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ABSTRACT

The fusion of complementary information from co-registered
multi-modal image data enables a more detailed and more
robust understanding of an image scene or specific objects,
and is important for several applications in the field of re-
mote sensing. In this paper, the benefits of combining RGB,
near infrared (NIR) and thermal infrared (TIR) aerial images
for the task of semantic vehicle segmentation through deep
neural networks are investigated. Therefore, RGB, NIR and
TIR image triplets acquired by the Modular Aerial Camera
System (MACS) are precisely co-registered through the ap-
plication of a virtual camera system and subsequently used
for the training of different neural network architectures. Var-
ious experiments were conducted to investigate the influence
of the different sensor characteristics and an early or late fu-
sion within the network on the quality of the segmentation
results.

Index Terms— Aerial Imagery, Data Fusion, Deep
Learning, Multispectral Imagery, Vehicle Segmentation

1. INTRODUCTION

By providing a more detailed and more robust understanding
of an image scene or specific objects, multi-modal image fu-
sion has proven to be beneficial for a variety of remote sensing
applications and is therefore often used for tasks such as land
cover classification, change detection or urban surface model-
ing. For the specific task of vehicle segmentation or detection
from aerial or satellite images, previous research studies such
as [1, 2] mainly utilizes RGB images. The advantage of RGB
images is a high spatial resolution, which enables a reliable
and accurate segmentation and detection of vehicles. On the
other hand, these images capture only a small region of the
spectrum and are affected by varying illumination conditions

and the appearance of shadowed areas. )
In contrast, our deep learning based vehicle segmenta-

tion approach is based on a combined usage of RGB, near
infrared (NIR) and thermal infrared (TIR) aerial images in
order to overcome individual shortcomings of each sensor.
More precisely, the usage of the NIR region or the spectrum
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Fig. 1: Comparison of vehicle appearance and visibility in RGB,
NIR and TIR images.

enables a more efficient separation between vegetation and
non-vegetation, e.g. for a better identification of vehicle par-
tially parked under bushes or trees or on grass. Contrary to
RGB and NIR sensors, TIR sensors measure the emitted radi-
ation from the surface of a target and therefore provide special
spectral characteristics of an object, usually with a lower spa-
tial resolution. In the context of vehicle segmentation, these
characteristics could help for a better identification of vehicle
parked in shadow or partly covered areas. Figure 1 exempli-
fies the difference in visibility of vehicles in RGB, NIR and
TIR images.

In the following a conceptional overview of the proposed
method is provided in Section 2, which is followed by a de-
tailed description of the utilized dataset in Section 3. The
results achieved are presented and discussed in Section 4 and
an outlook of future experimenters is provided in Section 5.

2. METHODOLOGY

2.1. Image Co-registration

In order to fuse the information from individual sensors
exactly co-registered multi-channel images are required.
The images used in this paper are captured by the Mod-
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Fig. 2: Setup of the MACS virtual camera

ular Aerial Camera Systems (MACS), which acquires the
visual (400-680nm), near (700-950nm) and thermal infrared
(7.5-14.0pum) spectrum with three camera heads mounted on
an airplane [3]. As the RGB, NIR and TIR images are taken
from different camera heads with slightly different exterior
orientation and strongly different interior camera properties
the co-registration is a crucial step.

Commonly, the co-registration of images from multi-head
camera systems is solved by generating one virtual image out
of the single images, as demonstrated e.g. for the DMC
camera [4] or for oblique UAV images [5]. Similar to the
described approaches, one virtual camera for each acquisi-
tion time was created for the MACS camera system, into
which the RGB, NIR and TIR camera images were projected.
Before, a self-calibrating bundle adjustment was performed
using ground control information from a reference data set
and using the directly measured GNSS/IMU data, but with-
out using any laboratory parameters or relative orientations.
The bundle adjustment uses tie points matched between and
within the RGB and NIR images as well as tie points only
within the TIR images.

The setup for the virtual camera is illustrated in Fig. 2.
Starting from a pixel in the virtual camera image, the corre-
sponding pixel in the RGB, NIR and TIR image are assigned
by intersection of the ray with a reference DSM and repro-
jecting the point into the RGB, NIR and TIR camera using
the interior (f, zp, Yp, ...) and exterior (X,Y, Z,w, ¢, k) ori-
entation parameter. Finally, the virtual camera image has five
multispectral bands, three from RGB, one from NIR and one
from TIR. The parameters of the virtual camera have been
selected so that the field of view (FOV) is smaller than the
FOV of every real camera and the GSD of the virtual camera
reaches the GSD of the NIR camera. The exterior orientation
of the virtual camera were taken from the TIR camera.

