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This paper presents the analysis of the fidelity obtained when performing in-flight simulations of the Bo-

105 helicopter in forward flight with the Active Control Technology/ Flying Helicopter Simulator 

(ACT/FHS). The results are preliminary in the sense that they are based on the real-time and fully non-linear 

simulation model of the ACT/FHS in DLR’s helicopter simulator and not in the ACT/FHS itself. Yet, a flight 

test proven controller setting is used in the simulations. The ACT/FHS, the model-based controller, and the 

command model are briefly presented. The precision of the MBC for each control/response axis is evaluated 

quantitatively through frequency-domain methods, time-domain methods and handling quality analysis. A 

perceived fidelity evaluation process based on piloted simulations and comparative flight tests with the Bo-

105 is presented. This process is first applied to evaluate the model-following precision and second to evaluate 

the fidelity of the in-flight simulation. The results of the evaluations are used to identify strengths and 

weaknesses of the in-flight simulation for each response axis, including cross-couplings. 

I. Nomenclature 

A  = stability derivative matrix 

ACT/FHS = Active Control Technology/ Flying Helicopter Simulator 

AVES = Air Vehicle Simulator 

B   = control derivative matrix 

DoF = degree-of-freedom 

dx, dy, dp, d0  = longitudinal, lateral, pedal, collective control inputs 

FBC =  feedback controller 

FFC =  feedforward controller 

HQ = handling qualities 

JFD, JTD =   cost function in frequency-domain and time-domain 

MBC = model-based controller 

MUAD = maximum unnoticeable added dynamics 

nt = number of time-histories point 

n0 = number of outputs 

nω = number of frequencies considered in the cost function 

ω1, ωnω
 = smallest and largest frequencies considered in the cost function 

p, q, r =   roll, pitch, yaw rates (rad/s) 

RMS = root mean square  

SFR = simulator fidelity rating  

Tcmd, Tfhs =  frequency-response of the command model and of the in-flight simulation 

vup = vertical velocity (m/s)  

W𝑔, W𝑝, W𝑡 = cost function weightings 

ycmd, yfhs =  output vector of the command model and of the in-flight simulation  

II. Introduction 

When speaking of in-flight simulation, it is important to make the distinction between the terms in-flight 

simulator and variable-stability helicopter. A variable-stability helicopter is a generic term describing a helicopter 

having the capability to vary in flight its handling qualities (HQ) characteristics. When considering only slow 

dynamics, such capability can be reached using a low bandwidth controller, such as an autopilot. This was for 
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example the case for the first variable-stability helicopter, the NASA Langley HO3S-1, in the 1950’s. The variable 

stability was achieved for the pitch, roll and yaw axes using a modified autopilot and tunable potentiometers [1]. An 

in-flight simulator goes further in the sense that it requires the capability to follow a given response-type in all axes 

and to frequencies up to typically 10 rad/s or more. To achieve this, modern in-flight simulators, such as the 

RASCAL (a modified UH-60A) of the US Army [2], the ASRA (a modified Bell-414) of the NRC [3] or the 

ACT/FHS (a modified EC-135) of the DLR [4], are equipped with full authority, 4-axes controlled, fly-by-wire/fly-

by-light control systems and extensive sensor systems. The flight control system also requires a precise feed-forward 

controller since feedback controllers alone usually cannot reach the desired bandwidth of 10 rad/s or more. 

Therefore, an accurate (inverse) model of the in-flight simulator is necessary, including all the cross-coupling 

responses at high frequency. In-flight simulators can be used in a broad range of topics such as HQ research, flight 

controls research, system development or flight crew training.  

The focus of the present paper is placed on the fidelity evaluation of the in-flight simulation. While the fidelity 

level of ground simulators has been widely investigated, it is not the case for in-flight simulators. Most of the 

literature related to in-flight simulation shows results of studies made using in-flight simulators and not how good 

desired flight dynamics can be actually reproduced by the in-flight simulator. The few exceptions found in the 

literature include the simulation of the Lynx helicopter at 60 knots using the ATTHeS in-flight simulator [5,6] and 

the simulation of generic decoupled transfer functions using the RASCAL helicopter [7]. This paper goes beyond 

the latter by simulating a fully coupled real helicopter and beyond the former by providing a more detailed analysis 

of the in-flight simulator fidelity (predicted and perceived fidelity evaluation, on- and off-axis responses, time-

domain, frequency-domain and HQ criteria). The paper is structured as follows: in Section III, the in-flight simulator 

ACT/FHS with its model-based controller (MBC) is briefly presented; the command model used in the MBC, a 6-

degrees-of-freedom (DoF) of the Bo-105 helicopter in forward flight, is described in Section IV; the methods and 

results of the in-flight simulation evaluation are presented and discussed in Section V. 

