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Vorwort der Herausgeberin

Liebe Leserinnen und Leser,

in lhren Handen halten Sie einen Band unserer Buchreihe "Berichte aus dem DLR-Institut fir
Verkehrssystemtechnik". In dieser Reihe veroffentlichen wir spannende, wissenschaftliche The-
men aus dem Institut fiir Verkehrssystemtechnik des Deutschen Zentrums fiir Luft- und Raum-
fahrt e.V. (DLR) und aus seinem Umfeld. Einen Teil der Auflage stellen wir Bibliotheken und
Fachbibliotheken fiir ihren Buchbestand zur Verfiigung. Herausragende wissenschaftliche Ar-
beiten und Dissertationen finden hier ebenso Platz wie Projektberichte und Beitrage zu Tagun-
gen in unserem Hause von verschiedenen Referenten aus Wirtschaft, Wissenschaft und Politik.

Mit dieser Veroffentlichungsreihe verfolgen wir das Ziel, einen weiteren Zugang zu wissenschaft-
lichen Arbeiten und Ergebnissen zu ermaoglichen. Wir nutzen die Reihe auch als praktische
Nachwuchsforderung durch die Publikation der wissenschaftlichen Ergebnisse von Dissertationen
unserer Mitarbeiter und auch externer Doktoranden. Veroffentlichungen sind wichtige Meilen-
steine auf dem akademischen Berufsweg. Mit der Reihe "Berichte aus dem DLR-Institut fir
Verkehrssystemtechnik" erweitern wir das Spektrum der moglichen Publikationen um einen
Baustein. Daruber hinaus verstehen wir die Kommunikation unserer Forschungsthemen als
Beitrag zur nationalen und internationalen Forschungslandschaft auf den Gebieten Automotive,
Bahnsysteme und Verkehrsmanagement.

Der vorliegende Band stellt einen datengetriebenen Ansatz zur Erhohung der Verkehrssicherheit
an Kreisverkehren vor. Der Ansatz basiert auf einem empirischen Forschungsparadigma, im Rah-
men dessen Fahrdaten sowie Daten von Blick- und Kopfbewegungen im Realverkehr und in der
Simulation erhoben wurden. Diese Daten wurden mit Hilfe von Methoden der kiinstlichen Intelli-
genz mit Informationen liber das Verhalten anderer Verkehrsteilnehmer und iiber das geographi-
sche Layout des Kreisverkehrs miteinander in Beziehung gesetzt. Darauf aufbauend wurde ein
Algorithmus entwickelt und validiert, der insbesondere Daten iiber den zeitlichen Verlauf der
Lenkradbewegung und Daten zum geographischen Layout des aktuellen Kreisverkehrs nutzt, um
vorherzusagen, ob die jeweiligen Fahrer den Kreisverkehr bei der nachsten Ausfahrt verlassen
oder nicht. Dies gelingt in einer Distanz von bis zu 10 m vor der Ausfahrt in tiber 95% der
Falle. Diese Quote kann bei einer Individualisierung des Modells noch deutlich friiher erreicht
werden. Somit erscheint es auch realistisch, mit Hilfe dieses Ansatzes die Verkehrssicherheit
an Kreisverkehren zu erhohen: Fahrer konnen damit namlich rechtzeitig vor der Durchfiihrung
eines intendierten Abbiegemanovers gewarnt werden, sollte eine Kollision mit einem anderen
(schwacheren) Verkehrsteilnehmer drohen.

Prof. Dr.-Ing. Katharina Seifert
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Abstract

Roundabouts are considered important because converting an intersection into a roundabout
has been proven to improve safety. However, the absolute number of crashes at roundabouts is
still high. Many crashes occur because car drivers fail to yield. Intelligent systems can increase
safety if they can prevent crashes by precisely predicting driver maneuvers. Therefore, a reliable
and trustworthy predictive model of driver maneuvers is needed.

A few studies analyze human behavior at roundabouts. However, they focus on an operational
timescale rather than on maneuvers on a tactical timescale. Tactical maneuvers have mostly
been investigated in scenarios about typical intersections and overtaking. Thus, there is still a
lack of research on driver maneuver prediction at roundabouts. To fill this gap, the objective of
this thesis is to develop a model that can predict driver maneuvers at single-lane roundabouts.

Two types of driver maneuvers are possible in front of each exit of a roundabout: exiting the
roundabout and staying in the roundabout. To predict which maneuver a driver will execute in
front of an exit, a driver maneuver predictive model was developed on the basis of an analysis
of driver behavior data acquired from a field study and a simulator study. Soft-classification
algorithms were proposed to train the predictive model. The model consisted of four sub-
models for four different scenarios, which were defined by the correlation between roundabout
layouts and drivers’ steering behavior. The sub-models make it possible to predict the exiting
or staying maneuvers executed in the corresponding scenarios. Furthermore, a personalized
predictive model was developed to adapt to individual drivers because different drivers have
different driving styles.

The driver maneuver predictive model shows excellent predictability: In the scenarios without
traffic, the model reported prediction results for more than 97.60% of test drives at the position
10 m from the exits of the roundabouts. Of these drives, more than 97.10% were predicted
correctly. The personalized predictive model provided even better prediction results for individual
drivers with significantly different driving styles. Moreover, the driver maneuver predictive model
also successfully predicts drivers’ maneuvers in most scenarios with cyclists. The prediction
results show that steering angle, steering angle speed, velocity, and acceleration of the ego
car provide the most important information. With this information, the model can predict the
maneuver of a driver with any type of driving style at a single-lane roundabout with any type of
layout.
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Kurzfassung

Kreisverkehre gelten als ein wichtiger Bestandteil der Verkehrsinfrastruktur, da ihre Verwendung
anstelle von traditionellen Kreuzungen einen wesentlichen Beitrag zur Verkehrssicherheit leistet.
Die absolute Anzahl von Unfallen bleibt jedoch auch an Kreisverkehren noch hoch. Viele Kolli-
sionen werden dabei durch Missachtung der Vorfahrt verursacht. Intelligente Fahrzeugassisten-
zsysteme konnten hier eingreifen, vorausgesetzt sie verfiigen iliber eine zuverlassige Vorhersage
des Fahrerverhaltens. Hierflir wird ein robustes und prazises Modell flir die Vorhersage von
Fahrmanovern im Kreisverkehr benotigt.

Empirische Studien zu menschlichem Verhalten an Kreisverkehren fokussieren in der Regel auf
die operationale Ebene der Fahraufgabe, also auf eine zeitlich hoch aufgeloste Zeitskala. Die tak-
tische Ebene, auf der Manover wie “Verlassen des Kreisverkehr” stattfinden, wurde dabei jedoch
nicht ausreichend analysiert. Insbesondere fehlen Modelle, die Fahrmanover im Kreisverkehr
vorhersagen. Ziel dieser Arbeit ist es daher, ein solches Modell fiir einspurige Kreisverkehre zu
entwickeln.

Zwel Arten von Manovern sind innerhalb eines einspurigen Kreisverkehrs moglich: Im Kreisel zu
bleiben, oder ihn zu verlassen. Um maoglichst friih eines der beiden Manover vorherzusagen wur-
den im Rahmen dieser Arbeit verschiedene Modelle entwickelt, welche auf Fahrdaten aus dem
Realverkehr sowie Simulationsstudien basieren. Fir das Training der jeweiligen Modelle wer-
den Soft-Klassifikationsalgorithmen vorgeschlagen, die auf einem Quasi-Hidden-Markov-Modell
basieren.

Dieses Modell besteht aus vier Teilmodellen fiir jeweils vier verschiedene Szenarien, die durch
die Korrelation zwischen Kreisverkehrlayouts und Lenkverhalten von Fahrern definiert wurden.
Mit den Teilmodellen konnen die in den entsprechenden Szenarien ausgefiihrten Manover "Ver-
lassen" oder "Bleiben" vorhergesagt werden. Des Weiteren wurde ein personalisiertes Vorher-
sagemodell entwickelt, um sich an den individuellen Fahrer anzupassen, da verschiedene Fahrer
unterschiedliche Fahrstile aufweisen.

Das Fahrmanover-Vorhersagemodell zeigt eine ausgezeichnete Performanz: In den Szenarien
ohne Verkehr lieferte das Modell in einem Abstand von 10 m vor der Kreisverkehrsausfahrt
Vorhersagen fiir mindestens 97,60% aller Testfahrten. Von diesen Fahrten wurden wiederum
iber 97,10% korrekt vorhergesagt. Personalisierte Modelle erreichen noch bessere Vorher-
sageergebnisse. Sind weitere Verkehrsteilnehmer in den analysierten Szenarien anwesend liegt die
Vorhersagegiite etwas darunter. Die Ergebnisse zeigen, dass Lenkwinkel, Lenkwinkelgeschwindig-
keit sowie Eigengeschwindigkeit und -beschleunigung die wichtigsten Informationen liefern. Hier-
mit kann das Modell das Manover eines Fahrers mit jeder Art von Fahrstil an einem Kreisverkehr
mit jeder Art von Layout vorhersagen.
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1 Introduction

1.1 Motivation

Roundabouts are considered important because converting an intersection into a roundabout
results in fewer injury accidents for both car drivers and pedestrians [Brill, EHVS09, RPGLO1,
HVO00]. A study by Montella shows that roundabouts reduce the total number of injury crashes
by 76% and the total number of fatal crashes by more than 90% compared to signalized in-
tersections [Monl1l]. However, many crashes with cyclists occur at roundabouts [HOBO7].
Roundabouts increase cyclist injury accidents by 27% and fatal accidents by 46% [DNWO3].
The most dangerous situations are those in which a) a car enters a roundabout when a cyclist
is circulating or b) in which they both circulate in parallel and the car driver exits the round-
about [SLSH10]. In almost one-third of the crashes between cars and cyclists, the failure of car
drivers to give way is the main contributing factor in terms of road users. For instance, turn
signals were used incorrectly in about 20% of all turn maneuvers [Eur08][LKB*13]. Therefore,
an important factor for accidents is when drivers indicate their planned behavior to leave or stay
in the roundabout incorrectly, or make incorrect predictions about other road users’ maneuvers.

Advanced Driver Assistance Systems (ADASs) can decrease the probability of crashes or miti-
gate the damage caused by accidents [HKBL11]. In risky situations, ADASs can assist drivers
by warning them of dangers, activating blinkers automatically to warn other road users, or acti-
vating the braking system to avoid potential crashes [DMT11]. These systems work efficiently
only when they can predict drivers’ upcoming maneuvers correctly and offer appropriate help
based on these predictions, otherwise, drivers might feel annoyed by the interference and disable
the ADAS [DMT11][HZW12]. Therefore, an ADAS that can effectively mitigate accidents at
roundabouts must include a reliable and trustworthy driver maneuver predictive model. This
model must be able to predict future driver maneuver of exiting or staying in roundabouts.
The prediction result will allow the ADAS to decide whether and how to assist the driver in
considering her/his future maneuver.

Predicting driver maneuvers correctly at roundabouts is still an open research question, and is
thus the focus of this thesis. Specifically, a model for predicting driver maneuver at generic
roundabouts was developed and evaluated in this thesis.

1.2 Objective

The objective underlying this thesis is to develop a driver maneuver predictive model that can
predict future driver maneuvers at roundabouts with different layout designs and in different
traffic situations for all drivers with their different driving styles. It should be noted that the
focus of this thesis is on compact roundabouts, which are defined as roundabouts with a single



1 Introduction

circulating lane and a diameter of 26 - 40 m [Brill][Hof14]. Two types of driver maneuvers in
front of each exit of compact roundabouts are possible: exiting the roundabout or staying in the
roundabout (see Figure 1-1). To predict these two maneuvers, the following challenges need to
be addressed:

e |dentify the driving behavior information that provides indications for the upcoming driver
maneuver. Although driver maneuvers cannot be observed before they are executed, cer-
tain information (e.g., driving velocity, steering wheel angle) can be used to infer which
maneuver a driver is going to execute.

e |dentify the effect of different roundabout geometric layouts on driving behavior. Drivers
behave differently when driving through roundabouts with different radii and entry-exit
angles. Only when the effects of the geometric design on human driver behavior are
considered can driving behavior effectively predict driver maneuvers.

e |dentify a classification algorithm that can distinguish between pieces of driving behavior
data that are related to the two maneuvers.

e |dentify a modeling method that can make use of driving behavior and the classification
algorithm to predict driver maneuvers in different scenarios in a valid manner.

e |dentify an evaluation method to evaluate the performance of the driver maneuver predic-
tive model.

Addressing these challenges will allow the objective of developing a driver maneuver predictive
model to be achieved.

‘;
-

’f

Exit or stay?

y EXit or stay?

a’—>
Exit or stay?

—> Actual driving route

=== Possible driving route

Figure 1-1: Two driver maneuvers in front of an exit of a roundabout.

1.3 Methodology

Here, the methodology for developing a driver maneuver predictive model is introduced in a
general way. The specific details of the methodology are provided in Chapters 3, 4, and 5.



1.3 Methodology

Driver maneuvers are both a cause and a consequence of driving behavior. Thus, driving behavior
can be used to predict driver maneuvers. However, drivers may behave differently when they drive
through roundabouts with different geometric layouts. This is why the effects of roundabout
layouts need to be controlled for. Otherwise, driver maneuver can hardly be predicted effectively.
Hence, driving behavior data relevant to roundabouts with different layouts were acquired and
analyzed to develop an understanding of the effects of the roundabout layout on driving behavior.
Then, machine-learning algorithms were used to train classifiers to distinguish between different
patterns of driving behavior to understand what maneuvers drivers are going to execute in the
immediate future. The workflow of the thesis is presented in Figure 1-2, the details of which
are explained in this chapter.

Data acquisition with
field study and data
analysis

A4

Simulator study design
and data acquisition

A 4

Data analysis

\ 4

Data categorization v

Feature extraction

A 4

Scenario definition

v

Machine-learning-
based model

4

A 4

Model evaluation

Figure 1-2: Modeling workflow.

Driving Data Acquisition

A field study was conducted to acquire data about how drivers drive through roundabouts.
In this field study, participants drove on a standardized route through compact roundabouts
in real traffic with a sensor-equipped experimental car. Each participant drove through every
combination of entries and exits in accordance with an experimenter'’s instructions. Thus, data
on participants’ naturalistic driving behavior were acquired, including steering angle, steering
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angle velocity, acceleration, velocity, yaw, and driver gaze and head direction. The data showed
that information about steering wheel behavior is useful for predicting driver maneuvers at the
investigated roundabouts [ZKJ*17]. The limitations of the field study were that the driving
behavior was mediated by uncontrolled factors related to surrounding traffic and that driving
behavior data were only captured at three roundabouts. To complement these limitations, a
simulator study was designed to acquire driving behavior data at more generic roundabouts
with varied geometric layouts (in Session 1) and varied traffic situations (in Session 2). In
Session 1, two geometric features of roundabout layout design, radius and entry-exit angle,
were manipulated experimentally. In Session 2, four types of surrounding cyclists were placed at
or near the roundabouts to see how they would affect the participants’ driving behavior. In the
simulator study sessions, the participants drove through tracks that had been produced to match
the roundabouts with the varied geometric features and the varied traffic discussed above. The
following variables were recorded during the two sessions for each scenario:

e Steering angle

Steering angle velocity

Acceleration

Velocity

Position

Gaze direction

e Head direction

Therefore, relevant driving behavior data were acquired and analyzed. The details of the studies
and the analysis are provided in Chapter 3.

Scenario Definition

The driver behavior data acquired from the simulator study were analyzed to identify the impact
of roundabout layout on driving behavior. The local extremum of steering angles (6.) and the
integrated geometric feature (Geo) were defined to characterize the steering wheel informa-
tion and the geometric features of roundabouts, respectively. The mathematical correlation of
these two variables was calculated to define each scenario. Subsequently, a method of sce-
nario categorization for roundabouts was proposed using this correlation, so that all scenarios
at roundabouts could be categorized into four categories. This allows the effect of geometric
features of roundabouts on driving behavior to be eliminated in each scenario category. The
details of the scenario definition are also provided in Chapter 3.
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Modeling

A driver maneuver predictive model was developed for the four scenarios. The model includes
four sub-models that correspond to each of the four scenarios. Each sub-model consists of a
series of classifiers corresponding to a series of prediction sites. Prediction sites are locations
where a prediction is made along the route between the entry and the exit of a roundabout.
The information on driving behavior at each prediction site were used to train the corresponding
classifier. With the classifiers, two driver maneuvers of test drives at each prediction site were
classified. The features and the algorithms used for classifier training are as follows:

e Features for classifier training. The relevant features are those that significantly differ
between exiting a roundabout VS. staying in the roundabout. Steering angle and steering
angle velocity proved to be important features [ZKJ*17]. The other features, including
acceleration, velocity, and driver gaze and head direction, were also tested. The values
for steering angle, steering angle velocity, speed, acceleration, heading direction, and gaze
direction at each prediction site were extracted as features for training the classifiers.
Different features and different combinations of features provide different predictabilities.
Thus, all combinations of features were used as inputs to train the classifiers, and the
most important ones were selected.

e Algorithms for classifier training. The algorithms were developed based on those that have
proven to be successful in earlier studies (see Chapter 2). Soft-classification algorithms
were used because hard-classification algorithms are inappropriate for driver maneuver
prediction: hard classifiers output discrete values of "Exiting" or "Staying" when fed with
feature data [LZW11], and thus always offer results even when predictability is still weak
at the very beginning of drives. In contrast, soft classifiers output continuous values
of the likelihood of "Exiting" or "Staying" [LZW11]. This output is known as soft-
decision output. Soft classifiers decide whether or not to report the results of "Exiting"
or "Staying" with a soft-decision output and an output threshold: The classifiers will not
report results if the soft-decision outputs of "Exiting" and "Staying" are lower than the
threshold. Thus, the prediction results had three possible stati: correct, incorrect, or
not available. In this work, two types of soft-classification algorithms were investigated:
simple algorithms and complex algorithms. The simple classification algorithms include
support vector machines, random forest, AdaBoost, and logistic regression. The complex
algorithms are the algorithms proposed by integrating the hidden Markov model and the
above simple algorithms. So, the classifiers were trained with these soft-classification
algorithms.

A personalized predictive model was then developed for individual drivers because drivers have
different driving styles even in the same roundabout scenario. This model was obtained by
updating the original predictive model, which was trained using data about generic drivers, to
include the specific driver’s driving data. Details on this process are provided in Chapter 4.
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Evaluation

Evaluation is needed to select the feature and the algorithm with the best performance. Five-
fold cross validation was used for the model evaluation, so one-fifth of the driving behavior data
are test data for the predictive model. The test data set contained driving samples with the
exiting maneuver and samples with the staying maneuver. When the models were tested with
these samples, they labeled the samples as "Exiting", "Staying", or "NA (no result available)"
using the soft-decision outputs and an output threshold. Traditional evaluation scores for hard
classification such as accuracy, F1 score, detection rate, and false alarm rate are not appropri-
ate in this case because these scores would treat "no result available" as an incorrect result.
Therefore, a unique grading system was proposed to evaluate the soft-decision based models.
The basic principle of the grading system is that a correct prediction is the best situation, an
Incorrect prediction is the worst situation, and no result available is neutral. Following this prin-
ciple, the models receive one positive point when they offered a correct prediction result, one
negative point when they offered an incorrect prediction result, and zero points when they did
not offer a result for a given test drive. However, the scores the models acquired in this way
depended not only on the prediction results but also on the number of test drives. Therefore,
the points were converted into percentages, so that the scores for all scenarios varied in the
same range, from -100 (incorrectly predicting all test drives) to 100 (correctly predicting all
test drives). Performance scores were calculated for all combinations of the algorithms and the
features at each prediction site in each of the four scenarios.

The performance scores of better models reached 100 at earlier prediction sites, therefore, the
prediction sites for which scores were close to 100 were selected as key sites. Performance
of the algorithm-feature combinations at each key site in each scenario could be ranked using
the comparison method. The rank allowed for the selection of the best feature and the best
algorithm. Afterwards, the model that was trained using the selected feature and the selected
algorithm was evaluated in the traffic scenarios.

The evaluation showed that the model performs well when it comes to predicting driver maneu-
vers at roundabouts. Therefore, the objective of this thesis was achieved. The details of the
evaluation are provided in Chapter 5.

1.4 Contributions

The work presented in this thesis makes the following contributions:

1. Empirical proof that human driving behavior in roundabouts is affected by the geometric
features of roundabouts. The mathematical relationship between driving behavior and
roundabout geometric features is introduced in Chapter 3.

2. A method for categorizing roundabout scenarios according to relevant geometric features
and human driving behavior—a prerequisite for modeling human behavior at generic round-
abouts. This method is also introduced in Chapter 3.
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. A generic structure for the driver maneuver predictive model. The model consists of
sub-models for each scenario category. Each sub-model consists of a series of classifiers
trained with data captured at roundabouts to predict drivers’ future maneuvers. The
model’s structure and training are introduced in Chapter 4.

4. A grading system for evaluating the model. This grading system rewards correct predic-

tions, punishes incorrect predictions, and ignores unavailable results. The grading system
is introduced and defined in Chapter 5.

5. ldentification of information that can be captured automatically and be used to best
predict future behavior. This information includes steering wheel information and car
motion parameters. The advantage of this information is that it can be acquired at a low
cost and without violating drivers’ privacy. The evaluation of the driving information can
be found in Chapter 5.

6. A complex algorithm that integrates hidden Markov model and logistic regression is well
suited for predicting driver behavior. The evaluation of the algorithms can also be found
in Chapter 5.

7. A driver maneuver predictive model that is successful in scenarios with and without sur-
rounding traffic. The performance of the model can be found in Chapter 5.

