B A C H E L O R A R B E I T

Analyse und Optimierung der
bildgebenden Signalerfassung von
gefilterter Rayleighstreuung

vorgelegt an der
Hochschule Bonn-Rhein-Sieg
Campus Sankt Augustin
Fachbereich Elektrotechnik, Maschinenbau
und Technikjournalismus (EMT)
im Studiengang Elektrotechnik
Fachrichtung Automatisierungstechnik
Erstprüfer: Prof. Dr. Alejandro Valenzuela
Zweitprüfer: Prof. Dr. Daniel Pittich
Betreuer: Dr. Guido Stockhausen und Dipl.-Ing Eike Burow

ausgearbeitet von:
Joshua Jungmann
Dörneweg 3
57614 Mudenbach
E-Mail: Joshua.Jungmann@gmx.de
Matr.Nr.: 9021566

Mudenbach, den 07.09.2017
Erklärung

„Ich versichere hiermit, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen Prüfungsbehörde vorgelegen.

Mir ist bewusst, dass sich die Hochschule vorbehält, meine Arbeit auf plagiierte Inhalte hin zu überprüfen und dass das Auffinden von plagiierten Inhalten zur Nichtigkeit der Arbeit, zur Aberkennung des Abschlusses und zur Exmatrikulation führen kann."

__________________________  ______________
Ort, Datum                  Unterschrift
Danksagung

Zuerst möchte ich an dieser Stelle allen danken, die diese Arbeit durch ihre fachliche und persönliche Unterstützung begleitet und zu ihrer Fertigstellung beigetragen haben.

Des Weiteren bedanke ich mich besonders bei meinen geschätzten Kollegen Dr. Guido Stockhausen und Dipl.-Ing. Eike Burow, welche immer ein offenes Ohr für mich hatten und stets mit konstruktiven Anmerkungen zum Fortschritt dieser Arbeit beigetragen haben. Außerdem möchte ich mich ganz herzlich bei Herrn Prof. Dr. Alejandro Valenzuela für die Erstbetreuung sowie bei Herrn Prof. Dr. Daniel Pittich für die Zweitbetreuung bedanken, die mir unterstützend zur Seite gestanden haben.

Abstract

The aim of this thesis is to investigate and optimize the camera system which is used for Filtered Rayleigh Scattering (FRS) measurement systems. Theoretical considerations about the integration of interference filters explain state-of-the-art accuracy limitations. Based on that promising modifications of the established FRS system are presented: test results indicate that frequency fringes - artifacts distorting FRS scans - are minimized by positioning the spectral bandpass filter between camera and first lens. As a trade-off, the signal level decreases by 70% to 75% depending on the beam path through the molecular filter. Furthermore, reference measurements without a bandpass filter account for a non-negligible iodine fluorescence background of about 1% of typical signal levels. All things considered following these results FRS systems can now be systematically optimized towards specific measurement tasks.
Inhaltsverzeichnis

Erklärung .................................................................................................................... I
Danksagung ................................................................................................................... II
Abstract ....................................................................................................................... III
Abkürzungsverzeichnis ............................................................................................... V
Symbolverzeichnis ...................................................................................................... VI
Abbildungsverzeichnis ............................................................................................... VII
Tabellenverzeichnis ..................................................................................................... IX
1 Einleitung ............................................................................................................... 1
2 Theorie der gefilterten Rayleighstreunung ............................................................. 3
  2.1 Allgemeines / Stand der Technik .................................................................. 3
  2.2 Auswertemethoden zur FRS-Messung ......................................................... 7
  2.3 Komponenten .............................................................................................. 10
    2.3.1 Kohärente Lichtquelle ........................................................................ 10
    2.3.2 Frequenzstabilisierung .................................................................... 12
    2.3.3 Leistungsnormierung ....................................................................... 13
    2.3.4 Reflektion ......................................................................................... 16
    2.3.5 Brechung ............................................................................................ 17
    2.3.6 Mehrlinsensysteme .......................................................................... 18
    2.3.7 Dielektrische Filter ........................................................................... 22
    2.3.8 Absorption im Festkörper .................................................................. 25
    2.3.9 Absorption im Gas ............................................................................ 25
3 Definition des Versuchsaufbaus ......................................................................... 29
  3.1 Untersuchte Variationen des FRS-Aufbaus ..................................................... 29
  3.2 Versuchs durchführung und Auswertemethode ............................................ 35
4 Ergebnisse ............................................................................................................ 37
5 Fazit und Diskussion ........................................................................................... 48
6 Ausblick ............................................................................................................... 50
7 Zusammenfassung ............................................................................................... 52
8 Literaturverzeichnis ............................................................................................. 54
**Abkürzungsverzeichnis**

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td>light amplification by stimulated emission of radiation</td>
</tr>
<tr>
<td>He-Ne Laser</td>
<td>Helium-Neon Laser</td>
</tr>
<tr>
<td>FRS</td>
<td>Filtered Rayleigh Scattering (gefilterte Rayleighstreuung)</td>
</tr>
<tr>
<td>FSM</td>
<td>Frequenzscan-Methode</td>
</tr>
<tr>
<td>ND-Filter, gf</td>
<td>Neutradlichtefilter (Graufilter)</td>
</tr>
<tr>
<td>Nd:YVO₄-Laser</td>
<td>Neodym-dotierter Yttrium-Vandat Laser</td>
</tr>
<tr>
<td>PCF-Faser</td>
<td>photonic crystal fiber (Glasfaserleitung)</td>
</tr>
<tr>
<td>PIV</td>
<td>Particle Image Velocimetry</td>
</tr>
<tr>
<td>bpf</td>
<td>Bandpassfilter (Interferenzfilter)</td>
</tr>
<tr>
<td>uk</td>
<td>Ulbrichtkugel</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

