivative at the interfaces:

X;'(0) = Cinir (17
X;\;_l(l) = Cend (18)

Combining this boundary condition with Eq. (8), Eq. (TT)), and Eq. (T2) yields the following modified version of the
linear equation system given in Eq. (I3)

2 1 [ Dy | [ 3(x1—x0)— 3 Cinis
1 4 1 0 D 3(x2 = x0)
1 4 1 D, 3(x3 — x1)
1 4 1 .| D3 | = 3(x4 — x2) . (19)
0 1 4 1| |Dn-q 3(xy — xXN-2)
1 2] [ Dnv ] [3Gxn —xn-1)+ 3 Cenal

Note that as before, this equation system has to be solved for x- and y-direction. The second order derivative which shall
be achieved is that of a circle with radius R. A circle and its derivatives is parametrically described with its angle A

1
c =g [€W) (20)
sin(4)
WP, =
X WP o -
_ i+1

k+2

Fig.3 Matching two splines at the interface waypoint k.
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Because of the different variable ranges of the cubic spline and the circle parametrization of Eq. (20), a substitution
of variables has to be performed before the second derivative of the circle can be compared to that of the cubic spline.
The parameter s runs from O to 1, hence the following substitution is introduced:

A=A +Ad-s, 21

with AA = A, — ;. Inserting Eq. (Z1)) into Eq. (20) and calculating the second derivative yields

(22)

C”(S) — —A/lz ‘R- (COS(/’.] +AA- S)) .

sin(A; + A - s)

In order to determine the variables R, A1, and A, a circle is fitted through the interface points of two cubic splines [22].
Considering the case sketched in Fig. [3] the end condition of path I'; and the initial condition of path I';;; for the second
order derivative can be constructed by evaluating Eq. (I7) and Eq. (I8)

(23)

r/(1)=T7,(0) = C"(0) = -AA*-R- (Cos(/ll)) .

sin(1;)

The proposed algorithm can be formulated as outlined in Algorithm [T}

Algorithm 1 The real-time adapted generation of cubic splines

Determine Waypoint indices k;,;; and k.,4 of begin and end of current trajectory segment I';
Fit circle through Waypoints k;ni;—1, kinit, and Kipir+1

Fit circle through Waypoints keng—1, kend, and kepg+1

Calculate second order derivatives with Eq. (22)

Calculate derivatives of cubic spline with Eq. (T9)

Calculate cubic spline parameters with Eq. (9) to Eq. (12)

A A




An application example of this algorithm is presented in Fig. #b] In this example, waypoints were generated lying
on a circle of radius R = 550 meters, which were then interpolated with two trajectory segments I'y and I'; based on the
algorithm described above. The initial and end conditions for both trajectories were set to match the curvature of the
circle k = ﬁ ~ 18- 10_3% while the interface between I'y and I'j was chosen arbitrarily to be the seventh waypoint.
A constant non-zero curvature of a trajectory cannot be reproduced with the presented cubic spline approach because of
the polynomial nature of the utilized cubic splines. This is also evident in Fig. [Ab] in which the curvature cannot maintain
a constant value, but still exhibits an "oscillation". The curvature of the circle is however approximately achieved at the

interface points of the trajectory segments which illustrates the point of the proposed boundary conditions.

V. Trajectory Control

In order to evaluate the implemented trajectory generation algorithms, two simple path-following control algorithm
were designed to enable simulated closed-loop flight.
Typically, the objective of a trajectory controller is to steer the helicopter in such a way that the lateral and vertical
position errors are minimized [[17]. For manned helicopter applications, the problem additionally implies a broad range
of velocities ranging from hover at zero velocity to fast forward flight in the vicinity of 120 knots. In the following
vertical and forward speed control are not considered. Even coupling can be neglected for the design of the lateral
controller as the MBC provides decoupled response characteristic [[19].
The Frenet-Serret frame [[17, 23] is used in the following to describe different quantities relative to the path. In this
coordinate frame, the x- axis xgg is chosen tangentially to the track in direction of path-advancement while the y-axis
yrs is chosen normally to the first axis. The whole situation is sketched in Fig. [5} Now, the lateral distance to the path
Ayrs as well as the lateral velocity relativ to the path Aygg can be described. The subscript Uy is used to describe
quantities in the Frenet-Serret frame.
Please note the point P at the origin of the Frenet-Serret frame in Fig. [5} This point lies at the intersection between the
track and a line connecting the track with the vehicle whereby this line forms a 90° angle with the track.