III. ACT/FHS In-Flight Simulator 

A. Active Controller Simulator/ Flying Helicopter Simulator (ACT/FHS) 

The research helicopter ACT/FHS (Active Control Technology/Flying Helicopter Simulator) is in service at 

DLR since 2002. It is a highly modified EC135 manufactured by Airbus Helicopters (formerly Eurocopter). In 

addition to the standard instrumentation, the ACT/FHS is equipped with additional sensors such as noseboom, 

Honeywell IMU and GPS. Most of the sensors are redundant, meaning that sensor failures are compensated by 

others. All signals such as control inputs and measured flight dynamical states are stored to allow evaluations 

afterwards; more details are given in [4]. One major modification is related to the control system. The original 

mechanical controls were extended with a full authority fly-by-wire/fly-by-light control system. In all piloting 

modes (i.e. safety pilot mode, direct and experimental mode), the electrical flight control system is active and the 

mechanical control system serves as backup system. Full authority control system means, that the control inputs’ are 

transmitted with high rates (up to almost 200%/s) for the full range of travel between 0% and 100%. These fast and 

large swashplate control deflections are realized with smart hydraulic actuators which are specific for the ACT/FHS. 

In addition, time delays between commanded control inputs and swashplate deflections are small (approx. 50 ms) 

compared to typical target control bandwidths (usually below 10 rad/s for the ACT/FHS). Experimental flight 

control systems may take advantage of this feature as a high-bandwidth might be achieved.  

In-flight simulation imposes a specific dynamical behavior to the ACT/FHS. This might require a high-

bandwidth control system so that the ACT/FHS dynamics are widely changed. Hence, a high-fidelity in-flight 

simulation benefits from high rates and large control deflections. This control system was developed in several DLR 

projects such as PAVE [8], ALLFlight [9], and ALL-in-Flight [10]. In each of these projects, the ACT/FHS was a 

vital component for development and flight tests. The overall result is a model-based controller (MBC) which is 

presented in more detail thereafter. The MBC was first developed and tested successfully in PAVE for short time 

periods. During ALLFlight the model-based control featured maneuvering capability for longer time periods which 

was possible by re-designing the feedforward and feedback control system. ALL-in-Flight then achieves a high-

bandwidth control system especially in pitch and roll axes by extending the closed-loop controller with acceleration 

feedback. These developments serve as basis for the research on in-flight simulation. The next section will thus 

present an overview about the model-based control.  

B. Model-based controller 

The model-based controller (MBC) is part of the experimental system of the ACT/FHS. The evaluation pilot 

does not control the ACT/FHS actuators directly, but virtually by piloting the command model. The MBC calculates 
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the control signals sent to the actuators so that the ACT/FHS follows the commanded model states. The structure of 

the MBC is shown in Fig. 1 and the different components are described in the following.  

 

Fig. 1 Structure of the model-based controller (MBC). 

The command model provides the reference flight dynamics that have to be followed by the ACT/FHS. It 

consists in the online simulation of a given model piloted by the evaluation pilot. The output of the simulation is fed 

into the feedforward and feedback controllers that command the actuators of the ACT/FHS. The command model is 

described in detail in the next section. 

The feedforward controller (FFC) calculates the appropriate actuator positions that allow the ACT/FHS to follow 

the reference flight dynamics of the command model. It consists of the inverse of a state-space model of the 

ACT/FHS flight dynamics. As four control axes are available, only four states can be perfectly followed by the 

feedforward controller; here the vertical velocity, yaw rate, roll rate, and pitch rate are followed. The ACT/FHS 

model used in the FFC is a 9-DoF model accounting for rigid body dynamics, (implicit) rotor flapping, and dynamic 

inflow. Five ACT/FHS models are used for five trim velocities ranging from hover to 120 knots. A weighted 

superposition of the respective outputs is performed based on the airspeed. A high pass filter ensures that the output 

of the FFC decreases to zero at low frequencies. The methods used to calculate the inverse dynamics of the 

ACT/FHS model are described in detail in [11] and [12]. 

The feedback controller (FBC) provides additional actuator commands accounting for the errors between the 

reference states of the command model and the actual states of the ACT/FHS. The errors arise from imperfections of 

the inverse dynamics in the FFC and from external disturbances. The FBC consists in four separated PI controllers 

for the pitch, roll, yaw and heave axes. An anti-windup scheme is integrated with each integrator. In addition to the 

rotational rates and attitudes, the vertical, forward and lateral velocities, the altitude, track and slip angle can be 

controlled. For this study, the altitude controller is turned off.  

