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ABSTRACT

Using sea ice information generated from Synthetic Aperture
Radar (SAR) products can increase the safety and efficiency
of ship operations in ice-infested waters. For the purpose of
operational sea ice classification, the results need to be highly
reliable. The combination of multiple SAR acquisitions can
be used to estimate the reliability of sea ice classification and
to overcome existing limitations. In this paper, we present
a new approach for comparing sea ice classification results
from pairs of independent TerraSAR-X acquisitions and addi-
tionally overlay it with information on sea ice movement. For
this purpose, we combine our processors for estimating sea
ice drift and classification. The sea ice drift field is used to
compensate the ice movement between two SAR acquisitions
and differentiate areas of homogeneous and inhomogeneous
ice zones. The processing chain is developed for operational
usage in near real-time.

Index Terms— Synthetic Aperture Radar, sea ice, navi-
gation, near real-time, drift, classification

1. INTRODUCTION

Ship navigation in polar regions is a challenge for humans
and technology. Being remote of any opportunities for sup-
port, in an environment of fast changing weather and sea ice
conditions, can create dangerous situations during maritime
operations. Wind and ocean currents interact with the sea ice
and can push floes together creating pressure ridges, which
can be an insuperable obstacle for ships. Divergent forces
can open up the sea ice cover, providing a faster and safer
way through the ice. For this reason, knowledge about sea
ice movement, coverage and ice-type distribution are indis-
pensable for navigation in ice covered waters. SAR satellite
products can provide this information.

Independent from cloud cover and darkness, SAR offers
the opportunity to track sea ice and to distinguish between
different ice types. In our previous work, we developed
processors for the derivation of high resolution sea ice drift
fields[1] and classification of different sea ice types[2]. Due
to weather changes and deformation, the sea ice surface can
change, which in turn has influence on the scattering prop-
erties of the sea ice. Also the incidence angle of the SAR

acquisition has a large impact on the appearance of sea ice in
the image and therefore on the quality of our processors. For
the purpose of operationally supporting ship navigation with
SAR based sea ice classification, the results need to be highly
reliable. Combining co-located SAR products from different
acquisition times can be used to estimate the reliability of
sea ice classification and to overcome existing limitations.
Due to the continuously sea ice movement, the superposition
of sea ice information is only possible respecting the under-
lying drift. In general, this issue is solved due to pairs of
SAR acquisitions with a small time lag and manual image
registration[3].

In this paper, we present a new technique for comparing
sea ice classification from different SAR acquisitions respect-
ing the underlying drift. Moreover, the evaluated drift field is
used to identify potential areas of sea ice deformation, which
in turn can influence the quality of the sea ice classification.
For this reason we combine our software processors for sea
ice drift and classification.

2. METHODOLOGY

The comparison of two or more SAR scenes, enables the es-
timation of the sea ice drift with high resolution. The re-
sulting drift field is used to relate different ice areas within
two temporal separated SAR scenes. Independent from the
drift, sea ice can be grouped into classes depending on the
age and appearance of the ice. Using the drift field, changes
of sea ice areas and limitations of the existing classification
can be analysed. Figure 1 shows our process chain for creat-
ing a superposition of two sea ice classification results based
on independent SAR products. In the first step, sea ice drift
and classification are performed independently. After this, the
classification results from the initial scene are superimposed
on the subsequent scene using a co-registration and drift com-
pensation step.

In the following, the dataset used and the steps of our pro-
cessing chain are described in detail.

2.1. Dataset

Our tests deals with ten TerraSAR-X (TS-X) Stripmap Du-
alpol MGD scenes acquired over the Arctic Ocean north of

4206978-1-5386-9154-0/19/$31.00 ©2019 IEEE IGARSS 2019



Greenland. From these ten acquisitions we matched ten pairs
of co-located scenes with a maximum acquisition time differ-
ence of about 26 hours. Table 1 lists the TS-X products used.
In the following text the image pairs are denoted due to the
combination of the single scenes indices (e.g. 01|02).

2.2. Drift estimation

The sea ice drift is estimated from pairs of co-located SAR
scenes. Firstly, both scenes are co-registrated based on
geospatial information. For each designated drift vector ~vk a
patch gxkyk

from the initial scene and a patch hxk+ukyk+vk

from the subsequent scene is extracted. Each patch has a
fixed pixel size N and is referenced by its upper left corner
coordinate (x, y) of the corresponding scene. The parame-
ters uk, vk describing the vertical and horizontal components
of the drift vector initialized with (0, 0). On the extracted
patches, a phase correlation method is applied to estimate
the drift vector. The normalized cross spectrum Γ(i, j) is
estimated from the Fourier-transformed image patches F(g)
and F(h):

Γ(i, j) = F−1

(
F(g)F(h)

|F(g)F(h)|

)
(1)

The peak in the cross spectrum indicates the drift vector.
Next, the position of the image patch h is updated to the
estimated drift vector and the phase correlation method is
repeated. Reiterating this procedure until the peak is esti-
mated in the centre of the cross spectrum, the optimum drift
vector is found. In Addition to this iterative method, a multi-
resolution image pyramid is applied. The update of all drift
vectors in four resolution levels with a reduction factor of two
and starting with the coarsest resolution enables sea ice drift
estimation from large displacement to small changes in the
ice field. A more detailed description of the drift estimation
is given in [1].