Fig. 5 The horizontal situation of the path with crosstrack distance Aygg, flight-path azimuth angle y and
flight-path azimuth angle to VTP yy7p. The Frenet-Serret frame in the point P is also sketched.

A. Control Model

The dynamics of the path deviation can be split into two parts: the rotational dynamics of the MBC, consisting of
the azimuth angle and azimuth angle rate (y and y) of the MBC, as well as the cross-track dynamics compromised of
the cross-track error and cross-track error velocity (Ay, Ay). The control substitute model can therefore be obtained by
coupling these two blocks and closing the loop with the controller. Fig. [6]shows an overview of the obtained control
model.
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Fig. 6 The complete control model, consisting of the controller, the rotational heading dynamics and the
cross-track dynamics.

1. Rotational Dynamics

The rotational dynamics of the azimuth angle y and azimuth rate y are the output of a dynamic system with the
lateral steering input dy as input compromised of the rotational dynamics of the MBC, the turn coordination coupling,
and the autopilot transfer function, which can be summarized as a linear fourth order state space function with output
non-linearity.

1 0 0 ¢ 0
Lp Lb| 0 P 0
s . + - dy, 24
dt b1 o o0 1 ||b, 0 Y o
Ly Lu, Ly ) \biy) \Laykay
X = — -tan(¢). (25)

V

The parameters Ly, and L;, are parameters of the lateral flapping modes by, and l.)ls [24]. The desired roll dynamics
of the MBC are tuned via the parameter L,, while control parameters ks and kg, are chosen such that steady-state
accuracy and desired system dynamics are achieved.

The dynamic system described in Eq. (24) is a stable, and fast system with a unity steady-state gain and poles as
presented in table

Table 1 Pole location of MBC roll dynamics

Pole index  Pole location  Description
5172 -3.7+2.8i MBC Roll Dynamics
$3/4 -30.3£2.8i Rotor States

2. Translational Dynamics

The Lateral path dynamics are described via the Frenet-Serret frame as sketched in Fig. [5} Therefore, the cross-track
error Ayrs is describing the distance between the point P and the position of the vehicle. By assuming a constant
velocity, the dynamics of the lateral position error Ayrg, and the lateral position error velocity Ayrg can be formulated
as follows:

d (A)"Fs) _ (VI ~cos(y — xr) - (X — Xr) 26)

dt Ayps A).’FS

whereby the azimuth angle of the track and its derivative are described by the symbol yr and yr.



B. Trajectory Controller

In order to control the cross-track error, two controllers will be presented in the following. The first is a rather
conventional carrot chasing controller with feedforward, while the second one is based on cross-track error and
cross-track error velocity feedback.

1. Carrot Chasing with Feedforward Command
The widely used carrot chasing algorithm [[17] was selected as a simple and robust control algorithm [25]. The
considered horizontal situation is sketched in Fig. [5] together with the Virtual Target Point (VTP) displayed on the track
I'. Additionally, the point perpendicular to the trajectory connected to the helicopter is marked with P. Current course
angle y and the course angle connecting the helicopter with the VTP yyrp are also sketched. The VTP is obtained by
extrapolating the position of the point P over a user-defined time 7.4 With the current velocity of the helicopter V;
projected onto the trajectory I'. Therefore, the distance the VTP is placed ahead of the point P on the trajectory I' is
given by
Ax =V “Ipred- @7