An air resonance controller is implemented under the form of an additional control input by considering the 

regressive lead-lag as a disturbance [13]. The inputs of the air resonance controller are the roll rate and acceleration; 

the output is an additional lateral control input that suppresses the 1.8Hz roll oscillation. Structural notch filters 

allow limiting the excitation of the structural modes of the ACT/FHS. The filtered frequencies depend on the axis 

but are all in the frequency range of 20-70 rad/s. All measurements are processed with a Kalman-Filter that on the 

one hand reconstructs missing information and on the other hand fuses redundant sensor information to one single 

output. These filtered measurements provide the MBC with all required states. 

IV. Command Model  

The command model describes the desired behavior of the helicopter. It is piloted by the evaluation pilot and 

provides the reference states to the feedforward and feedback controllers. In the case of a normal operating 

helicopter, the command model is typically designed according to certain HQ criteria, such as ADS-33 [14]. In the 

case of an in-flight simulation, the command model is a flight dynamics model of the helicopter to be simulated. 

A. Model structure 

The command model chosen in this study is a quasi-nonlinear, 6-DoF helicopter model accounting for rigid body 

dynamics only. Fig. 2 gives an overview of the structure of the command model. The Euler terms, the gravity forces 

and the trim curves are implemented in their nonlinear form. The aerodynamic forces are reduced to a linearized 

representation around a trim state. The linear part of the model is given by the stability derivative matrix A and the 

control derivative matrix B. An equivalent time delay for each input axis accounts for the neglected high order 

dynamics. Any 6-DoF flight dynamics model can be implemented in this structure by simply changing the A and B 

matrices and the equivalent time delay. The model is only valid in the vicinity of the trim state corresponding to the 
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A and B matrices. The trim states used in the command model are not the ones of the simulated helicopter but the 

ones of the ACT/FHS. 

 

Fig. 2. Structure of the command model. 

The feedforward controller is the dynamic inverse of the identified ACT/FHS state-space model including the 

longitudinal flapping, lateral flapping and dynamic inflow modes, while the command model only accounts for the 

rigid body dynamics. Trying to exactly follow the rigid body dynamics of the command model would generate 

exaggeratedly high amplitude actuator peaks in the ACT/FHS to compensate for the high frequency modes included 

in the feedforward model. As high amplitude actuator peaks should be avoided, the states are filtered in the 

command model.  

B. Model data and characteristics 

The choice of the Bo-105 for the command model is due to the availability of this helicopter type at DLR; flight 

tests can be performed for evaluation purposes. The model chosen for this study is the 6-DoF quasi-nonlinear model 

of the Bo-105 at 80 knots published in 1989 in [15]. It is the result of a system identification process performed by 

the Aeroflightdynamics Directorate of the US Army. The identification was done based on flight data coming from 

the DLR Bo-105 research helicopter and using frequency-domain methods. Some of the main physical 

characteristics of the Bo-105 are given in Table 1 in comparison to the ACT/FHS. The poles of the Bo-105 model at 

80 knots and ACT/FHS model at 90 knots are shown in Fig. 3. It can be seen that the fast poles (pitch and roll) of 

the Bo-105 are faster and more coupled than the ones of the ACT/FHS. 

 Bo-105 ACT/FHS 

Maximum take-off weight 2300 kg 2835 kg 

Main rotor radius 4.91 m 5.10 m 

Equivalent hinge offset 14% 8.7% 

Table 1 Physical characteristics of the simulated helicopter (Bo-105) and the in-flight simulator (ACT/FHS). 

  

Fig. 3 Poles location of the Bo-105 at 80 knots and ACT/FHS at 90 knots. 
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C. Command model tuning 

Before testing the in-flight simulation capability, the command model was tested and tuned during piloted 

simulations. An evaluation based on flight test data was not possible, due to the two following reasons: first the data 

of the identification campaign performed in the 1980’ were not available; second the Bo-105 helicopter currently 

used at DLR is not equipped with measurement and recording system. For the piloted simulations the Bo-105 

command model has been implemented as standalone in the AVES [16] simulator. A helicopter pilot with extensive 

and recent Bo-105 flight experience was asked to perform standard flight maneuvers and to report the clear 

dissimilarities observed against to the real Bo-105 helicopter. In particular, the following characteristics have been 

observed: short term and long term on-axis response time, amplitude and direction of the off-axis responses (cross-

coupling) and control sticks’ displacements. These characteristics have been chosen because they can be easily 

noticed by the pilot and associated to control and stability derivatives. The initial model dynamics showed three 

main weaknesses concentrated on the off-axes: (1) the heave response during acceleration/deceleration maneuvers, 