2.2.1. Deformation

Changes in drift velocities can result in deformed ice areas.
In general, deformed sea ice is related to a rougher surface,
which in turn effects in a stronger SAR backscatter. For this
reason, deformed sea ice can often not be distinguished from
older sea ice which in general shows a higher backscatter. The
common way to extract deformation zones is to calculate the
partial derivative ∂u/∂x and ∂v/∂y from the estimated drift
field and determine in a second step the amount of conver-
gence and divergence within the drift field [4].

∇~v(x, y) =
∂u

∂x
+

∂v

∂y
(2)

This makes it possible to distinguish between sea ice areas of
homogeneous drift and zones of potential ice deformation.

2.3. Sea ice classification

In [2], we presented a supervised sea ice classification al-
gorithm based on SAR Polarimetry and an Artificial Neu-
ronal Network (ANN). From complex co-polarization chan-
nels SHH and SV V of TS-X Dualpol Stripmap products, we
create the covariance matrix Cco.

Cco =

[
S2
HH SHHSV V

SHHSV V S2
V V

]
(3)

Based on the covariance matrix, we calculated polarimetric
features as an input for the ANN. For training of the ANN,
we chose rectangular patches from selected scenes and val-
idated our results with in situ data. Due to the absence of
complex TS-X products for near real-time (NRT) usage, we
adjusted our algorithm for the non-complex Dualpol Stripmap
MGD product. Therefore the number of features is reduced
using only features depending on the amplitude of the polar-
ization channels. After this, the ANN was re-trained based
on the patches from the MGD products and the in situ data
mentioned in [2]. Similar to our previous work, the adjusted
algorithm differentiates four ice classes, open water (OW),
young ice (YI), smooth first year ice (SFYI), and rough first-
year and multiyear ice (RFYMYI). The denotation indicates
that first year ice is, depending on its appearance, classified
into SFYI or RFYMYI. Due to changes in the surface rough-
ness and the influence of the incidence angle, a differentiation
between first year ice and multiyear ice is often challenging.

2.4. Superposition of sea ice classification

For creating a pixelwise superposition of sea ice classifica-
tion results, each pixel needs to be assigned drift information.

scene 1 scene 2

co-registration

drift estimationclassification classification

drift interpolation

drift compensation

co-registration

ice chart
superposition

multi-temporal 
ice chart

Fig. 1: Flowchart of superposition creation
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Table 1: List of TS-X-Dual-Polarimetric StripMap Scenes

Index Time UTC Beam mode Incid. ang. Center loc. Orbit
01 March 05, 2018, 16:19:42 stripFar 009 35.5◦ - 36.6◦ 85.5N, -48.1E Ascending
02 March 06, 2018, 16:02:31 stripNear 009 34.2◦ - 35.6◦ 85.4N, -47.0E Ascending
03 March 15, 2018, 16:36:53 stripNear 009 34.2◦ - 35.6◦ 85.2N, -49.2E Ascending
04 March 15, 2018, 18:11:08 stripFar 013 42.7◦ - 43.8◦ 84.8N, -45.0E Ascending
05 March 15, 2018, 18:11:16 stripFar 013 42.7◦ - 43.8◦ 85.5N, -48.8E Ascending
06 March 16, 2018, 16:19:44 stripFar 008 31.1◦ - 34.5◦ 85.2N,-49.3E Ascending
07 March 16, 2018, 17:53:58 stripFar 012 41.0◦ - 42.2◦ 84.9N, -43.1E Ascending
08 March 16, 2018, 17:54:04 stripFar 012 41.0◦ - 42.2◦ 84.2N, -47.7E Ascending
09 September 05, 2018, 06:08:11 stripFar 026 58.9◦ - 59.5◦ 89.9N, 44.5E Descending
10 September 05, 2018, 09:17:40 stripNear 025 57.4◦ - 58.1◦ 88.9N, 44.0E Descending

For the reason that pixelwise drift estimation would cause a
long processing time we interpolate the estimated drift field
to pixel resolution in two steps. Firstly, from the estimated
drift vectors a triangular grid is created using a Delaunay tri-
angulation. After this, each pixel within the triangular grid is
interpolated due to the three drift vectors at the vertices of the
corresponding grid cell. Using this approach, the interpolated
drift field can be created independent from the alignment and
structure of the previous estimated drift field. Moreover, in-
sufficient drift vectors can easily be skipped from the drift
interpolation, resulting in a coarser grid resolution. Finally
the sea ice classification from initial image is shifted by the
interpolated drift field.