2.2. Semantic Vehicle Segmentation

The principle aim of our semantic segmentation network is
to identify all vehicles in an image scenes by allocating each
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pixel to one of three classes: “car”, ”truck” or “non-vehicle”.
To reach this goal our proposed network is composed of three
consecutive parts: 1) one or more encoders to down-sample
the input images for the extraction of more and more high-
level features, 2) a fusion sub-network to combine the features
extracted from the single encoder streams, and 3) a decoder
to gradually up-sample and thereby restores the spatial prop-
erties of the predictions.

In order to determine the optimal moment for the data fu-
sion, the influence of two fusion schemes is investigated. The
first type is based on an early fusion, where the input images
are stacked and directly passed to one common encoder. Note
that in this case no fusion sub-network is used. The second
type is based on a late fusion, where several encoder networks
extract the features from the different input modalities inde-
pendently. Afterwards, the extracted features are fused in a
fusion sub-network. For both fusion schemes the same de-
coders were used. An overview of the conceptual fusion ap-
proaches is provided in Figure 3.

The building blocks of our en- and decoders are based
on the fully convolutional neural network architecture (FCN’s)
proposed in [6]. In the case of the late fusion stream we inves-
tigated the influence of three fusion sub-networks: 1) simple
concatenation of the encoders output, 2) concatenation fol-
lowed by three convolutional layers and 3) concatenation fol-
lowed by five convolutional layers.

RGB, NIR and TIR Predictions

(a) Early fusion network scheme

Enc

Predictions

Enc

(b) Late fusion network scheme

Fig. 3: Illustration of the early and late fusion networks. Abbr.:

Encoder (Enc), Decoder (Dec)



3. DATASET

For data acquisition, a 22km long section of the German
motorway A2 between the cities of Hanover and Brunswick
was imaged on 07/08/2017 by the MACS camera system
at a flight height of 350m above ground. 411 visual and
near infrared images were captured synchronously with 1H z,
whereas 3096 thermal infrared images were captured asyn-
chronously with 7.5H z, which led to small time offsets and
according to this position differences of moving vehicles
in the co-registered multispectral images. Table 1 lists the
most important parameters of the dataset including the orig-
inal GSD of the MACS cameras and the GSD of the virtual
camera at a flight height of 350 m. The TIR images finally
are up-sampled to the GSD of the NIR images, whereas the
original GSD of the TIR images is 22.5 cm.

f image size FOV  pixel size GSD

[mm] m]  [em]

RGB 522  3232/4864  38° 7.4 5.0
NIR 59.2  2472/3296  34° 11.0 6.5

TIR 32.4
virt. 57.2

768/1024 35° 20.0 22.5
2304/3072  33° 11.0 6.7

Table 1: Parameters of the MACS camera setup. The GSD refers to
a flight height of 350 m above ground level.

For the training and the evaluation of our network, the ac-
quired images where divided into two subsets. The first 251
images serve as training data from which 5% was considered
as validation set, while 116 as testing set. The NIR and TIR
images were normalized based on their minimum and maxi-
mum values. The images of both datasets show different land-
scapes, e.g. highways, parking lots, industrial and rural areas,
and were acquired under varying illumination conditions.

In order to investigate the influence of the different sen-
sors characteristics on the segmentation results seven training
sets are created out of the RGB, NIR and TIR training data:
Training sets 1-3) contain images of one of the sensors only
(RGB, NIR or TIR), 4)-6) contain pairs of images from dif-
ferent sensors (RGB&NIR, RGB&TIR or NIR&TIR), and 7)
contains RGB, NIR and TIR image triplets.

4. EXPERIMENTS AND RESULTS

As the FCN-based en- and decoder, we choose the 8s vari-
ation with VGG-16 [7] base-network. The weights of the
FCN encoders are initialized by pre-trained models (trained
on the ImageNet ILSVRC 2012). Due to GPU memory lim-
its, we crop each input image into 512 x 512 px and ignore
the patches that contain pixels belonging to vehicles less than
threshold. We add horizontally flipped patches to the dataset.
All experiments are carried out using NVIDIA Titan XP by
training for 50 epochs using the Adam optimizer with 0.0001
learning rate. We use the Intersection over Union (IoU), recall

and precision as the criteria to evaluate the different methods.
Table 2 provides on overview of the performance of different
configurations and Figure 5 a corresponding qualitative eval-
uation.

The results in Table 2 show that a late fusion of RGB, NIR
and TIR achieves the best performance (81.05% mloU) com-
pared to the other setups with almost a 3% higher mIoU than
the early fusion of the three image modalities. Using RGB
data alone achieves even better performance compared to the
three-image-modality early fusion. These observations indi-
cate although different image modalities contain complemen-
tary data, by early fusion the similar features are extracted in
higher layers. Using TIR without fusion achieves the worst
results, which intuitively is because of the lower-resolution
compared to RGB and to the time shift in image acquisition.
As the ground truth was generated on the basis of the RGB
images, the ground truth for the TIR images is less inaccu-
rate. In the future, this could be addressed by secondary loss
function and using an independent ground truth for TIR im-
ages. Interestingly, in both early and late fusion scenarios,
the fusion of RGB and TIR achieves better performance than
RGB and NIR fusion. This could be due to the fact that RGB
and NIR contain more similar information than TIR. The TIR
images on the other hand, add extra information which are not
present in the RGB or NIR images.