(2) the couplings from the heave/collective to pitch/roll/yaw and (3) the coupling from yaw to pitch were not 

realistic. Additionally, corrective factors had to be added on the longitudinal cyclic and collective sticks to account 

for the geometrical difference between the sticks of the Bo-105 and the sticks of the ACT/FHS. After several 

iterations of model evaluation and parameter tuning, the pilot considered the Bo-105 model as realistic, in the sense 

that he was not able to tell in which direction the characteristics shall be changed.  

Interestingly, while the derivatives in the command model were taken originally from the frequency-domain 

identification in [15], most of the derivative modified during the tuning process were much closer to the time-

domain identification results in [15] at the end. 

 

V. In-Flight Simulation Fidelity Evaluation 

This section describes how the fidelity of the in-flight simulation has been evaluated. The evaluation was limited 

to flight dynamics and not extended to the whole simulator fidelity. Fidelity of the visual cueing, motion cueing, 

audio cueing, cockpit arrangement and controls loading were not investigated. Fig. 4 shows the four cases 

considered for the evaluations:  

Test case A is the reference case: the Bo-105. 

Test case B is the direct simulation of the 6-DoF Bo-105 model seen in the previous section,  

Test case C is the in-flight simulation simulated in the AVES [16] simulator, i.e. the simulation of the complete 

MBC applied to the fully non-linear model of the ACT/FHS,  

Test case D is the normal in-flight simulation, i.e. the ACT/FHS in flight controlled by the MBC; this case has 

not yet been tested and is shown for completeness. 

Each case has its own flight dynamics: case B differs from case A by the modeling error of the 6-DoF model of 

the Bo-105. Case C differs from case B by the model-following error of the MBC. Case D differs from case C by the 

modeling error of the fully non-linear model of the ACT/FHS. 

The evaluation process described in this paper consists in the two following steps:  

1) The evaluation of the model-following precision, by comparing the flight dynamics in cases B and C of 

Fig. 4. 

2) The evaluation of the fidelity of the in-flight simulation simulated in AVES, by comparing the flight 

dynamics in cases A and C of Fig. 4. 

The final step would consist in evaluating the fidelity of the normal in-flight simulation by comparing the flight 

dynamics in cases A and D of Fig. 4. This step could not be performed because the ACT/FHS was not available in 

experimentally controlled mode during the whole time of the study. In this paper, the term in-flight simulation will 

refer to the in-flight simulation simulated in the AVES simulator, i.e. the case C of Fig. 4. 

It is classical to distinguish between predicted fidelity and perceived fidelity [18]. The predicted fidelity is based 

on data recorded during simulations or during flight tests; it indicates the level of similarity of a selected set of flight 

dynamics characteristics between the simulation and the simulated helicopter in flight. The perceived fidelity is 

based on the subjective opinions of the pilots, evaluated during piloted simulation or flight tests through 

questionnaires. The questionnaires address the level of fidelity of the simulation perceived by the pilots. While both, 

predicted and perceived fidelity metrics, were used for the first step, only perceived fidelity metrics were applied for 

the second step due to the absence of measurement and recording system in the Bo-105 helicopter used at the DLR. 

Each of the simulations performed in the AVES simulator were done on the fixed platform.  
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Fig. 4 Overview of the different testing configurations: case A is the Bo-105, the reference case, case B is the 

direct simulation of the Bo-105 in AVES, case C is the in-flight simulation simulated in AVES, case D is the 

normal in-flight simulation in the ACT/FHS (this case has not been tested and is shown for completeness). 

A. Model-following precision evaluation 

Model-following precision evaluation is an intermediate step for the evaluation of the in-flight simulation 

fidelity that allows decoupling the quality of the MBC from the quality of the command model. It is obtained by 

comparing results from the test cases B and C shown in Fig. 4. The evaluation has been divided in 16 

control/response axes, i.e. all on-axis and off-axis (cross-coupling) responses from the longitudinal cyclic, lateral 

cyclic, pedal and collective stick inputs to the pitch rate, roll rate, yaw rate and vertical velocity responses. The 

predictive part of the evaluation relies on analyses in frequency-domain, in time- domain, and in terms of HQ 

ratings. Therein, the data were simulated by applying computer-generated excitations in the simulation. The model-

following precision has also been evaluated subjectively using piloted simulations and perceived fidelity evaluation 

methods. The evaluation criteria, the respective results, and their discussions are described in the following.  