\( n, n' \) Brechungsindizes vor/hinter einer Grenzfläche

\( P \) Reflexionsgrad

\( \varepsilon, \varepsilon' \) Reflexionswinkel

\( \beta \) Abbildungsmaßstab

\( B \) optische Bildgröße

\( G \) reale Gegenstandsgröße

\( b \) Bildweite

\( g \) Gegenstandsweite

\( f \) Brennweite

\( k \) Blendenzahl

\( D \) Durchmesser

\( x \) Auszugsverlängerung

\( I \) Intensität transmittierten Lichtes

\( I_0 \) Intensität einfallenden Lichtes

\( c \) Stoffkonzentration

\( E_\lambda \) natürlicher molarer Extinktionskoeffizient

\( d \) Weglänge

\( \alpha \) Winkel
Abbildungsverzeichnis

Abbildung 2.1: Die Wahrscheinlichkeitsverteilung der Rayleigh-Streurichtung wird als Polardiagramm dargestellt. Das einfallende Photon bewegt sich dabei entlang der x-Achse und ist in z-Richtung polarisiert [2].................................4
Abbildung 2.2: Da die Aufnahmen der Kamera nicht frequenzsensitiv sind, lässt sich die spektrale Form des Rayleigh-Streulichts erst mittels eines Frequenzscans über mehrere Punkte entlang einer Iodabsorptionslinie ermitteln [1]...............8
Abbildung 2.3: Der Frequenzbereich des Verdi-V5, dargestellt über der Etalontemperatur für Minima und Maxima der PiezospANNUNG, weist einen Modensprung um 45° C auf .................................................................12
Abbildung 2.4: Die im Rahmen dieser Arbeit angefertigte Detektoreinheit zur Leistungsnormalierung ist in einem lichtdichten Gehäuse untergebracht, um eine systematische Messgenauigkeit durch Umgebungslicht auszuschließen ..........15
Abbildung 2.5: An einer teilreflektierenden Oberfläche entspricht der Einfallsinkel ε dem Reflexionswinkel ε´ [5].................................................................16
Abbildung 2.6: Während sich parallel einfallende Strahlen hinter einer konvexen Linse im Brennpunkt schneiden, laufen sie hinter einer konkaven auseinander; der Brennpunkt existiert hier nur virtuell (negative Brennweite) [7]..........17
Abbildung 2.7: Die Lichtstrahlen eines Gegenstandes treffen auf eine Linse, welche durch einen konvergenten Strahlengang den Gegenstand scharf abbildet [9]. ........................................................................................................18
Abbildung 2.8: Ein Teleobjektiv kann vereinfacht dargestellt werden als System aus je einer konvexen und konkaven Linse sowie einer Blende [7]..................19
Abbildung 2.9: Der Strahlverlauf eines Gegenstandes, welcher sich in endlicher Entfernung befindet, wird durch ein fokussiertes Objektiv scharf abgebildet [9]. ..................................................................................................................................................21
Abbildung 2.10: Der schematische Aufbau eines Objektivs gibt Einblick über die ungefähre Position wichtiger Referenzen [10]................................................21
Abbildung 2.11: Das Transmissionsband eines Interferenzfilters verschiebt sich mit dem Einfallsinkel, je nach Polarisation ändert sich dabei auch die spektrale Breite [13].................................................................24
Abbildung 2.12: Die dielektrischen Schichten des schmalbandigen Interferenzfilters bestimmen unter anderem, welche Wellenlängen transmittiert werden [14]..............................................................25
Abbildung 2.13: Die im Rahmen dieser Arbeit verwendete Iodzelle ist in einem extra dafür gefertigten Iodzellenofen verbaut............................................................26
Abbildung 2.14: Das Transmissionsspektrum molekularen Iods besteht aus einer Vielzahl unterschiedlich starker und breiter Linien (Hyperfeinstruktur) [1]......28
Abbildung 3.1: Der Versuchsaufbau basiert auf der FRS-Standardkonfiguration
[1]. Um das Kamerasystem (rechts) untersuchen zu können, wird anstatt der
Rayleighstreuung das in der Ulbrichtkugel (uk) homogenisierte Licht erfasst..30
Abbildung 3.2: Der Laserstrahl wird, nachdem er das Glan-Taylor-Prisma
durchlaufen hat, durch die Glasplatten zur Leistungsnormierung geteilt............31
Abbildung 3.3: Die Aufbauten der durchgeführten Messreihe unterscheiden sich
grundlegend in der Position des Bandpassfilters sowie den Einstellungen der
Objekte. (nicht maßstäblich)...........................................................................33
Abbildung 4.1: Der Verlauf der arbitären Signalintensität über der Wellenzahl
folgt in erster Linie der Transmissionscharakteristik der verwendeten Iodzelle. Die
wichtigste Information steckt in den Abweichungen.................................38
Abbildung 4.2: Eine Normierung der Intensität auf den lichtstärksten Aufbau
(parallel, ohne Filter) ermöglicht den direkten Vergleich der Lichtstärken.......39
Abbildung 4.3: Bei einer Normierung auf den 100%-Punkt (18787,2cm⁻¹) werden
die frequenzabhängigen Abweichungen der Aufbauten sichtbar.........................40
Abbildung 4.4: Ein Ausschnitt von Abbildung 4.3 für die 50 %-, 30 %- und 20 %-
Punkte verdeutlicht die systematische Abweichung, klar zu erkennen ist
insbesondere die Iodfluoreszenz bei Aufbauten ohne dielektrischen Filter......41
Abbildung 4.5: In der zum Standardaufbau (rot) relativen Darstellung werden
weitere frequenzabhängige Artefakte sichtbar.............................................41
Abbildung 4.6: Sowohl vor der Kamera als auch hinter der Iodzelle unterdrückt
der dielektrische Filter die Iodfluoreszenz wirkungsvoll, wie am Signal des 0 %-
Punktes zu erkennen ist.................................................................43
Abbildung 4.7: Die Quotientenbilder der 100 %- und 20 %-Punkte zeigen
verschiedene lokale und frequenzabhängige Artefakte der unterschiedlichen
Varianten des Kamerasystems und geben einen Eindruck über die Mesebene.45
Abbildung 4.8: Zur quantitativen Betrachtung der frequenzabhängigen Artefakte
in den Quotientenbildern sind vertikale Profile hilfreich..........................46
Tabellenverzeichnis

Tabelle 3.1: variierte Parameter der gemessenen Aufbauten .......................... 36
1 Einleitung

Die vorliegende Arbeit beschäftigt sich mit gefilterter Rayleighstreueung (FRS), einem nicht invasiven laserbasierten Messverfahren. FRS ermöglicht es, technische Strömungen zu vermessen, wie sie zum Beispiel in Strahltriebwerken wie Gasturbinen zur Stromerzeugung auftreten. Um die Entwicklung von Strömungs- 
maschinen voranzutreiben, spielt die Messtechnik neben der Numerik eine große 
Rolle. Die lasertechnischen Messtechniken sind hier von großer Bedeutung, da sie 
berührungslos eingesetzt werden können und die Strömung somit nicht verfälschen.

Im Unterschied zu vielen anderen laserbasierten Messverfahren, wie etwa der Par-
ticle Image Velocimetry (PIV), misst die FRS partikelfrei. Das bedeutet, dass der 
Strömung keine Fremdpartikel wie Öltröpfchen beigegeben werden müssen, um 
die nötigen Ergebnisse zu erhalten.

Mittels FRS werden eine Geschwindigkeitskomponente sowie Druck und Tempe-
ratur nicht zeitlich, sondern als stationäre Mittelwerte zweidimensional aufgelöst. 
Das Messverfahren wird auf die jeweiligen Anwendungsbereiche speziell ange-
passt und unterliegt somit einem ständigen Entwicklungsprozess.

Im Fokus des Entwicklungsprozesses der FRS-Messtechnik ist besonders das op-
tische System anzusiedeln. Dabei spielen optische Komponenten, wie zum Bei-
spiel der spektrale Bandpassfilter, eine große Rolle. Die Auswirkungen der einzel-
en Komponenten werden hier im Kontext des FRS-Gesamtsystems untersucht. 
Dazu werden systematische Variationen des FRS-Systems in einem Referenzauf-
bau untersucht und miteinander verglichen. Ziel ist es, Störeffekte der optischen 
Abbildung zu verringern, um so die Messunsicherheit für den jeweiligen an die 
Messumgebung angepassten FRS-Messaufbau zu minimieren.
1. Einleitung

In diesem Dokument werden die am Deutschen Zentrum für Luft und Raumfahrt im Institut für Antriebstechnik durchgeführten Untersuchungen präsentiert. Kapitel 2 dient dazu, die nötigen thematischen Hintergründe zu beleuchten. Der Versuchsaufbau ist in Kapitel 3 dokumentiert, die Messergebnisse werden entsprechend aufgearbeitet in Kapitel 4 vorgestellt und in Kapitel 5 diskutiert. Kapitel 6 gibt einen Ausblick über anknüpfende Fragestellungen, abschließend fasst Kapitel 7 die im Rahmen dieser Arbeit behandelten relevanten Aspekte zusammen.
2 Theorie der gefilterten Rayleighstreuung

In diesem Abschnitt werden die Grundlagen dieser Arbeit dargestellt. Dabei wird sowohl auf das FRS-Messprinzip als auch auf die Funktionsweise der wesentlichen Komponenten eingegangen.

2.1 Allgemeines / Stand der Technik

Sender und Empfänger resultiert eine niedrigere Frequenz und somit eine größere Wellenlänge. Hier spricht man von einer Rotverschiebung.


Abbildung 2.1: Die Wahrscheinlichkeitsverteilung der Rayleigh-Streurichtung wird als Polardiagramm dargestellt. Das einfallende Photon bewegt sich dabei entlang der x-Achse und ist in z-Richtung polarisiert [2].