The distance Ax is therefore the arc length of the distance between the Point P and the VTP along the trajectory I'.
After the position of the VTP (or carrot) has been determined, the heading to that point has to be calculated via

yrp — yVe) (28)
XyTP — Xve

XvTp = arctan (

A P-controller is used to align the vehicle with the desired heading yyrp. In order to improve performance and to
exploit the continuity of the generated trajectories, the controller is augmented with a feedforward designed to use the
available curvature information « to precondition the commanded roll angle ¢. The curvature for this feedforward term
is obtained by evaluating the curvature at point P. By assuming that the rotational dynamics are sufficiently fast, stable
and have a unity gain, the feeforward term can be obtained by inserting Eq. (2)) into Eq. (I)

V,2 K
dy = K, - (yvrp — x) +arctan . 29)
8
feedback feedforward

2. Cross-track Error Feedback Control with Feedforward Command

The rotational dynamics of Eq. (24) can be ignored, if it is assumed that they are sufficiently fast and stable. As
stated in Table[T] this is a valid assumption. Based on this reasoning a cross-track error feedback controller which
controls the cross-track error and velocity (Ayrs, Ayrs) is designed. Just as in the case of the carrot chasing controller,
a feedforward term is introduced, which computes an output based on the curvature of the track at point P, in order to
pre-steer curves of the trajectory.
The complete cross-track error feedback controller therefore takes the following form:

VZ.k
dy =Ky - AYFS + K, - A).)FS + arctan ( ! ) 30)
8
feedback feedforward

C. Parameter design and analysis

In order to gain some insights into the parameter design for both the cross-track error feedback and carrot chasing
controllers, both closed-loop systems were linearized. For this Eq. (24)-(26) were combined with the controllers given
in Eq. 29) and Eq. (30), in order to form the complete non-linear control loop. The resulting two systems were
linearized around a condition, equivalent to following a straight line (y7 = 0, ¥r = 0) which results in Eq. (3T) for the

10



carrot chasing controller and Eq. (32)) for the cross-track-feedback controller.

AyFS 0 1 0 0 0 O AyFS
AyFS 0 0 g 0 0 0 AyFS
d 0 0 0 1 0 0
a1 ¢ | ¢ 31)
dt p 0 0 0 _LP Lbls 0 p
by, 0 0 0 0 0 1 by,
. K, K .
by, Ldykdym Ldykdyv_f kg _Lb]s Ly, LB]S by,
AyFS O 1 0 0 0 O AyFS
Ayrs 0 0 g 0 0 0 Ayrs
d 0 0 0 1 0 0
a1 ¢ | ¢ (32)
dat| p 0 0 0 -L, Ly, O p
by, 0 0 0 0 0 1 by,
by, LaykayKa  LaykayK, k¢ —Li Ly, Ly ) \ by,

For the linearization of the carrot chasing controller as given in Eq. (29), the flight-path azimuth y has to be calculated.
In the case of straight line following, this angle can be calculated via simple geometry

X = arcsin (AyFS) . (33)
Vi

A couple of interesting remarks can be deducted from these linearizations. Firstly it can be concluded that the two
resulting linear systems look very much the same in both cases. Both system utilize the lateral position error Ayrg and
the lateral position error velocity Aygg as a feedback. Additionally, the parameters of the carrot chasing controller can
be matched to those of the cross-track error feedback controller via

KP
Ky = 34)
tpredVI
K
P
K, = —. 35
vEY (35)
Rise Time (s) Damping
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Fig. 7 Rise time, damping and stable/unstable region in reference to the cross-track error feedback gains K,
and K,,.
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Differences appear however in the speed dependency of the two algorithms: On the one hand, note that the
linearization for the cross-track error feedback controller in Eq. (32) does not depend on the speed V;. This is due to the
fact that the flight-path angle azimuth rate y carries a V; in its denominator in Eq. (23), which cancels the velocity
dependence of the linearized Eq. (26). In the linearization, the only term which is left is the factor g in matrix position
(2,3). As this is the only place in which the speed dependence explicitly appears, this cancellation means that the speed
dependency for the cross-track error feedback controller is no longer present.