It is important to mention that the feedback controller setting used in this study was not designed for an 

optimized in-flight simulation performance in the simulator, but it is a flight test proven setting that was used in 

former flight test campaigns of the ACT/FHS. Hence, those results do not reflect the best achievable performance of 

the in-flight simulator but rather a benchmark with a realistic controller setting that can be used for future real in-

flight simulations with the ACT/FHS.  

Frequency-domain analysis 

The frequency-responses of the command model and the in-flight simulation have been generated using sweep 

excitation signals. The Bode diagrams of the mismatch between these two frequency-responses can be seen together 

with the maximum unnoticeable added dynamics (MUAD) bounds for each control/response axis in Fig. 9 in the 

Appendix. The MUAD bounds are defined in [19]; they define an acceptable level of mismatch in equivalent 

systems in term of magnitude and phase difference. It is claimed that two different systems with magnitude and 

phase differences within a given envelope cannot be distinguished by a pilot. These bounds were initially designed 

for the pitch control of a fixed-wing aircraft, but were also used for helicopter simulation fidelity evaluation ([20, 

21]). The accuracy of these bounds has been questioned in some research [22], but they give at least an approximate 

and qualitative estimation of the model-following precision. 

The model-following cost function as defined in [23] has also been calculated for each control/response axis. 

This cost function is a weighted average of the squared magnitude error and squared phase error between the 

commanded frequency-response Tcmd and the simulated frequency-response Tfhs: 

JFD =
20

nω

∑ {Wg(|Tfhs| − |Tcmd|)2 + Wp(∠Tfhs − ∠Tcmd)2}

ωnω

ω1
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with |T| the frequency response magnitude, given in dB and ∠T the frequency response phase, given in degrees. 

Standard values for the weights are Wg = 1 and Wp = 0.01745. ω1 and ωnω
 are typically set to 1 rad/s and 10 rad/s 

for flight-dynamics modelling purposes. According to [23], a cost function JFD < 100 is generally considered as 

reflecting an acceptable level of accuracy. Some of the individual cost functions can reach a value of JFD < 150 −
200 without resulting in a noticeable loss of overall accuracy. The model-following cost of each control/response 

axis can be seen in Fig. 5(a); the dark and light green sectors correspond to the upper and lower bound of the 

aforementioned guideline.  

Handling quality analysis 

The comparison of the HQ ratings of the command model and of the in-flight simulation provides another 

indication of the model-following precision. A set of standard HQ criteria are defined in ADS-33 [14]. Each of the 

criteria consists in a cross-plot with three sectors indicating a HQ Level 1, 2, and 3. In this study, the following 

criteria are considered: Attitude quickness, bandwidth, height response, pitch/roll couplings, yaw-collective 

couplings. The resulting HQ evaluation can be seen in Fig. 8 in the Appendix. From the literature, no guideline 

exists regarding the level of acceptable HQ mismatch.  

Time-domain analysis 

The time-domain analysis is based on the response errors between the command model output and of the in-

flight simulation results when the models are excited by doublets and 3-2-1-1multistep input signals. The Root Mean 

Square (RMS) error in time-domain, as defined in [23], is the root mean square of the average weighted error 

between the commanded output and the simulated output: 

JTD = √(
1

nt ∙ n0

) ∑{(𝑦fhs − 𝑦cmd)𝑇W𝑡(𝑦fhs − 𝑦cmd)}

nt

i=1

 

with nt the number of time-history points, n0 the number of outputs, 𝑊𝑡 a weighting matrix. ycmd and yfhs are 

the vectors of the commanded states and simulated outputs respectively. The weighting matrix is typically chosen so 

that the units of the output are converted to deg, deg/s, ft/s and ft/s
2
. A guideline given in [23] states that a value in 

the range of JTD <  1 to 2  reflects an acceptable level of accuracy for flight-dynamics modelling.   

The RMS error for a sequence of doublets and 3-2-1-1 excitations with varied amplitudes are presented for each 

control/response axis in Fig. 5(b); the dark and light green sectors correspond to the upper and lower bound of the 

aforementioned guideline.  

 

 
(a) Model-following costs based on sweep 

excitation signals with 5% amplitude. 

 
(b) RMS error, based on response data to 

doublets and 3-2-1-1 excitations with 

2.5%, 5% and 10% amplitudes 

Fig. 5 Cost in frequency-domain (a) and in time-domain (b) of each control/response axis. The error is 

calculated comparing the results in cases B and C of Fig. 4. The dark and light green sectors indicate an 

excellent and acceptable level of accuracy.  