Voraussetzung zur direkten Nutzung der Rayleighstreuung ist ein zu vernachlässigender kleiner Anteil der Störsignale aus Mie-streuung an Partikeln in der Strömung sowie aus geometrischer Streuung an Wänden und Fenstern eines Messaufbaus. Da dies bei praktischen Anwendungen kaum auftritt, wurde das Messverfahren der gefilterten Rayleighstreuung entwickelt, welches zur Verringerung des störenden Streulichtes führte. Dies wird erreicht, indem das Signal durch einen molekularen Filter abgebildet wird. Als molekularer Filter wird hier eine Iodzelle (vgl. Abschnitt 2.3.9) mit einer konstanten Iodmenge verwendet, welche oberhalb der definierten Sättigungstemperatur vollständig verdampft ist. Wie in Abbildung 2.2 (links) zu sehen, wird die Frequenz des anregenden Lichtes in ein Transmissionssminimum der Iodzelle gelegt, dadurch erreicht nur das verbreiterte Rayleighprofil als Faltung mit dem Transmissionsspektrum den Kamerasensor, während das unverschobene geometrische Streulicht und das Mie-Streulicht nahezu vollständig absorbiert werden. Um breitbandigen Hintergrund sowie das inelastische Fluoreszenzlicht, welches durch die spektrale Filterung der Iodzelle
entsteht, herauszufiltern, wird ein Bandpassfilter (Interferenzfilter, vgl. Abschnitt 2.3.7) zwischen molekularem Filter und Kamera verbaut, siehe Abschnitt 3.1 [3].

2. Theorie der gefilterten Rayleighstreuung

2.2 Auswertemethoden zur FRS-Messung

Es stehen drei Auswertemethoden der FRS-Messung zur Verfügung, dazu zählt die Quotienten-Methode, die Frequenzscan-Methode (FSM) und eine Kombination aus beiden Methoden [1].


Mit der Frequenzscan-Methode besteht die Möglichkeit, stationäre Strömungsgrößen sowie zeitliche Mittelwerte zu ermitteln. Um die Strömungsgrößen Druck, Temperatur und Dopplerverschiebung simultan zu ermitteln muss eine Referenzmessung durchgeführt werden. Aus der Dopplerverschiebung wird eine skalare Geschwindigkeitskomponente berechnet. Allerdings muss hierzu der durch die Referenzmessung erhaltene Kalibrierungsparameter über die gesamte Messung konstant bleiben. Wie in Abbildung 2.2 (rechts) zu sehen, wird die Frequenz des Lasers entlang der Absorptionslinie des molekularen Filters verschoben, wodurch
mehrere Informationen aufgenommen werden. Beispielhaft könnte dazu eine Frequenz zwischen 18788,32 cm$^{-1}$ und 18788,46 cm$^{-1}$ gescannt werden. Während sich die spektrale Form der Rayleigh-Streuung im zeitlichen Mittel für alle Scanfrequenzen nicht verändert, bewirkt eine Frequenzverschiebung eine Änderung der durch die Iodzelle transmitierten Streulichtintensität. Diese setzt sich aus den spektralen Anteilen der Rayleighstreuung zusammen, welche den molekularen Filter durchqueren. Des Weiteren zeigt sich die Frequenzscan-Methode gegenüber der Quotienten-Methode durch die zusätzlich zur zeitlichen Mittelung durchgeführten Frequenzmittelungen deutlich unempfindlicher in Bezug auf Stör- und Rauscheffekte [1].

Abbildung 2.2: Da die Aufnahmen der Kamera nicht frequenzsensitiv sind, lässt sich die spektrale Form des Rayleigh-Streulichts erst mittels eines Frequenzscans über mehrere Punkte entlang einer Iodabsorptionslinie ermitteln [1].
Durch die Kombination der zuvor beschriebenen Methoden wird erreicht, dass diese robuster gegenüber umweltbedingten Störungen ist. Dies wird erzielt, indem durch geschicktes Normieren der aufgenommenen Intensitätsspektren die Datenanalyse vom Kalibrierungsparameter unabhängig wird. Um eine höhere Genauigkeit der gemessenen Parameter zu erhalten, wird eine Referenzmessung durchgeführt. Durch eine Beschränkung der Scanfrequenz auf einen Bereich des molekularen Filters mit ausreichender optischer Dichte können schmalbandige Hintergrundanteile vernachlässigt werden. Allerdings geht dadurch die Druckinformation fast vollständig verloren [1].
2.3 Komponenten

Dieser Abschnitt soll dem Leser die theoretischen Grundlagen der in dieser Arbeit verwendeten wesentlichen Komponenten näherbringen.

2.3.1 Kohärente Lichtquelle


Der Festkörperlaser wurde aufgrund verschiedener, für die Messungen wichtiger Eigenschaften ausgewählt. Die Beugungsmaßzahl M² gibt insbesondere Ausschuss über die Laserstrahlqualität. Diese wird für den Verdi-V5 mit <1,1 angegeben, zum Vergleich hat ein perfekter Gaußstrahl per Definition eine Beugungsmaßzahl von 1. Je größer die dimensionslose Größe M², desto schlechter ist der Strahl zu fokussieren.


Eine weitere wichtige Eigenschaft ist die Linienbreite des Laserstrahls, dies bedeutet, dass der Laser eine möglichst geringe Schwankung (Jitter) auf der zuvor eingestellten Frequenz aufweist. Der Jitter liegt durch die zeitliche Abweichung unter 5 MHz und kann durch eine Frequenzstabilisierung auf unter 2 MHz reduziert werden.

Abbildung 2.3 zeigt den Frequenzbereich des Verdi-V5 in Abhängigkeit von der Etalontemperatur. Bei der Diskontinuität um ca. 45°C Etalontemperatur handelt es sich um einen Modensprung, der auftritt, wenn die Verluste der gegenwärtige Mode deutlich größer sind als die einer anderen. Da der Laser über weitere Einstellmöglichkeiten, wie die Veränderung der Piezospannung verfügt, wurde die Messung in zwei Bereichen durchgeführt, diese ergeben sich durch den mode lock (Betriebspunkt des Lasersystems) bei dem jeweiligen Minimum und Maximum der Piezospannung.
Abbildung 2.3: Der Frequenzbereich des Verdi-V5, dargestellt über der Etalontemperatur für Minima und Maxima der Piezospannung, weist einen Modensprung um 45° C auf.