On the other hand, note that the linearization for the carrot chasing controller Eq. (3I)) reintroduces such a speed
dependence, at matrix position (6,1) and (6,2). This happens due to the fact, that the VTP as well as y are depending
on V;, which consequently emerges in the linearized Eq. (3I). This shows the fact that the linear dynamics of the
cross-track error feedback structure is inherently less dependent on the velocity then the carrot chasing control structure.

Based on the linearization for the cross-track error feedback controller, some key metrics can be plotted over the
range of different Kp and Ky values. Because the complete system consists of three different pole pairs as described in
(23) - (26), which are additionally very well separated, the damping of the pole pair corresponding to the path error
dynamics can be formulated. The damping and the rise time for some parameter combinations are shown in Fig.
Additionally, the region for which the linearized system is unstable, is marked by the dotted line.

VI. Simulation and Results

The designed algorithms were implemented in MATLAB/Simulink® and subsequently auto-coded and integrated
into the software framework of the ACT/FHS. The complete program was tested in the Air Vehicle Simulator (AVES) -
DLR’s simulator center, which features a replica of the ACT/FHS cockpit connected to a one-to-one copy of the flight
control hardware, a simulation of the helicopter and a sensor simulation [26].
Fig. [§shows a typical landing approach trajectory consisting of 120 waypoints which was simulated in the AVES. The
waypoints and associated velocities are chosen, such that they take the helicopter from 60 knots forward speed to a
near-hover condition. Waypoints are spaced approximately 50 meters apart. In order to test the developed algorithms, a
fully automatic flight with these waypoints as inputs was simulated with the developed trajectory generation algorithm
and automatic controllers.
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Fig. 8 Hover approach trajectory used for testing of the trajectory generation algorithm and path following
control. Stitching locations of the different trajectories Iy - I's are marked with red crosses.

A. Real-time Adaptation

The presented real-time adaptation for planning cubic splines was used to construct a trajectory through the waypoints
of the problem as presented in Fig. [§] The configuration of the algorithm was chosen such that each path-segment
includes 20 waypoints. The next path segment is planned when the second-to-last waypoint of the current path segment
is reached. The navigational module in which the path planning is executed runs with a period of 32 ms. In order
to assess the performance of the real-time adaptation of the cubic spline algorithm, the runtime of the navigational
algorithm was logged and analyzed.
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Fig. 9 Path following performance for carrot chasing and cross-track error feedback controller during a
simulated approach trajectory.

During the first switch-on of the algorithm, and the subsequent calculation of the trajectory through the first 20 waypoint,
the runtime of the whole navigational algorithm was determined to be approximately 9 ms, which however includes
other operations which normally take around 3 ms. Additionally, the first call of the trajectory planning algorithm is
expensive due to the allocation of memory and the initialization of variables. A summary of statistics of the runtime
during the subsequent timesteps at which the algorithm was run, is compiled in Table[2] With a mean of approximately
7 ms and maximum peaks to approximately 10 ms, the algorithm performs satisfactory, as it stays well below the
maximum permissible 32 ms available to the module. It is hypothesized that the spikes in computational time can be
observed due to other calculations being executed during the runtime of the navigational module, as these spike occur
regularly and seem to arbitrarily fall into the expected frame of the trajectory generation algorithm.

These results show that the goal of real-time path planning for large waypoint lists or dynamically arriving new waypoint
lists, can be split up via the proposed trajectory generation algorithm. This ensures a consistent and well-behaved
runtime during normal operation and in the case of the unexpected arrival of new waypoint lists and is essential for a
reliable path-planning module for the ACT/FHS.