8. Empirical proof that human behavior depends not only on the geometric features of round-

abouts but also on person-specific parameters such as driving style. A personalized pre-

dictive model was developed on the basis of this knowledge. The performance of the

personalized model can also be found in Chapter 5.

1.5 Outline

Chapter 2 presents the state-of-the-art regarding driver maneuver prediction [TIST07, NMI*08,
BEDO08, BD09, SH14, GJW'16, TMF16]. Many researchers have focused on turning behavior at
(urban) intersections [TIST07][BLSIG17]. Fewer researchers have investigated driving behavior
at roundabouts and how cyclists impact driving behavior [Rom05][Raal7]. Predicting driver
maneuvers at roundabouts has not yet been investigated at all.

Chapter 3 introduces a method for categorizing scenarios. In each scenario category, the ef-
fect of the geometric features of roundabouts on driving behavior is eliminated, increasing the
predictability of driving behavior.

Chapter 4 presents the development of the driver maneuver predictive model. Multiple forms of
driving behavior information were used as classification features and multiple machine-learning
algorithms were used as classification algorithms. Additionally, a method for personalizing the
model was proposed for individual drivers. The final driver maneuver predictive model achieves
universality for both: roundabouts and drivers, i.e., the model can predict the maneuvers of all
drivers with all driving styles at compact roundabouts with any types of layouts.

Chapter 5 presents the evaluation of the driver maneuver predictive model. First, the features
and the algorithm with the best predictive performance were selected and the positions where
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reliable prediction can be obtained were investigated. Second, the impact of cyclists at or near a
roundabout on the driver maneuver prediction was analyzed. Finally, a personalized model that
was trained to predict the behavior of a specific driver was evaluated.

Chapter 6 summarizes the modeling process and provides conclusions about driver maneuver
prediction. Limitations and further work are also presented.



2 Current State of Driver Maneuver Pre-
diction

Research on driver maneuver prediction incorporates many aspects, from cognition to the behav-
ior of human drivers [Ran94, Mac03, PE07, DT11, MM15]. Driving behavior can be planned on
operational, tactical, and strategic timescales [Ran94][PEQ7]. The operational timescale, the
shortest timescale of human interaction, is on the order of hundreds of milliseconds. The tac-
tical timescale, which includes successive operations, is on the order of seconds. The strategic
timescale, meanwhile, is associated with minutes or hours of prior planning [DT11]. Therefore,
driver maneuvers related to turning at roundabouts are on the tactical timescales, on the order
of seconds.

Some studies analyze human behavior at roundabouts, however, on the operational timescale
rather than the tactical timescale [Rom05][SASMMI13][MHCG14]. Tactical maneuvers have
been investigated in intersection and overtaking scenarios. In this chapter, turning maneuver
prediction at intersections is focused because roundabouts are a special type of intersection.
Previous work is summarized as the state of the art in following parts: driving behavior data,
algorithms, and evaluation methods.

2.1 Driving Behavior Data

Driver maneuver studies are usually based on driving data collected either from real driving, in
a simulator, or via a mixture of both [BLSIG17]. Data that are captured in a realistic traffic
scenario can be generalized to reality, whereas simulator studies can control for more variables,
such as surrounding traffic [DT11]. Studies on driver maneuvers at intersections show that the
data used for prediction generally include driver information, ego car information, surrounding
traffic information, and geometric information on the intersections [TIST07, NMI*08, LIGL11,
LLIG11, SSH12, LKB*13, GKO14, SH14, TKG15, GJW*16, TMF16, BLSIG17, PWK17].

Driver information and ego car information

Driver information includes head, eye, foot, or hand positions that are usually collected using
camera-based systems inside the car [TMF16]. Ego car information is generally collected from a
CAN bus or off-the-shelf portable devices [SSH12]. The car information includes steering wheel
angle, pedal position, turn signal state, lateral and longitudinal position, velocity, and acceler-
ation [TIST07, NMIT08, SH14, GJW'16, TMF16]. To acquire driving information at specific
sites of intersections, driving data are usually assigned to potential routes and transformed from
time-based to distance-based representation [GJWT16].
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Surrounding traffic information

Surrounding traffic information includes the position, yaw angle, and velocity of the other ve-
hicles, which are usually collected using sensors and cameras equipped on the outside of the
car [TMF16]. In some studies [LKB*13][LRKS13], traffic information is not directly used to
predict driver maneuver but to investigate how traffic affects predictions. Liebner et al. (2013)
predicted driver maneuvers at urban intersections in the presence of preceding vehicles. With
no preceding vehicles, they achieved a false positive rate of 5% and a true positive rate of
95%:; the true positive rate decreased to 55% in the presence of preceding vehicles. Hence,
this approach allows for the expression of uncertainty in the presence of a preceding vehi-
cles [LKBT13][GJWT16][LRKS13].

Geometric information of intersections

Geometric information of intersections includes information about the geometrical and topolog-
ical characteristics of the road intersection, which are usually collected from a geographic infor-
mation system (GIS) and digital map [LIGL11, LLIG11, TKG15]. This information can be com-
bined with car information and traffic information to predict driver maneuvers [LIGL11][LLIG11].

2.2 Algorithms

Machine-learning approaches have been demonstrated to perform well in driver maneuver pre-
diction due to their ability to learn from large amounts of available data [TB13]. The machine-
learning algorithms SVM, RF, Adaboost, and logistic regression are explained here because pre-
vious research has found them to be suitable classification algorithms for the binary classification
problem [TIST07, SH14, GJW'16, TMF16, BLSIG17, GKO14, TKG15].

2.2.1 Support Vector Machines

Support vector machines (SVM) is a classification and regression method for categorizing data
[CVO5][BSB*96]. It has been used for driver maneuver prediction at intersections and exhibited
good prediction ability: A turn prediction accuracy of 90% was achieved 1.6 seconds before the
intersection [TKG15].

The main idea of SVM for a binary classification is to map data to a higher dimensional space
with a kernel function, so that the two categories are more easily separated (see Figure 2-1).
Typical kernel functions include linear functions, Gaussian functions, and polynomial functions.
Then, the mapped data are separated with the hyper-plane, which can be identified by solving an
optimization problem. The hyper-plane is based on support vectors, which are a set of boundary
training data. New data are classified according to which side of the hyper-plane they fall into.

10
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There can be more than one hyper-plane for a given set of data. The goal is to find a hyper-
plane that maximizes the margin between these two classes. The margin is defined as the sum
of distances from the closest data points of both classes to the hyper-plane. A larger margin
is good because it reduces the overfitting problem. Overfitting occurs when the solution is too
customized for the training data and cannot be generalized to new data [Ben12]. The correct
choice of kernel and data representation leads to good solutions [MS05]. In machine learning,
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model
into a probability distribution over classes [HMKO06].

o
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¢¢¢o° o
+

Hyper-plane

Figure 2-1: Feature map from a lower dimension to a higher dimension.

2.2.2 Logistic Regression

Logistic regression has also shown success when used for decision prediction at intersections [TIS*07].
Logistic regression is generally well-suited for describing relationships between a categorical out-
come variable and one or multiple continuous predictor variables [PLI02]. For the case of multiple
predictors x, a logistic regression can be constructed for one dichotomous outcome variable Y
as follows [PLI02]
T

lOglt(Y) =In (ﬁ) =Q +,61X1 +ﬁ2X2 (221)

Therefore,

m = Probability(Y = outcome of interest | X; = x;, Xo = o, a specific value of X)
eOH'ﬁlXH-ﬁzXz

- 1 4+ extBrXi+B2X2
(2.2.2)

where 7 is the probability of the event, « is the Y intercept, Bs are regression coefficients, and
Xs are a set of predictors. o and Bs are typically estimated using the maximum likelihood (ML)
method [PLI02].

2.2.3 AdaBoost

The AdaBoost algorithm [FHT*00] is the first practical realization of the boosting algorithm and
remains a widely used approach in numerous applications. However, it has never been used in

11
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driver maneuver prediction. The basic idea of boosting is to make accurate predictions based on
heterogeneous data by combining several relatively simple and less accurate predictions [Sch13].
Consider m training data (x1,y1), ..., (Xm, Ym) Where x; is the observed data (e.g., steering
wheel angle, vehicle velocity), x; € X and y; is the classification label, y; € {—1,+1}, where —1
and 1 stand for two different maneuvers.

T simple predictors (a predictor with simple rules to map the data set and classification label with
a high error rate) are applied to construct an AdaBoost predictor, and the tth simple predictor
is denoted as h; : X — {—1,+1}. The combined predictor is the weighted combination of the
simple predictors

H(x) =) ahe(x). (2.2.3)

In plain text, H(x) is the weighted vote of the simple predictors where the tth predictor is
assigned weight a;.

The error rate of each simple predictor is only expected to be slightly lower than 50%, i.e.,
no individual predictor has to be good, which is called the weak learning condition. Under
this condition, it can be proven that the error rate in the training data set decreases to zero
quickly [FS95] with a few simple predictors (i.e., T) of boosting and with a reasonable complexity
measured according to the Vapnik and Chervonenkis (VC) dimension.

According to [FS95, BH89], the VC dimension of the final predictor increases roughly propor-
tionally to the number of simple predictors T. Furthermore, the error rate in the training data
set decreases monotonously with T and achieves, and then stays at O as further simple predic-
tors are added. However, the error rate in the test set, which is different from but has identical
statistical characteristics to the training set, decreases first and then increases again as the
number of simple predictors grows. This problem is referred to as overfitting. Therefore, with
a view to both complexity and the error rate, the number of simple predictors should be chosen
as the smallest number that reduces the error rate in the training set to 0.

2.2.4 Random Forest

Random forest (RF) has also shown good predictability in driver maneuver prediction at inter-
sections [GJWT'16, TMF16, BLSIG17]. A study by Gross (2016) showed that maneuvers can
be predicted with a recall of 76% 30 m before the relevant intersection center using RF.

Random forest comprises several predictors in the form of decision trees, with the final decision
based on the votes of the individual decision trees [LWWL13|. Decision trees are a widely-
used classification algorithm that splits the data space into two or more classes on the basis
of significant features. Fig. 2-2 shows an example of a decision tree. Beginning with the root
node (also a decision node), each decision node splits the data space according to the currently
most significant feature. The currently most significant feature is excluded from the decision
nodes beneath it, and the second most significant feature is applied to split the data space. The
classification is complete when a terminal node is reached.

12
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Root node
Decision node Decision node
Terminal node Terminal node Decision node Terminal node
Terminal node Terminal node

Figure 2-2: An example of the decision tree.

The decision tree outperforms linear models (e.g., SVM and logistic regressions) when the
problem at hand involves non-linearities or the relationship between dependent and independent
features is highly complex. However, one common issue of decision trees is the overfitting
problem. To deal with this, one can use bagging to reduce the variance of the estimation [Bre96].
Bagging splits the complete training data into several sub-samples and uses each of them to train
a decision tree. This algorithm is called Random Forest, because the training data is selected
randomly and because there are quite a large number of decision trees. The final decision in RF
is the class receiving the most votes from the decision trees. The RF algorithm is particularly
suitable for complicated input data with a large number of dimensions with a wide range of
relative importances.

2.2.5 Hidden Markov Models

Hidden Markov models (HMM) are also a suitable method for driver maneuver prediction at
intersections [SH14, GKO14]. A study by Streubel (2014) [SH14] showed that HMM accom-
plished a robust prediction with high accuracy, above 90%, as early as 7 seconds before entering
an intersection.

An HMM [RJ86] comprises hidden states and observations, as shown in Fig. 2-3. The ob-
servations are the measured data, which depend on unobserved states (hidden states) but are
disturbed by random factors. The hidden states are assumed to have the Markov property, i.e.,
that each state in the sequence depends on the previous state and is independent of all other
states, which can be formulated as

p(SilS1. Sa, ... Sic1) = p(SilSi-1) (2.2.4)

where p(a|b) is the conditional probability of a given b, S; is the state at time /.

13
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Hidden states

Observation

Figure 2-3: Typical hidden Markov structure.

Each observation is used to predict a sequence of states starting from an initial state. The prior
probability of states given the previous posterior state probability is defined as the state transition
probabilities. The probability of observations given the state is the emission probability. The
notations used in the following text are defined as follows:

e N is the number of states, the individual states are denoted as X = {x1, X2, ..., Xy}, and
the state at time t is denoted as S;.

e Ais the transition probability matrix, its element a;; at row / and column j is the conditional
probability a; = p(Se+1 = Xi|St = x;), where 1 </, j < N,

e O isthe set of observations. Its elements v are possible continuous or discrete observations,

e B is the emission probability, i.e. the conditional probability of an observation v given a
certain state x;,

e T is the initial state probability vector. Its ith elementis ; = p(S; = x;), where 1 </ < N.

A complete specification of an HMM requires specification of possible states S, possible obser-
vations O and three probabilities A, B, and w. Therefore, the complete parameter set of an
HMM is X = (A, B, 7).

In an HMM, the prior probability is defined as the probability of a state and the previous
observations, I.e.,

a(Si=x)=p(Oq,..., O;i_1,S; = x). (2.2.5)

The posterior probability is defined as the probability of a state and the previous and current
observations, i.e.,

B(Si=x)=p(0y,...,0,,S5; =x) (2.2.6)

14
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which can be iteratively derived as

= Zp(O,, S,‘ = X|Ol, ey Oi—lv Si—l = K:)P(Ol, o Oi—lr Si—l — K,)
KeX

= Z p(O,-, Si= X|S/’—1 = K)P(Ol ..... Oi_1,Si.1 = K,) (227)
keX

= p(0ilSi = x)p(Si = x|Si-1 = K)p(O1. . . ., Oj_1,5i-1=kK)

KEX
= p(0ilSi = x)p(Si = X|Si-1 = K)B(Si-1 = K)
KEX

where p(O;|S; = x) is the emission probability, i.e., the probability that observation O; happens
given S; = x, which can be obtained from the classification algorithms mentioned above; p(S; =
x|S;_1 = K) is the transition probability, i.e., the probability that the system state at time slice
/I is x given that the system state at time slice i — 1 is k, which determines how “resistant”
the algorithm is. A high transition probability of p(S; = x|S;_1 = x) suggests that a previous
estimate is unlikely to change in the future and vice visa. The second line of (2.2.7) is the
marginalization. The third line is the application of Bayes’ rule. The fourth line is because O,
and S; are independent of Oq,...,O;_1 given S;_;. The fifth line is the application of Bayes’
rule again and the last line is the iterative application of the definition of posterior probability.

Hidden Markov models can be used to predict future driving behavior for two reasons. First,
driving maneuvers can be represented as the implementation of the driver’s future plan on the
tactical level [Mic85]. As this future behavior is a plan of the driver and cannot be observed
directly, it has to be inferred from observable signals within the driver’s current behavior and the
environment in which the driver is operating. Many signals that describe how drivers influences
vehicle dynamics, such as the steering wheel angle and velocity, are appropriate for making this
observation [MS04]. Second, HMM supports recognition of temporal data patterns. This is
important because humans perform different actions on different timescales. Even within a
simple maneuver, internal states may vary over time. HMM provide an excellent framework for
such temporal mappings. Thus, HMM is a good method to solve the driving behavior prediction
problem.

Driver behavior can be successfully modeled with HMM by solving the following problems:

1. Given an observation sequence O and definition of states S, find the model A = (A, B, )
that maximizes the probability of O. This can be seen as training a model to best fit the
observed data.

2. Given A = (A, B, ) and an observation sequence O, find an optimal state sequence for
the underlying Markov process, i.e., to estimate the states of the HMM.

The conventional method for solving these two problems is as follows [Sta04]:

1. The solutions to Problem 1 can be used to obtain a specific HMM that represents driving
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behavior at roundabouts. This is a model training process. The Baum-Welch algorithm
can be used for parameter estimation based on the training set. In addition to the match
between the HMM properties and the time series data, the expectation maximization (EM)
algorithm provides an efficient class of training methods. Given plenty of data generated
by some hidden power, a HMM architecture can be created and the EM algorithm can
be used to find the best model parameters that maximize the likelihood of the observed
training data.

2. The solution to Problem 2 can be used to estimate the driver's future behavior in new
drives, which is an evaluation process. Two conventional methods to solve this problem
are the Viterbi algorithm and the forward algorithm. The former finds the path in the
state space with the maximum likelihood, whereas the latter chooses the state in every
step to maximize the likelihood. For the considered problem, the two algorithms are
equivalent. These methods allow a typical HMM to be determined, thus predicting future
driver maneuver on the basis of the observations of driver behavior.

2.2.6 Summary

In summary, support vector machines, logistic regression, AdaBoost, and random forest algo-
rithms have all proved to be effective for driver maneuver prediction. These four algorithms were
tested in this work. In addition, complex algorithms that integrate these four algorithms and
HMM were also developed in this work to improve the model's predictability, see the process of
the model development in Chapter 4 and their predictive performance in Chapter 5.

2.3 Evaluation

A prediction method can be considered effective if its predictions are precise enough. An eval-
uation method is necessary to evaluate the precision of predictions, such as a confusion ma-
trix [Pow11] or receiver operating characteristic (ROC) curve [Han98]. In the field of machine
learning for binary classification, a confusion matrix is used to visualize the performance of an
algorithm: Each row of the matrix represents the instances in a predicted class, whereas each
column represents the instances in an actual class [Pow11]. The visualization allows to check
whether the system is confusing two classes. The confusion matrix generates some widely-used
scores to represent the proportion of target examples that are correctly or incorrectly predicted,
such as accuracy, detection rate, false alarm rate, and F-measure. The performances of different
models can be compared using a ROC curve [DT11].

The time lag or the distance lag of the prediction is also important to consider when evaluating
a predictive model. As the time gets closer to maneuver execution, prediction performance
generally increases. Some studies have been able to predict the maneuver just before it occurs
[OYTO04, GSBDO06, KYSLO00, Kru08], whereas others have been able to predict the maneuver at
earlier times (e.g., several seconds before the maneuver) or some distance before the relevant
intersection (e.g., 30 m before the intersection) [NMIT08, SH14, GJW'16, TMF16, TKG15,
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PWK17].

2.4 Conclusion

The driving behavior data, algorithms, and evaluation methods found in the previous literature
are summarized in Table 2-1. However, no study focusing on driver maneuver prediction at
roundabouts is available. This thesis will fill this research gap.
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Table 2-1: State of the art.

Study

Measure

Algorithm

Evaluation

Result

Taguchi et al.
(2007) [TIST07]

Ego car velocity, leading-car velocity,
and the distance between the ego car
and leading cars

Logistic regression

Detection rate

Detection rate of 80.0%

Naito et al. (2008) Accelerator throttle, brake, and veloc- K-means Accuracy 95.6% as early as 5 seconds before
[NMIT08] ity of the ego car the intersections

Lefevre et al. Turn signal of the ego car and the in- Bayesian network Accuracy 100% approximately 10 m away
(2011)  [LIGL11, formation about the entry lanes from the exit of the intersection.
LLIG11]

Sathyanaray-ana Velocity, steering wheel angle, engine SVM Accuracy Accuracy of 89%

et al. (2012) RPM, and gas/brake pedal pressure in-

[SSH12] formation

Liebner et al. Ego car velocity Intelligent  driver Detection rate Detection rate of 95% Without
(2013) [LRKS13, model (IDM) traffic whereas 55% in the presence
LKB*13] of preceding vehicles

Gadepally et al. Velocity, position, and orientation of HMM Number of correct Correct recognition for 38 of the 40
(2014) [GKO14] the ego car predictions observation sequences.

Streubel et al. Velocity, acceleration, and yaw value HMM Accuracy Above 90% as early as 7 seconds
(2014) [SH14] of ego car before entering the intersections
Tang et al. (2015) Position, velocity, acceleration, yaw SVM accuracy 90% as early as 1.6 seconds before

[TKGL15]

value of the ego car and lane-level
maps

the intersection
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Table 2-1 — continued from previous page

Study Measure Algorithm Evaluation Result
Gross et al. (2016) Position, heading, acceleration, and RF Recall 76% at 30 m before the relevant
[GJWT16] velocity of the ego car intersection center
Tawari et al.  The information extracted from driver RF Accuracy Over 80% 2 seconds before the ma-
(2016) [TMF16] camera, scene camera, and navigation neuver event
camera
Barbier et al. Velocity, position, and heading of the RF Accuracy Accuracy of 80.3%
(2017) [BLSIG17]  ego car (20% of real driving data and
80% of data from simulated environ-
ment)
Phillips et  al. Ego car velocity and acceleration, the Recurrent Neural Accuracy 85% as early as 150 m before the

(2017) [PWK17]

lane-relative heading, the number of
lanes, and the headway distance to the
preceding vehicle

Networks (RNNs)

intersection
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3 Scenario Categorization Method

In this chapter, a scenario categorization method was developed to categorize any drive through
a roundabout. The driver maneuver is both, a cause and a consequence of driving behavior,
which can be used to predict the driver maneuver. However, drivers behave differently when
driving through roundabouts with different geometric features. For this reason, it is important to
eliminate the effect of geometric features on driving behavior. Otherwise, the driver maneuver
can hardly be predicted effectively with the driving behavior. In this chapter, the relationships
between driving behavior and the geometric features of roundabouts are described, achieving
Contribution 1 presented in Chapter 1.4. The effects will then be used to propose a scenario
categorization method that can categorize any drive through a roundabout. This finding is
Contribution 3 presented in Chapter 1.4. In each category, the effect of the geometric features
of roundabouts on driving behavior is eliminated, increasing the predictability of the driving
behavior.