Perceived fidelity evaluation 

The evaluation of the model-following precision has also been investigated subjectively by assessing the fidelity 

level of the in-flight simulation dynamics (case C of Fig. 4) against the command model dynamics (case B of Fig. 
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4). To do so, pilots have been asked to fly evaluation maneuvers in AVES with these two configurations and to 

compare the respective dynamics. A total of eight maneuvers have been defined and flown by four pilots. These 

maneuvers were not chosen from the Mission Task Elements (MTE) defined in ADS-33 because most of these 

MTEs require either a full envelope model or at least a hover model and the model used in the command model is 

only valid around a forward velocity of 80 knots. The evaluation maneuvers are divided in two groups: 

 Open-loop maneuvers: in these maneuvers, the pilot excites the helicopter using one control axis at a 

time and observes the four rate responses (p, q, r ,vup). The excitations shall keep the helicopter around 

its trimmed velocity and shall have varied frequency content. 

 Closed-loop Maneuvers: These maneuvers consist in basic maneuvers that are frequently flown by any 

helicopter pilot: acceleration /deceleration, 180deg turn, steady sideslip and climb/descent. The pilot 

can use each control axis to perform the maneuver as best as possible. The four rate responses and the 

controls applied shall be observed by the pilot during the maneuver. 

After each maneuver has been flown in the two configurations, the pilot is requested to answer a questionnaire. 

In this questionnaire, the pilot assesses the level of flight dynamics dissimilarity between the reference and the test 

configurations using a 4-point Lickert-scale (negligible, minimal, moderate or considerable differences). The 

dynamics of the four rate responses are assessed individually. Additionally, a so-called “Simulator Fidelity Rating” 

(SFR) [24] is given to each of the closed-loop maneuvers. As a SFR can only be used to asses a maneuver as a 

whole, the Lickert-scale rating provides a complementary indication for the individual evaluation of each 

control/response axis. Those individual ratings can then be directly compared to the predictive fidelity metrics. An 

overview of the Lickert-scale ratings for all maneuvers can be seen in Fig. 6(a) and an overview of the SFR ratings 

for the closed-loop maneuvers can be seen in Fig. 6(b). 

 

 

(a) Lickert-scale ratings: for each maneuver, the pilots rated the similarity between the two flight 

dynamics for each control/response axis. The individual ratings (four response axes for each pilot) 

are lumped in each maneuver for brevity. 

 

(b) Simulator fidelity ratings: One rating is attributed by each pilot to each closed-loop maneuver. 

Fig. 6 Perceived fidelity evaluation of the in-flight simulation in AVES (case C of Fig. 4) when compared to 

the Bo-105 model (case B of Fig. 4). 

Discussion of the results 

The perceived fidelity evaluation can be summarized as follows. The flight dynamics differences between the 

command model and the in-flight simulation were rated as negligible or minimal in 87.5% of the 128 perceived 

0% 25% 50% 75% 100%

Climb/descent

Steady sideslip

180deg turn

Acceleration/deceleration

Collective stick excitation

Pedal excitations

Lateral excitations

Longitudinal excitations

Negligible differences

Minimal differences

Moderate differences

Considerable differences

0% 25% 50% 75% 100%

Climb/descent

Steady sideslip

180deg turn

Acceleration/deceleration

SFR 1  (level 1)
SFR 2  (level 1)
SFR 3  (level 2)
SFR 4  (level 2)
SFR 5  (level 2)
SFR 6  (level 2)
SFR 7  (level 3)
SFR 8  (level 3)
SFR 9  (level 3)
SFR 10 (level 4)
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fidelity evaluations performed (eight maneuvers, four pilots and four response axes). For the 

acceleration/deceleration, 180deg turn, and climb/descent maneuvers, the SFR ratings were very good: 11 out of the 

12 ratings were between SFR 1 and SFR 3. The fidelity of the sideslip maneuvers was considered as not good. Two 

pilots gave a SFR of 7 and 8, corresponding to a fidelity level 3 (not fit for purpose). The reason of this poor fidelity 

is the following: the steady sideslip maneuver requires a constant bank angle and a constant lateral velocity. Since 

the stability derivative of the lateral velocity Yv of the ACT/FHS is different from the one of the Bo-105, a same 

bank angle yields different lateral velocities. Therefore, a conflict occurs between the pilot, trying to keep a given 

bank angle, and the lateral feedback controller, trying to reach the commanded lateral velocity. 