Table 2 Statistics of the execution time for the proposed path smoothing algorithm

Mean Value Standard Deviation Max Value Min Value
7.00 ms 2.75 ms 9.58 ms 3.91

B. Controller
The carrot chasing controller as well as the cross-track error feedback controller presented in section[V] were tested
on the trajectory shown in Fig. [8]during tests in the AVES. The gains of the cross-track error feedback controller were

tuned via the Robust Control Toolbox of MATLAB® with the design goal of achieving a minimal damping of ¢ = g
and a time constant of 7 ~ 5s. Similar gains can been found via the plots presented in[7} validating the analysis of
section[V.C] The gains for the carrot chasing controller were manually tuned with a prediction time of the VTP set to
Ipred = 3s.

Results of these tests are shown in Fig. [0] The trajectory of both tested controllers can be seen in Fig. [9aJand the error
plots in Fig. 0B show the achieved tracking performance.

The cross-track error feedback controller exhibits a better tracking performance during this task, mostly due to the
better tuning process for this controller. During transients from straight to curved flight and vice-versa, some dynamics
are introduced to both controllers. However due to the feedforward term of of the two, the lateral path deviation is
low for both controllers. The carrot chasing controller exhibits a negative lateral path error during curved flight. This

13



behavior stems from the fact that the VTP of the carrot chasing controller hurries ahead of the helicopter, thereby
"dragging" the helicopter in a smaller circle behind it. This can be be intuitively visualized by imagining a dog running
in a circle, while the owner is dragged behind. However, because of the fact that the leash forms a chord of the circle the
dog is running, the owner will describe a smaller circle. Because of this behavior, the carrot chasing algorithm will
exhibit a negative lateral path error during left-hand turns, and a positive error during right-hand turns even with the
feedforward term as described in section [V] This characteristic of the carrot chasing algorithm is dependent on the
prediction time #,,.4. The higher this time is, the more lateral path deviations in turns is reached. Therefore in the
case of the carrot chasing algorithm, a design trade-off must be reached. The prediction time could be matched via Eq.
(34)-(33) to match the dynamics of the cross-track error controller. However if the values for K, and K, are used the
prediction time would turn out to be roughly #,,,.4 = 10 seconds, which in turn would result in an even higher lateral
deviation during turning flight. This indicates, that the carrot chasing controller is less suitable for this application then
the cross-track error controller.

One interesting observation is that the carrot chasing algorithm seems to have different transient dynamics in the second
turn, beginning at approximately 130 s, marked with a (2) in Fig. |8, when compared to its first turn, beginning at 0 s
marked with (I). This behavior can be attributed to the higher velocity of first curve when compared to the second
curve, and the fact that the carrot chasing controller is velocity dependent as analyzed in section|[V.C| In contrary, the
cross-track error feedback controller exhibits the same dynamics for every flight speed. This confirms the analysis
performed in Chapter[V]

VII. Conclusion and Outlook

Developing methods and tools for helicopter to generate and follow smooth trajectories based on waypoints are
essential for fast and accurate waypoint following. The proposed adaptation of the existing natural cubic spline method
for interpolating waypoint based flight paths has shown its potential to be suitable for:

1) application with limited computational power

2) tight real-time constraints, in the tested scenarios

3) scenarios in which en-route replanning of waypoints occur
The generated trajectory still exhibits a smooth characteristic with C°, C!, and C? continuity. It has been shown that the
implemented version of this algorithm works well in the real-time environment of the ACT/FHS flight-hardware for the
examined test case.
A carrot chasing control strategy as well as a cross-track error feedback controller for guiding the helicopter along the
generated path have been analyzed, implemented and tested in simulation. It was shown that for the linearized case,
the two control strategies both utilize the lateral path error and lateral path error velocity as feedback. However the
carrot chasing controller is velocity dependent and also shows inferior performance during curved flight due to the
characteristics of the calculation of the Virtual Target Point. The cross-track error feedback controller with feedforward
action however exhibits good performance throughout the whole speed range, because of its independence of the velocity
as shown in Chapter[V]
In the future, it is planned to extend the proposed algorithm in three dimensions together with a velocity reference
trajectory. Additionally, in middle-term future, flight tests on the ACT/FHS are planned to validate the performance of
the developed algorithms.
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