Two studies were conducted to identify the appropriate scenario categorization method and
develop a model to predict driver maneuver with driving behavior data. These studies are
described in detail in this chapter. First, a field study was conducted to gain an empirically
well-founded understanding of driving behavior at roundabouts. Driving behavior data from
participants were acquired in real driving environment as they drove through a track including
three roundabouts with different geometric features. The limitations of the field study were
that the driving behavior was mediated by uncontrolled factors related to surrounding traffic
and that driving behavior data were only captured at three roundabouts. Thus, a simulator
study was designed, taking the results of the field study into consideration. The simulator study
was conducted in a laboratory in which the experimental conditions could be controlled and
undesired disturbances could be eliminated. In the simulator study, driving behavior data from
participants were acquired as they drove through tracks including roundabouts with controlled
geometric features and a controlled traffic situation. On the basis of these two studies, a
method of scenario categorization was proposed to make progress towards achieving the goal
of developing the driver maneuver predictive model. This method can be used to propose the
structure of the driver maneuver predictive model.

The relevant definitions used in this chapter are listed below:

e A driver maneuver is either exiting a roundabout via an oncoming exit or staying in the
roundabout by following the circulating lane. The goal of this thesis is to predict the driver
maneuver of exiting /staying in a roundabout in front of an oncoming roundabout exit.

e Driving behavior is the car status and driver actions in a driving task, such as turning the
steering wheel turning and controlling velocity.

e Driving behavior data are the values of the driving behavior, i.e., data on the steering
angle, steering angle velocity, velocity, acceleration, car yaw, driver gaze direction, and
driver head direction.
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3 Scenario Categorization Method

e Entry-exit angle is the angle between the entry a driver takes to enter the roundabout and
the exit she/he takes to exit the roundabout.

e The local extremum of steering angle 6. is the value of the steering wheel rotation angle
when the steering wheel is turned to leftmost.

e The integrated geometric feature Geo is a feature that integrates the information about
the roundabout radius and the entry-exit angle.

e Geometric features of roundabouts is a general term for the features that can characterize
roundabout layout geometry, such as radius, entry-exit angle, and the integrated geometric
feature Geo.

3.1 Field Study

3.1.1 Method

The field study took place on a route leading through three roundabouts in the city of Braun-
schweig (Germany), see Figure 3-1 for details. Of the seven study participants, three were
female and four male. Their age ranged from 22 to 33 years (M = 25.28, SD = 4.11). Each
participant had at least one year of driving experience and drove more than 1000 km per year.
They were paid 10 Euro per hour to participate in this study. During the drive, an experimenter
instructed the participants which exit to choose in the roundabout. This assured that each
participant drove through every combination of entries and exits. The order of roundabouts
and exits were changed randomly across participants to eliminate potential effects of order on
driving behavior.

Figure 3-1: Driving route in the field study.

An experimental car was used for the study. It is an equipped research vehicle, dedicated to the
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3.1 Field Study

observation of driving behavior in real traffic. Using a logging frequency of 100 Hz, the following
variables were recorded:

e Steering angle

Steering angle velocity

Acceleration

Velocity
e Yaw
e GPS position

Further, information of the participants’ gaze and head direction was obtained with an eye-
tracking system using a logging frequency of 120 Hz. Therefore, the participants’ naturalistic
driving behavior data including car state and human gaze and head direction were acquired.
The driving behavior data were contained in 1239 drives generated by all participants when they
drove through each combination of entries and exits of the three roundabouts.

3.1.2 Data Selection

The driving behavior data regarding the driver maneuvers lie in the path covered by the vehicle.
Trivially, a driver taking the first exit of a three-exit roundabout produced a different path than a
driver exiting the roundabout at the third exit. As Figure 3-2 (a) shows, there are three different
possible drives when a driver drove through a roundabout. The blue path leads the vehicle out
of the first exit, the red one out of the second, and the yellow one out of the third exit. This
consideration was used to filter the relevant observations from the recorded data. To filter for
data in which the driver potentially took the first exit, the observations positioned between the
entry and the first exit were selected. To filter for data in which the driver potentially took the
second exit, the observations positioned between the first and the second exit were selected.
GPS data were used as a filter criterion, see the yellow zones in Figure 3-2. Data falling into
the yellow zone depicted in Figure 3-2 (b) were considered relevant for the driver maneuver
regarding the first exit, whereas data located within the yellow zone in panel (c) were considered
relevant for the driver maneuver regarding the second exit. The panels (d) and (e) show the
result of the data filtering. These data were used for analyzing and modeling: The data falling
in panel (d) were used to predict whether or not drivers will leave the roundabout at the first
exit, whereas data from panel (e) were used to predict whether or not drivers will leave at the
second exit.

The observations selected by the GPS data-based filter criterion contained errors because the
GPS data contained measurement errors due to GPS signal multi-paths, signal reflections from
buildings and trees, or a low number of GPS satellites in a line-of-sight to the antenna. Figure 3-
3 depicts a typical erroneous observation at a roundabout: The solid red line denotes a drive
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3 Scenario Categorization Method

Figure 3-2: Selection of relevant data.

from the entry to the exit of the roundabout. From the shape of the line, it can be determined
that the car’s actual position was at the position of the dashed red line, i.e., the driving behavior
data were actually related to the position of the dashed line. Hence, the information could not
be used to predict the driver maneuver at the position where it appeared to be. Therefore, the
observations with error needed to be excluded.

Mk 2

Figure 3-3: A typical erroneous observation at a roundabout.

Measurement errors also led to incorrect yaw values. Due to all paths being on the same
roundabout with the same curvature, the yaw of correct measurements hardly varied, whereas
the yaw of erroneous measurements varied markedly from the correct ones. Thus, the first yaw
value and the last yaw value for each drive were checked to detect whether they contained an
error. Figure 3-4 shows the direction of the first and the last yaw values of two drives with
four arrows: Two black arrows denote the first yaw value and the last yaw value for a drive
with correct measurement, that is denoted by a black line. Two red arrows denote the first
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3.2 Field Study

yaw value and the last yaw value for a drive with erroneous measurement, denoted by a red
line. It can be observed that the first and the last yaw values of these two drives are different.
Hence, drives with erroneous measurements can be detected by comparing the first and last
yaw values with those of the correct observation. In this study, the median of the first/last yaw
values over all drives was considered as the value for a standard correct drive. Therefore, only
the observations whose first/last yaw values were within a 15° deviation from the median were
considered acceptable for analysis, whereas observations outside this 30° range were considered
errors and were excluded. To further illustrate this, the first and last yaw values for 22 drives are
depicted in Figure 3-5 (a) and (b) respectively. These drives were all between the same entry
and exit of a roundabout. The solid lines in the figure represent the median values, whereas
the dashed lines mark the 30° borders. Most values fall into the range of 30° although five of
the first yaw values and five of the last yaw values fall outside this range. These ten drives are
shown in Figure 3-6: The drives denoted in blue were detected by checking the first yaw values,
those denoted in yellow were detected by checking the last values, and the drive denoted in
pink was detected by both. These drives were positioned either off the road or on an unrealistic
driving track, validating the procedure of selecting erroneous GPS values via the first/last yaw
angle outliers. Out of 1239 drives, 178 drives with measurement errors were excluded.

Figure 3-4: Direction of the first and the last yaw vectors of two drives.

3.1.3 Summary

A field study was conducted to acquire naturalistic driving behavior data on a route that included
three roundabouts. GPS data were used as a filter criterion to select the driving behavior
data relevant to the research objective of driver maneuver prediction. Furthermore, data with
measurement errors were excluded by defining an acceptable range of yaw values. After all this,
the driving behavior data were ready for the next step: identifying an approach to categorize
the scenarios of these three roundabouts (see next section).
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3 Scenario Categorization Method

Figure 3-5: Checking the first/last yaw values to detect the drives with measurement errors.
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Figure 3-6: Drives with measurement errors detected by checking the first/last yaw values.
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3.2 Approach to Scenario Categorization

3.2 Approach to Scenario Categorization

Scenario categorization is crucial to eliminating the effects of geometric features of roundabouts
on driving behavior. Because the driving behavior data that are used to predict driver maneuvers
certainly depend on these geometric features, scenario categorization enables driver maneuvers
to be better predicted. In this subsection, an approach for scenario categorization was developed
on the basis of an analysis of driving behavior.

3.2.1 An Approach to Scenario Categorization

Steering angle and steering angle velocity were assumed to be effective variables for predicting
driver maneuvers for the following reasons:

e The steering angle and steering angle velocity vary only with driving direction, and driving
direction is directly related to the driver maneuver of exiting/staying in a roundabout.

e The yaw value varies with roundabout entry positions.
e The speed and acceleration are strongly affected by surrounding traffic.

Thus, scenario categorization approach was proposed to eliminate the effect of the geometric
features of roundabouts on steering wheel position when using it to predict the driver maneuver.

Participants’ driving behavior data for the same time slice were hardly at the same position
because each participant drove through the roundabout at a different speeds. Thus, to analyze
steering wheel information from all participants at the same position, the data on steering angle
and steering angle velocity were mapped from a time line with 0.02 s intervals to a distance line
with 0.5 m intervals using interpolation. The origin of the distance line for each drive was the
first point of the drive that was intercepted by the filter criterion. Analyzing the steering angles
for all participants revealed that the steering wheel had different motion patterns when they
drove through roundabouts with different entry-exit angles, even though the driver maneuvers
at these roundabouts were the same. For example, Figure 3-7 shows the driver maneuver of
taking the first exit: When the entry-exit angle was relatively small (see Figure 3-7 (a)), the
steering angle was always smaller than 0°, i.e., the drivers kept the steering wheel at a right
position when entering and exiting the roundabout. In contrast, when the entry-exit angle was
large (see Figure 3-7 (b)), the steering angle was smaller than 0° at the beginning, then larger
than 0°, and finally smaller than 0° again, i.e., the drivers kept the steering wheel at a right
position to enter the roundabout, then at a left position to follow the roundabout, and finally at
a right position to exit the roundabout. Yet another steering wheel pattern was observed when
the drivers took the non-first exit, as shown in Figure 3-8: The steering angle was larger than
0° at the beginning and then smaller than 0° at the end, i.e., the drivers kept the steering wheel
at a left position to follow the roundabout and then at a right position to exit the roundabout.
The drivers did not steer to the right at the beginning of the analysis because they were already
in the roundabout. Drawing upon these findings, three scenarios were categorized on the basis
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3 Scenario Categorization Method

of the relationship between the steering wheel motion pattern and the entry-exit angle:

e In Scenario 1, drivers tended to keep steering to the right when they drove through the
roundabout. This was the case when the entry-exit angle was less than 110° and the entry
and exist were adjacent to each other.

e In Scenario 2, drivers tended to first steer to the right to enter the roundabout, then
steered to the left to follow it, and finally turned to the right to leave it. This was the
case when the entry-exit angle was larger than 110° and the entry and exit were adjacent

to each other.

e In Scenario 3, drivers tended to steer to the left to follow the roundabout, and steer to
the right to exit. This was the case when the entry and exit were not adjacent to each
other.
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(a) Steering status when the entry-exit angle was small. (b) Steering status when the entry-exit angle was large.

Figure 3-7: Steering wheel information for the maneuver exiting through the first exit.
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Figure 3-8: Steering wheel information for the maneuver exiting through the non-first exit.

3.2.2 Evaluation of the Approach to Scenario Categorization

A model consisting of three sub-models was developed to predict driver maneuvers in three
scenarios (sub-model for Scenario 1, sub-model for Scenario 2, and sub-model for Scenario 3
respectively) and evaluate the approach to scenario categorization. For instance, when a driver
enters a roundabout, either the sub-model for Scenario 1 or sub-model for Scenario 2 (the choice
depends on the entry-exit angle) can be used to predict whether or not the driver will take the
first exit to leave the roundabout. If the answer is no, then the sub-model for Scenario 3 is used
to predict whether the driver will leave the roundabout at each of the next exits. Each sub-
model consists of a series of "classifiers" corresponding to a series of "prediction sites". The
"prediction sites" are the locations where predictions being made in the scenario. There were 11
prediction sites for each scenario, evenly dividing the drives into 10 parts. The driving behavior
data for all drives from participants at each prediction site were clustered to train the classifiers.
One classifier was trained for each prediction site. The classifiers classified the driving behavior
data for two driver maneuvers at each prediction site. Support Vector Machine has been proven
to be an effective and robust method for binary classification problems, see Chapter 2. Thus,
SVM was used to develop the classifiers for each sub-model.
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3 Scenario Categorization Method

A four-step procedure was executed for classifier training [ZKJ*17]:

e Step 1: Feature extraction. Two features were extracted from the steering angle and
steering angle velocity at each prediction site.

e Step 2: Scaling the features. Both features were scaled to the range [-1, 1] to avoid
having variables with larger ranges dominate those with smaller ranges [HLO02].

e Step 3: Splitting the scaled data. The scaled data were split into a training data set
(80%) and a test data set (20%). These numbers were selected to assure that there were
enough data to both train and test the model. There were 849 cases in the training data
set for the three scenarios and 212 the cases in test data set.

e Step 4: Applying cross validation. Five-fold cross-validation was applied to train and test
the SVM classifiers.

This four-step procedure was applied at each prediction site for each scenario, and one SVM
classifier was trained to make the prediction at each prediction site.

Afterwards, the prediction accuracies of the classifiers were used to evaluate the effectiveness
of the model that was developed using the scenario categorization approach, the steering angle
and the steering angle velocity, and the SVM. The prediction accuracy was defined as the ratio
between the number of instances correctly classified and the number of instances presented in
the test data set to measure the performances of the sub-models. Its mathematical expression
IS

ACC=(TP+ TN)/(P+ N) (3.2.1)

where P (Positive) was defined as the number of exiting maneuver samples in the test data set,
N (Negative) was defined as the number of staying maneuver samples in the test data set, TP
(True positive) was defined as the number of the samples that were correctly detected as exiting
maneuvers (the exiting maneuver samples were labeled as "Exiting"), and TN (True negative)
was defined as the number of the samples that were correctly detected as staying maneuvers
(the staying maneuver samples were labeled as "Staying"). The prediction accuracy at each
prediction site was calculated. The distance from each prediction site to the oncoming exit was
also calculated, meaning that the relative position of the prediction site was known. Finally, the
first prediction site where the prediction accuracy was above 95% and its distance to the exit
was identified.

The results are visualized in Figures 3-9 for the three scenarios:

e Scenario 1: Prediction accuracy increased as the prediction site got closer to the exit. It
reached 98.1% at Prediction Site 4 at a distance of 13.8 m before the exit (see Figure 3-9

(a)).

e Scenario 2: Prediction accuracy increased as the prediction site got closer to the exit. It
reached 97.4% at Prediction Site 7 at a distance of 11.4 m before the exit (see Figure 3-9

(b)).
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e Scenario 3: Prediction accuracy increased as the prediction site got closer to the exit. It
reached 98.5% at Prediction Site 6 at a distance of 14.1 m before the exit (see Figure 3-9

(c)).

This level of prediction accuracy is promising: Future behavior could be predicted with a high
level of accuracy (larger than 95%) at a distance of approximately 11 m (about 2 seconds) before
the exit. These results proved that 1) the selected scenario categorization approach effectively
predicts driver maneuvers for driver maneuver predictive at the investigated roundabouts, 2)
the steering angle and steering angle velocity provide important information for driver maneuver
prediction and the predictability increases as the prediction site gets closer to the exit, and 3)
SVM successfully predicts driver maneuvers by classifying the data for the exiting maneuver
and the staying maneuver. The linear kernel for SVM with C = 100 performed best. The
classification process for each site required 0.01 s [ZKJ*17].

3.2.3 Summary

In this section, a scenario categorization approach for the three investigated roundabouts was
proposed. This approach categorized the scenarios into three classes. Subsequently, three
sub-models were developed using SVM for these three scenario categories to predict driver
maneuvers. The results proved that the selected scenario categorization approach, the steering
angle and the steering angle velocity as prediction features, and SVM as the classification
algorithm, effectively predict driver maneuvers at the investigated roundabouts. One limitation
of this approach is that it may only work for the investigated roundabouts. Another limitation
is that surrounding traffic is not controlled for in the field study. Thus, a simulator study was
conducted to generalize the approach to generic roundabouts and develop a model that can
predict driver maneuvers in generic situations, which is introduced in the next section.

3.3 Simulator Study

3.3.1 Simulator Study Design

The objective of the simulator study was to generalize the scenario categorization method to
generic roundabouts and then develop a model to predict driver maneuvers in generic round-
abouts with different geometric features and in different traffic situations. Three research
questions were pursued to reach these objective:

e Question 1: What is the quantitative relationship between driving behavior and the geomet-
ric features of generic roundabouts? In the field study, this relationship was investigated
for three specific roundabouts. The quantitative relationship between driving behavior and
the geometric features of generic roundabouts needs to be investigated in order to more
precisely handle a more generic situation.
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Figure 3-9: Prediction sites and accuracies for three scenarios.
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e Question 2: What driving behavior and what algorithms are effective in developing a model
to predict driver maneuvers in generic roundabouts?

e Question 3: Is the model still effective when there are surrounding cyclists that affect
driving behavior?

A simulator study was conducted to answer these three questions. The study was split into
two sessions. These two sessions were designed with different settings to address the different
questions. The details of the sessions are as follows.

Session 1: Tracks with Systematically Varied Roundabout Radius and Entry-exit Angles

The objectives of Session 1 were:

e To identify the quantitative relationship between driving behavior and geometric features
for generic roundabouts, which can be used to propose scenario categorization method.
This objective addressed Question 1.

e To develop a model to predict driver maneuvers using the driving behavior acquired from
this session. This objective addressed Question 2.

These objectives were achieved by analyzing driving behavior at roundabouts with different
geometric features. The two most important geometric features for roundabout layout design,
radius and entry-exit angle, were used as independent variables related to roundabout design
in Session 1. The radius had two levels, 13 m and 20 m. These values were selected because
road design standards in Germany [Hof14] indicate that compact single-lane roundabouts have
a radius between 13 and 20 m. Roundabouts with a radius outside this range are not the focus
of this study. The entry-exit angle had seven levels: 90°, 120°, 150°, 180°, 210°, 240° and
270° (see Figure 3-10). These values were selected because a test drive showed that an angle
smaller than 90° made turning very difficult and an angle larger than 270° no longer caused
behavioral changes. The resulting 14 roundabouts (seven levels of entry-exit angle and two
levels of radius) were then connected in random order to form two tracks (see Figure 3-11)
(a) and (b), so that all roundabouts with 7x2 factor combinations were tested. There was
no surrounding traffic on these two tracks because the factor of surrounding traffic should
be eliminated when investigating the relationship between driving behavior and the geometric
features of roundabouts.

Session 2: Tracks with Systematically Varied Position of Surrounding Traffic

The objective of Session 2 was to evaluate the predictability of the model for the scenario with
surrounding traffic. This addressed Question 3 and the answer is presented in Chapter 6. In
this session, surrounding cyclists were placed at or near roundabouts to affect the participants’
driving behavior as they drove though the roundabouts [ZKS*17].
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Figure 3-10: Fourteen roundabouts with different radii and entry-exit angles.
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Figure 3-11: Simulation tracks for Session 1.
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Figure 3-12: Three driver maneuvers at the roundabout.

Three possible driver maneuvers at a four-arm roundabout were investigated in this session
(see the three black lines in Figure 3-12): Maneuver A was to leave the roundabout at Exit A,
Maneuver B was to leave the roundabout at Exit B, and Maneuver C was to leave the roundabout
at Exit C. Two types of driving pattern recognition had to be performed to predict driver
maneuvers at these roundabouts: the recognition of Maneuver A and B and the recognition of
Maneuver B and C. Three racing cyclists with a constant speed of 6 m/s were designed to move
along different tracks in order to see how they affected these two driving pattern recognitions:

e The cyclists entered the roundabout at Exit C and exited at Exit B (see the blue dashed
line in Figure 3-13 (a)). This setting allowed the impact of the cyclists on the recognition
of Maneuver A and Maneuver B (yellow solid lines) to be investigated. This cyclist setting
was named Traffic 1.

e The cyclists entered the roundabout at entry* and exited at Exit B (see the green dashed
line in Figure 3-13 (b)). This setting allowed the impact of the cyclists on the recognition
of Maneuver A and Maneuver B (yellow solid lines) to be investigated. This cyclist setting
was named Traffic 2.

e The cyclists entered the roundabout at Exit A and exited at Exit C (see the red dashed
line in Figure 3-13 (c)). This setting allowed the impact of the cyclists on the recognition
of Maneuver B and Maneuver C (yellow solid lines) to be investigated. This cyclist setting
was named Traffic 3.

e The cyclists entered the roundabout at entry* and exited at Exit C (see the dark grey
dashed line in Figure 3-13 (d)). This setting allowed the impact of the cyclists on the
recognition of Maneuver B and Maneuver C (yellow solid lines) to be investigated. This
cyclist setting was named Traffic 4.

Participants drove through two tracks produced from fourteen roundabouts, see Figure 3-14.
Eight of these roundabouts resulted from a combination of the four types of cyclist tracks
with the two pairs of driver maneuvers. At the remaining six roundabouts, either no traffic
was present, or other cars were placed randomly as “distractor vehicles" to lower the scenarios’
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Figure 3-13: Scenarios with different cyclist tracks.

predictability for participants. On these two tracks, the 14 roundabouts were connected in a
random order.

3.3.2 Data Acquisition

The study was executed in a simulator at the German Aerospace Center in Braunschweig. This
simulator uses a complete vehicle mock-up which is implemented in a capsule with a visualization
system. The visualization system enables a full view to the front and both sides, as well as a
partial rear view (270°x40°). An eye-tracking system was implemented in the mock-up to
obtain the data on participants’ head direction and gaze direction. Four eye-tracking cameras
were distributed at the left window, frontal window, and right window to obtain eye and head
information from different perspectives (see Fig. 3-15).