2.3.2 Frequenzstabilisierung


2.3.3 Leistungsnormierung

Es handelt sich bei der gefilterten Rayleighstreuung um ein quantitatives Messverfahren: das Messsignal muss an verschiedenen Punkten für sich genommen quantifiziert werden. Daher muss jede Änderung der Laserleistung während der FRS-Messung erfasst werden. Der verwendete Laser verfügt zwar bereits über eine interne Leistungsstabilisierung (light control mode), da der Laserstrahl jedoch mittels Spiegeln oder durch eine Glasfaser zum Messobjekt transportiert
wird, entstehen Schwankungen in der Lichtstärke. Im ersten Fall tritt die Leistungsschwankung durch mechanisches ‚Wackeln‘ auf, welches kleinste Änderungen des Strahlengangs mit sich bringt. Im zweiten Fall kann die verwendete PCF-Faser eine Änderung der Strahlform sowie der Polarisation bewirken. Diese werden durch Polarisations- und Modenfilter korrigiert, verursachen dabei jedoch schwankende Leistungseinbußen. Somit muss eine Messung der Lichtstärke unmittelbar vor der Verwendung des Laserstrahls stattfinden. Um dies zu erreichen, wird - wie in Abbildung 2.4 zu sehen - eine Normierungseinheit eingesetzt. Hierzu wird ein Teil des Hauptstrahls mittels einer Glasplatte als einzelner Strahl abgegriffen (sampling), dabei ist darauf zu achten, dass die verwendete Glasplatte dick genug ist, um die am Ein- und Austritt des Glaskörpers entstehenden Reflexe zu trennen und so Interferenzen vermeiden zu können. Da die Änderung der Laserfrequenz während der FRS-Messung auf die Abbildung des gesampelten Lichtes auf eine Fotodiode Einfluss in Form von Laser Speckles nimmt, wird der Laserstrahl auf eine rotierende Streuscheibe geleitet. Durch die Rotation der rauen Oberfläche werden Interferenzeffekte wie Speckles im zeitlichen Mittel wirkungsvoll unterdrückt. Im Fall der in Abbildung 2.4 gezeigten Normierung wird dies alternativ durch einen Laser Speckle Reducer realisiert. Dieser Despeckler erreicht durch kleinskalige Kreisbewegungen der Streuscheibe mittels Piezo-Aktuatoren einen vergleichbaren Effekt. Nun wird durch eine geeignete Sammellinse das auf diese Weise homogenisierte Licht durch einen Neutraldichtefilter, siehe Abschnitt 2.3.8, auf der Fotodiode abgebildet. Um die Fotodiode möglichst linear zu betreiben, wird der Abbildungsmaßstab so gewählt, dass nur der mittlere Teil des Sensors ausgeleuchtet wird, da der äußere Teil des Sensors meist durch die Dotierung bedingt ein anderes Verhalten aufweist als der innere Kern. Falls hingegen die Normierungseinheit starken Schwingungen wie etwa an Großprüfständen-
den ausgesetzt ist, empfiehlt es sich, den Abstand zwischen Diode und Sammel-
linse so zu verändern, dass der Lichtkegel größer als die lichtempfindliche Fläche
des Sensors ist. Dadurch ist gewährleistet, dass der Sensor auch bei einer geringen
Verschiebung des Laserstrahls stets vollständig ausgeleuchtet ist und hier keine
Messänderung zu verzeichnen sind. Da die Standardabweichung für die FRS-
Messung unter 0,3 % liegt, muss auch die Fotodiode diese Vorgabe erfüllen, wes-
wegen sie in ihrem spezifischen Linearitätsbereich betrieben wird und so ein ver-
nachlässigbar geringes Rauschen aufweist. Die Lichtmenge sowie die Ausgangs-
spannung werden durch einen geeigneten Graufilter beziehungsweise Lastwider-
stand optimiert, um den Linearitätsbereich der Fotodiode einzuhalten [1].

Abbildung 2.4: Die im Rahmen dieser Arbeit angefertigte Detektoreinheit zur Leistungs-
normierung ist in einem lichtdichten Gehäuse untergebracht, um eine systematische Mes-
sungenauigkeit durch Umgebungslicht auszuschließen.
2.3.4 Reflektion


\[
P = \left[ \frac{n' - n}{n' + n} \right]^2
\]  

(1)

Abbildung 2.5: An einer teilreflektierenden Oberfläche entspricht der Einfallswinkel $\varepsilon$ dem Reflexionswinkel $\varepsilon'$ [5].
2.3.5 Brechung

Eine Linse ist ein transparentes Bauelement, welches transmittedes Licht durch eine Brechungsindexänderung an konvex bzw. konkav gewölbten Oberflächen ablenkt. Im Falle einer konvexen Wölbung wird parallel einfallendes Licht im Brennpunkt fokussiert, eine konkave Linse hingegen streut das Licht, wie in Abbildung 2.6 zu sehen ist. Die Brennweite \( f \) gibt den Abstand zwischen dem Hauptpunkt \( H \) und dem Brennpunkt \( F \) an. Durch die Mitte der Linse verläuft waagerecht die optische Achse, diese ist senkrecht zur Hauptebeine eingezeichnet.

Um den Strahlengang zu vereinfachen, wird angenommen, dass es sich um eine dünne Linse handelt, bei der die Brechung der Lichtstrahlen entlang der optischen Achse nur in einem Punkt, der Hauptebeine, stattfindet. Bei dickeren Linsen gibt es eine gegenstandseitige und eine bildseitige Hauptebeine, siehe Abbildung 2.6 [6].

![Abbildung 2.6](image)

Abbildung 2.6: Während sich parallel einfallende Strahlen hinter einer konvexen Linse im Brennpunkt schneiden, laufen sie hinter einer konkaven auseinander; der Brennpunkt existiert hier nur virtuell (negative Brennweite) [7].

Betrachtet man in Abbildung 2.7 den Strahlverlauf eines Gegenstandes durch eine Linse lässt sich der Abbildungsmaßstab \( \beta \) durch das Verhältnis zwischen der
realen Gegenstandsgröße \( G \) und der optischen Bildgröße \( B \) definieren. Dieses Verhältnis kann per Dreisatz (2) berechnet werden. Bei einem Betrag kleiner eins ist das Bild kleiner als der Gegenstand, äquivalent dazu ist der Gegenstand bei einem Betrag größer eins kleiner als das Bild [8].

\[
\beta = \frac{B}{G} = \frac{b}{g}
\]

(2)

Die Linsengleichung (3) gibt außerdem das Verhältnis zwischen der Gegenstandsweite \( g \), der Bildweite \( b \) und der Brennweite \( f \) an, siehe hierzu Abbildung 2.7.

\[
\frac{1}{b} + \frac{1}{g} = \frac{1}{f}
\]

(3)

Abbildung 2.7: Die Lichtstrahlen eines Gegenstandes treffen auf eine Linse, welche durch einen konvergenten Strahlgang den Gegenstand scharf abbildet [9].

2.3.6 Mehrlinsensysteme

Ein Objektiv besteht aus mehreren unterschiedlichen Linsen und wird in erster Linie durch zwei Haupteigenschaften beschrieben: die Blendenzahl und die Brennweite. Die Lichtstärke wird durch die kleinste Blendenzahl \( k \) eines Objek-
tifs angegeben, diese setzt sich aus dem Verhältnis der Brennweite zum Durchmesser der Eintrittspupille $D$ zusammen (4). Hochwertige lichtstarke Objektive zeichnen sich durch eine niedrige Blendenzahl aus.

$$k = \frac{f}{D}$$ (4)

Die Brennweite definiert nach (2) und (3) das Abbildungsverhältnis und damit auch das Bildfeld. Dabei werden unterschiedliche Objektivklassen unterschieden: Normalobjektive weisen eine Brennweite von 50 mm auf, Weitwinkelobjektiven wird eine Brennweite kleiner 50 mm zugewiesen. Objektive mit einer Brennweite über 50 mm werden Teleobjektive genannt. Durch eine Änderung der Brennweite ändert sich die Lage der Brennpunkte innerhalb des Objektivs sowie der Abbildungsmaßstab: eine größere Brennweite bildet bei gleichem Abstand einen Gegenstand größer ab. Teleobjektive werden unter anderem eingesetzt, um ferne Gegenstände groß aufzunehmen. Um eine kompakte Bauweise zu ermöglichen, wird das Licht zuerst durch eine bikonvexe Linse gebündelt und anschließend durch eine bikonkave Linse wieder gestreut. In Abbildung 2.8 ist zu sehen, dass die bildseitige Hauptebene dadurch vor der Linse liegt [7].

Abbildung 2.8: Ein Teleobjektiv kann vereinfacht dargestellt werden als System aus je einer konvexen und konkaven Linse sowie einer Blende [7].
Um einen Gegenstand scharf abbilden zu können, muss entweder die Brennweite oder der Abstand zwischen Linse und Bildebene optimiert werden. Dazu wird der Abstand zwischen der Hauptebeine und der Bildebene durch Verschieben der Linse(n) innerhalb des Objektivs geändert. Um einen nahen Gegenstand scharf abzubilden, muss der Abstand zwischen Bildebene und Hauptebeine erhöht werden, für weiter entfernte Gegenstände muss der Abstand dementsprechend verkürzt werden. Der Kamerasensor kann Unschärfen, welche kleiner als die Pixelgröße sind, nicht wahrnehmen, dadurch wird ein Bereich vor und hinter der Schärfeebene noch scharf abgebildet. Es handelt sich hierbei um die Schärftiefe [7].

