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Motivation
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What can modelers do

by theirselves?
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What have modelers done

by theirselves?
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Research Question %;AM-ME

Which speed-up is possible

using measures that can be influenced
by ,normal” model developers?




Framework % AMME

* Large applied Energy System Optimization
Models

— LPs
— Computing time: >12h (dominated by solver)
— Storage and transmission

* Shared memory hardware

e Use of standard solvers




Approach | (the probably most popular one)

By Nikitarama - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=40358482



Approach II: Model-based speed-up strategies
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Characteristics and dimensions of
Energy system optimization models
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Linking variables & constraints

Storage energy

balance:
Ps+/Ps-:
Pis:
E,:
Us:
DC power flow:

ps+(t' n, us) - ps—( t,n, us) - pls(t' n, us)

_ Es(t,nu,) — E(t —1,n,uy)
B At

VteT,neN;VuelU, U, cU

storage charge/discharge power
storage self-discharge (losses)
stored energy

set of storage facilities
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pf+(tr l) - pf—( t, l)
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Pu:

Pr+
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B diag :
K:
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VteT,;VIeEL
power import/export
transmission losses
active power flow along/against line direction

voltage angle

susceptances between regions

diagonal matrix of branch susceptances
incidence matrix




,Low Hanging Fruits”

Speed-Up strategies

Solver parameters

Solver-based ]<
Solving methodology

Be
St Jo) raCt/'C

Model-based

Pure model reduction




Source code improvement

* Selection of measures (also useful for decrease memory need):

— Input data should not differ much in its order of magnitude
— Index order influences computing time
» Useful, but not necessarily faster
* Assignment statements with a different set order can be faster
* It can be better to place large index sets at the beginning
— Use of “option kill”, e.g. for long time-series input parameters saves memory
— Abundant use of “Dollar Control over the Domain of Definition”
— Consistent (and limited) use of defined variables

— Avoidance of the consideration of technologies providing the same service at the same
costs

— Consideration of alternative formulation of model constraints (dense vs. sparse)

* Helpful references: “Speeding up GAMS Execution Time”
by Bruce A. McCarl https://www.gams.com/mccarl/speed.pdf



https://www.gams.com/mccarl/speed.pdf
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Literature Review

Authors

Math.

problem

Descriptive
problem type

Decomposed model scale

Decomposition technique

type

~---

4

operation

(contingencies), 2 sub-problem
types, sequentially solved

Benders decomposition

Alguacil and Conejo [56] MIP/NLP Plant and grid Time, single sub-problem Benders decomposition
I I operation
Amjady and Ansari [57] MIP/NLP I Plant operation Benders decomposition
Binato et. al [58] I MIP/LP I TEP Benders decomposition
Esmaili et. al [59] I NLP/LP I Grid operation Benders decomposition
Flores-Quiroz et. al [60] I MIP/LP I GEP Time, 1-31 sub-problems, Dantzig-Wolfe decomposition
I sequentially solved
Habibollahzadeh et. al I MIP/LP I Plant operation Benders decomposition
[61] ]
Khodaei et. al [62] I MIP/LP GEP-TEP Time, 2 sub-problem types, Benders decomposition
I I sequentially solved
Martinez-Crespo et. al I MIP/NLP I Plant and grid Time, 24 sub-problems, sequentially Benders decomposition
[63] I I operation solved
Roh and Shahidehpour I MIP/LP I GEP-TEP Time, up to 10 - 4 sub-problems, Benders decomposition and
[64] I I sequentially solved Lagrangian Relaxation
Virmani et. al [65] I LP/MIP I Plant operation Technology (generation units), up to Lagrangian Relaxation
I I 20 sub-problems, sequentially solved
Wang et. al [66] I LP/MIP I Plant and grid Space, 26 sub-problems, sequentially Lagrangian Relaxation
I I operation solved
Wang et. al [67] I MIP/NLP I Plant and grid Scenarios and time, 10 - 4 sub- Benders decomposition
I I operation problems, sequentially solved
Wang et. al [68] I LP I Plant and grid Technology (circuits) and time Lagrangian Relaxation and
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Types of model reductions in ESM
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Meta heuristics