Thirteen participants (three females and ten males) drove through each of the four tracks in
the simulator. Their age ranged from 22 to 33 years (M = 27.8, SD = 6.4). Each participant
had at least one year of driving experience and drove more than 1000 km per year. They were
paid 10 Euro per hour to participate in this study. When the participants approached each
roundabout, text instructions appeared on the screen informing them which exit they should
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(b)

Figure 3-14: Simulation tracks for Session 2.

take, see Figure 3-16 (a), and the same information appeared again on a white sign when
the participants were in front of the exit, see Figure 3-16 (b). At the end of the tracks, the
participants were instructed to stop and take a break.

A within-subject design was applied in these two sessions, meaning that the same group of
participants drove all tracks. In this case, variance related to the participants (e.g., due to
gender and driving skills) could be eliminated statistically [CGK12]. The following variables were
recorded during the two sessions with a logging frequency of 20 Hz:

e Steering angle

e Steering angle velocity
e Acceleration

e Velocity

e Position

Furthermore, information of participants’ gaze direction and head motion was obtained with the
eye-tracking system with a logging frequency of 120 Hz. The simulator study lasted 1.5 hours
for each participant because test drives showed that driving on the tracks for longer than 1.5
hours causes simulator sickness for many people. During the 1.5 h, 39 drives were acquired for
each combination of two radius values and seven entry-exit angle values, and other 39 drives for
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Figure 3-15: Four cameras of the eye tracking system.

each combination of cyclist tracks and car driving directions.

3.3.3 Data Pre-processing

The acquired driving data were pre-processed using a filter criterion, which was a circle whose
radius was 30 m larger than the roundabout’s radius. Data outside of this range were disregarded
for the purpose of the present work. The value of 30 m was large enough to guarantee that
relevant data were not excluded. Then, the car position data for all drives were moved and
rotated so that all drives had the same entry of the same roundabout (see the drives selected by
the dashed circle and located on one roundabout in Figure 3-17). Afterwards, the eye-tracking
data were sampled at 20 Hz, the same frequency as the driving data. The data were then ready
for driving behavior analysis.

3.3.4 Summary

A simulator study was designed and conducted to achieve the goal of proposing a scenario
categorization method for generic roundabouts and then developing an effective model to predict
driver maneuvers. In the simulator study, information on participants’ driving behavior was
acquired as they drove through tracks with systematically varied roundabout geometric features
and systematically varied surrounding traffic position. The position data were used as a filter
criterion to select the driving data relevant to the research questions. The driving behavior data
were then ready to be analyzed to answer the research questions. The answer to Question 1
is presented in the next chapter. The answers to Question 2 and Question 3 are presented in
Chapter 5.1 and Chapter 5.2 respectively.
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(b) Information on the sign (“Ausfahrt” means “exit” in German).

Figure 3-16: Information for the exit that the participants should take.

3.4 Method of Scenario Categorization

3.4.1 Steering Wheel Status and Geometric Features of Roundabouts

A scenario categorization method for generic roundabouts was specified on the basis of the
simulator study. The method derived from the simulator study had two advantages compared
to the approach based on the relationship between the steering wheel turning direction and the
entry-exit angle: (1) it was effective for generic roundabouts rather than only the specifically
investigated roundabouts, and (2) it was more precise. These advantages were achieved by
applying the following techniques:

e A quantitative term for the local extremum of the steering angle (6.) was used to char-
acterize steering wheel information, rather than the steering wheel turning direction used
in the approach derived from the field study.

e A term for the integrated geometric feature (Geo) was used to integrate information
about a roundabout’s entry-exit angle and radius, instead of the entry-exit angle used in
the approach derived from the field study.
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Figure 3-17: Data selection with dashed circle.

e The mathematical correlation between 8, and Geo was calculated to explain the relation-
ship between steering wheel information and the geometric features of roundabouts in a
quantitative way.

Definition of the Local Extremum of the Steering Angle

The local extremum of the steering angle was defined as the steering wheel rotation angle when
the steering wheel was turned to its leftmost point during driving through roundabouts. To
analyze all participants’ steering behavior at the same position of the roundabouts, the driving
behavior data were mapped from a time line with 0.05 s intervals to a distance line with 0.5 m
intervals via interpolation. The origin of the distance lines was the first point of a given drive
that was intercepted by the filter circle. Then, the mean value of the steering angle over all
participants was calculated along the distance line for each of the 14 roundabouts in Session 1 of
the simulator study. Figure 3-18 (a) presents the mean values for the roundabouts with a radius
of 13 m and entry-exit angles of 90°, 120°, 150°, 180°, 210°, 240° and 270°. Figure 3-18 (b)
presents the mean values for the roundabouts with a radius of 20 m and entry-exit angles of 90°,
120°, 150°, 180°, 210°, 240° and 270°. The x-axis denotes the distance from the investigated
point of the drive to the first point of the drive. Values less than zero mean that the steering
wheel was at a right position, and vice versa. Different steering wheel turning patterns were
apparent for the drives through different roundabouts:

e For the drives through roundabouts with a 13 m radius and 90° entry-exit angle, the
steering wheel had three movement processes:

— First, moving to the right to enter the roundabouts

— Then, staying right to leave the roundabouts
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3.4 Method of Scenario Categorization

— Last, moving to the middle to drive straight

Therefore, there is a local minimum of the steering angle in the middle of the drive, see
the orange line in Figure 3-18 (a).

e For the other thirteen drives, the steering wheel had four movement processes:
— First, moving to the right to enter the roundabouts
— Then, moving to the left to follow the roundabouts
— Then, moving to the right to leave the roundabouts
— Last, moving to the middle to drive straight

Therefore, there is a local maximum value of the steering angle in the middle of these
drives, see the other six colored lines in Figure 3-18 (a) and all lines in Figure 3-18 (b).

These local minima or maxima of the steering angle were generated when the steering wheel is
turned to its leftmost position during driving through roundabouts. The values were defined as
the local extremum of steering angle 6.

Definition of the Integrated Geometric Feature

A variable that characterized the geometric features of a given roundabout was defined as the
integrated geometric feature

Geo=¢?-r, (3.4.1)

where Geo is the integrated geometric feature, ¢ is the entry-exit angle, and r is the roundabout
radius.

Correlation between the Local Extremum of the Steering Angle and the Integrated
Geometric Feature

A quantitative relationship between the local extremum of the steering angle 6. and the inte-
grated geometric feature Geo was investigated via a regression analysis. The correlation was

when Geo < 137.08 rad? - m,

e = 3.68-log(Geo) — 15.44, (3.4.2)

and when Geo > 137.08 rad?-m,

1.75 rad < 8. < 5.75 rad, (3.4.3)
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(a) Mean values of steering angle for the drives through the roundabouts with 13 m
radius.
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(b) Mean values of steering angle for the drives through the roundabouts with 20 m
radius.

Figure 3-18: Mean values of steering angles for the drives through the roundabouts.
where Geo is the integrated geometric feature, and 6. is the local extremum of the steering
angle. The results revealed that the local extremum of the steering angle 6. is logarithmically
related to Geo when the integrated geometric feature Geo is smaller than 137.08 rad? - m,
.. The coefficient of determination R? is as high as 0.9168. When Geo is larger than 137.08

rad®-m, 6. randomly oscillates between 1.75 rad and 5.75 rad. The correlation is also illustrated
in Figure 3-19. 6. has four ranges corresponding to the four ranges of Geo (see Figure 3-20):

e —4rad <6, < —1.75rad when 0 rad® - m < Geo < 40.7 rad® - m:
e —1.75rad <6, < —0.25 rad when 40.7 rad® - m < Geo < 72.4 rad? - m;
e —0.25rad < 6, < 2 rad when 72.4 rad? - m < Geo < 108.7 rad® - m;

e 1.75 rad < 6, < 5.75 rad when Geo > 108.7 rad? - m.
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Figure 3-19: Correlation between the local extremum of steering angle and the integrated ge-
ometric feature.
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Figure 3-20: Four ranges for the local extremum of steering angle and the integrated geometric
feature.
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3 Scenario Categorization Method

3.4.2 Scenario Categorization

The correlation between 6. and Geo was used to categorize generic roundabouts as follows:

e Scenarios with 0 rad? - m < Geo < 40.7 rad® - m are defined as Scenario 1 (see the pink
area in Figure 3-21 (a)). In the simulator study, the roundabout with 26 m diameter
and 90° entry-exit angle belonged to Scenario 1 (see the roundabout in the pink area of
Figure 3-21 (b));

e Scenarios with 40.7 rad® - m < Geo < 72.4 rad® - m are defined as Scenario 2 (see the
yellow area in Figure 3-21 (a)). In the simulator study, the roundabout with 40 m diameter
and 90° entry-exit angle and the roundabout with 26 m diameter and 120° entry-exit angle
belonged to Scenario 2 (see the roundabouts in the yellow area of Figure 3-21 (b));

e Scenarios with 72.4 rad® - m < Geo < 108.7 rad® - m are defined as Scenario 3 (see
the green area in Figure 3-21 (a)). In the simulator study, the roundabout with 40 m
diameter and 120° entry-exit angle and the roundabouts with 26 m and 150° entry-exit
angle belonged to Scenario 3 (see the roundabouts in the green area of Figure 3-21 (b));

e Scenarios with Geo > 108.7 rad? - m are defined as Scenario 4 (see the orange area in
Figure 3-21 (a)). In the simulator study, the rest of the roundabouts in the simulator
study belonged to Scenario 4 (see the roundabouts in the orange area of Figure 3-21 (b)).

3.4.3 Summary

In this section, a scenario categorization method for generic roundabouts was specified. The local
extremum of the steering angles (6.) and the integrated geometric feature (Geo) were defined
to represent the steering wheel information and roundabout geometric features respectively.
The mathematical correlation of these two variables was calculated. This correlation was used
to categorize the scenarios into four classes. On this basis, a model can be developed to predict
driver maneuvers in each of these four scenarios.

3.5 Summary

This chapter describes two studies that captured driving behavior data, which were then used to
develop a scenario categorization method. This method allows any drive through roundabouts
to be classified into a scenario category. In each scenario category, the effect of geometric
features of roundabouts on driving behavior is eliminated, thus increasing the driving behavior's
ability to predict the driver maneuver of exiting/staying in roundabouts.

A field study was conducted in a real driving environment. The study acquired participants’
driving behavior data as they drove through a track that included three roundabouts. This study
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Scenario 1:
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Figure 3-21: Scenario categorization of the roundabouts.
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formed the basis of a proposed approach to scenario categorization for the three investigated
roundabouts. Afterwards, the scenarios were categorized into three classes and a sub-model
for each was developed with SVM to predict driver maneuvers. The prediction results showed
that 1) the scenario categorization approach is effective at predicting driver maneuvers in the
investigated roundabouts, 2) the steering angle and steering angle velocity provide important
information for driver maneuver prediction, and their predictability increases as the prediction
site gets closer to the exit, and 3) SVM effectively predicts driver maneuvers by classifying the
data for the exiting maneuver and the data for the staying maneuver. However, the field study
was only applicable to three roundabouts.

Subsequently, a simulator study was designed and conducted in a laboratory. This allowed the
experimental conditions to be controlled in order to complement the limitations of the field
study. The simulator study collected driving behavior data from thirteen participants as they
drove through tracks that included fourteen roundabouts with controlled geometric features and
traffic situations. In this study, the local extremum of steering angles (6.) and the integrated
geometric feature (Geo) were defined to represent the steering wheel information and the
geometric features of roundabouts respectively. The mathematical correlation between these
two variables was calculated, which is Contribution 1 presented in Chapter 1.4. Subsequently,
a scenario categorization method for generic roundabouts was proposed, on the basis of which
all roundabout scenarios were categorized into four classes. This is Contribution 2 presented in
Chapter 1.4. On this basis, a model can now be developed on the basis of driving behavior and
a machine-learning algorithm to predict driver maneuvers in each of these four scenarios. The
model’s development is presented in Chapter 4.
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4 Developing a Model for Driver Maneu-
ver Prediction

This chapter explains the development of the driver maneuver predictive model. This model
was developed to predict whether or not a driver will exit a roundabout in front of each exit.
The model has universality regarding both roundabouts and drivers, i.e., the model can make
predictions about the maneuver of drivers with any driving style at roundabouts with any type
of layout.

The driver maneuver predictive model consists of four sub-models for the four scenarios identified
using the scenario categorization method proposed in Chapter 3.4. Each sub-model consists of
a series of classifiers that correspond to a series of prediction sites. The prediction sites are the
locations where the prediction is made along the route between the entry and the exit. The
details of the model structure and the prediction process can be found in Chapter 4.1. The
structure achieves Contribution 3 presented in Chapter 1.4.

The classifiers were trained using machine-learning algorithms with the driving behavior infor-
mation acquired at the corresponding prediction sites. All driving behavior information acquired
in the simulator study and multiple machine-learning algorithms were used for classifier training
in order to identify the most effective driving behavior information and algorithms. More details
on the classifier training can be found in Chapter 4.2.

In addition, a method for developing a personalized predictive model was also proposed because
each driver has her/his personal driving style and should thus also has her/his own personal
predictive model. More details on the development of the personalized predictive model can be
found in Chapter 4.3.

The important definitions used in this chapter are as follows:

e The driver maneuver predictive model is a model that can predict whether or not a driver
will exit a roundabout in front of each exit of the roundabout.

e Sub-models are components of the driver maneuver predictive model. The driver maneuver
predictive model consists of four sub-models for the four scenarios identified by the scenario
categorization method.

e Classifiers are components of the sub-models. Each sub-model consists of a series of
classifiers.

e Prediction sites are the locations where the predictions are made along the route between
the entry and the exit.

e Features are driving variables and combinations of driving variables. The driving variables
include steering angle, steering angle velocity, speed, acceleration, head direction, and
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4 Developing a Model for Driver Maneuver Prediction

gaze direction.

e Soft-decision outputs are the outputs of the soft classifiers, which are continuous values
of the likelihood of "Exiting" or "Staying".

4.1 Classifier-Based Model

4.1.1 Structure of the Model

The driver maneuver predictive model includes four sub-models that were developed for the four
scenarios, one sub-model for each scenario. Each sub-model consists of a series of classifiers
corresponding to a series of prediction sites. Prediction sites are the locations where the pre-
diction is made along the route between the entry and the exit. Driving behavior information
for all participants at each prediction site were clustered to train the corresponding classifier.
The classifiers classified the driving behavior information for two driver maneuvers at each of
the prediction sites.

In this thesis, two types of prediction sites were defined: the sites on the entry arm of a
roundabout were defined as approaching sites, whereas the sites on the circulating lane of a
roundabout were defined as circulating sites. More specifically, the definitions can be interpreted
as follows:

e The approaching sites were locations that divided the entry arm of the roundabouts into
specific sections until the inscribed circle of the roundabout was reached (see Figure 4-1).
The distances to the inscribed circle were 2 m, 4 m, 6 m, 8 m, 10 m, 12 m, 14 m, 16
m, 18 m, and 20 m. Thus, there were ten approaching sites at the entry arm of the
roundabouts. The intervals between adjacent approaching sites were 2 m.

e The circulating sites were locations that evenly divided the sections between entries and
exits on the circulating lane of the roundabouts. This even distribution made the sites
relevant to both the entry position and the exit position. The number of circulating sites
were different for different scenarios, because the number varied with the length of the
section. The longer a given section, the more circulating sites existed on it. The number
of circulating sites for each of the four scenarios are as follows:

— In Scenario 1, there were five circulating sites evenly dividing the circulating lanes
into four parts.

— In Scenario 2, there were ten circulating sites evenly dividing the circulating lanes
into nine parts.

— In Scenario 3, there were 15 circulating sites evenly dividing the circulating lanes into
14 parts.
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— In Scenario 4, there were 20 circulating sites evenly dividing the circulating lanes into
19 parts.

Boundary of the inscribed circle

Approaching sites:
Interval =2 m

Figure 4-1: Positions of the approaching sites.

Figure 4-2 illustrates the approaching sites and the circulating sites for the four scenarios: The
approaching sites are denoted with the small blue circles outside the inscribed circle of the
roundabout and the circulating sites are denoted with the small blue circles inside the inscribed
circle. The structure of the model was determined according to the number of prediction sites:

e Sub-model 1 consisted of 15 predictors corresponding to 15 prediction sites in Scenario 1;
e Sub-model 2 consisted of 20 predictors corresponding to 20 prediction sites in Scenario 2;
e Sub-model 3 consisted of 25 predictors corresponding to 25 prediction sites in Scenario 3;

e Sub-model 4 consisted of 30 predictors corresponding to 30 prediction sites in Scenario 4.
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Figure 4-2: Prediction sites for four scenarios.
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Figure 4-3: Work flow of the driver maneuver predictive model.

4.1.2 Model Prediction Procedure

The procedure for developing the predictive model consisted of five steps:

e Step 1: Calculate the integrated geometric feature (Geo) of the nearest not-yet-predicted
exit on the basis of the roundabout layout when a car is approaching the exit. The
calculation equation is Equ. 3.4.1.

e Step 2: Recognize which scenario the current exit falls under on the basis of the integrated
geometric feature (Geo).

e Step 3: Activate the corresponding sub-model.

e Step 4: Start the classification from the first prediction site until a prediction result of
"Exiting" or "Staying" is obtained.

e Step 5: End the prediction procedure if the prediction result is "Exiting". Otherwise,
repeat Step 1 to Step 4 until the result of "Exiting" is given.

The procedure is illustrated as a work flow in Figure 4-3.

The details of the procedure are explained with the example of a car driving through a roundabout
that has a radius of 15 m and entry-exit angles of 85°, 145°, 215°, and 280° for the four exits.
As the driver approaches the roundabout (see Figure 4-4(a)), the integrated geometric feature
(Geo) of the first exit is calculated as 33.0 rad®-m. Thus, the route between the entry and
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the first exit is categorized in Scenario 1 because 0 rad® - m < Geo < 40.7 rad® - m. Then, the
sub-model for Scenario 1 is activated to work, beginning with Prediction Site 1. At Prediction
Site 11, the prediction result of "Staying" is obtained, that is to say, the driver is approaching
the second exit (see the Figure 4-4(b)). Then, Geo of the second exit is calculated as 96.1
rad® - m, thus, the route between the entry and the second exit is categorized in Scenario 3
because 72.4 rad® - m < Geo < 108.7 rad®-m. Then, the sub-model for Scenario 3 is activated
to work, starting from the prediction site next to the Prediction Site 11 of Scenario 1. At
Prediction Site 22, the prediction result of "Staying" is obtained. This means the driver is
approaching the third exit (see the Figure 4-4(c)). Then, Geo of the third exit is calculated
as 211.2 rad® - m. Thus, the route between the entry and the third exit is categorized in
Scenario 4 because Geo > 108.7 rad® - m. Then, the sub-model for Scenario 4 is activated to
work, starting from the prediction site which is next to the Prediction Site 22 of Scenario 3.
At Prediction Site 27, the prediction result of "Exiting" is obtained. The driver maneuver of
exiting the roundabout has been detected, so the prediction process ends. In this process, the
classifiers of the sub-model for Scenario 1, the sub-model for Scenario 3, and the sub-model for
Scenario 4 are activated in the order shown in Figure 4-5 (The activated sub-model is illustrated
in yellow.).

4.1.3 Summary

This section described the structure of the driver maneuver predictive model: it consists of four
sub-models for each of the four scenarios, and each sub-model consists of a series of classifiers
that correspond to a series of prediction sites for that scenario. By following the proposed
prediction procedure, the model can predict driver maneuvers by classifying the driving behavior
information. The next section discusses the training of the classifiers with machine-learning
algorithms and the driving behavior information.
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s

(a) Prediction for the first exit.

\__

(b) Prediction for the second exit.

(c) Prediction for the third exit.

Figure 4-4: Prediction procedure when a driver drives through a roundabout.
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Figure 4-5: Activated sub-models in the example.
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4.2 Classifier Training

4.2.1 Features for Classification

The classifiers included in the four sub-models were trained with the driving behavior information
from the simulator study. The field study showed that steering angle and steering angle velocity
are important features for predicting driver maneuvers. Nevertheless, the other driving behavior
information was also used here as features for training the classifiers. All features were prepared
for modeling with a three-step procedure:

e Step 1: Feature extraction. The values of the eight variables (steering angle, steering angle
velocity, speed, acceleration, heading direction, and gaze direction) at each prediction site
were extracted as features for training the classifier.

e Step 2: Feature scaling. All features were scaled to the range [-1, 1] to avoid having
features with large ranges dominate those with smaller ranges [HLO2].

e Step 3: Feature combination. Different features provide different predictabilities, and
different combinations of features can also provide different predictabilities. Thus, all
combinations of features were tested as inputs to train the classifiers. The four different
basic features are as follows:

— Steering was defined as the combination of steering angle and steering angle velocity.
— Motion was defined as the combination of speed and acceleration.

— Head was defined as the combination of head heading and head pitch. Head heading
is the left/right rotation of the driver's head (also known as "no" rotation). Head
pitch is the up/down rotation of the head (also known as "yes" rotation).

— Gaze was defined as the combination of gaze heading and gaze pitch. Gaze heading
is the left/right angle of the gaze direction. Gaze pitch is the up/down angle of the
gaze direction.

The 15 possible combinations of these four features are presented in Table 4-1: The star
(*) means that the basic features in the corresponding column are included in the feature
combination in the corresponding row.

This three-step process was applied at each prediction site for each scenario to prepare the
features for classifier training.