Abbildung 2.9 skizziert die Abbildung eines Gegenstandes, wobei hier die Auszugsverlängerung $x$ zwischen dem Bild und der bildseitigen Brennweite zu sehen ist. Die Auszugsverlängerung fällt nur bei Objektiven, welche nicht auf unendlich gestellt sind, ins Gewicht, da sie sonst gleich Null ist. Folglich gilt für Motive, welche endlich weit entfernt sind, dass die Bildweite größer als die Brennweite ist. Die Bildweite ist die Summe der Brennweite und der Auszugsverlängerung [9]. Durch die Winkelbeziehungen lässt sich aus der Bildgröße geteilt durch die Auszugsverlängerung der maximale Winkel $\alpha$ berechnen:

$$\tan \alpha = \frac{f}{G} = \frac{x}{B} \quad (5)$$

Bei Berücksichtigung größerer Blickwinkel sowie bei Strahlengängen weit ab der optischen Achse ergeben sich verschiedene Abbildungsfehler. Diese schlagen sich in diesem Fall als Bildunschärfen sowie Bildverzerrungen nieder. Je hochwertiger allerdings das optische Instrument ist, desto besser werden die Abbildungsfehler korrigiert [7].
Abbildung 2.9: Der Strahlverlauf eines Gegenstandes, welcher sich in endlicher Entfernung befindet, wird durch ein fokussiertes Objektiv scharf abgebildet [9].

Abbildung 2.10: Der schematische Aufbau eines Objektivs gibt Einblick über die ungefähre Position wichtiger Referenzen [10].
Abbildung 2.10 zeigt den schematischen Aufbau eines Objektivs in Unendlichstellung ($x = 0$), der Abstand der bildseitigen Hauptebeine von der physikalischen Objektivhinterkante ist als H2 gekennzeichnet. Beim Auflagemaß (Frange Back, Brennweite abzüglich H2) handelt es sich nicht um ein optisches, sondern um ein konstruktives Maß, welches von der Bauweise des Objektivanschlusses abhängt. Die Objektivanschlässe sind genormt und können so herstellerübergreifend verwendet werden. Allerdings unterscheiden sich diese nicht nur in ihrer Form und Größe. Im Rahmen dieser Arbeit sind vor allem der C-Mount-Gewindeanschluss mit einem Auflagemaß von 17,5 mm sowie der F-Mount-Bajonettverschluss mit einem Auflagemaß von 46,5 mm relevant [11].

### 2.3.7 Dielektrische Filter

Der spektrale Interferenzfilter (Bandpassfilter, bpf) bildet einen wichtigen Teil der Detektionseinheit des FRS-Messsystems, wie in Abschnitt 3.1 dargestellt.

Bei einem von $0^\circ$ abweichenden Einfallswinkel, wobei $0^\circ$ einem senkrechten Einfall entspricht, verschiebt sich einerseits das Transmissionsband hin zu kürzeren Wellenlängen. Andererseits wirken je nach linearer Polarisationsrichtung unterschiedliche Brechungsindizes, weswegen der Transmissionsbereich für $p$-polarisiertes Licht breiter ist als der für $s$-polarisiertes Licht ($p$-Polarisation: E-Feld parallel zur Einfallsebene, hellblaue Transmissionskurve in Abbildung 2.11; $s$-Polarisation: senkrecht, gelbe Kurve). Unpolarisiertes Licht liegt als Superposition von $p$- und $s$-polarisiertem Licht dazwischen (violette Kurve). Dieser Effekt nimmt mit dem Winkel zu: während er bei geringer Neigung noch vernachlässigbar sein kann, führt er zur vollständigen Absorption monochromatischen Lichts, sobald dieses nicht mehr im verschobenen Transmissionsband liegt.

Da das Licht für die Randpixel im Mittel unter einem größeren Winkel durch den Bandpassfilter läuft, wird das Transmissionsspektrum im Mittel stärker verschoben. Dementsprechend befinden sich mehr Lichtanteile außerhalb der Transmission, dies hat zur Folge, dass die Randbereiche des Kamerachips schwächer ausgeleuchtet werden (Vignettierung).

Abbildung 2.11: Das Transmissionsband eines Interferenzfilters verschiebt sich mit dem Einfallswinkel, je nach Polarisation ändert sich dabei auch die spektrale Breite [13].

Der hier verwendete Filter ist, wie in Abbildung 2.12 zu sehen, aus dielektrischen Schichten aufgebaut. Welche Wellenlängen transmittiert werden hängt zum einen vom gewählten Dielektrikum des Filters und zum anderen, wie zuvor beschrieben, von dem Einfallswinkel der Strahlen ab. In diesem Fall handelt es sich dabei um einen spektral schmalbandigen Bandpassfilter der Firma Barr, welcher mit einer Halbwertsbreite (FWHM) von 1 nm um die Zentralwellenlänge von 532,242 nm zentriert ist. Die Halbwertsbreite gibt die spektrale Breite an, bei der die Transmission auf 50% des Maximalwertes abgefallen ist. Dieser beträgt ca. 70%, im Absorptionsbereich weist der Filter eine optische Dichte von größer sechs auf.
Abbildung 2.12: Die dielektrischen Schichten des schmalbandigen Interferenzfilters bestimmen unter anderem, welche Wellenlängen transmittiert werden [14].

2.3.8 Absorption im Festkörper


2.3.9 Absorption im Gas

Die Iodzelle - in Abbildung 2.13 im passend konstruierten Ofen zu sehen - stellt eine Kernkomponente des Detektorsystems dar. Wie in Abschnitt 2.1 dargelegt, wird im Rahmen dieser Arbeit ein FRS-System betrachtet, das für die Filterwirkung einen molekularen Absorptionsfilter nutzt. Im Inneren des Iodzellenofens befindet sich ein evakuiertes, mit kristallinem Iod gefüllter Glaszyllinder. Um eine

Abbildung 2.13: Die im Rahmen dieser Arbeit verwendete Iodzelle ist in einem extra dafür gefertigten Iodzellenofen verbaut.
Der molekulare Filter bewirkt, dass Photonen, die auf das verdampfte Iod auftreffen, mit bestimmten Frequenzen bzw. Energieniveaus durchgelassen werden und andere unterschiedlich stark absorbiert werden. Die absorbierten Photonen werden dann auf einem anderen Energieniveau wieder abgegeben. Durch diesen Prozess entsteht eine Lichtemission aufgrund der Anregung durch elektromagnetische Strahlung, es tritt Fluoreszenzlicht auf. Durch das Lambert-Beer’sche Gesetz (6) wird die relevante Abschwächung von Licht $I/I_0$ beim Durchgang durch ein absorbierendes Medium über die Weglänge $d$ beschrieben. Die logarithmische Absorbanz $E_\lambda$ kann damit über den spektralen Extinktionskoeffizient $\varepsilon_\lambda$ und die Stoffmengenkonzentration $c$ einer absorbierenden Substanz berechnet werden [15]:

$$E_\lambda = -\lg\left(\frac{I}{I_0}\right) = \varepsilon_\lambda \cdot c \cdot d$$  \hspace{1cm} (6)

In Abbildung 2.14 ist ein kleiner Auszug der Hyperfeinstruktur des Absorptionspektrums von molekularem Iod zu sehen. Die diskreten Transmissionslinien machen es im Rahmen dieser Arbeit möglich, durch eine Verschiebung der Frequenz, die sich damit verändernde Absorption der Iodzelle aufzunehmen (Abschnitt 2.2).
Abbildung 2.14: Das Transmissionsspektrum molekularen Iods besteht aus einer Vielzahl unterschiedlich starker und breiter Linien (Hyperfeinstruktur) [1].
3 Definition des Versuchsaufbaus

Um die Einflüsse bei einer Änderung des Strahlengangs in Bezug auf die verschiedenen Komponenten zu testen, werden verschiedene Versuchsaufbauten nacheinander aufgebaut und gemessen. Die in Abschnitt 2.3.7 vorgestellten Interferenzmuster stehen für diese Arbeit besonders im Fokus, da sie die Messgenauigkeit der FRS-Messtechnik limitieren. Auch der Strahlengang durch die Iodzelle sowie diese selbst werden im Rahmen dieser Arbeit anhand verschiedener Messaufbauten untersucht.

