The performance of empirical and physics based lonosphere models

Isabel Fernandez-Gomez¹, Andreas Goss², Michael Schmidt², Claudia Borries¹ and Anja Schlicht³

- (1) German Aerospace Center (DLR)
- (2) Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM)
- (3) Technical University of Munich (TUM)

Outline

- ☐ Insight II
- Models
 - TUM: Empirical model
 - CTIPe: Physics based model
- ☐ Case Study: St. Patrick day Storm 2015
- Validation methods and measurements
 - TEC map over Europe
 - lonosonde comparison
 - Self consistency (dSTEC) analysis
- **☐** Summary and Next steps

INSIGHT II Interactions of Low-orbiting Satellites with Surrounding Ionosphere and Thermosphere

DFG (German Science Foundation)
Grant number 273590813

INSIGHT II

STORM CONDITIONS

Models: CTIPe and TUM

Case Study: St. Patrick day storm 2015

- Dst index descend to values < -200 nT
- Kp index increases from 2 up to 8

- G4 Level (severe) geomagnetic storm
- Caused by a CME the 15th March

VALIDATION METHODS

Validation methods and measurements

MEASUREMENTS

Validation: TEC map over Europe (10E)

Validation: Local Ionosonde comparison

The geographical locations of the **stations available** for the analysis are shown in the figure

> CTIPe - TUM

IGS TEC

Validation: Local Ionosonde comparison maps (R)

Validation: dSTEC self – consistency analysis

- A comparison for the test period including the St. Patrick Storm event was performed.
- The validation method is based on the self-consistency analysis (dSTEC).

Analysis of the *dSTEC*_{obs,k} values from a continuous arc by subtracting a reference observation

- The self consistency analysis is based on the comparison of ...
 - from the GPS geometry-free linear combination of carrier-phase observables (along a phase-continuous arc): $dSTEC_{\rm obs,k}$
 - ... and differenced STEC values computed from the VTEC maps: $dSTEC_{map,k}$

$$dSTEC_{k} = dSTEC_{obs,k} - dSTEC_{map,k}$$

Validation: dSTEC self – consistency analysis

- The geographical locations of the stations selected for the analysis are shown in the figure
- The test receivers chosen globally are located at low and high latitudes, which can estimate the VTEC model accuracy at regions characterized by strong variable VTEC activity

Summary of the statistics:

Average standard deviations (STD) and average RMS deviations of 3 models presented at 8 stations covering the days March 16-18, 2015 from dSTEC analysis.

Summary and Next steps

- CTIPe and TUM models analysis during storm conditions using IGS TEC and lonosonde data.
- Both models can reproduce the TEC storm characteristics.
- CTIPe results show latitudinal dependence with better results in high and mid latitudes than the equatorial region.
- Next Steps: CTIPe assimilation of SWARM neutral density.

Summary and Next steps

- CTIPe and TUM models analysis during storm conditions using IGS TEC and lonosonde data.
- Both models can reproduce the TEC storm characteristics.
- TUM show very good agreement with TEC and foF2, however hmF2 calculations needs further improvement.
- Next Steps: Ne independent of the empirical model

Thanks for your attention!