Next, the following training procedure was applied to the prepared feature data:

e Step 1: Nested cross validation. As shown in Figure 4-6, an outer 5-fold cross-validation
loop was used to split the feature data into training folds and test folds. The training
folds were used to train the classifiers and the testing folds were used to evaluate the
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Table 4-1: Fifteen possible feature combinations.
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model’s performance. The inner 5-fold cross-validation loop was used to identify the best
parameters for the classifiers. The best parameters are the ones that can minimize the loss
functions for the classifiers and generate the best prediction result, which was achieved in
this way [AlIb18]:

— Sub-step 1: Set the parameters to some values.

Sub-step 2: Split the data in the training fold into five sub-folds.

Sub-step 3: Train the model with four of the five sub-folds using the parameter
values.

Sub-step 4: Test the model on the remaining sub-fold.

Sub-step 5: Repeat sub-steps 3 and 4 so that each sub-fold is the test data once.
— Sub-step 6: Repeat sub-steps 1 to 5 for all possible values of the parameters.
— Sub-step 7: Retrieve the parameters that generate the best result.

e Step 2: Balancing the training data sets of the two classes. Oversampling was used for
the class with less data.

e Step 3: Training the classifiers using machine-learning algorithms. The classifiers were
trained with soft-classification algorithms, see Chapter 2. In this thesis, two types of soft-
classification algorithms were investigated: simple algorithms and complex algorithms.
The details of the algorithms are presented in the next two subsections.

Soft classifiers were trained using soft-classification algorithms. After being fed the inputs of
the feature data, the soft classifiers output continuous values of the likelihood of "Exiting" or
"Staying" [LZW11]. The output is named soft-decision output. This soft classifiers decided
whether or not to report the results for "Exiting" or "Staying" with an output threshold of
95%: If the soft-decision outputs were larger than 95%, the drives were labeled as "Exiting",
whereas if the outputs were smaller than 5%, the drives were labeled as "Staying". Drives with
soft-decision outputs between 5% and 95% were labeled NA (No result available), meaning
that, the classifiers could not offer results for these drives because they were uncertain about
the decision. The value of 95% was decided upon because output that is larger than 95% can be
considered as reliable prediction. Hence, the prediction results had three possible stati: Correct,
wrong, or not available.

4.2.2 Classifier Training Based on Simple Algorithms

The following simple classification algorithms were used to train the classifiers:

e Linear SVM
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Figure 4-6: Nested 5-fold cross validation.

Gaussian SVM

Polynomial SVM
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AdaBoost

e |ogistic regression

These algorithms are described as effective methods of predicting driver behavior in Chapter 2.2.
The algorithms were used in their typical format, so they were named simple algorithms. The
development of complex algorithms is discussed in the next subsection. The parameters of the
simple algorithms were determined by the training data set. The parameters are presented as
follows:

e Linear SVM: Kernel funcion = linear kernel function and cost C = 1.

e Gaussian SVM: Kernel funcion = radial basis (Gaussian) kernel function, cost C = 1, and
sigma = 0.117321976626512.

e Polynomial SVM: Kernel funcion = polynomial kernel function, cost C = 1, degree = 1,
scale = 1, and offset = 1.

e Random Forest (RF): Number of trees = 500.
e AdaBoost: Number of predictors = 10.

e Logistic regression: RMSE = 0.4901843 and R? = 0.08812054.
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4 Developing a Model for Driver Maneuver Prediction

The simple algorithms trained a series of classifiers independently, meaning that the outputs
of these classifiers were also independent, i.e., when the present classifier makes a judgment
of exiting or staying at the present prediction site, it does not consider the judgment of the
previous classifier, but considers only what the driving behavior at the present site suggests.
Thus, complex algorithms were developed to overcome this disadvantage of simple algorithms.

4.2.3 Classifier Training Based on Complex Algorithms

This subsection describes the development of complex algorithms, which integrate HMM and
the simple algorithms. The following complex algorithms were developed:

e Linear SVM-based quasi-HMM

Gaussian SVM-based quasi-HMM

Polynomial SVM-based quasi-HMM

RF-based quasi-HMM

Adaboost-based quasi-HMM

e L ogistic-based quasi-HMM

The quasi-HMM algorithms treat the series of classifiers included in each sub-model as a Markov
chain. Thus, the output of the present classifier partly depends on the output of the previous
classifier, i.e., when the present classifier makes a decision about exiting or staying at the
present prediction site, it considers not only current driving behavior information but also the
previous classifier's suggestion. This theoretically improves the predictability of the quasi-HMM
algorithms. The structure of the quasi-HMM was developed to represent driver maneuvers and
driving behavior at roundabouts, as depicted in Fig. 4-7. The length of the Markov chain is the
number of prediction sites, denoted as K. The hidden state at prediction site k is denoted as
Sk, which has two possibilities denoted as X = {x; = Exit, x, = Stay}. The observation at each
prediction site is a vector of one of the features proposed above. This is the structure of the
quasi-HMM.

The quasi-HMM was obtained by optimizing its parameters, which are the initial probability, the
transition-probability matrix, and the emission probabilities (definitions of these parameters are
given in Chapter 2.2). The Baum-Welch algorithm is often used to train the parameters for an
HMM [RJ86]. However, the Baum-Welch algorithm works only when the transition-probability
matrix on the chain is constant [RJ86]. For the driver maneuver prediction in this thesis, the
transition-probability matrix varies on the chain. At the very beginning of the chain, the driver
is still far away from the on-coming exit, so she/he is able to change her/his maneuver freely.
Therefore, the probability p(S;y1 = x1|S; = x1) can be equal to the probability p(S;11 = x|S; =
x1). A matrix A can be used to describe the transition-probability matrix at one prediction site,
where the element a,,, in row m and column nis p(S;y1 = m|S; = n). The transition probability
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4.2 Classifier Training

matrix at the first prediction site is then

Az |00 051 (4.2.1)
0.5 05

However, at the end the chain, when the driver is close to the exit, the maneuver can hardly be
changed, so, the transition probability matrix at the last prediction site is

10
A= [o 1]. (4.2.2)

Therefore, the transition-probability matrix varies at different prediction sites on the chain: The
closer the prediction site is to the exit, the larger the transition probabilities p(S;11 = x1|S; = x1)
and p(Sii1 = x2|S; = x2) and the smaller the transition probabilities p(S;11 = x1|S; = x2) and
p(Sit1 = x|S; = x1). This suggests that 1) the HMM with a constant transition-probability
matrix is not suitable in this case, which is the reason why the algorithm is named a "quasi"
hidden Markov model (quasi-HMM) and, 2) the initial probability, the transition-probability
matrix, and the emission probabilities can not be trained with the Baum-Welch algorithm [RJ86].
In the following paragraphs, the methods that were used to determine these three types of
parameters are introduced.

Hidden states

Observation

(Steering,
velocity,

)

(Steering,
velocity,

)

(Steering,
velocity,

)

Figure 4-7: Quasi-HMM structure.

Initial Probability

The initial probability vector m was defined as m = [0.5, 0.5] for two reasons:

e From the perspective of the individual driver, at the first prediction site, there were almost
no clues as to the driving direction, so the probabilities of the two states were equal.

e From a statistical perspective, there were equal numbers of training data for the two
different states. Therefore, the initial probabilities of the two different states must be
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4 Developing a Model for Driver Maneuver Prediction

equal, otherwise the prediction at the beginning of drives would be biased towards the
state with a higher initial probability. However, it should be noted that, in real-world
driving, the initial probability can be determined according to the traffic volume, i.e., a
higher initial probability can be assigned to the exit with heavier traffic through it.

Emission Probability

The emission probability p(O;|S; = x) at each prediction site was determined using the soft-
decision output of the corresponding simple algorithms. However, the output was in the form

p(S; = x|O;), where x was the hidden state and O, was the observation. To convert the
conditional probability, the Bayesian rule was applied as
p(O;, S; = x) p(O)

p(O;|S; = x) = 22T =20 — p(x|O) - =L 423

O =0= "5 =~ 5= (#23)

where 29 is 3 constant because both, p(O;) and p(S; = x) are prior probabilities that have

p(Si=x)
no influence on each other. This constant can be obtained by normalization, i.e.,

~p(O)
S, = x|0;) =1 424
Zp( 0) 5= (4.2.4)
where x takes all possible states. In practice, normalization can be executed later for the
posterior probabilities calculated in equation (2.2.7) to ensure that the sum of the posterior
probabilities of all possible states equals 1. Therefore, the soft-decision outputs of the simple
algorithms were used to calculate the emission probabilities of the six complex algorithms.

Transition probability

The transition probability matrices vary at different prediction sites along the routes. The above
analysis considered that, at the beginning of each drive, the transition probability p(Siy1 =
x1|Si = x1) = p(Siz1 = x|S; = x2) = 0.5, whereas at the end of each drive, the transition
probability p(Siy1 = x1|Si = x1) = p(Sjy1 = %|S; = x2) = 1. These numbers should increase
over the course of the drive. Therefore, the distribution of the transition probability p(S;i1 =
x1|S; = x1) along each drive was assumed to take the form of an S-shape. A typical S-shaped
function, a logistic function, was used to define this distribution. The parameters of the logistic
function were empirically determined for the four scenarios as follows:

e For Scenario 1:
0.5

P = P(Si+1 = X1|S,' = Xl) = 1 T 673‘11_()(710) —+ 0.5 (425)
e For Scenario 2:
0.5
P = p(si+1 = X1|S,' = X1) = + 0.5 (426)

1 + e—621-(x—14)
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e [or Scenario 3:

0.5
P = P(Si+1 = X1|S,‘ = Xl) = 1+ o—311-(x—18) + 0.5 (427)
e For Scenario 4:
0.5
P = D(S,'+1 = Xl‘s,' = Xl) + 0.5 (428)

T 11 e 621(x—24)

where x is the distance from the entry of the roundabout to the prediction site. The transition-
probability matrix at a given prediction site is

P 1-P
A:L_P ! ] (4.29)

Six complex algorithms were obtained by optimizing the initial probabilities, the transition-
probability matrices, and the emission probabilities.

4.2.4 Summary

This subsection introduced the feature extraction method for training classifiers. Moreover, sim-
ple and complex algorithms were used to train the classifiers. The simple algorithms were SVM,
logistic regression, RF, and Adaboost. The complex algorithms were developed by integrating
an HMM chain with these simple algorithms. In Chapter 5.1, the features and the algorithms
with the best predictive performance will be selected with model evaluation.
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4 Developing a Model for Driver Maneuver Prediction

4.3 Reinforcement Learning for a Personalized Model

4.3.1 Different Driving Styles for Different Drivers

Sometimes, drivers behave differently even in the same roundabout scenario due to their different
driving styles. This is easily visible in Figure 4-8. It depicts the mean values of steering angle for
each participant in the field study as the participants exited a roundabout. It can be observed
that the steering angle of all participants increases at the beginning and then starts decreasing
in the middle until the end. In other words, all participants first steered the steering wheel left
to follow the roundabout for a short time and then steered right to take the exit. However,
Participant 2 and Participant 4 steered with different angles and different angle speeds: They
turned the steering wheel left heavily, while the others steered left much more slightly to follow
the roundabout before taking the exit. The reason may be that they have less driving experience
or a cautious personality. It can thus be assumed that a driver maneuver predictive model that
Is trained with generic driving behavior data will not succeed for such drivers whose personal
driving styles are very different from generic drivers. To solve this problem, it is necessary to
develop personalized predictive models.

160 -
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g; 40 - 2
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Figure 4-8: Mean values of steering angle from each participant.

4.3.2 The Development of Personalized Predictive Models

A personalized predictive model is defined as a model that is trained specifically for an individual
driver. The model is obtained by updating an original predictive model. The original model was
developed using the method presented in Chapter 4.1 and Chapter 4.2. The training data for
the original model were acquired from generic drivers. The model can be updated by solving
a reinforcement learning problem, which is the problem faced by a model that learns behavior
through trial-and-error interactions with a dynamic environment [KLM96][SB98]. In this thesis,
the environment is dynamic because driving behavior differs among drivers. These trial-and-
error-interactions allow the model to be self-adaptive to the feedback of the output generated
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4.3 Reinforcement Learning for a Personalized Model

Table 4-2: Driving experience of participants in the field study.

Year of  Driving Driving

No. Agein Gender driver's license regularly mileage in
2015 acquisition since 2014 (km)

1 22  female 2010 2010 4000

2 29 male 2014 2014 100

3 33 male 2004 / 1000

4 24 female 2009 2009 5000

5 23 female 2008 2008 5000

6 23 male 2010 2010 10000

7 23 male 2010 2010 1000

by the model. When a driver approaches the exit of a roundabout, the original model equipped
in her/his car is updated via a process of reinforcement learning with the following procedure:

e Step 1: Feed the model with the driver's driving behavior data as an input to get the
prediction result of the model - the maneuver of staying or exiting.

e Step 2: Make a judgment about whether or not the result is correct after the driver
executes the staying or exiting maneuver.

e Step 3: Apply this feedback to update the training data set of the model. There are
two types of feedbacks depending on whether the result is correct or incorrect: positive
feedback when the result is correct and negative feedback when the result is incorrect.
Positive feedback is integrating the input data and prediction result into the model's
training data set, whereas negative feedback is integrating the input data and the opposite
of the result into the training data set.

e Step 4: Train the model with the updated training data set.

This procedure is executed to optimize the driver maneuver predictive model for an individual
driver by integrating that driver's driving behavior data into the training data set. The more
personal data are integrated, the more specialized the model becomes for this specific driver.
Figure 4-9 illustrates the work flow of the reinforcement learning-based model developed with
the above procedure.

4.3.3 Summary

This subsection discussed the need for personalized models. In addition, a method for updating a
general model for an individual driver was proposed. This method can improve the predictability
of the driver maneuver predictive model. The updating can be achieved using a reinforcement
learning method that can integrate real-time behavior data into the training data set. Integrating
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Input
(Driving-behavior data)

!

Personalized
prediction model

l

Positive feedback output Negative feedback
(Integrating input and (Sta oF; exit) (Integrating input and opposite
output in training data set) Y of output in training data set)
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Figure 4-9: Work flow of the reinforcement learning-based predictive model.

the individual driver's behavior data allows a personalized predictive model for that driver to be
obtained. A performance evaluation of the personalized model is presented in Chapter 5.3.

4.4 Summary

This chapter explained the development of a driver maneuver predictive model. The model can
predict the maneuvers of a driver with any type of driving style at a roundabout with any type
of layout. The presented driver maneuver predictive model consists of four sub-models for the
four scenarios. Each sub-model consists of a series of classifiers that correspond to a series
of prediction sites. This model structure is presented as Contribution 3 in Chapter 1.4. When
a driver approaches a roundabout exit, the relevant scenario is determined using the scenario
categorization method, and the corresponding sub-model is activated. The classifiers included
in the sub-model make the classification of "Exiting" or "Staying" from the first prediction site
until a reliable result of "Exiting" or "Staying" is obtained. This process predicts the future
driver maneuver using the model. The classifiers were trained by machine-learning algorithms
with the driving behavior information acquired at the corresponding prediction sites. Fifteen
combinations of the acquired variables, namely steering angle, steering angle velocity, speed,
acceleration, heading direction, and gaze direction, were used as classification features to train
the classifiers. Simple algorithms (SVM, RF, Adaboost, and logistic regression) and complex
algorithms (SVM-based quasi-HMM, RF-based quasi-HMM, Adaboost-based quasi-HMM, and
logistic-based quasi-HMM) were applied to train the classifiers. Finally, a method to update the
model into a personalized predictive model for each driver was proposed. This method allows
the model to learn an individual driver’s driving style on-line when it is activated to predict the
driver’'s maneuvers. The models are then evaluated in different scenarios in Chapter 5.
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5 Evaluation and Discussion

This chapter evaluates the driver maneuver predictive model that was developed using the
method described in Chapter 4. First, the most informative feature and the algorithm with the
best predictive performance were selected and the sites where reliable prediction results can be
obtained were investigated. Second, the impact of cyclists at or near a roundabout on driver
maneuver prediction was analyzed. Last, the personalized model was evaluated. One participant
in the field study who has a significantly different driving style from the other participants was
selected as the test driver. A personalized model that was trained specifically for this participant
was evaluated and compared with a generalized model.

In this chapter, the following contributions are made:

e Contribution 4: A grading system for evaluating the model. This grading system rewards
correct predictions, punishes incorrect predictions, and ignores unavailable results.

e Contribution 5: Identification of the information that can be captured automatically and be
used to best predict future behavior. This information includes steering wheel information
and car motion parameters. The advantage of this information is that it can be acquired
at a low cost and without violating drivers’ privacy.

e Contribution 6: The complex algorithm that integrates the HMM and logistic regression
is well suited for predicting driver behavior.

e Contribution 7: A driver maneuver predictive model that succeeds in the scenarios with
and without surrounding traffic.

e Contribution 8: Empirical proof that human behavior depends not only on the geometric
features of roundabouts but also on person-specific parameters such as driving style. This
knowledge was used to develop a personalized predictive model.

The important definitions used in this chapter are listed as follows:

e Soft-decision outputs are the outputs of the soft classifiers. These outputs are continuous
values of the likelihood of "Exiting" or "Staying".

e A performance score is defined as an evaluation score for soft classifiers.

e Given rate is the ratio between the number of samples that are classified as "Exiting" or
"Staying" and the total number of samples available in the test data set.

e Given accuracy is the ratio between the number of samples correctly classified and the
number of samples that are classified as "Exiting" or "Staying".

e Reliable sites are defined as the prediction sites with a performance score higher than 85.
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5 Evaluation and Discussion

5.1 Model Evaluation for Feature and Algorithm Selection

5.1.1 Algorithm-Feature Combinations

This subsection evaluates the driver maneuver predictive model that can be developed with
multiple machine-learning algorithms and multiple driving behavior features. Twelve possible al-
gorithms, including six simple algorithms and six complex algorithms, are as follows (see Chapter
2):

e Linear SVM
e Gaussian SVM
e Polynomial SVM
e Random Forest
e Adaboost
e Logistic regression
e Linear SVM-based quasi-HMM
e Gaussian SVM-based quasi-HMM
e Polynomial SVM-based quasi-HMM
e RF-based quasi-HMM
e Adaboost-based quasi-HMM
e | ogistic-based quasi-HMM
And fifteen possible features included:
e Steering
e Motion
e Head
o Gaze
e Steering-Motion
e Steering-Head

e Steering-Gaze
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e Motion-Head

e Motion-Gaze

e Head-Gaze

e Steering-Motion-Head

e Steering-Motion-Gaze

e Steering-Head-Gaze

e Motion-Head-Gaze

e Steering-Motion-Head-Gaze

There were 180 ways to combine these algorithms and features. Thus, 180 driver maneuver
predictive models were trained with these combinations using the method introduced in Chapter
4. These models were evaluated and compared with one another in this chapter, allowing for
the selection of the algorithm-feature combination with the best performance.

5.1.2 Evaluation of the Algorithm-Feature Combinations

Test data for evaluating the models were defined using the nested cross validation presented in
Chapter 4.2. As shown in Figure 4-6, an outer 5-fold cross-validation loop was used to split
the data into training and test folds. The data in the training folds were used to train models,
whereas the data in the test folds were used for model evaluation.

The test data set contained driving samples with exiting maneuvers and samples with staying
maneuvers. During model testing, the models labeled these samples as "Exiting", "Staying",
or "NA (no result available)" on the basis of the soft-decision outputs of the models and the
output threshold of 95%. In this case, traditional evaluation scores for hard classification such
as accuracy, F1 score, detection rate, and false alarm rate [Pow11] are not appropriate because
these scores would treat "no result available" as an incorrect result. Therefore, a grading system
was proposed to calculate evaluation scores for the soft-decision based models. This grading
system is based on the principle that a correct prediction is the best situation, an incorrect
prediction is the worst situation, and "no result available" is neutral. Following this principle,
the models were scored in this way:

e The models received one positive point when they offered a correct prediction result for a
given test drive.

e The models received zero points when they didn't offer a result for a given test drive.

e The models received one negative point when they offered an incorrect prediction result
for a given test drive.
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However, the scores the models acquired in this way depended not only on the prediction results
but also on the number of test drives. For this reason, the points were converted into percentages
so that the scores for all scenarios varied within the same range, from -100 (incorrectly predicting
all test drives) to 100 (correctly predicting all test drives). This score is called the performance
score.

The performance scores for all combinations of the twelve algorithms and 15 features at each
prediction site for each of the four scenarios were calculated and presented in Figure A-1-A-12
in Appendix A. These figures show that scores at the beginning of the drives were as low as
0-20, then increased in the middle up to 100, and were as high as 100 at the end of the drives.
It was assumed that a better model would reach 100 at an earlier prediction site. Thus the
sites in which the scores were near 100 were selected as key sites. The key sites for the four
scenarios were as follows:

e For Scenario 1, the key sites were Prediction Site 9, Prediction Site 10, Prediction Site
11, and Prediction Site 12.

e For Scenario 2, the key sites were Prediction Site 12, Prediction Site 13, Prediction Site
14, and Prediction Site 15.

e For Scenario 3, the key sites were Prediction Site 17, Prediction Site 18, Prediction Site
19, and Prediction Site 20.

e For Scenario 4, the key sites were Prediction Site 25, Prediction Site 26, Prediction Site
27, and Prediction Site 28.

At these key sites, the performance score of one algorithm-feature combination, "Gaze with
Adaboost (Ada)", was compared to every other algorithm-feature combination by calculating
Cohen's d between them [Lak13]. Cohen's d is an effect size and measures the difference
between the performance of "Gaze with Ada" and the algorithm-feature combination under
comparison: When Cohen'’s d is positive, the compared algorithm-feature combination performs
better than "Gaze with Ada", and the larger the value, the better this algorithm-feature combi-
nation performs compared to "Gaze with Ada". On the contrary, when Cohen's d is negative,
the compared algorithm-feature combination performs worse than "Gaze with Ada", and the
smaller the value, the worse this algorithm-feature combination performs compared to "Gaze
with Ada". Cohen’s d thus allows the algorithm-feature combinations to be ranked at each key
site for each scenario. "Gaze with Ada" was selected by random. The baseline selected does
not affect the ranking of the performances of all algorithm-feature combinations. The ranking
at the first key site for Scenario 1 is presented in Appendix B as an illustrative example. The
top several algorithm-feature combinations across all key sites are presented in Table 5-1 and
Tables B-2-B-16.

