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Abstract

Research and development projects involving complex systems are often executed in a
collaboration between engineers and scientists of various institutions. In such a collabora-
tion, different parts of the system are developed by different companies located in different
physical locations. Whenever this happens, testing the system and its components is diffi-
cult, since the adjacent hardware required to test the communication channels may not be
available on site. This is further problematic in the space industry, because replicating a
spacecraft hardware is expensive and arises other technical difficulties as every hardware
is a prototype. A solution to this problem is to use a hardware emulator application in the
development cycle of the Onboard Software (OBSW) which can reflect the true hardware
behaviour and can be shared easily between the distributed development teams. However,
precise low-level hardware emulators are very tedious to build and require deep domain
knowledge.

A noble alternative solution to this problem is to learn a black-box model from the tem-
poral data-space of the candidate hardware using a Machine Learning (ML) algorithm
which can reflect the realistic hardware behaviour. Recurrent Neural Network (RNN) based
models with the Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
memory units are excellent in learning sequences and are able to capture long-range de-
pendencies in the temporal dataset. In this study, different LSTM and GRU models are
applied to the task of modelling a physical hardware system. Input and output signals
from the real hardware are used to train the RNN models following a supervised learning
method. The obtained result show that both types of RNN models are capable of simulat-
ing the realistic hardware behaviour with a considerable accuracy. The performance of the
well configured GRU model is seen to be slightly better than that of the equivalent LSTM
model. Nevertheless, the signals predicted by both RNN models showed more than 90%
resemblance to the actual signals obtained from the hardware in their frequency spectrum.
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CHAPTER 1

Introduction

This chapter revels the motivation and objective behind this thesis work. In the second
section, the goal of this study is set and the scope is defined. Then, the requirements of the
project are listed. The chapter ends by summarizing the structure of this document.

1.1 Motivation

In the development process of complex systems, interdisciplinary teams of engineers and
scientists are involved. Often times, such teams are formed by a cooperation between
various institutions. The research and development report of Deutsches Zentrum für Luft-
und Raumfahrt (DLR) in year 2014/2015 [1] describes projects in different domains that
the space agency carried out in cooperation with other industry, research institutions,
and universities. In such a cooperation, resources, human or otherwise, are distributed
under various administrations which are located in different physical locations. In such
cases, testing the system is troublesome. For example: it is difficult to test the hardware
drivers of the system when every hardware components required to test the communication
channels are not available on site. This becomes further problematic in the space industry,
because the spacecraft hardware is expensive and not easily producible, therefore, it is
not practical to have them replicated in every development sites. The Onboard Software
(OBSW) developers have to deal with this kind of shortcomings.

When the peripheral hardware is missing, software developers use mock-up methods to
simulate the channel values, which should otherwise be coming from the peripheral com-
ponent. Mock-up methods do not reflect the real hardware behaviour and may result in
false-positive or false-negative test results. A solution to this problem is to use hardware

1



2 CHAPTER 1. INTRODUCTION

emulator applications in the continuous integration system, which simulate the realistic
hardware behaviour. Unlike the real hardware device, hardware models are easily portable
and replicable. Models are basically pieces of code which can easily be shared between
development teams distributed in various physical locations. Simulating a physical system
for testing has many other advantages such as increased insight and flexibility, efficient
in resource utilization, execution speed, and timing fidelity in comparison to the real ma-
chine [2]. Furthermore, the hardware simulations are helpful in analysing the dynamic
behaviour of the system. In addition to that, one can perform experiments in the model
of the system, which may be highly risky to execute in the actual hardware.

However, highly precise low-level hardware models are expensive and require deep domain
expertise to build. For example: a license of Simulink, a commercial simulation tool devel-
oped by Mathworks, costs 1200e per annum [3] (price from March 2019). Nevertheless,
hardware models which are used in the continuous integration system to assist the rapid
OBSW development may not be highly precise as long as they reflect the realistic hard-
ware behaviour. Such models can be developed from the data-space of the actual system
following a black-box modelling technique. The requirement of any black-box modelling
technique is that the data-space of the candidate system is known and available. Unlike
white-box models, high-level black-box models are cheap to build and do not require detail
domain knowledge and yet they can still be fairly precise.

Machine Learning (ML) algorithms as a black-box modelling tool are getting more and
more popular in the past few decades, especially, when the large datasets are available.
The process of creating a black-box model using a ML method involves in learning a
generalized model from the training set. Thus, the training set has to be large enough
so that a generalized model can be constructed from it, which performs well with the
unseen data in the test phase. Training of such models can be computationally expensive.
But, once they are trained, they work fast in the application phase. Nevertheless, due to
availability of fast CPUs and GPUs, the computation cost is no longer an issue. Different
research papers show concrete evidence of the effectiveness of ML algorithms [4–8] in
pattern recognition, time-series prediction, data clustering, and classification.

In this study, the problem of a physical system modelling is formulated as a time-series
prediction problem (temporal sequence modelling), such that a ML algorithm can be
applied. In such a formulation, all actuators in the system act as causes and therefore
collectively define the state of the system and sensor values are the corresponding effects.
Since, experiments are executed over time, time is included as an important factor. Hence,
the problem-space of this study lies in investigating state-of-the-art ML algorithms for the
temporal sequence modelling.
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Figure 1.1: Schematic of the idea where a physical system is replaced by the learned model.