3.1 Untersuchte Variationen des FRS-Aufbaus

Eine über den Querschnitt homogene Intensitätsverteilung zu erzeugen. Der Hauptteil der Leistung wird schließlich in eine Strahlfalle abgeführt.

Die hier verwendeten polarisationserhaltenden PCF-Fasern geben allerdings einen unpolarisierten Anteil aus, wodurch es nötig ist, diesen durch einen Polarisator wie zum Beispiel ein Glan-Taylor-Prisma vom polarisierten Strahl zu trennen.

**Abbildung 3.1:** Der Versuchsaufbau basiert auf der FRS-Standardkonfiguration [1]. Um das Kamerasytem (rechts) untersuchen zu können, wird anstatt der Rayleighstreuung das in der Ulbrichtkugel (uk) homogenisierte Licht erfasst.

Abbildung 3.2 zeigt den Strahlenverlauf ab dem Faserausgang der PCF-Faser durch das oben erwähnte Glan-Taylor-Prisma wo er durch die Glasplatten zur Leistungsmessung abgegriffen wird. Durch die Glasplatten wird ein Teil des Lichts reflektiert und so der Leistungsnormierung zur Verfügung gestellt, siehe dazu Kapitel 2.3.4.
Abbildung 3.2: Der Laserstrahl wird, nachdem er das Glan-Taylor-Prisma durchlaufen hat, durch die Glasplatten zur Leistungsnormalierung geteilt.

Das eigentlich zu untersuchende Kamerawäge eines typischen FRS-Systems bildet eine Messebene, in diesem Fall die Austrittsebene der Ulbrichtkugel ab. Um dies zu erreichen, verläuft das Licht durch insgesamt drei Objektive, eine Iodzelle sowie einen Bandpassfilter, bis die Messebene schließlich auf den Kamerachip abgebildet wird. Das homogene Licht der Ulbrichtkugel durchläuft zwei Objektive, welche in Retrostrecke zueinander angebracht sind, um einen Transfer durch die Iodzelle zu ermöglichen. Diese wird nun je nach Aufbau parallel (um eine möglichst gleiche Weglänge allen Lichts durch die Iodzelle und damit eine gleiche Absorptionscharakteristik zu erreichen) oder divergent (um eine Reduzierung der Fringes zu erreichen) durchlaufen, siehe dazu Abbildung 3.3. Schließlich findet das Licht seinen Weg durch das dritte Objektiv, bevor die Messebene auf
den Kamerachip abgebildet wird. Der Bandpassfilter (vgl. Abschnitt 2.3.7) befindet sich je nach Aufbau vor bzw. hinter dem dritten Objektiv. Er unterdrückt Fluoreszenzleuchten, was durch den molekularen Filter entsteht, siehe dazu Kapitel 2.3.9. Außerdem wird Rotationsramanstreuung sowie breitbandiges Hintergrundlicht wie Tageslicht und Wärmestrahlung bei hohen Temperaturen unterdrückt.

Eine Übersicht der betrachteten Konfigurationen des FRS-Messaufbaus ist der Abbildung 3.3 zu entnehmen. Der Standardaufbau zur FRS Messung setzt sich für das Kamerasystem wie in Abbildung 3.3 (Aufbau d) zusammen. Dieser Aufbau wurde bisher gewählt, um die Fringes (vgl. Abschnitt 2.3.7), welche durch den Interferenzfilter entstehen, zu minimieren. Da die Filterwirkung stark winkelabhängig ist, stellt sich die Frage, welche Auswirkungen es hat, den Bandpassfilter direkt vor der Kamera zu positionieren und ihn somit einem größeren Einfallswinkel auszusetzen. Ziel ist es, die frequenzabhängigen Fringes möglichst ohne andere Einbußen wie Lichtstärke, Vignettierung und Fluoreszenzllicht zu eliminieren.
3. Definition des Versuchsaufbaus

Abbildung 3.3: Die Aufbauten der durchgeführten Messreihe unterscheiden sich grundlegend in der Position des Bandpassfilters sowie den Einstellungen der Objektive. (nicht maßstäblich)

Um die Eigenschaften der einzelnen Komponenten systematisch zu untersuchen, werden die in Abbildung 3.3 gezeigten Aufbauten nacheinander vermessen. Insbesondere gilt es, den Bandpassfilter sowie die Jodzelle genauer zu betrachten. Dazu werden verschiedene Komponenten dementsprechend umpositioniert, ausgebaut oder verstellt.
Die Versuchsaufbauten a bis c weisen einen parallelen Strahlengang durch die Iodzelle auf, die Aufbauten d bis f hingegen einen divergenten Strahlengang. Zu diesem Zweck wird am dritten Objektiv die Auszugsverlängerung (vgl. Abschnitt 2.3.6) auf maximal gestellt. Um trotz dieser Änderung den Ausgang der Ulbrichtkugel weiterhin scharf abzubilden, wird der Abstand zwischen dem ersten und zweiten Objektiv vergrößert. Der frontseitige Aufbau von der Ulbrichtkugel bis zum Zwischenbild, welches zwischen Objektiv eins und Objektiv zwei entsteht, wird in keiner Messung verändert. Dadurch ist eine Vergleichbarkeit der Ergebnisse gewährleistet. Die Aufbauten a und b, bzw. d und e heben sich durch eine geänderte Position des Bandpassfilters voneinander ab. Da dieser bei den Aufbauten b und e direkt vor der Kamera sitzt, ist der Winkel des einfallenden Lichts hier wesentlich höher. Dadurch ändert sich die Transmissionscharakteristik des Bandpassfilters, siehe Kapitel 2.3.7. Da sich die optische Weglänge durch den höheren Brechungsindex des Interferenzfilters verlängert hat, wird um dem entgegenzuwirken der Abstand zwischen drittem Objektiv und Kamera um 3 mm vergrößert.

3. Definition des Versuchsaufbaus

3.2 Versuchsdurchführung und Auswertemethode


Die gesamte Auswertung der Daten wird mit Ausnahme der Streifenmethode pixelweise durchgeführt. Um einen repräsentativen skalaren Wert über die gesamte Belichtungszeit zu erhalten, werden die Metadaten, welche zu mehreren

Tabelle 3.1: varierte Parameter der gemessenen Aufbauten

<table>
<thead>
<tr>
<th>Aufbau</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterposition</td>
<td>vor</td>
<td>hinter</td>
<td>Ohne</td>
<td>vor</td>
<td>hinter</td>
<td>ohne</td>
</tr>
<tr>
<td>Kamera</td>
<td>Iodzelle</td>
<td>Filter</td>
<td>Kamera</td>
<td>Iodzelle</td>
<td>Filter</td>
<td></td>
</tr>
<tr>
<td>Strahlengang</td>
<td>parallel</td>
<td>parallel</td>
<td>parallel</td>
<td>divergent</td>
<td>divergent</td>
<td>divergent</td>
</tr>
<tr>
<td>durch Iodzelle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belichtungszeit [s]</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Abbildungsmaßstab</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,55</td>
<td>1,55</td>
<td>1,55</td>
</tr>
</tbody>
</table>
4 Ergebnisse

Im Folgenden wird die Lichtstärke der verschiedenen FRS-Kamerasysteme näher untersucht. Abbildung 4.1 zeigt den Intensitätsverlauf der in Abschnitt 3.1 vorgestellten Variationen des FRS-Kamerasystems. Die in Form einer arbiträren Intensität gemessene Iodtransmission nimmt wie nachfolgend zu sehen von 100 % zu 50 %, 30 %, 20 % bis auf 0 % ab. Auf der Abszisse ist die Intensität und auf der Ordinate die Wellenzahl eingetragen. Die Messaufbauten ohne Filter sowie mit Filter hinter der Iodzelle weisen bei einem divergenten Strahlengang durch die Iodzelle eine um 20 %, bzw. für den Messaufbau mit Filter vor der Kamera eine um 33 % niedrigere Lichtstärke als jene mit einem parallelen Strahlengang auf. Da dieses Verhalten auch ohne Bandpassfilter auftritt, ist dieses Phänomen vermutlich dem molekularen Filter (vgl. Abschnitt 2.3.9), welcher unter einem maximalen Winkel von 6,2 ° durchlaufen wird, sowie auf Vignettierung der Objektive (vgl. Abschnitt 2.3.6) zurückzuführen.