Table 5-1-B-16 show that the best algorithm-feature combination at each key site are as follows:
e For Scenario 1:

— At Prediction Site 9: The best algorithm-feature combination is Steering-Motion-
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Table 5-1: Top algorithm-feature combinations at Prediction Site 9 in Scenario 1.

Features Cohen’s d Rank
Steering-Motion-Head with logistic 9.633974 1
Steering-Motion-Head-Gaze _with  HMMLogistic 9.25089 2
Steering-Motion-Head-Gaze with logistic 9.25089 2
Steering-Motion-Head _with  HMMLogistic 9.031955 4
Steering-Motion-Gaze with  HMMSVMlinear 8.635495 5

Head with logistic regression (See Table 5-1).

— At Prediction Site 10: The best algorithm-feature combinations are Steering-Motion-
Head with logistic-based quasi-HMM and with logistic regression (See Table B-2).

— At Prediction Site 11: The best algorithm-feature combinations are Steering-Motion
with logistic-based quasi-HMM and with logistic regression (See Table B-3).

— At Prediction Site 12: There were fifteen algorithm-feature combinations performing
equally good (See Table B-4).

e For Scenario 2:

— At Prediction Site 12: The best algorithm-feature combinations are Steering-Gaze
with RF-based quasi-HMM and with Random Forest (See Table B-5).

— At Prediction Site 13: The best algorithm-feature combinations are Steering—Motion-
Head-Gaze with logistic-based quasi-HMM and with logistic regression (See Table B-
5).

— At Prediction Site 14: There were fourteen algorithm-feature combinations perform-
ing equally good (See Table B-5).

— At Prediction Site 15: There were fourteen algorithm-feature combinations perform-
ing equally good (See Table B-5).

e For Scenario 3:

— At Prediction Site 17: The best algorithm-feature combination is Steering-Motion
with logistic-based quasi-HMM (See Table B-9).

— At Prediction Site 18: The best algorithm-feature combination is Steering-Motion-
Head with logistic regression (See Table B-10).

— At Prediction Site 19: The best algorithm-feature combination is Steering-Motion-
Head with logistic regression (See Table B-11).

— At Prediction Site 20: There were seven algorithm-feature combinations performing
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equally good (See Table B-12).
e For Scenario 4:

— At Prediction Site 25: The best algorithm-feature combination is Steering-Motion
with logistic-based quasi-HMM (See Table B-13).

— At Prediction Site 26: The best algorithm-feature combination is Steering with
AdaBoost-based quasi-HMM (See Table B-14).

— At Prediction Site 27: The best algorithm-feature combination is Steering-Motion
with RF-based quasi-HMM (See Table B-15).

— At Prediction Site 28: There were four algorithm-feature combinations performing
equally good (See Table B-16).

The predictive power of the different features were then analyzed. Figures A-1-A-12 in Appendix
A show that the features can be clustered into three groups on the basis of their performance
scores: features including Head-Gaze, features including Motion, and features including Steering.
The average performance scores for these three clusters were calculated and are illustrated in
Figure 5-1. It shows that the features including Steering (steering angle and steering angle
velocity) provide the most valuable information and the features including Head-Gaze (only Head
or Gaze information) provide the least information. The predictability of the different features
was analyzed further with box plots [SWRT14] of the features over different algorithms, see
Figure C-1-C-4. These figures show that 1) the Cohen’s d values of the features including
Steering are significantly larger than the features that exclude Steering and 2) the Cohen's d
values of the features including Motion are slightly larger than the features that exclude Motion.
That is to say, the predictability order of the features is Steering-Motion ~ Steering-Motion-
Gaze = Steering-Motion-Head =~ Steering-Motion-Gaze-Head > Steering =~ Steering-Gaze ~
Steering-Head = Steering-Gaze-Head >> Motion-Gaze ~ Motion-Head ~ Motion-Gaze-Head
> Gaze =~ Head =~ Gaze-Head. This analysis makes clear that the steering wheel information
and motion information are most important for predicting driver maneuvers.

The algorithms' performance were analyzed with box plots [SWRT14] of the complex algorithms
and the simple algorithms over different features, see Figure C-5-C-8. These figures show that
the complex algorithms (quasi-HMMs) performed better than the simple algorithms. The soft-
decision outputs of the twelve soft-classification algorithms are the likelihood of the results of
"Exiting". For example, an output of 95% means that the model is 95% sure about the result
of Exiting and 5% sure about the result of Staying. Contrast, an output of 5% means that the
model is 5% sure about the result of Exiting and 95% sure about the result of Staying. Figures D-
1-D-12 in Appendix C show the soft-decision outputs generated by the twelve algorithms for
all test drives. The outputs of the logistic regression were compared to those of the logistic-
based quasi-HMM as an example comparing the outputs of the simple and complex algorithms:
Figure D-11 shows the outputs of the simple logistic regression algorithm at all prediction
sites on the test drives that were categorized in the four scenarios. The blue lines denote the
routes exiting the roundabout and the red lines denote the routes staying in the roundabout.
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Figure 5-1: Average performance scores of three clusters of features.
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It can be observed that, for the first two-thirds of drives, the outputs for the drives with two
different maneuvers can not be easily distinguished. However, for the last one-third, the blue
lines become close to 100% and the red lines become close to 0%, allowing the drives with two
maneuvers to be distinguished from one another. Similarly, Figure D-12 shows the outputs of
the logistic-based quasi-HMM. It can be observed that more green lines reach 100% and more
red lines reach 0% over the last one-third in Figure D-12 than in Figure D-11. That is to say,
the outputs of the logistic-based quasi-HMM are more stable in the last phase of each drive
than logistic regression, and thus the logistic-based quasi-HMM offers more reliable judgments.
This is why the logistic-based quasi-HMM was considered to perform better than the logistic
regression. Similarly, the other five quasi-HMMs also performed better than their corresponding
simple algorithms.

In summary, the best features varied at different prediction sites in different scenarios, but steer-
ing information is always integrated into the best features, and motion information is integrated
into most of the best features. Thus, steering wheel information (steering angle and steering
angle speed) turns out to be the most important information and the motion status (velocity
and acceleration) turns out to be the second important information. Moreover, the best al-
gorithms are always complex ones, and the logistic-based quasi-HMM performed best at most
of the prediction sites. For this reason, Steering-Motion with logistic-based quasi-HMM was
considered the best algorithm-feature combination for developing the driver maneuver predictive
model. The performance scores of the model developed with Steering-Motion and logistic-based
quasi-HMM for all prediction sites over the four scenarios are presented in Figure 5-2.

Two constructs, defined below, were used to identify how many maneuvers the model that was
trained with Steering-Motion and logistic-based quasi-HMM predicted correctly in test drives:

e Given rate is defined as the ratio between the number of samples that were classified as
"Exiting" or "Staying" and the total number of samples available in the test data set. Its
mathematical expression is

Give rate = (P+ N — NA)/(P + N) (5.1.1)

where P (Positive) is defined as the number of exiting maneuver samples in the test data
set, N (Negative) is defined as the number of staying maneuver samples in the test data
set, and NA (Not available) is defined as the number of samples that were not providing
a prediction result.

e Given accuracy is defined as the ratio between the number of samples correctly classi-
fied and the number of samples classified as "Exiting" or "Staying". Its mathematical
expression is

Give accuracy = (TP + TN)/(P + N — NA) (5.1.2)

where P (Positive) is defined as the number of exiting maneuver samples in the test data
set, N (Negative) is defined as the number of staying maneuver samples in the test data set,
NA (Not available) is defined as the number of samples that were not providing a prediction
result, TP (True positive) is defined as the number of samples that were correctly identified
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Steering-Motion (The gray areas denote the 95% confidence intervals).

73



5 Evaluation and Discussion

as exiting maneuvers (the exiting maneuver samples were labeled as "Exiting"), and TN
(True negative) is defined as the number of samples that were correctly recognized as
staying maneuvers (the staying maneuver samples were labeled as "Staying").

The given rates and given accuracies of the model trained with Steering-Motion and logistic-
based quasi-HMM for all prediction sites in the four scenarios are presented in Figure 5-3. It
can be observed that the given rate increases with prediction sites, while the given accuracy is
quite stable over the prediction sites.

5.1.3 Performance of the Predictive Model at Reliable Sites

"Reliable sites" were previously defined prediction sites with performance scores higher than 85
(85 was used as an example value because it represents quite high prediction performance). The
earlier the first reliable site, the better the model’ performance. Thus, the first reliable sites in
the four scenarios and the prediction performance associated with them were investigated (also
see Table 5-2):

e In Scenario 1, the first reliable site was Prediction Site 10 (see the position in Figure 5-4
(a)). At this prediction site, the model’s average performance score was 92.0, the average
given rate was 97.67%, and the given accuracy was 97.15%. In the simulator study, only
roundabouts with a 13 m radius belonged to Scenario 1 (see Figure 3-21 (b)). At these
roundabouts, the distance from Prediction Site 10 to the oncoming exit is about 10.0 m.

e In Scenario 2, the first reliable site was Prediction Site 13 (see the position in Figure 5-4
(b)). At this prediction site, the model's average performance score was 94.0, the average
given rate was 99.76%, and the given accuracy was 97.14%. In the simulator study,
roundabouts with both a 13 m and 20 m radius belonged to Scenario 2 (see Figure 3-21
(b)). At the smaller roundabouts, the distance from Prediction Site 13 to the oncoming
exit is about 10.0 m. At the larger roundabouts, the distance from Prediction Site 13 to
the oncoming exit is about 14.0 m.

e In Scenario 3, the first reliable site was Prediction Site 17 (see the position in Figure 5-4
(c)). At this prediction site, the model's average performance score was 93.4, the average
given rate was 99.06%, and the given accuracy was 97.13%. In the simulator study,
roundabouts with both a 13 m and 20 m radius belonged to Scenario 3 (see Figure 3-21
(b)). At the smaller roundabouts, the distance from Prediction Site 17 to the oncoming
exit is about 12.0 m. At the larger roundabouts, the distance from Prediction Site 17 to
the oncoming exit is also about 12.0 m.

e In Scenario 4, the first reliable site was Prediction Site 24 (see the position in Figure 5-4
(d)). At this prediction site, the model's average performance score was 96.4, the given
rate was 97.99%, and the given accuracy was 99.18%. In the simulator study, roundabouts
with both a 13 m and 20 m radius belonged to Scenario 4 (see Figure 3-21 (b)). At the
smaller roundabouts, the distance from Prediction Site 24 to the oncoming exit is about
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7.5 m. At the larger roundabouts, the distance from Prediction Site 24 to the oncoming
exit is about 10.5 m.

Table 5-2: Prediction results in the four different scenarios.

Performance score Given rate Given accuracy Distance to the exit

Scenario 1 92 97.67% 97.15% 10.0 m
Scenario 2 94 99.76% 97.14% 10.0-14.0 m
Scenario 3 93.4 99.06% 97.13% 12.0 m
Scenario 4 96.4 97.99% 99.18% 7.5-10.5 m

The prediction accuracy is promising: The upcoming maneuver could be predicted with a high
given rate and given accuracy (both larger than 97%) at a distance of approximately 10 m
(about 2 seconds) before the exit.

5.1.4 Conclusion and Discussion

Conclusion 1: Steering-Motion is the most important feature.

The rankings of the algorithm-feature combinations (see Chapter 5.1.2) show that Steering-
Motion is the most important feature for driver maneuver prediction at all key sites. The
predictability order of the features is Steering-Motion =~ Steering-Motion-Gaze ~ Steering-
Motion-Head =~ Steering-Motion-Gaze-Head > Steering =~ Steering-Gaze ~ Steering-Head =~
Steering-Gaze-Head >> Motion-Gaze =~ Motion-Head ~ Motion-Gaze-Head > Gaze ~ Head =~
Gaze-Head. Thus, the steering wheel information and motion information are most important
for predicting driver maneuvers. One reason why the steering information is significantly better
than the other information could be that the scenario categorization method takes differences
in steering behavior across the different scenarios into account. Previous studies on predicting
driver maneuvers at intersections [NMIT08, SH14, GJW*16, TMF16, TKG15, PWK17]have
frequently considered motion and turning signal information, but have only rarely considered
steering wheel information and have never attempted to predict maneuvers at roundabouts.
This work shows that steering wheel and motion information is more informative for maneuver
prediction at roundabouts.

Steering wheel and motion information from drivers makes the model application feasible for
commercial use. It is easy to acquire and analyze steering wheel and motion information by
reading out steering wheel sensor data and CAN bus data. This equipment is easy to install
in cars. Furthermore, unlike gaze information and head information, which are acquired by
cameras, steering wheel information and motion information can be acquired with fewer chal-
lenges regarding privacy. These are the advantages of steering wheel and motion information
as predictive features.
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Conclusion 2: The complex algorithms perform better than the simple algorithms.

The rankings of the algorithm-feature combinations (see Chapter 5.1.2) show that the complex
algorithms (quasi-HMMSs) perform best at all key sites, and that the logistic-based quasi-HMM
specifically performs best for most key sites.

There is a theoretical reason for why the complex algorithms performed better: The simple al-
gorithms [CV95][BSB*96][PLIO2][FHTT00][LWWL13][RJ86] trained the classifiers at different
prediction sites independently, i.e., when the present classifier makes a judgment of exiting or
staying at the present prediction site, it only considers driving behavior at the present prediction
site. On the other hand, the complex algorithms treat the classifiers included in each sub-model
as a Markov chain, i.e., when the present classifier makes a decision about exiting or staying
at the present prediction site, it considers not only current driving behavior information but
also the previous classifier's suggestion. Therefore, the complex algorithms for driver maneuver
prediction developed in this work are more effective than the simple algorithms.

Conclusion 3: Only the classifiers at the reliable sites are activated for the maneuver
prediction.

The driver behavior predictive model’s prediction results before the reliable sites have a quite low
given accuracy (in some cases even below 90%), see Figure 5-3. These results could weaken
user's trust in the model. Therefore, it is recommended that only the classifiers at the reliable
sites are activated for maneuver prediction. That is to say, the model should offer prediction
results of "Staying", "Leaving", or "NA (No result available)" from the first prediction site until
the first full-score site. Full-score sites are defined as prediction sites where the performance
score is 100, i.e., the given rate and the given accuracy are also 100%. This means that the
classifiers will be activated at following prediction sites:

e In Scenario 1, the classifiers should offer results from Prediction Site 10 (the first reliable
prediction site) to Prediction Site 12 (the first full-score prediction site).

e In Scenario 2, the classifiers should offer results from Prediction Site 13 (the first reliable
prediction site) to Prediction Site 14 (the first full-score prediction site).

e In Scenario 3, the classifiers should offer results from Prediction Site 17 (the first reliable
prediction site) to Prediction Site 20 (the first full-score prediction site).

e In Scenario 4, the classifiers should offer results from Prediction Site 24 (the first reliable
prediction site) to Prediction Site 25 (the first full-score prediction site).

Previous studies on driver maneuver prediction at intersections [NMIT08, SH14, GJWT16,
TMF16, TKG15, PWK17] did not use the term prediction site to describe the distance to
the research object, such as an intersections or a roundabout. This definition makes it easier to
know the predictabilities of the features and algorithms at different positions. However, effective
use of the prediction site construct requires accurate position data.
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5.1.5 Summary

In this section, the models trained with 180 possible combinations of algorithms and features
were evaluated. The model's performances were scored using a proposed grading system. Then,
the models were ranked in order to compare their performances. It was found that the features
integrating steering wheel information and motion information were better than the other fea-
tures, and complex algorithms were better than simple algorithms. Taking into consideration
for all key sites within each of the four scenarios, Steering-Motion with logistic-based quasi-
HMM was selected as the best algorithm-feature combination for training the driver maneuver
predictive model. This conclusion answers Question 2 proposed in Chapter 3.3.1.

In addition, recommended prediction sites where the classifiers included in the model should offer
results have been given. At these recommended prediction sites, the prediction results offered
by the model are always reliable, and the model is guaranteed to be trustworthy for users.
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5.2 Model Evaluation for Traffic Scenarios

5.2.1 Without-Traffic Model and With-Traffic Model

This subsection investigates the impact of cyclists at or near a roundabout on the driver ma-
neuver predictive model. It was to be determined whether the algorithms and features that
were earlier found to be predictive of driver maneuvers remain highly predictive even when other
traffic participants are present. Thus, the impact of the four traffic scenarios introduced in
Chapter 3.3.1 were investigated. The details of the cyclist settings and the affected driver
maneuvers are illustrated in Figure 3-13. The scenarios with the four types of traffic were cate-
gorized using the scenario categorization method (see Chapter 3). The scenario categories and
their corresponding sub-models are as follows:

e The scenario with Traffic 1 fell under Scenario 2; thus, sub-model 2 of the driver maneuver
predictive model was activated to predict driver maneuvers under the impact of Traffic 1.

e The scenario with Traffic 2 also fell under Scenario 2; thus, sub-model 2 of the driver
maneuver predictive model was activated to predict driver maneuvers under the impact of
Traffic 2.

e The scenario with Traffic 3 fell under Scenario 4; thus, sub-model 4 of the driver maneuver
predictive model was activated to predict driver maneuvers under the impact of Traffic 3.

e The scenario with Traffic 4 also fell under Scenario 4; thus, sub-model 4 of the driver
maneuver predictive model was activated to predict driver maneuvers under the impact of
Traffic 4.

Two different driver maneuver predictive models were evaluated for the traffic scenarios. The
difference between them was that their training data were acquired from different sessions of
the simulator study: The data from Session 1 were driving behavior data without cyclist effects,
whereas the data from Session 2 were driving behavior data with cyclist effects. The model
trained with the data from Session 1 was named the without-traffic model and the model
trained with the data from Session 2 was named the with-traffic model. To investigate how
well these models performed under the impact of traffic, the test data set was always drawn
from Session 2. These two models were trained with the best feature-algorithm combination:
Steering-Motion and logistic-based quasi-HMM.

The performance scores of the without-traffic model and the with-traffic model for the four
traffic scenarios are depicted in Fig. 5-5. It can be observed that the performance scores of
the with-traffic model were larger than those of the without-traffic model for all four traffic
scenarios, meaning that the with-traffic model performed better in the scenarios with cyclists.
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Figure 5-5: Performance score of the without-traffic model and the with-traffic model.
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5.2.2 Performance of the With-Traffic Model

The given rate and the given accuracy of the with-traffic model are shown in Fig. 5-6. The given
rate and the given accuracy of the first reliable site in the traffic scenarios were also investigated
as follows (also see Table 5-3):

e In the scenarios with Traffic 1, the first reliable site is Prediction Site 15 (see the position
in Figure 5-7 (a)). At this prediction site, the average performance score is 91.2, the
average given rate is 100.00%, and the given accuracy is 93.91%. The distance from
Prediction Site 15 to the oncoming exit is about 9.5 m.

e In the scenarios with Traffic 2, the first reliable site is Prediction Site 15 (see the position
Figure 5-7 (b)). At this prediction site, the average performance score is 85.3, the average
given rate is 98.08%, and the given accuracy is 95.83%. The distance from Prediction
Site 15 to the oncoming exit is about 9.5 m.

e |n the scenarios with Traffic 3, the first reliable site is Prediction Site 28 (see the position
Figure 5-7 (c)). At this prediction site, the average performance score is 92.0, the average
given rate is 97.92%, and the given accuracy is 100.00%. The distance from Prediction
Site 28 to the oncoming exit is about 4.5 m.

e In the scenarios with Traffic 1, the first reliable site is Prediction Site 26 (see the position
Figure 5-7 (d)). At this prediction site, the average performance score is 89.8, the average
given rate is 100.00%, and the given accuracy is 97.92%. The distance from Prediction
Site 26 to the oncoming exit is about 9.0 m.

Table 5-3: Prediction results in the scenarios with surrounding cyclists.

Performance score Given rate Given accuracy Distance to the exit

Traffic 1 91.20 100% 93.91% 95 m
Traffic 2 85.30 98.08% 95.83% 9.5 m
Traffic3 92 97.92% 100% 45m
Traffic 4 89.80 100% 97.92% 9.0 m

5.2.3 Conclusion and Discussion

Conclusion 1: The with-traffic model performs better than the without-traffic model in
traffic scenarios.

The evaluation results (see Chapter 5.2.1) reveal that the with-traffic model performs better
than the without-traffic model in traffic scenarios. The difference between these two models is
the source of their training data: The with-traffic model was trained with data acquired from
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the scenarios with cyclists, whereas the without-traffic model was trained with data acquired
from the scenarios without traffic. The comparison shows that drivers behave differently in
with-traffic scenarios and without-traffic scenarios. As a result, the model trained with data
from without-traffic scenarios does not succeed in predicting driver maneuvers in scenarios with
traffic, even when these two types of scenarios belong to the same scenario category defined
according to roundabout geometric features. For this reason, it will be necessary to define
specific sub-models for different types of cyclists or traffic. When the model is applied in cars
on the road, sensors equipped in this cars should firstly sense the cyclists and then activate the
corresponding sub-model.

Conclusion 2: The driver maneuver prediction model succeeds in most of traffic
scenarios.