The predictive fidelity evaluation can be summarized as follows. The HQ analysis (Fig. 8) shows that the MBC 

successfully forced the ACT/FHS to follow the Bo-105 HQ characteristics. Indeed, all HQ levels calculated in this 

study were the same for the Bo-105 model and for the in-flight simulation; furthermore, the respective values were 

very close to each other. The only differences observed were an additional time delay of 50-100 ms and a small 

additional pitch coupling due to roll rate for the in-flight simulation. The time delay is the result of the inherent time 

delays in the control chain (filters, actuator delays, transport delays), and the small coupling difference is the result 

of the perfectible control precision for the off-axis responses. In the time- and frequency-domain each of the four on-

axis responses gives a cost within the acceptable or excellent area (Fig. 5). For the off-axis responses the results 

differ between the time- and frequency-domain analyses: the yaw rate responses and heave velocity responses are 

mostly within the excellent area of the time-domain analysis, while they are partly far outside of the acceptable area 

in the frequency-domain analysis. The frequency-response function mismatches (Fig. 9) shows that the on-axis 

responses are mostly within the MUAD boundaries, but some of the off-axis responses are far outside of these 

boundaries. It is important to put the errors in frequency-domain into perspective with the absolute amplitude of the 

response. When the amplitude of a response function is very small, the frequency-response mismatch, which is a 

relative error, does not provide relevant information on the quality of the control precision. This is for example the 

case of the frequency mismatch of the following axes: dy to r, dy to vup, dp to vup. Those axes present an error in 

frequency-domain far outside of the boundaries, but their amplitude is very small and therefore, the impact on the 

absolute following error (Fig. 5(b)) is limited. 

It is expected that the pitch and roll responses could be enhanced by tuning the feedback controller specifically 

for in-flight simulation. Indeed, one of the challenges of the feedback controller is to follow simultaneously the roll 

angle and the lateral velocity of the command model using the lateral cyclic; the same is true for the pitch angle and 

the longitudinal velocity with the longitudinal cyclic. As mentioned in section III, the feedback controller used in 

this study was tuned for a command model designed after ADS-33. With such a command model the difficulty to 

follow both the roll angle and lateral velocity is less of a problem since the stability derivatives of the lateral velocity 

can be chosen freely. In contrary, for in-flight simulation, these stability derivatives are constrained to have the 

value of the simulated helicopter. A typical solution is to follow the roll angle in the higher frequencies and the 

lateral velocity in the lower frequencies. This method is described under the name “frequency-dependent controller” 

in [25]. As the dynamics of the lateral velocity of the Bo-105 model is significantly different from the one of the 

ACT/FHS (the stability derivative of the lateral velocity Yv in the Bo-105 model is about twice the value of the 

ACT/FHS), a reduction of the feedback gains of the lateral velocity might improve the model-following quality of 

the roll response. 

B. In-flight simulation fidelity evaluation 

This section describes the fidelity evaluation of the in-flight simulation in AVES compared to the real Bo-105. 

Due to the lack of measuring and recording systems in DLR’s Bo-105, only the perceived fidelity evaluation was 

performed. The evaluation procedure was the same as the one used in the previous section. The only difference is 

that the reference case was a flight test with the Bo-105 (case A of Fig. 4) rather than a piloted simulation of the 

command model (case B of Fig. 4). Therefore, both the quality of the command model and the precision of the 

model-based controller are being evaluated. During the flight tests, the evaluation pilot was performing the 

maneuvers and giving the respective comments, while a safety pilot was monitoring the flight to prevent dangerous 

helicopter attitudes or traffic collisions. Two flight tests took place, involving two pilots; two more flight tests 

involving two other pilots are expected to take place in a near future. Each flight test took place on a day with little 

wind.  The overview of the Lickert-scale and SFR ratings for all maneuvers can be seen in Fig. 7(a) and Fig. 7(b), 

respectively.  

 



10 

 

 

(a) Lickert-scale ratings: for each maneuver, the pilots rated the similarity between the two flight 

dynamics for each control/response axis. Here, the individual ratings (four response axes for each 

pilot)  are lumped in each maneuver for brevity. 

 

(b) Simulator fidelity ratings: one rating is attributed by each pilot to each closed-loop maneuver. 

Fig. 7 Perceived fidelity evaluation of the in-flight simulation in AVES (case C of Fig. 4) when compared to 

the Bo-105 flight test (case A of Fig. 4). 