Die Variation der Position des Bandpassfilters beeinflusst die Lichtstärke wie folgt: wird der Bandpassfilter vor der Kamera positioniert, verringert sich die Lichtstärke um 70 % für den parallelen sowie um 75 % für den divergenten Strahlengang im Vergleich zur Positionierung hinter dem molekularen Filter. Die Aufbauten ohne Interferenzfilter weisen bei 0 % Transmission etwas höhere Intensitäten auf als jene mit einem verbauten Filter. Dies ist durch Fluoreszenzlücke der Iodzelle zu begründen, siehe dazu Kapitel 2.3.7. Da das Fluoreszenzllicht bei den Aufbauten, wo sich der Interferenzfilter vor der Kamera befindet, vollständig abgesorbiert wird, lässt sich daraus schließen, dass der Interferenzfilter für diesen Fall seinen Zweck erfüllt und die unerwünschten Wellenlängen trotz des größeren Einfallswinkels von 22,2 ° eliminiert, siehe Abschnitt 3.1.
Abbildung 4.1: Der Verlauf der arbiträren Signalintensität über der Wellenzahl folgt in erster Linie der Transmissionscharakteristik der verwendeten Iodzelle. Die wichtigste Information steckt in den Abweichungen.
Abbildung 4.2: Eine Normierung der Intensität auf den lichtstärksten Aufbau (parallel, ohne Filter) ermöglicht den direkten Vergleich der Lichtstärken.

In Abbildung 4.2 wurden die aufgenommenen Messdaten im Gegensatz zu Abbildung 4.1 auf den lichtstärksten Messaufbau, also Aufbau 3: „ohne Filter parallel“ normiert. Dadurch lassen sich die Unterschiede zwischen den Aufbauten hervorheben.

Abbildung 4.3 zeigt die Messdaten der sechs Aufbauten normiert auf die Werte bei maximaler Iodtransmission (100 %-Punkt), die damit in der Grafik aufeinanderliegen. Theoretisch sollten die Messpunkte der verschiedenen Aufbauten bei derselben Wellenzahl aufeinanderliegen, da die Iodtransmission für jede Frequenz konstant ist. Liegen diese nicht aufeinander, impliziert dies eine systematische Messabweichung, siehe dazu Abschnitt 2.1. Abbildung 4.4 zeigt einen Ausschnitt
der Transmissionskurve aus Abbildung 4.3. Die eingezeichneten Fehlerbalken (Error bar) zeigen, dass sich die tatsächlichen Werte in einem Bereich befinden indem die statische Messunsicherheit zu vernachlässigen ist. Interessant ist eine Abweichung der Messdaten zwischen den Aufbauten zur Transmission von 50 % bis 20 %.

Abbildung 4.3: Bei einer Normierung auf den 100 %-Punkt (18787,2 cm⁻¹) werden die frequenzabhängigen Abweichungen der Aufbauten sichtbar.
Abbildung 4.4: Ein Ausschnitt von Abbildung 4.3 für die 50%--, 30%- und 20%-Punkte verdeutlicht die systematische Abweichung, klar zu erkennen ist insbesondere die Iodfluoreszenz bei Aufbauten ohne dielektrischen Filter.

Abbildung 4.5: In der zum Standardaufbau (rot) relativen Darstellung werden weitere frequenzabhängige Artefakte sichtbar.
Um diese Abweichungen in der Frequenzabhängigkeit zu verdeutlichen, werden die Messdaten in diesem Ausschnitt zusätzlich normiert auf die mit dem FRS-Standardaufbau („Filter hinter Iodzelle, parallel“) gemessenen Werte bei der jeweiligen Wellenzahl, siehe Abbildung 4.5. Diese Grafik zeigt somit eine relative Änderung der spektralen Charakteristik des Interferenzfilters. Dieser lässt unter einem größeren Einfallswinkel für den 50%-Punkt 1,8 % mehr Licht durch, bei den 30%- und 20%-Punkten jedoch bis zu 3% weniger Licht durch, als wenn er unter senkrechttem Einfallswinkel nach seinen Spezifikationen betrieben wird, wobei die Unterschiede bei dem Messaufbau mit einem parallelen Strahlengang etwas größer sind. Die Aufbauten ohne Interferenzfilter zeigen eine starke Iodfluoreszenz. Da die Messsignale immer kleiner werden, wird das darauf normierte Fluoreszenzlicht bis hin zum Unendlichen immer größer.

Iodfluoreszenz wird in Abbildung 4.6 besonders deutlich. Das fluoreszenzbedingte Störsignal beträgt ohne Filter 1,1 % der gemessenen Intensität des 100%-Punktes und ist somit nicht vernachlässigbar. Der bei den anderen Aufbauten eingesetzte Bandpassfilter absorbiert das Fluoreszenzlicht völlig, da sich die Punkte um 0 % bewegen. Die negativen Werte kommen durch Abzug des Hintergrundbildes von den Datenbildern zustande (vgl. Abschnitt 3.2).
Abbildung 4.6: Sowohl vor der Kamera als auch hinter der Iodzelle unterdrückt der dielektrische Filter die Iodfluoreszenz wirkungsvoll, wie am Signal des 0%-Punktes zu erkennen ist.

Abbildung 4.7 zeigt Datenbilder der verschiedenen Aufbauten; der Austritt der Ulbrichtkugel ist als kreisförmiger Ausschnitt wiedergliickommen. Um die Frequenzabhängigkeit der Fringes hervorzuheben, wurden die Messdaten des 50 %-Punktes durch die des 100%-Punktes der Iodtransmissionkurve geteilt. Auf der Falschfarbenskala ist damit das Verhältnis der beiden Datenbilder zueinander dargestellt (bzw. dessen frequenzbedingte lokale Schwankung). Die in der Mitte des Bildes zu sehende „Teilung“ ist auf die zweigeteilte Architektur des CMOS-Chips der Kamera selbst zurückzuführen.
4. Ergebnisse

a) parallel, Filter vor Kamera

b) parallel, Filter hinter Iodzelle

c) parallel, ohne Filter

d) divergent, Filter vor Kamera
4. Ergebnisse

Abbildung 4.7: Die Quotientenbilder der 100%- und 20%-Punkte zeigen verschiedene lokale und frequenzabhängige Artefakte der unterschiedlichen Varianten des Kamerasystems und geben einen Eindruck über die Messebene.

Bei einer Positionierung vor der Kamera verursacht der Filter keine Fringes, weder bei parallellem noch bei divergentem Strahlengang durch die Iodzelle (Abbildung 4.7 a/d). Bei divergentem Strahlengang sind Speckles (kleinskalige chaotische Interferenzstrukturen) sehr gut zu erkennen. Diese sind vermutlich auf eine unvollständige Homogenisierung des Lichts in der Ulbrichtkugel zurückzuführen.

