SEVEN YEARS OF TANDEM-X: VOLUME LOSS OF GROSSER ALETSCHGLETSCHER, SWITZERLAND

Silvan Leinss(1), Irena Hajnsek(1,2)

(1) ETH Zurich, 8093 Zurich, Switzerland
(2) Microwave and Radar Institute, German Aerospace Center (DLR), 82234 Wessling, Germany

Abstract

Grosser Aletschgletscher, the largest glacier in the European Alps, contains 20% of the entire Swiss ice mass. However, mass balance simulations based on current climate models predict 90% mass loss by 2100. The glacier is a super-testsite for the TanDEM-X satellite mission and data series starting from 2011 are available. In this study we analyzed almost 100 digital elevation models computed from bistatic radar interferograms and compare the derived height loss with model predictions. Additionally, we used patch-based offset tracking to determine a new velocity map of the complete glacier. The results show that the current height loss of 3.3 meters per year is close to that mass balance simulation which uses the ensemble median of common European climate models which predict, relative to 1999, a warming of 4.3°C by 2100.

Index Terms— Aletsch Glacier, radar interferometry, mass balance, DEM generation, offset tracking, ice velocity.

1. INTRODUCTION

Glaciers provide a major source of freshwater for alpine countries as well as water for hydropower generation. Therefore, predictions about future glacier evolution is crucial for water resource management [1]. Grosser Aletschgletscher, the largest glacier in Switzerland, is more than 22 km long, covers over 80 km² [2], is up to 800 m thick, and its volume of 15 km³ contains 20% of the entire Swiss ice mass [3]. Similar to all glacier in the European Alps, Grosser Aletschgletscher has shown a strong retreat and retreated by almost 3 km since 1880 [4] and almost 400 meters within the last ten years [5].

To estimate the future evolution of the glacier, a study by Jouvet et al. published in 2011 uses several possible climate scenarios from the ENSAMBLES project [6] to model the future evolution of Grosser Aletschgletscher [7]. Depending on the chosen scenario, the models predict a retreat of 15-20 km and a volume loss of 76% to almost 100%.

In this study, we analyze almost 100 digital elevation models (DEMs) generated by processing single pass interferometric SAR acquisitions from the TanDEM-X satellite mission [8]. Additionally, a velocity map covering the entire Glacier area is generated from the SAR backscatter data.

2. DATASET

The dataset contains almost 100 bistatic, dual-pol TanDEM-X acquisitions acquired over the Aletsch region of the Swiss Alps (46.50 N, 8.03 E). The interferometric, effective perpendicular baselines, determining the height sensitivity, are generally small (between 0 and 150 m) but larger baselines (up to 1040 m) result from the “large baseline acquisition phase” in spring 2015. The alpine topography of the region contains a large elevation range (600 m to more than 4000 m a.s.l.) which results in considerable occurrence of layover which complicated the interferometric processing. The processing was simplified by subtracting a simulated interferogram based on a reference DEM before phase unwrapping. The high-precision elevation model "swissALTI3D" provided by SwissTopo⁠¹ was used as a reference. The swissALTI3D is updated at least every six years with lidar data and optical stereo-correlation data. The vertical precision is 0.5 m below 2000 m and 1-3 m above. The swissALTI3D was also used for orthorectification of the backscatter data for offset tracking.

3. METHOD

The entire processing was done with an in-house (ETH Zürich) developed software for coregistration, InSAR phase simulation, common band filtering, Goldstein filtering [9], and orthorectification of TerraSAR-X and Tan-DEM-X acquisitions as well as for offset tracking. The entire software is written in IDL except for phase unwrapping where the external software SNAPHU [10] was used.

3.1. DEM generation

All single-look complex data (SLCs) were coregistered to a common master. For each acquisition date an differential interferogram was formed relative to a simulated reference interferogram based on the swissALTI3D. The residual phase difference was converted to height difference. The height difference was corrected for possible linear phase ramps by calibrating the height at permanent scatterers distributed over the

¹Source: Swiss Federal Office of Topography
ent scatterers. The location of permanent scatterers were extracted from the averaged multi-pass coherences formed by consecutive acquisitions of the entire stack of coregistered SLCs. Ice and snow covered regions showed an almost zero coherence whereas low vegetation and snow free rocks had a coherence of about 0.5. Points with highest coherence values are almost completely man made structures like buildings. For selection of spatially distributed permanent scatterers, the scene was divided into blocks of 200×200 pixels. For each block the pixels with the highest coherence were selected, if the coherency was higher than a threshold of 0.7 to 0.9. Permanent scatterers for which the height difference exceeded a threshold of ±10 m were rejected.

The calibrated height difference was orthorectified and added to the reference DEM. The resulting time series of elevation models allows for observation of spatially and temporal changes of the ice thickness of glaciers.

3.2. Velocity maps

Velocity estimation is based on patch-wise offset tracking by cross-correlation of the intensity image in dB. For each date one intensity image was obtained by averaging the backscatter intensity from the corresponding four SLC images (TSX and TDX in HH and VV polarization). The averaged intensity was orthorectified to a resolution of 2×2 m using the swissALTI3D to avoid velocity errors resulting from a spatially varying ground-range resolution on steep slopes.

offset tracking was performed for all consecutive image pairs with a patch size of 80×80 pixels corresponding to about 200×200 m. The peak position of the 2D cross-correlation function was determined with sub-pixel accuracy and converted to velocity. The quality of the cross-correlation function follows from a combination of several factors but is mainly determined by the height of the correlation peak above the noise floor. The stack of resulting velocity maps provided the basis for further analysis of the velocity. The median of the velocity was calculated but also seasonal variations between winter and summer velocities were analyzed.

4. RESULTS

The height difference relative to the swissALTI3D (2009) is shown in Fig. 1 for the entire region of Aletschgletscher for
Fig. 1. Height difference between the swissALTI3D and TanDEM-X data from 2011 until 2014. An ice loss of 3 - 5 m/a is visible by the increasingly yellow to red colors. \(B_{\text{eff}} \) is the effective baseline of the TanDEM-X formation. Forests heights of 15 - 20 m are shown in light blue.

Fig. 2 shows also a seasonal height variability with a strong height loss during summer. Nevertheless, despite snow fall, the height seems even to continue to decrease in early winter, very likely due to increased penetration into dry snow. This is supported by the abrupt increase of the interferometric phase center in spring (gray shading in Fig. 2) which results from the much smaller microwave penetration depth into wet snow compared to the dry winter snow. Wet snow can easily be identified from the radar backscatter intensity (lower panel of Fig. 2). The strong decline of the backscatter intensity each year in spring indicates the transition from dry to wet snow at the onset of the snow melt season. Importantly, shortly before(!) the decline of the backscatter signal, an apparent height increase of 2 - 4 m can be recognized in Fig. 2. From this observation we conclude that the radar penetration is already significantly reduced before the snow shows the distinct decline of the backscatter signal. The abrupt increase of the interferometric phase center is also a measure for the penetration depth of X-band microwaves into dry snow. We observed an average penetration of about 4 m but for deep
Fig. 3. Velocity map of Grosser Aletschgletscher

Finally, Fig. 3 shows the median velocity of Grosser Aletschgletscher for the period 20011 - 2016. The velocity is shown in color on top of the orthorectified radar backscatter intensity. The velocity map reveals a strong ice flux from the most western arm. Orange and red are higher velocities which occur for steeper terrain. Seasonal velocity variations of up to 50% (not shown) were found for the tongue.

5. REFERENCES