 

Discussion of the results 

As expected, the results are degraded when compared to the results of the previous section, since they 

additionally include the modeling errors of the Bo-105 helicopter. Nevertheless, both pilots mentioned that in almost 

all cases the reactions to control inputs, including the couplings, were in the good direction. The discrepancies were 

mostly related to the amplitude of the responses. The flight dynamics differences between the Bo-105 flight test and 

the in-flight simulation were considered as negligible or minimal in 70.3% of the 64 perceived fidelity ratings given 

(eight maneuvers, two pilots and four response axes), but 7.8% of them were considered as considerable. Most of 

the low fidelity ratings were linked to the off-axis responses to collective inputs. These deficiencies, clearly 

observed in the open-loop maneuvers, were also reflected in the closed-loop maneuvers: Out of the eight Simulator 

Fidelity Ratings (four closed-loop maneuvers with two pilots), five correspond to a Level 2 (Fidelity warrants 

improvements), two to a Level 3 (not fit for purpose) and one to a Level 1 (Fit for purpose). The two Level 3 ratings 

were attributed by one pilot to the acceleration/deceleration and to the climb/descent maneuvers. The reason 

mentioned by the pilot was that pitch, roll and yaw responses to the collective were not realistic. As large collective 

variations are applied during the acceleration/deceleration and the climb/descent maneuvers the fidelity of those 

maneuvers was degraded.  

It is also important to note that the ratings given by the evaluation pilots showed important differences. It is not 

an easy task for a pilot to compare flight dynamics in two very different environments, such as a Bo-105 in flight 

and an EC-135 in a ground fixed-based simulator. The cockpit instruments are different, the sticks position, shape 

and dynamics are different, the motion is not present in the simulator, etc.  

0% 25% 50% 75% 100%

Climb/descent

Steady sideslip

180deg turn

Acceleration/deceleration

Collective stick excitation

Pedal excitations

Lateral excitations

Longitudinal excitations

Negligible differences

Minimal differences

Moderate differences

Considerable differences

0% 25% 50% 75% 100%

Climb/descent

Steady sideslip

180deg turn

Acceleration/deceleration

SFR 1  (level 1)
SFR 2  (level 1)
SFR 3  (level 2)
SFR 4  (level 2)
SFR 5  (level 2)
SFR 6  (level 2)
SFR 7  (level 3)
SFR 8  (level 3)
SFR 9  (level 3)
SFR 10 (level 4)
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VI. Conclusion 

In this paper, the Active Control Technology/ Flying Helicopter Simulator (ACT/FHS) [4] and its model-based 

controller (MBC) are briefly presented. A flight dynamics model of the Bo-105 at 80 knots tuned during piloted 

simulations is presented and its integration as a command model in the MBC is described. In-flight simulations were 

performed not in the ACT/FHS itself, but in the AVES simulator [16], using a fully nonlinear model of the 

ACT/FHS [17].  

The precision of the MBC for each control/response axis is evaluated quantitatively through frequency-domain 

methods, time-domain methods and HQ analysis. A perceived fidelity evaluation process based on piloted 

simulations is presented and applied with four pilots in the AVES simulator. The evaluation demonstrates that the 

MBC can successfully transform the natural flight dynamics of the ACT/FHS into the flight dynamics of a 6-DoF 

linear Bo-105 model. Nevertheless, one specific maneuver (sideslip) obtains a low fidelity rating, probably due to 

the difficulty encountered by the feedback controller in following simultaneously the roll angle and the lateral 

velocity. 

The fidelity of the in-flight simulation is evaluated comparing the flight dynamics of the Bo-105 during a flight 

test and of the in-flight simulation in the AVES simulator. A simulator fidelity level 2 is reached in most cases. The 

pilots mentioned that in almost all cases the reactions of the in-flight simulation to control inputs, including the 

couplings, were in the good direction. The discrepancies were mostly related to the amplitude of the responses. A 

significant deficiency of the Bo-105 model has been noticed for the off-axis responses to collective inputs, 

degrading the fidelity ratings for the maneuvers requiring important collective actions. 

The demonstration of the In-flight simulations capability in the ACT/FHS is still pending. 

 

Appendix 

   

(a) Pitch Bandwidth (b) Roll Bandwidth (c) Yaw Bandwidth 

   

(d) Height Response (e) Pitch-Roll-Coupling (f) Yaw-Collective-Coupling 

  

 

(g) Pitch Attitude Quickness (h) Roll Attitude Quickness  

Fig. 8 Handling Quality evaluation of the Bo-105 model (downwards-pointing triangles) and of the in-flight 

simulation in AVES (upwards-pointing triangles). 
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Fig. 9 FRF amplitude and phase mismatches (blue) between in-flight simulation in AVES and Bo-105 model, 

together with the MUAD envelope (black).  
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