3. RESULTS AND DISCUSSION

In general, the changes identified in our classification results
can be caused by three principal mechanisms. Firstly, uncer-
tainties in the drift estimation can cause false change detec-
tions close to the edges between different types of ice. Sec-
ondly, the appearance of an ice type has really changed due to
meteorological effects like wind, deformation, thaw or freeze.
Lastly, changes in classification are caused by limitations of
the classification algorithm itself.

In the following, the superposition of the classification re-
sults are analysed in two respects. Firstly, the general reliabil-
ity of the classification results is evaluated for homogeneous
areas of ice movement (section 3.1). Secondly, converging
and diverging zones of the drift field are analysed regarding
changes in classification (section 3.2).

3.1. Analysis of classification reliability

In the selected region and season, the generated sea ice clas-
sification shows for all ten scenes a dominant presence of
RFYMYI. Figure 2 shows different processing steps for im-
age pair 05|08. Figure 2(a) shows the co-registered scene
of the initial acquired product, 2(b) shows the subsequent

scene with the drift field overlaid, 2(c) illustrates the esti-
mated zones of converging and diverging sea ice, and 2(d)
points out the estimated sea ice classes in grayscale and the
indicated changes overlaid in colour. Noticeable in Figure
2(d) are the uniformly distributed changes of small sea ice ar-
eas between SFYI and RFYMYI. The changes are marked
in yellow and blue. Physically, a change from first year ice to
multiyear ice within the maximum time difference of 26 hours
is not possible. Moreover, changes due to deformation or un-
certainties of the drift algorithm can be neglected because of
the homogeneous drift. Therefore, we assume that the vast
majority of these changes result from limitations in the classi-
fication algorithm. Due to similar roughness and the influence
of the incidence angle, SFYI and RFYMYI can often not be
distinguished. The analysis of the other image pairs confirms
the existence of these noise-like ice class changes caused by
limitations of the classification algorithm. Applying image
filter algorithms as a post processing step of the classification
would help to overcome these limitations. However, using fil-
ter algorithms would also erase other small class areas which
could indicate existing deformed ice such as pressure ridges
or small open water areas. Therefore creating the superposi-
tion of two or more sea ice classification images can be used
to detect and overcome these limitations without losing infor-
mation from the high resolution.

3.2. Influence of deformation

Convergent ice movement can cause deformation and result
in a rougher surface, which in turn can change of the appear-
ance of the ice in SAR and results in misclassification of our
algorithm. Therefore areas of converging sea ice are analysed
in more detail. In the centre of Figure 2(b) the local veloc-
ity of the sea ice is decreasing in the flow direction, which
creates converging zones. To analyse the reliability of our
classification in the potential deformation zones, we estimate
the amount of changes separately for homogeneous and con-
verging drift areas. The image pairs 05|08, 05|06, 04|07 and
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(a) (b) (c) (d)

Fig. 2: (a) Scene 05 co-registered to 08 (b) Scene 05 with estimated sea ice drift field (c) Highlighted convergence and diver-
gence zones in h−1 (convergence in red, divergence in blue), divergence (d) Grayscaled sea ice classification from scene 08
and colour-coded class changes compared to classification based on scene 05

03|06 have a common drift velocity from 22m/h to 27m/h.
Therefore, these pairs are suitable for comparing the distri-
bution of ice class changes within and outside of converging
ice zones. Based on the convergence map of the image pairs,
the ice is separated into areas of homogeneous movement and
potential deformation areas. A convergence of 0.4h−1 is used
as a threshold for convergence areas. In general, the amount
of ice class changes within the converging zones are higher
than in areas of homogeneous motion. In Figure 2(c) the esti-
mated convergence and divergence areas of the pair 05|08 are
shown. Within the four mentioned image pairs the amount of
sea ice changes from YI to RFYMYI is increasing in average
by 6.2%. Analysing all sea ice types, the amount of changes
is 11% higher. This confirms our expectations.

4. CONCLUSION

In this paper we presented a new approach for a pixelwise su-
perposition of two sea ice classification results from different
independent SAR acquisitions. This offers the opportunity
to analyse changes within the ice and the reliability of our
classification algorithm. Moreover, we superimposed drift in-
formation to identify potential areas of ice deformation and
demonstrated the influence to our algorithm. In future we
plan to extend the afore mentioned technique for a series of
SAR products and use the estimated information for border-
ing different reasons of ice type changes. Finally, this might

increase the reliability of our operational sea ice processors.
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