Heuristic
decomposition

Rolling time horizons

Myopic technology
expansion planning

“Spatial zooming"“
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Meta heuristics %mw-me
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,Decomposition which is similar

to exact decomposition approaches

Master J { Sub- J
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Hypothesis

Accuracy

Math. Decomposition PI PS

Heuristic-
Decomposition

,Sophisticated” Aggregation

,Simple” Aggregation




Evaluation methodology



Overview

Model name REMix

Author German Aerospace Center (DLR)
(Institution)
Model type Linear programing

minimization of total costs for
system operation

economic dispatch / optimal dc
power flow with expansion of
storage and transmission
capacities

Sectoral focus  Electricity

Geographical Germany

focus Solver Commercial
Spatial > 450 nodes (reference model)

resolution Algorithm Barrier
Analyzed year 2030 Cross-over Disabled
(scenario) Max. parallel 16
Temporal 8760 time steps (hourly) barrier threads

resolution Scaling Aggressive




Evaluated speed-up approaches
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Jemporal zooming“ implementations
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Jemporal zooming” implementations

Parallelization limited

due to shared memory!



Jemporal zooming” implementations
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Speed-up approach parameters

Speed-up  «

Parameter

approach 3 Name

Evaluated range

Spatial v v number of regions {1, 5, 18, 50, 100, 150, 200, 250, 300,
aggregation (clusters) 350, 400, 450, 488}
Temporal v v , {1,2,3,4,6,8,12, 24, 48, 168, 1095,
Downsampling temporal resolution 4380}
Rolling horizon number of intervals {4, 16, 52}
dispatch overlap size {1%, 2%, 4%, 10%}
Temporal number of intervals {4, 16, 52}
zooming v\ X resolution of down-
(sequential) sampled run {4, 8, 24}
number of intervals {4, 16, 52}
Temporal resolution of down-
zooming (grid v' X sampled run 14, 8,24
computing) number barrier threads {2, 4, 8, 16}
number of parallel runs {2, 4, 8, 16}

*w/wo: expansion of storage and transmission capacities




Speed-up approach parameters

Speed-up  «

Parameter

approach 3 Name

Evaluated range

Spatial v v number of regions {1, 5, 18, 50, 100, 150, 200, 250, 300,
aggregation (clusters) 350, 400, 450, 488}
Temporal v v , {1,2,3,4,6,8,12, 24, 48, 168, 1095,
D e temporal resolution 4380}
Rolling horizon « v number of intervals {4, 16, 52}
dispatch overlap size {1%, 2%, 4%, 10%}
Temporal number of intervals {4, 16, 52}
zooming v\ X resolution of down-
(sequential) sampled run {4, 8, 24}
number of intervals {4, 16, 52}
Temporal resolution of down-
zooming (grid v/ X sampled run 4, 8, 24}
computing) number barrier threads {2, 4, 8, 16}
number of parallel runs {2, 4, 8, 16}

*w/wo: expansion of storage and transmission capacities




Results
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Spatial aggregation

Performance Accuracy
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Spatial aggregation

Performance Accuracy
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1 a) Speed-up factor: =5

2 a) Accuracy error mainly < 10 % (grids: =20%)




Temporal downsampling
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1 b) Speed-up factor: =5

2 b) Accuracy error mainly < 10 % (storage: =20%)
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Conclusions



Research Question %;AM-ME

Which speed-up is possible

using measures that can be influenced
by ,norma

|II

model developers?




Short answer




Conclusions detailed %;AM_ME

* 4 speed-up strategies evaluated
e 2 slightly different models

* Aggregation

1) Speed up =5

2) Accuracy error <10%*
 Temporal zooming

3) Speed up =10

*except of indicators related to aggregated dimension
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