Beim Standardaufbau der FRS-Messungen (der Filter befindet sich hinter der Iodzelle (Abbildung 4.7 b/e) hingegen sind die frequenzabhängigen Fringes sehr gut zu erkennen. Beim divergenten Strahlengang ist eine Verzerrung der Fringes durch den asymmetrischen Strahlengang zu sehen.
Der Messaufbau ohne Filter (Abbildung 4.7 c/f) zeigt wie erwartet keine Fringes, allerdings ist zu sehen, dass der Quotient geringer ausfällt. Da das Iod im 100% Transmissionspunkt das Laserlicht nicht absorbiert, tritt auch kein Fluoreszenzlicht auf. Dies lässt darauf zurückschließen, dass bei der 50% Iodtransmissionsmessung die Pixel durch das Fluoreszenzlicht stärker belichtet werden.

Abbildung 4.8: Zur quantitativen Betrachtung der frequenzabhängigen Artefakte in den Quotientenbildern sind vertikale Profile hilfreich.

Abbildung 4.8 zeigt die teils nicht aus den Bildern offensichtlichen frequenzabhängigen Fringes der sechs Aufbauten. Dazu werden aus den Quotientenbildern vertikal durch die Mitte des Bildes, die Intensitätsprofile dargestellt. Befindet sich der Bandpassfilter hinter der Iodzelle (rot/orange), lässt sich eine periodische Modulation erkennen. Dies sind frequenzabhängige Fringes, welche durch den
Bandpassfilter hervorgerufen werden. Für die Aufbauten, in denen der Interfe-
renzfilter vor der Kamera sitzt (lila/blau), sind nur Rauschen und Speckles zu
erkennen. Die Speckles verursachen bei divergentem Durchgang durch die Iodzelle
hohe lokale Gradienten auf kleinen Ortsskalen und sind somit auch nicht durch
die Streifenmethode herauszufiltern. Die Aufbauten ohne Bandpassfilter (dunkel-
grün/hellgrün) zeigen wie erwartet keine Fringes. Der Grafik ist außerdem noch
ein weiterer Effekt zu entnehmen: das statische Rauschen, das durch Mittelung
mehrerer Messungen reduziert wird.
5 Fazit und Diskussion

Die im Rahmen dieser Arbeit durchgeführten Messungen zeigen, dass mehrere der hier untersuchten Aufbauten je nach Messumgebung Anwendung in der FRS-Messtechnik finden könnten.

Derzeit sind Fringes einer der Effekte, welche die Messgenauigkeit der FRS-Messung auf ca. 0,5°Celsius begrenzen. Um die Genauigkeit der Messwerte zu erhöhen, gilt es durch eine Positionsänderung des Interferenzfilters die Fringes zu minimieren. Dazu wird der Filter für den parallelen sowie divergenten Strahlengang vor der Kamera angebracht. Im Gegenzug verliert man dadurch allerdings für den parallelen Strahlengang rund 70 % und für den divergenten ca. 75 % Lichtstärke. Aus 70 % weniger Lichtstärke resultiert eine um 230 % höhere Messzeit, welche an Messprüfständen wie zum Beispiel für Triebwerkskomponenten sehr begrenzt ist, da der Prüfstand nur für eine befristete Zeit zur Verfügung steht. Der Prüfstand wird dann heruntergefahren, um bei erneutem Hochfahren einen anderen Betriebspunkt zu testen.

Spielt die Messzeit hingegen eine untergeordnete Rolle, kann zum einen durch mehrere Wiederholungen der statistische Fehler minimiert werden, zum anderen durch Umpositionierung des Interferenzfilters, bei höherer Belichtungszeit eine Reduzierung des systematischen Fehlers aufgrund der Fringes erreicht werden.

Des Weiteren ist anzumerken, dass bei endoskopischen Messungen zusätzliche Effekte einfließen, welche die Messunsicherheit beeinflussen. Dies ist bei der Auswahl der zu untersuchenden Aufbauten zu berücksichtigen [1].

Vergleicht man nun den parallelen mit dem divergenten Lichtstrahl, fällt sofort auf, dass der divergente Strahlengang die Lichtstärke für die Messaufbauten ohne
5. Fazit und Diskussion

Filter sowie mit Filter hinter der Iodzelle um 20 %, für den Messaufbau mit Filter vor der Kamera sogar um 33 % verringert. Diese Abweichung ist auf die Vignetierungseigenschaften des Gesamtsystems zurückzuführen, siehe dazu Abschnitt 3.1. Da durch den divergenten Strahlengang die Fringes hauptsächlich verzerrt aber nur unwesentlich reduziert werden, jedoch Lichteinbußen von 20 % zu vermerken sind, sollte der Standardaufbau (vgl. Abschnitt 3.1) zur FRS-Messung in Frage gestellt werden.

Da es sich bei FRS um eine quantitative Messtechnik handelt, entstehen bereits durch systematische Abweichungen im Subprozentsbereich signifikante Fehler. Bei den Messaufbauten ohne Interferenzfilter führt somit schon 1 % Störsignal durch Iodfluoreszenzlicht zu systematischen Abweichungen. Daher ist ein Interferenzfilter unumgänglich.

Auffällig ist in Abbildung 4.5, dass sich die Graphen der Messaufbauten mit dem Filter vor der Kamera sowie dem Filter hinter der Iodzelle zwischen dem 50 %- und 30 %-Punkt schneiden. Warum dieser Effekt auftritt ist nicht klar, jedoch für die hier vorgenommene Auswertung nebensächlich, da diese Grafik lediglich die Transmissionsabweichung der einzelnen Aufbauten miteinander vergleicht und somit aussagt, dass eine Abweichung vorliegt.

Die im Datenbild des divergenten Strahlengangs mit der Filterposition vor der Kamera (Abbildung 4.7 d) zu sehenden Speckles stellen die Qualität der Ergebnisse nicht in Frage, da diese durch ihre Kleinskaligkeit von den frequenzabhängigen Fringes zu unterscheiden sind. Es ist jedoch unklar, warum die Speckles lediglich in diesem Messaufbau so stark auftreten.
6 Ausblick

Um die Weiterentwicklung des FRS-System voranzutreiben und offene Fragen aus den durchgeführten Messungen zu klären, sollten folgende weiterführende Messungen durchgeführt werden:

Zum einen sollte das Kamerasystem - wie auch bei in der Praxis durchgeführten FRS-Messungen - nicht einen Ulbrichtkugel-Ausschnitt abbilden, sondern an einem FRS-Experiment Anwendung finden, um die Annahme zu bestätigen, dass die in den Datenbildern zu sehenden Speckles (siehe Abbildung 4.7 d) durch die rauhe Oberfläche des Ulbrichtkugel-Austritts entstehen.


Auch die Iodzelle sollte für sich genommen genauer betrachtet werden, dazu muss die Winkelabhängigkeit des Strahlengangs der Messaufbauten ohne Interferenzfilter geprüft werden. Anhand dieser Informationen lässt sich bestimmen, ob bzw. ab welchem Winkel die Iodzelle nicht mehr wie erwartet arbeitet und sich entsprechend die Iodtransmissionskurve verschiebt bzw. in ihrer Form verändert.
Außerdem sollte zur Überprüfung bezüglich der Intensität in den Randbereichen der Kameraufnahmen ermittelt werden, durch welche Komponente(n) des Kamerasystems die Vignettierung entsteht. Um dies festzustellen, könnte man damit beginnen, kleinere Blenden an den Außenwänden der Iodzelle anzubringen.

Die hier aufgelisteten weiterführenden Untersuchungen ermöglichen es die einzelnen Komponenten genauer zu analysieren und das Optimum des FRS-Kamerasystems zu erzielen.
7 Zusammenfassung


7. Zusammenfassung


8 Literaturverzeichnis