The qualitative evaluation in Figure 4 and 5 supports the
theoretical assumptions made about the benefits of fusing the
three image modalities (see Section 1). More precisely, the
provided samples show that fusing NIR and TIR with RGB
images helps to improves the segmentation results especially
in image areas with difficult illumination conditions such as
shadowed or tree covered areas (see sample in 4).
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(c) TIR image

(d) RGB only

(e) RGB-TIR (f) RGB-NIR-TIR

Fig. 4: Qualitative influence of the input modularities (first row) on
the segementation results (second row).



fusion input fusion IoU [%] average %)
scheme  modularities sub-network mean car  truck non-vehicle recall precision
early RGB - 78.51 70.63 56.64 99.54 87.00 86.18
early NIR - 75.87 62.39 57.96 99.45 84.66 85.06
early TIR - 5475 2293 36.19 99.03 62.20 68.58
early RGB-NIR - 77.97 69.09 57.12 99.51 88.26 84.47
early RGB-TIR - 78.67 70.59 57.52 99.54 88.07 85.30
early NIR-TIR - 77.31 67.41 56.34 99.50 85.60 85.99
early RGB-NIR-TIR - 78.18 68.79 58.07 99.49 87.88 84.98
late RGB-NIR concat + 3 conv layers 79.60 72.24 58.63 99.52 88.76 86.18
late RGB-TIR concat + 5 conv layers  80.13 7496 57.23 99.55 89.47 86.16
late NIR-TIR concat + 3 conv layers 77.47 67.00 57.64 99.48 85.97 85.33
late RGB-NIR-TIR concat 81.05 7540 59.37 99.59 89.46 87.22

Table 2: Quantitative comparison of the early and late fusion scheme, the different image modalities and the different fusion sub-networks.

Abbr.: concatenation (concat), convolutional (conv).
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Fig. 5: Qualitative performance of different configuration trained on RGB, NIR and TIR data or a subset of them. The predicted classes “car”,
“truck” and “non-vehicle” are marked in cyan, pink and black, respectively. The first four columns display RGB, NIR and TIR patches as
well as the ground truth. After that, the order of the predictions is the same as in Table 2 (from top to bottom).

5. CONCLUSION

In this paper, we investigated the benefits of fusing RGB,
NIR, and TIR images through different fusion strategies for
the segmentation of multi-class vehicles in aerial imagery. As
a first step, we proposed the usage of a virtual camera to al-
leviate the positing shift of the individual camera heads. One
the basis of the resulting co-registered image set, we created a
pixel-wise labeled dataset, which we used to investigated the
performances of each sensor individually as well as the dif-
ferent fusion approaches in a fully convolutional neural net-
work. The results show that fusing the images in a later stage
leads the a better performance than an early fusion. More-
over, the combination of RGB-TIR achieves higher accuracy
than RGB-NIR to the complementary information in TIR. In
the future, we are planing to create a more diverse and larger
dataset and to investigate more complex and specified fusion
strategies as well as different en- and decoder approaches.

6. REFERENCES

[1] N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, and
M. Zuair, “Deep Learning Approach for Car Detection in UAV

(2]

(3]

(4]

(5]

(6]

(7]

Imagery,” Remote Sensing, vol. 9, no. 4, 2017.

S. Azimi, E. Vig, F. Kurz, and P. Reinartz, “Segment-and-Count:
Vehicle Counting in Aerial Imagery Using Atrous Convolutional
Neural Networks,” ISPRS - Inter. Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, pp. 19—
23,2018.

J. Brauchle, S. Bayer, D. Hein, R. Berger, and S. Pless, “MACS-
Mar: a real-time remote sensing system for maritime security
applications,” CEAS Space Journal, vol. 11, no. 1, pp. 35-44,
2019.

C. Doerstel, W. Zeitler, and K. Jacobsen, “Geometric Calibra-
tion of the DMC: Method and Results,” Inter. Archives of Pho-
togrammetry and Remote Sensing, vol. 34, pp. 324-333, 2002.
A. Tommaselli, M. Galo, M.and de Moraes, J. Marcato, and
Rodrigo F. Caldeira, C.and Lopes, “Generating Virtual Images
from Oblique Frames,” Remote Sensing, vol. 5, no. 4, pp. 1875—
1893, 2013.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional
Networks for Semantic Segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp.
640-651, 2017.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works For Large-Scale Image Recognition,” ICRL, 2015.