The evaluation results (see Chatpter 5.2.2) revealed that the model (Steering-Motion and
logistic-based quasi-HMM) succeeds in the scenario with Traffic 1, the scenario with Traffic
2, and the scenario with Traffic 4. Only the prediction result for Traffic 3 is not good. The
poor model performance in Traffic 3 may be caused by individually varying driver reactions to
the cyclists’ presence. In Figure 5-8, the three red arrows with small red circles denote the
cyclists and their direction when the car is in front of the oncoming exit. The red line and the
blue lines denote two types of driving tracks. It can be observed that the driver on the red
track steered the car to the left more than the driver on the blue track. The reason for the
difference in steering might be that the driver tries to avoid the possible collision with the cyclist
coming from right. The different steering behavior makes the prediction difficult. However,
for the purpose of warning drivers of a possible collision, the model’s lower predictability can
be tolerated in Traffic 3 because, the cyclists and the car drivers can always see each other in
Traffic 3.

If the Steering and Motion information makes a successful prediction, it means that the driver
did not adjust her/his steering behavior and speed due to the presence of the cyclists, which is
dangerous and indicates that the model was necessary for driving safety. On the other hand,
if the model with Steering and Motion information fails, it means that the driver did adjust
his/her behavior due to the presence of surrounding cyclists. The situation is thus safe and the
model was not needed. Thus, Steering and Motion is robust to the necessity of driver maneuver
prediction in the presence of cyclists. Liebner (2013) [LRKS13, LKB*13] developed a model to
predict turning maneuvers at intersections using only velocity information. This model achieved
a true positive rate of only 55% when preceding vehicles were present. In comparison, the results
presented in Chapter 5.2.2 demonstrate progress as a result of the use of Steering and Motion
information.
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Figure 5-8: Two different types of driving tracks in the scenario with Traffic 3.

5.2.4 Summary

This section evaluated the driver maneuver prediction model in the scenarios with traffic. The
conclusions answer Question 3 proposed in Chapter 3.3.1. The impact of the four types of
traffic on the prediction results was investigated. The evaluation results show that 1) the with-
traffic model performs better than the without-traffic model in the traffic scenarios and, 2) the
modeling method with Steering-Motion and logistic-based quasi-HMM succeeds in the scenarios
Traffic 1, Traffic 2, and Traffic 4. As the cyclists and car drivers can easily see each other in
Traffic 3, the model's lower predictability in this situation can be tolerated.
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5.3 Personalized Model Evaluation

This section presents the evaluation of the personalized predictive model. A personalized pre-
dictive model is defined as a model that is trained specifically for one individual driver. In this
thesis, a personalized model was developed for Participant 4 in the field study (see Chapter
4.3.1). From the analysis of all participants’ steering behavior in Figure 4-8, it is clear that,
Participant 4 steered with a different angle and angle speed compared to the other participants.

5.3.1 Personalized Predictive Model for Participant 4 in the Field Study

The personalized predictive model was obtained by updating the original predictive model with
driving behavior data from an individual driver (see Chapter 4.3.2). The original model was
developed using the method presented in Chapter 4.1 and Chapter 4.2. The training data
for the original model consisted of the data from Participant 1, Participant 3, Participant 5,
Participant 6, and Participant 7. Participant 2 and Participant 4 were excluded because they
were considered to have individual driving styles. The training data set was then updated for
Participant 4 using the reinforcement-learning method introduced in Chapter 4.3. The updated
training data consisted of two parts:

e Half of Participants 4's driving data (the other half was used to test the models).

e Half the data from Participant 1, Participant 3, Participant 5, Participant 6, and Partici-
pant 7 (the other half was excluded to weaken the effect of these data on the prediction).

The personalized predictive model for Participant 4 was obtained by optimizing the model pa-
rameters with the updated training data set.

5.3.2 Evaluation of the Personalized Predictive Model

The personalized predictive model was evaluated with one half of the data set from Participant
4. The given rate and the given accuracy were used to evaluate the original predictive model
and the personalized predictive model. Figure 5-9 depicts the given rate and the given accuracy
of these two models. It can be observed that both the given rate and the given accuracy of
the personalized predictive model are higher than those of the original predictive model. Both
the given rate and the given accuracy reach a peak value at Prediction Site 9. It is because
the driver behaved quite differently (different steering wheel information and different motion
information) at Prediction Site 9 depending on the maneuver he/she was about to execute. At
Prediction Site 10, on the other hand, the behaviors for different maneuvers are quite similar.
Hence, the steering wheel and motion information is more predictive at Prediction Site 9 than
Prediction Site 10.
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Figure 5-9: Given rate and given accuracy for the generalized and the personalized models.
5.3.3 Conclusion and Discussion

Conclusion: Personalized predictive models perform better for an individual driver than
non-personalized predictive models

The evaluation revealed that the personalized prediction model exhibited good performance. A
personalized predictive model that is updated with an individual driver's driving behavior data
can learn that driver's particular driving style. For this reason, personalized predictive models
are recommended for predicting driver maneuvers. However, it should be noted that, in this
case, Participant 4 has a significantly different driving style than the others, so the performance
of the personalized predictive model may be overestimated for an average driver.

5.3.4 Summary

In Chapter 5.3, a personalized prediction model based on a reinforcement-learning method (see
Chapter 4.3) was trained and evaluated with one test driver in the field study. The personal-
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ized model performed better in a direct comparison to the non-personalized model. Thus, a
personalized predictive model is recommended.

5.4 Summary

This chapter evaluated the driver maneuver predictive model that was developed with the method
presented in Chapter 4. A grading system was proposed to evaluate the models, which were
trained with all combinations of twelve algorithms and 15 features. The grading system is
Contribution 4 presented in Chapter 1.4. The model’'s performances were scored with the
grading system and ranked on the basis of these scores. These rankings allow to conclude that
1) the features integrating steering wheel and motion information were better than the other
features, 2) the complex algorithms were better than the simple algorithms, 3) the classifiers
should be activated for maneuver prediction only at the reliable sites. Therefore, the important
driving information and algorithms were identified, achieving Contributions 5 and 6 presented in
Chapter 1.4.

The driver maneuver prediction model was evaluated in the scenarios with traffic. This evalu-
ation covered two issues. First, it sought to identify informative features and high-performing
algorithms. Second, it sought to identify the effects of other traffic participants. The eval-
uation showed that 1) the with-traffic model performed better than the without-traffic model
in the traffic scenarios, and 2) the modeling method with Steering-Motion and logistic-based
quasi-HMM succeeded in predicting driver maneuvers in most with-traffic scenarios. Therefore,
the driver maneuver predictive model succeeds in scenarios with and without surrounding traffic
and Contribution 7 presented in Chapter 1.4 has been achieved.

Finally, a personalized prediction model based on reinforcement learning was evaluated with
a test driver. This personalized predictive model trained with that individual driver's driving
behavior data performed better than a generalized predictive model trained with driving behavior
data from generic drivers. Thus, Contribution 8 presented in Chapter 1.4 has been achieved.
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6 Summary and Outlook

6.1 Summary

In this thesis, a driver maneuver predictive model was developed to predict whether a driver will
exit or stay in a roundabout as she/he approaches an exit. To ensure that the model succeeds in
predicting driver maneuvers at roundabouts with different layout designs and in different traffic
situations, driving behavior data in different scenarios were gathered and investigated. This
chapter summarizes the process and the results of the investigation.

First, a scenario categorization method for roundabouts was proposed, see Chapter 3. This
eliminated the effects of geometric features of roundabouts on driving behavior in each specific
scenario category. Eliminating these confounding variables increases the extent to which driving
behavior predicts the driver maneuvers of exiting/staying in roundabouts. Two studies were
conducted to propose the scenario categorization method: First, a field study was conducted
in a real driving environment. On the basis of this study, a scenario categorization approach
for the three investigated roundabouts was proposed. The limitations of the field study are
that it only considered the investigated roundabouts and that traffic could not be controlled
for. Therefore, a simulator study was designed and conducted in a laboratory under controlled
experimental condition to improve upon the limitations of the field study. Driving behavior and
roundabout geometric features were further analyzed in the simulator study. The local extremum
of the steering angles (6.) and the integrated geometric feature (Geo) were defined to represent
steering wheel information and the geometric features of roundabouts respectively. Then, the
correlations between these two variables was calculated as a basis for categorizing roundabout
scenarios. The categorization was as follows:

e Scenarios with 0 rad® - m < Geo < 40.7 rad® - m were defined as Scenario 1:
e Scenarios with 40.7 rad® - m < Geo < 72.4 rad? - m were defined as Scenario 2;
e Scenarios with 72.4 rad® - m < Geo < 108.7 rad® - m were defined as Scenario 3:

e Scenarios with Geo > 108.7 rad® - m were defined as Scenario 4.

This serves as the basis for developing a driver maneuver predictive model for the four scenarios,
see Chapter 4. The driver maneuver predictive model consisted of four sub-models for each of
the four scenarios. Each sub-model consisted of a series of classifiers corresponding to a series
of prediction sites. When a driver approached a roundabout exit, the scenario for that exit
Is determined using the scenario categorization method. The corresponding sub-model is then
activated. The classifiers included in the sub-model calculate predicted probabilities of "Exiting"
or "Staying" from the first prediction site on until a final result of "Exiting" or "Staying" is
obtained. This is the process through which the model predicts the driver maneuver. Driving
behavior data and machine-learning algorithms were used to train the classifiers. In addition, a
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method to update the model into a personalized predictive model was proposed. This method
makes it possible for a model to learn an individual driver's driving style on-line. This allows the
model to predict the maneuvers of a driver with any type of driving style at a roundabout with
any type of layout.

The driver maneuver predictive model was then evaluated to ensure that the model can success-
fully predict driver maneuvers at roundabouts, see Chapter 5. Models trained with all possible
combinations of different algorithms and different features were evaluated [TIST07, NMI*08,
SH14, GJW'16, TMF16]. The models’ performances were scored using a proposed grading
system: The models receive one positive point when they made a correct prediction for a given
test drive, zero points when they provided no result for a given test drive, and one negative point
when they made an incorrect prediction result for a given test drive. An effect size analysis of
the models’ performance allowed the best features Steering and Motion and the best algorithm
logistic-based quasi-HMM to be selected. The model’s performance was as follows:

e In Scenario 1, the first reliable prediction occurred at the prediction site at a distance
of about 10 m from the oncoming exit. At this prediction site, the model’'s average
performance score was 92.0, the average given rate was 97.67%, and the given accuracy
was 97.15%.

e In Scenario 2, the first reliable prediction occurred at the prediction site at a distance of 10
- 14 m from the oncoming exit. At this prediction site, the model’s average performance
score was 94.0, the average given rate was 99.76%, and the given accuracy was 97.14%.

e In Scenario 3, the first reliable prediction occurred at the prediction site at a distance of
12 m from the oncoming exit. At this prediction site, the model’'s average performance
score was 93.4, the average given rate was 99.06%, and the given accuracy was 97.13%.

e |n Scenario 4, the first reliable prediction occurred at the prediction site at a distance of 7.5
- 10.5 m from the oncoming exit. At this prediction site, the model’s average performance
score was 96.4, the given rate was 97.99%, and the given accuracy was 99.18%.

Then, the driver maneuver predictive model was evaluated in the scenarios with traffic to ensure
that the model can also predict driver maneuvers at roundabouts with traffic. The four types
of traffic scenarios discussed in Chapter 3.3.1 were investigated. In the traffic scenarios, the
model’s performance was as follows:

e In the scenario of Traffic 1, the first reliable prediction occurred at the prediction site at
a distance of about 9.5 m from the oncoming exit. At this prediction site, the average
performance score was 91.2, the average given rate was 100.00%, and the given accuracy
was 93.91%.

e |n the scenario of Traffic 2, the first reliable prediction occurred at the prediction site at
a distance of about 10 m from the oncoming exit. At this prediction site, the average
performance score was 85.3, the average given rate was 98.08%, and the given accuracy
was 95.83%.

92



6.2 Conclusions and Contributions

e In the scenario of Traffic 3, the first reliable prediction occurred at the prediction site at
a distance of about 4.5 m from the oncoming exit. At this prediction site, the average
performance score was 92.0, the average given rate was 97.92%, and the given accuracy
was 100.00%.

e In the scenario of Traffic 4, the first reliable prediction occurred at the prediction site at
a distance of about 9.0 m from the oncoming exit. At this prediction site, the average
performance score was 89.8, the average given rate was 100.00%, and the given accuracy
was 97.92%.

Drivers may behave differently even in the same roundabout scenario due to their different driving
styles. Therefore, a method for developing a personalized predictive model was proposed. The
model was evaluated with a test driver. The given rate and the given accuracy of the personalized
predictive model were higher than in the original predictive model.

6.2 Conclusions and Contributions

The work related to this thesis can be summarized as follows:

e Human driving behavior in roundabouts is affected by the geometric features of round-
abouts, and this impact can be expressed quantitatively (The details are presented in
Chapter 3). This finding is Contribution 1 presented in Chapter 1.4.

e Roundabout scenarios can be categorized according to relevant geometric features and
the human driving behavior associated with them (The details of this are also presented
in Chapter 3). The categorization method is Contribution 2 presented in Chapter 1.4.

e The scenario categorization method can be used to structure the driver maneuver predic-
tive model. The model includes four sub-models corresponding to four scenario categories
(The details are presented in Chapter 4). The structure is Contribution 3 presented in
Chapter 1.4. This is why information about roundabout layouts is needed for the driver
maneuver predictive model.

e Steering-Motion is the most informative feature. Steering (steering angle and steering
angle velocity) and Motion (velocity and acceleration) are most important for predict-
ing driver maneuvers. The reason why Steering information is significantly better than
other information is that roundabout layouts determine steering behavior (The details
are discussed in Chapter 5). Therefore, the information that is needed to predict driver
maneuvers at roundabouts can be identified, which is Contribution 5 in Chapter 1.4.

e The complex algorithms perform better than the simple algorithms. The complex algo-
rithms treat the classifiers included in a given sub-model as a Markov chain, i.e., when
the present classifier makes a decision at the present prediction site, it considers both the
current driving behavior information and the previous classifier's suggestion (The details
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of this are also discussed in Chapter 5). Thus, complex algorithms are recommended for
predicting driver maneuvers at roundabouts. This finding is Contribution 6 in Chapter 1.4.

The model’s prediction results before the reliable prediction sites have a quite low given
accuracy (even lower than 90%). These results could weaken user’s trust in the model.
Therefore, it is recommended that the classifiers only at the reliable prediction sites are
activated. That is to say, the model should start offering prediction results of "Staying",
"Leaving", or "NA (No result available)" at the first reliable prediction site and continue
until the first full-score prediction site (The details of this are also presented in Chapter 5).
This finding makes the driver maneuver predictive model reliable in real driving situations,
thus contributing to model development. An accurate positioning system is needed for the
maneuver predictive model in order to obtain precise position information about prediction
sites.

The model used in scenarios with traffic needs to be trained with data acquired from sce-
narios with the same type of traffic. Drivers behave differently in with-traffic scenarios and
without-traffic scenarios. As a result, the model trained with driving data from without-
traffic scenarios does not make successful predictions in with-traffic scenarios (The details
of this are also discussed in Chapter 5). Nevertheless, the driver maneuver predictive
model succeeds in most traffic scenarios. This finding is Contribution 7 in Chapter 1.4.

Personalized predictive models perform better for individual drivers because they can adapt
to drivers with different driving styles caused by different driving experience or personalities.
A personalized predictive model trained with an individual driver's driving behavior data
can learn that particular driver's driving style (The details of this are also presented in
Chapter 5). Thus, personalized predictive models are recommended. These findings form
Contribution 8 in Chapter 1.4.

The main achievement of this work is that a driver maneuver predictive model was developed
for compact roundabouts with all types of layouts and drivers with any driving styles. Therefore,

this achievement fills a research gap, namely predicting driver maneuvers in roundabouts on a
tactical timescale, see Table 6-1. The given rate and given accuracy of the model are above
97% in the scenarios without traffic and above 93% in the scenario with surrounding cyclists
about 10 m before the relevant roundabout exits.
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Table 6-1: State of the art and the results of this thesis.

Study Measure Algorithm Evaluation Result
This work Steering wheel angle, steering angle Logistic-based Given rate and Above 97% of given rate and given
velocity, velocity, and acceleration of quasi-HMM given accuracy accuracy in the scenario without
the ego car traffic and above 93% of given rate
and given accuracy in the scenario
with surrounding cyclists at about
10 m before the relevant exits of
roundabouts
Taguchi et al. Ego car velocity, leading-car velocity, Logistic regression Detection rate Detection rate of 80.0%

(2007) [TIS*07]

and the distance between the ego car
and leading cars

Naito et al. (2008) Accelerator throttle, brake, and veloc- K-means Accuracy 95.6% as early as 5 seconds before
[NMI*08] ity of the ego car the intersections

Lefevre et al. Turn signal of the ego car and the in- Bayesian network Accuracy 100% approximately 10 m away
(2011) [LIGL11, formation about the entry lanes from the exit of the intersection.
LLIG11]

Sathyanaray-ana Velocity, steering wheel angle, engine SVM Accuracy Accuracy of 89%

et al. (2012) RPM, and gas/brake pedal pressure in-

[SSH12] formation

Liebner et al. Ego car velocity Intelligent  driver Detection rate Detection rate of 95% Without
(2013) [LRKS13, model (IDM) traffic whereas 55% in the presence
LKB*13] of preceding vehicles

Continued on next page
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Table 6-1 — continued from previous page

Study Measure Algorithm Evaluation Result
Gadepally et al. Velocity, position, and orientation of HMM Number of correct Correct recognition for 38 of the 40
(2014) [GKO14] the ego car predictions observation sequences.
Streubel et al. Velocity, acceleration, and yaw value HMM Accuracy Above 90% as early as 7 seconds
(2014) [SH14] of ego car before entering the intersections
Tang et al. (2015) Position, velocity, acceleration, yaw SVM accuracy 90% as early as 1.6 seconds before
[TKG15] value of the ego car and lane-level the intersection

maps
Gross et al. (2016) Position, heading, acceleration, and RF Recall 76% at 30 m before the relevant
[GJWT16] velocity of the ego car intersection center
Tawari et al.  The information extracted from driver RF Accuracy Over 80% 2 seconds before the ma-
(2016) [TMF16] camera, scene camera, and navigation neuver event

camera
Barbier et al. Velocity, position, and heading of the RF Accuracy Accuracy of 80.3%
(2017) [BLSIG17]  ego car (20% of real driving data and

80% of data from simulated environ-

ment)
Phillips et  al. Ego car velocity and acceleration, the Recurrent Neural Accuracy 85% as early as 150 m before the

(2017) [PWK17]

lane-relative heading, the number of
lanes, and the headway distance to the
preceding vehicle

Networks (RNNs)

intersection
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6.3 Limitations and Outlook

This work has achieved its goal of predicting driver maneuvers at compact roundabouts. How-
ever, there are still some limitations. The limitations and possible corresponding solutions are
as follows:

e The scenarios with different types of surrounding traffic combined with different round-
about layouts are not investigated. The two simulator study sessions in this research
focused on separately different roundabout layouts and surrounding traffic. However, in
real driving situations, there can be different types of traffic at roundabouts with dif-
ferent layouts. Thus, future work will need to investigate scenarios with different types
of surrounding traffic combined with different roundabout layouts. A simulator study is
recommended to design such scenarios because different types of traffic and roundabout
layouts can be manipulated in a simulation environment. The roundabouts with different
layouts designed for Session 1 of the simulator study can be used to test different types
of surrounding traffic in future research.

e Too little personalized data were used to train the predictive model in this work. It is
expected that the personalized predictive models can be improved with more training
data. Therefore, future work should attempt to demonstrate whether the more data from
a given driver are integrated into the training database, the more the model learns about
this driver and the better the personalized model will perform.

e A driver with a significantly different driving style was chosen as the test person for per-
sonalized predictive model in this work. This significant difference might have caused
the performance of the personalized predictive model to be overestimated for an average
driver. Therefore, it will be necessary to evaluate the personalized predictive model with
more test drivers in future work. These evaluations will reveal for which driving styles, the
personalized model can succeed in maneuver prediction.

e Only compact roundabouts were investigated in this thesis. Other types of roundabouts
aside from compact roundabouts can become the object of future investigations, such as
mini-roundabouts (diameter of 13 and 25 m) with a traversable island, larger roundabouts
(40 - 60 m) with two circulating lanes, and turbo-roundabouts [Brill]. In performing such
analyses, it is suggested that investigating driver behavior in the relevant scenarios first
and before, exploring the informative features, such as car or driver information, traffic
information, or roundabout layout information, that can predict driver maneuvers.

The driver maneuver predictive model can still be improved even though it is already able to
successfully predict driver maneuvers at single-lane roundabouts. Further investigations can
certainly improve the robustness of the model in different scenarios.
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Figure A-1: Performance scores of linear SVM-based quasi-HMM with all features.
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Figure A-2: Performance scores of Gaussian SVM-based quasi-HMM with all features.
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Figure A-3: Performance scores of polynomial SVM-based quasi-HMM with all features.
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Figure A-4: Performance scores of logistic-based quasi-HMM with all features.
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Figure A-5: Performance scores of Ada-based quasi-HMM with all features.
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Figure A-6: Performance scores of RF-based quasi-HMM with all features.
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Figure A-7: Performance scores of linear SVM with all features.
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Figure A-8: Performance scores of Gaussian SVM with all features.
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Figure A-9: Performance scores of polynomial SVM with all features.
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Figure A-10: Performance scores of logistic regression with all features.
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Figure A-11: Performance scores of AdaBoost with all features.

110



Performance score
for Scenario 1

Performance score
for Scenario 3 for Scenario 2

Performance score

Performance score
for Scenario 4

1004

60

204

-204

-60 4

—-1004

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1004

60 -

204

-204

-60 4

-1004

1004

60 -

204

-204

-60 4

-1004

— T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1004

60

204

-204

-60 4

-1004

T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Prediction sites

|E| Gaze |E| Motion—Head—GazE| Steering—-Head-Gaze |E| Steering—Motion—Head
|E| Head-Gaze |E| Motion-Head |E| Steering—Head |E| Steering—Motion
|E| Head |E| Motion |E| Steering—Motion—-Gaze |E| Steering

|E| Motion—GazE| Steering—-Gaze |E| Steering—Motion-Head-Gaze

Figure A-12: Performance scores of random forest with all features.
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B Effect Size Results in the Four Scenarios

Table B-1: Effect size results at Prediction Site 9 in Scenario 1.

Feature Cohen’s d Rank
Steering-Motion-Head with logistic 9.633974 1
Steering-Motion-Head-Gaze _with _ HMMLogistic 9.25089 2
Steering-Motion-Head-Gaze with _logistic 9.25089 2
Steering-Motion-Head _with  HMMLogistic 9.031955 4
Steering-Motion-Gaze with  HMMSVMlinear 8.635495 5
Steering-Motion-Gaze _with SVMlinear 8.635495 5
Steering-Motion _with SVMpoly 8.529764 7
Steering-Motion _with _logistic 8.39962 8
Steering-Motion-Gaze with  HMMLogistic 8.282874 9
Steering-Motion-Gaze _with _logistic 8.282874 9
Steering-Motion _with  HMMLogistic 8.271929 11
Steering-Motion _with  HMMSVMpoly 8.239428 12
Steering-Motion with  SVMrbf 8.238887 13
Steering-Motion-Gaze _with  HMMSVMpoly 8.090066 14
Steering-Gaze with Ada 8.068367 15
Steering-Gaze _with  HMMAda 8.068367 15
Steering-Motion-Gaze with  SVMpoly 8.03073 17
Steering-Motion _with  HMMSVMrbf 8.005058 18
Steering-Motion with  HMMSVMlinear 7.958817 19
Steering-Motion _with SVMlinear 7.958817 19
Steering-Motion-Gaze with Ada 7.76075 21
Steering-Motion-Gaze _with  HMMAda 7.76075 21
Steering-Motion-Head with  SVMrbf 7.569072 23
Steering-Motion-Head _with Ada 7.426857 24
Steering-Motion-Head with  HMMAda 7.426857 24
Steering-Motion-Head-Gaze _with  HMMSVMpoly ~ 7.35205 26
Steering-Motion-Head-Gaze with  SVMpoly 7.35205 26
Steering-Motion-Head-Gaze _with _SVMlinear 7.229652 28
Steering-Motion-Head with  HMMSVMrbf 7.082734 29
Steering-Motion-Head-Gaze with Ada 7.003279 30
Steering-Motion-Head-Gaze with  HMMAda 7.003279 30
Steering-Motion-Head with  HMMSVMlinear 6.99497 32
Steering-Motion-Head with  SVMlinear 6.924799 33
Steering _with  HMMRF 6.759392 34
Steering _with RF 6.759392 34

Steering-Motion-Head-Gaze _with  HMMSVMlinear 6.666996 36

Continued on next page
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B Effect Size Results in the Four Scenarios
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Table B-1 — continued from previous page

Feature Cohen’s d Rank
Steering-Gaze_with  HMMRF 6.493755 37
Steering-Gaze with RF 6.493755 37
Steering-Motion-Head _with  HMMSVMpoly 6.474157 39
Steering-Motion-Head _with  SVMpoly 6.474157 39
Steering-Motion-Gaze _with  HMMSVMrbf 6.344669 41
Steering-Motion-Gaze with  SVMrbf 6.344669 41
Steering-Motion _with Ada 6.30509 43
Steering-Motion _with  HMMAda 6.30509 43
Steering-Motion _with RF 6.129666 45
Steering-Motion-Gaze with  HMMRF 6.099755 46
Steering-Motion-Head _with RF 6.038518 47
Steering-Motion _with  HMMRF 6.035772 48
Steering-Head _with  HMMRF 5.948457 49
Steering-Head with RF 5.948457 49
Steering-Motion-Head _with  HMMRF 5851821 b1
Steering-Head-Gaze with Ada 5.738356 52
Steering-Head-Gaze _with  HMMAda 5.738356 52
Steering-Motion-Gaze with RF 5.640505 54
Steering _with Ada 5438933 55
Steering  with  HMMAda 5.438933 55
Steering-Motion-Head-Gaze _with  HMMSVMrbf 5406714 57
Steering-Motion-Head-Gaze _with  SVMrbf 5406714 57
Steering-Head _with_ HMMLogistic 5.291763 59
Steering-Head-Gaze with  HMMRF 5.052442 60
Steering-Head-Gaze _with  HMMSVMrbf 5.035826 61
Steering-Gaze with  HMMSVMlinear 4.95578 62
Steering-Head-Gaze _with  HMMLogistic 4948414 63
Steering-Head-Gaze with logistic 4.948414 63
Steering-Head-Gaze _with RF 4947423 65
Steering-Head with Ada 4912313 66
Steering-Head _with  HMMAda 4912313 66
Steering-Gaze with  HMMLogistic 4833477 68
Steering-Gaze with _logistic 4.833477 68
Steering-Head-Gaze with  HMMSVMpoly 4.81795 70
Steering-Head-Gaze _with  HMMSVMlinear 477612 71
Steering-Gaze with  HMMSVMpoly 4752769 72
Steering-Head-Gaze with  SVMrbf 4.7385 73
Steering-Gaze _with  HMMSVMrbf 4731572 74
Steering-Head _with _logistic 4.7047 75
Steering-Gaze with  SVMlinear 4.637754 76

Continued on next page



Table B-1 — continued from previous page

Feature Cohen’s d Rank
Steering-Head-Gaze _with SVMpoly 4.625471 77
Steering-Gaze with SVMpoly 4.61876 78
Steering-Head-Gaze with SVMlinear 4536658 79
Steering_with  HMMLogistic 4.525856 80
Steering _with _logistic 4.525856 80
Steering-Gaze with  SVMrbf 4.432906 82
Steering _with  HMMSVMlinear 4276327 83
Steering _with SVMlinear 4276327 83
Steering-Head _with  HMMSVMrbf 4.149998 85
Steering-Motion-Head-Gaze with RF 4.037306 86
Steering-Motion-Head-Gaze _with  HMMRF 3.958967 87
Steering-Head with  HMMSVMpoly 3.933453 88
Steering-Head _with SVMpoly 3.790475 89
Steering_with  SVMpoly 3.770218 90
Steering _with_ HMMSVMpoly 3.731531 91
Steering-Head with  HMMSVMlinear 3.663084 92
Steering-Head _with SVMrbf 3.56341 93
Steering-Head with  SVMlinear 3.075411 94
Steering _with  HMMSVMrbf 1.001903 95
Steering  with  SVMrbf 0.819817 96
Motion with RF 0.65593 97
Motion with  HMMRF 0.625587 98
Gaze with RF 0.518556 99
Gaze with  HMMRF 0.490973 100
Gaze with Ada 0 101
Gaze with  HMMAda 0 101
Motion-Gaze with Ada -0.15069 103
Motion-Gaze with HMMAda -0.15069 103
Motion with Ada -0.18483 105
Motion with HMMAda -0.18483 105
Motion-Head with Ada -0.31327 107
Motion-Head with HMMAda -0.31327 107
Motion-Head-Gaze with Ada -0.60908 109
Motion-Head-Gaze with  HMMAda -0.60908 109
Motion-Gaze with  HMMRF -0.77935 111
Motion-Gaze with RF -0.78732 112
Motion-Head with  HMMRF -1.27064 113
Head with Ada -1.33864 114
Head with HMMAda -1.33864 114
Head-Gaze with Ada -1.38109 116

Continued on next page
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B Effect Size Results in the Four Scenarios

Table B-1 — continued from previous page

Feature

Cohen’s d Rank

Head-Gaze with HMMAda
Motion-Head with RF

Head with HMMRF

Head with RF
Head-Gaze with SVMrbf
Head-Gaze with  HMMSVMrbf

Motion-Head-Gaze with  HMMSVMrbf

Head-Gaze with HMMRF
Head-Gaze with RF

Motion-Head-Gaze with  SVMrbf
Motion-Head-Gaze with  HMMRF

Motion-Head-Gaze with RF

Motion-Head-Gaze with  HMMLogistic

Motion with  HMMSVMlinear
Motion _with  HMMSVMpoly
Motion with SVMlinear
Motion _with SVMpoly

Motion-Gaze with  HMMLogistic

Motion-Gaze with _logistic

Motion-Head-Gaze with logistic
Motion-Head with  HMMLogistic

Motion-Head with logistic
Motion with  HMMLogistic
Motion with logistic

Motion-Head-Gaze with  HMMSVMlinear
Motion-Head-Gaze with SVMlinear
Motion-Head _with  HMMSVMlinear
Motion-Head with  HMMSVMpoly

Motion-Head _with SVMlinear

Motion-Gaze with  HMMSVMlinear
Motion-Gaze with  HMMSVMpoly

Motion-Gaze with SVMlinear
Motion-Gaze with SVMpoly

Motion-Head-Gaze with HMMSVMpoly
Motion-Head-Gaze with SVMpoly

Motion-Head with  SVMpoly
Gaze _with  HMMLogistic
Gaze _with  HMMSVMlinear
Gaze _with  HMMSVMpoly
Gaze _with  HMMSVMrbf

-1.38109 116
-1.4211 118
-1.59595 119
-1.59595 119
-1.68551 121
-1.85497 122
-1.93756 123
-1.96048 124
-1.9649 125
-1.96621 126
-2.16845 127
-2.28634 128
-2.50573 129
-2.64859 130
-2.64859 130
-2.64859 130
-2.64859 130
-2.67602 134
-2.67602 134
-2.67602 134
-2.67602 134
-2.67602 134
-2.67602 134
-2.67602 134
-2.78269 141
-2.78269 141
-2.78269 141
-2.78269 141
-2.78269 141
-2.87513 146
-2.87513 146
-2.87513 146
-2.87513 146
-2.87513 146
-2.87513 146
-2.87513 146
-2.98075 153
-2.98075 153
-2.98075 153
-2.98075 153
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Table B-1 — continued from previous page

Feature Cohen’s d Rank
Gaze_with_logistic -2.98075 153
Gaze with SVMlinear -2.98075 153
Gaze _with_SVMpoly -2.98075 153
Gaze with  SVMrbf -2.98075 153
Head-Gaze with  HMMLogistic -2.98075 153
Head-Gaze with HMMSVMlinear -2.98075 153
Head-Gaze with  HMMSVMpoly -2.98075 153
Head-Gaze with logistic -2.98075 153
Head-Gaze with SVMlinear -2.98075 153
Head-Gaze with  SVMpoly -2.98075 153
Head with HMMLogistic -2.98075 153
Head with HMMSVMlinear -2.98075 153
Head with HMMSVMpoly -2.98075 153
Head with HMMSVMrbf -2.98075 153
Head with logistic -2.98075 153
Head with SVMlinear -2.98075 153
Head with SVMpoly -2.98075 153
Head with SVMrbf -2.98075 153
Motion-Head with  HMMSVMrbf -2.98075 153
Motion-Head with  SVMrbf -2.98075 153
Motion _with SVMrbf -2.98075 153
Motion-Gaze with  HMMSVMrbf -3.03722 178
Motion-Gaze with SVMrbf -3.03722 178
Motion with  HMMSVMrbf -3.03722 178

Table B-2: Top algorithm-feature combinations at Prediction Site 10 in Scenario 1.

Feature Cohen’s d Rank
Steering-Motion-Head _with  HMMLogistic ~ 10.02995 1
Steering-Motion-Head with logistic 10.02995 1
Steering-Motion _with  HMMLogistic 9.9554381 3
Steering-Motion with  SVMpoly 9.93187 4
Steering-Motion _with  HMMSVMlinear 9.913956 5
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B Effect Size Results in the Four Scenarios

Table B-3: Top algorithm-feature combinations at Prediction Site 11 in Scenario 1.

Feature Cohen’s d Rank
Steering-Motion with  HMMLogistic 10.25055 1
Steering-Motion _with _logistic 10.25055 1
Steering-Gaze with logistic 9.973498 3
Steering-Motion-Gaze _with  HMMLogistic ~ 9.896043 4
Steering-Motion with  HMMAda 9.887678 5

Table B-4: Top algorithm-feature combinations at Prediction Site 12 in Scenario 1.

Feature Cohen’s d Rank
Steering-Gaze _with  HMMLogistic 17.90049 1
Steering-Gaze with logistic 17.90049 1
Steering-Head-Gaze with  HMMLogistic 17.90049 1
Steering-Head-Gaze with logistic 17.90049 1
Steering-Head _with  HMMLogistic 17.90049 1
Steering-Head with logistic 17.90049 1
Steering-Motion-Gaze _with  HMMLogistic ~ 17.90049 1
Steering-Motion-Gaze with _logistic 17.90049 1
Steering-Motion-Head-Gaze with logistic 17.90049 1
Steering-Motion-Head _with  HMMLogistic ~ 17.90049 1
Steering-Motion-Head with logistic 17.90049 1
Steering-Motion _with  HMMLogistic 17.90049 1
Steering-Motion _with _logistic 17.90049 1
Steering_with_ HMMLogistic 17.90049 1
Steering_with _logistic 17.90049 1

Table B-5: Top algorithm-feature combinations at Prediction Site 12 in Scenario 2.

Feature Cohen’s d Rank
Steering-Gaze_with  HMMRF 27.52974 1
Steering-Gaze with RF 27.52974 1
Steering-Motion-Head-Gaze _with Ada 24.97318 3
Steering-Motion-Head-Gaze with  HMMAda  24.97318 3
Steering _with RF 22.33317 5
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Table B-6: Top algorithm-feature combinations at Prediction Site 13 in Scenario 2.

Feature

Cohen’s d Rank

Steering-Motion-Head-Gaze _with_ HMMLogistic
Steering-Motion-Head-Gaze with _logistic
Steering-Motion-Head _with  HMMLogistic
Steering-Motion-Head _with _logistic
Steering-Motion-Head _with  HMMAda

19.97185
19.97185
19.09531
19.09531
18.89744

o W W = =

Table

B-7: Top algorithm-feature combinations at Prediction Site 14 in Scenario 2.
Feature Cohen’s d Rank
Steering-Gaze _with  HMMLogistic 17.71208 1
Steering-Gaze with logistic 17.71208 1
Steering-Head-Gaze _with  HMMLogistic 17.71208 1
Steering-Head-Gaze with logistic 17.71208 1
Steering-Head _with_ HMMLogistic 17.71208 1
Steering-Head with logistic 17.71208 1
Steering-Motion-Gaze _with HMMLogistic 17.71208 1
Steering-Motion-Gaze with logistic 17.71208 1
Steering-Motion-Head-Gaze _with  HMMLogistic ~ 17.71208 1
Steering-Motion-Head-Gaze with logistic 17.71208 1
Steering-Motion _with  HMMLogistic 17.71208 1
Steering-Motion _with _logistic 17.71208 1
Steering _with  HMMLogistic 17.71208 1
Steering_with _logistic 17.71208 1

119



B Effect Size Results in the Four Scenarios

Table B-8: Top algorithm-feature combinations at Prediction Site 15 in Scenario 2.

Feature Cohen’s d Rank
Steering-Gaze _with  HMMSVMrbf 17.43946 1
Steering-Head-Gaze with  HMMLogistic 17.43946 1
Steering-Head-Gaze _with _logistic 17.43946 1
Steering-Head with  HMMLogistic 17.43946 1
Steering-Head _with _logistic 17.43946 1
Steering-Motion-Gaze with  HMMLogistic 17.43946 1
Steering-Motion-Head-Gaze with  HMMLogistic ~ 17.43946 1
Steering-Motion-Head-Gaze _with _logistic 17.43946 1
Steering-Motion-Head _with  HMMLogistic 17.43946 1
Steering-Motion-Head with logistic 17.43946 1
Steering-Motion _with  HMMLogistic 17.43946 1
Steering-Motion with logistic 17.43946 1
Steering _with  HMMLogistic 17.43946 1
Steering with logistic 17.43946 1

Table B-9: Top algorithm-feature combinations at Prediction Site 17 in Scenario 3.

Feature Cohen’s d Rank
Steering-Motion _with  HMMLogistic 18.18166 1
Steering-Motion _with _logistic 18.11886 2
Steering-Motion-Gaze with logistic 17.31795 3
Steering-Motion-Head _with  HMMSVMrbf 17.3067 4
Steering-Motion-Head-Gaze with logistic 17.17958 5

Table B-10: Top algorithm-feature combinations at Prediction Site 18 in Scenario 3.

Feature Cohen’s d Rank
Steering-Motion-Head with logistic 15.32932 1
Steering-Head _with _logistic 15.15852 2
Steering-Motion-Head with  HMMLogistic =~ 14.97366 3
Steering-Motion-Head-Gaze with _logistic 14.9204 4
Steering-Motion _with  HMMLogistic 14.9204 4
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Table B-11: Top algorithm-feature combinations at Prediction Site 19 in Scenario 3.

Feature Cohen’s d Rank

Steering-Motion-Head with logistic
Steering-Motion-Gaze with _logistic
Steering-Motion-Head-Gaze with logistic
Steering-Motion _with _logistic
Steering-Motion-Head _with  HMMLogistic

17.5753
17.43653
17.43653
17.43653
17.14777

a NN NN =

Table B-12: Top algorithm-feature combinations at Prediction Site 20 in Scenario 3.

Feature

Cohen’s d Rank

Steering-Motion-Gaze with  HMMLogistic
Steering-Motion-Gaze _with  HMMSVMlinear
Steering-Motion-Gaze _with  HMMSVMpoly
Steering-Motion-Head-Gaze with  HMMLogistic
Steering-Motion-Head _with  HMMLogistic
Steering-Motion-Head  with  HMMSVMlinear
Steering-Motion _with  HMMLogistic

16.06123
16.06123
16.06123
16.06123
16.06123
16.06123
16.06123

[N G N W VN G SN W

Table B-13: Top algorithm-feature combinations at Prediction Site 25 in Scenario 4.

Feature Cohen’s d Rank

Steering-Motion _with  HMMLogistic ~ 22.32261
Steering-Head with  HMMLogistic 21.99521
Steering-Motion _with logistic 21.78051
Steering-Head with  HMMRF 21.21625
Steering-Gaze _with  HMMAda 21.15539

Gl N

Table B-14: Top algorithm-feature combinations at Prediction Site 26 in Scenario 4.

Feature Cohen’s d Rank

Steering_with  HMMAda
Steering-Motion _with  HMMLogistic
Steering-Head-Gaze _with  HMMSVMlinear
Steering-Head-Gaze with  HMMSVMpoly
Steering-Head _with  HMMSVMlinear

25.67759
25.66025
24.4891
24.4891
24.4891

w w w N =
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B Effect Size Results in the Four Scenarios

Table B-15: Top algorithm-feature combinations at Prediction Site 27 in Scenario 4.

Feature Cohen’s d Rank
Steering-Motion _with  HMMRF 17.92307 1
Steering-Motion-Gaze with  HMMSVMlinear ~ 17.91624 2
Steering-Motion-Gaze _with  HMMSVMpoly 17.91624 2
Steering-Motion _with HMMSVMlinear 17.91624 2
Steering-Motion _with  HMMSVMpoly 17.91624 2

Table B-16: Top algorithm-feature combinations at Prediction Site 28 in Scenario 4.

Feature Cohen’s d Rank
Steering-Head _with logistic 19.72534 1
Steering-Motion-Head-Gaze _with  HMMAda  19.72534 1
Steering-Motion _with  HMMRF 19.72534 1
Steering-Motion _with _logistic 19.72534 1
Steering-Gaze with  HMMRF 19.49685 5
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C Box Plots for the Evaluation of the Fea-
tures and the Algorithms
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C Box Plots for the Evaluation of the Features and the Algorithms
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Figure C-1: Box plots of the features over different algorithms in Scenario 1.
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Figure C-2: Box plots of the features over different algorithms in Scenario 2.
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Figure C-3: Box plots of the features over different algorithms in Scenario 3.
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Figure C-4: Box plots of the features over different algorithms in Scenario 4.



C Box Plots for the Evaluation of the Features and the Algorithms
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Figure C-5: Box plots of the complex algorithms and the simple algorithms in Scenario 1.
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Figure C-7: Box plots of the complex algorithms and the simple algorithms in Scenario 3.
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D Outputs of the Soft-Classification Algo-
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Figure D-1: Soft-decision outputs of linear SVM.
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Figure D-2: Soft-decision outputs of linear SVM-based quasi-HMM.
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Figure D-3: Soft-decision outputs of Gaussian SVM.
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Figure D-4: Soft-decision outputs of Gaussian SVM-based quasi-HMM.
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Figure D-5: Soft-decision outputs of polynomial SVM.
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Figure D-6: Soft-decision outputs of polynomial SVM-based quasi-HMM.
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Figure D-7: Soft-decision outputs of random forest (RF).
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Figure D-8: Soft-decision outputs of RF-based quasi-HMM.
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Figure D-9: Soft-decision outputs of AdaBoost.
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Figure D-10: Soft-decision outputs of AdaBoost-based quasi-HMM.
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Figure D-11: Soft-decision outputs of logistic regression.
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Figure D-12: Soft-decision outputs of logistic-based quasi-HMM.
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E Symbols and Acronyms

EM
SVM
ML
RF
HMM
VC
ROC

expectation maximization

support vector machines

maximum likelihood

random forest

hidden Markov models

Vapnik and Chervonenkis

receiver operating characteristic curve
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