1.2 Goal and Scope

Keeping the use-case of the physical system modelling in mind, investigating state-of-the-
art ML algorithms in temporal sequence modelling is the primary goal of the thesis work.
Building up strategies and applying them to create a hardware model from the temporal
data collected from actuators and sensors is the task. Further important milestones are to
make strategies for preparing the datasets for training, and to design and build the model
which generalizes the problem well, such that the prediction error is as small as possible.
After been sufficiently trained, the hardware model is expected to predict the sensor values
for the given set of actuator states. Nevertheless, the prediction error is defined and may
only increase linearly when the setup is enlarged; the same is true for the training time as
well as the memory requirement of the model.

Due to the limited time-frame of the thesis work, detail investigation of each available se-
quence modelling algorithms is not feasible. Therefore, relying on the literature, scope of
the thesis is limited to the investigation of the state-of-the-art Recurrent Neural Network
(RNN) models. RNNs are the most recognized neural networks for the time-series predic-
tion problem [9]. RNN models have internal feedback loops, therefore, they can make use
of past outputs to predict the next time-step [9].

Particularly, detail study of the Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRU) networks is performed. LSTM and GRU are special kind of RNNs which
perform better even in high variance situations [8, 10, 11]. Furthermore, RNN models pro-
vide better generalization options via weights/activity regularization, Dropout layers [12],
etc., therefore they work better with the unseen data, thus perform well in the applica-
tion phase. Models such as Markov models, conditional random fields, etc., work with
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the sequential data, but are ill-equipped to capture the long-range dependencies in the
dataset [7]. Other modelling techniques require strong domain knowledge and specialized
feature engineering which makes it harder to discover hidden patterns. In contrast, neu-
ral network models learn representations and can discover unforeseen structures on their
own [13].

1.3 Requirements

Fulfilment of the requirements determines the success of the thesis work. Therefore, it is
important to list them beforehand. The Table 1.1 lists the requirements which the thesis
project shall fulfil. Each requirements is assigned with an identifier (ID) which is given
in the first column of the table. This ID is used to refer to the requirement in upcoming
chapters. The statement of the requirement is given in the second and elaborated in the
third column.

ID Statement Explanation

req_01 The model shall be as abstract as
possible and as detailed as neces-
sary.

The model design should be simple to
understand. Unnecessary complications
must be avoided.

req_02 The hardware system and its compo-
nents shall be treated as a black-box.

Modelling should be based only on the
input and output data-space of the can-
didate hardware, and should be imple-
mented without the need of domain ex-
pertise.

req_03 The model data-space shall also be
highly abstract and outside of the
system.

The model must be operable without any
dependencies to the actual system.

req_04 Training data shall be collected with-
out having to interfere with the nor-
mal Onboard Computer (OBC) op-
eration.

The data collection procedure must not
change or disturb the communication be-
tween OBC and the candidate hardware.

req_05 Training data shall be collected with-
out having to change the OBSW.

It is not allowed to change the OBSW in
order to collect the telemetries and the
telecommands for training the network.
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req_06 The model shall be able to deal with
various types of input and output
signals, such as, binary, continuous,
step-like, constant, etc.

Modelling a physical system requires to
deal with data from the actuators and
sensors. It is expected that the actuators
and sensors operate with variety of sig-
nals. Thus, the model should be able to
deal with them.

req_07 The model shall be able to replicate
the system in the test phase, when
the unseen input is passed to the sys-
tem.

The model must not over-fit to the
training-data, moreover, it should be
able to work well with the new inputs
in the application phase.

req_08 The model shall be scalable in space. The model must be designed in a such
a way that it is expendable in space, so
that, the same modelling process could
be followed in the future to create hard-
ware models with many actuators and
sensors.

req_09 The model shall have a defined er-
ror.

A threshold value should be determined
for the model up-to which the prediction
error can be expected.

Table 1.1: Requirements of the study.

1.4 Structure of the Document

The second chapter gives the background information regarding the candidate hardware
system, the state-of-the-art learning algorithm, and the similar work done by fellow re-
searchers. A short introduction to the software tools and the specification of hardware
used during this study is given in the last section of the second chapter. The third chapter
describes the methodology of the thesis work, furthermore, different phases of the project’s
lifeline are explained. Different project phases include the training data preparation pro-
cedure, model design, training, and the testing procedures. The fourth chapter describes
the implementation procedure for each project stages, which includes, how the experiment
is designed, how the data is collected, and how the model is written. In the fifth chapter,
results of various model instances are presented and compared with each other. Based on
the results from chapter five, conclusion of the thesis work is drawn and presented in the
sixth chapter, moreover, limitation of the modelling technique is mentioned along with the
potential improvement in the future.





CHAPTER 2

Background

This chapter gives background information required to understand the concept and the idea
behind the thesis work. The chapter starts with the theoretical background and develops
towards the state-of-the-art technologies in detail. The chapter highlights few interesting
work done by other researchers and ends by listing the tools and softwares used during the
project.

2.1 MAIUS Experiment and Role of DLR

The Matter-Wave Interferometry in Weightlessness (MAIUS) mission is a part of the Quan-
tum Gases in Weightlessness (QUANTUS) project, where the feasibility of experimenting
with the ultra-cold atoms in space is investigated [14]. In the experiment, temperature of
a gas cloud is reduced to absolute zero, thus producing Bose-Einstein Condensate (BEC).
BEC is the state of matter where the quantum effects can be observed [14]. In 23 January
2017, the MAIUS payload was lunched on a sounding rocket from Kiruna, Sweden, and in
its six minutes flight, BEC was successfully produced in space for the very first time [14].
The Simulation and Software Technology (SC) group of DLR is responsible for the devel-
opment of the software used to control and monitor the MAIUS experiments. The payload
hardware of the MAIUS experiments is designed by the Leibniz University Hanover.

2.1.1 MAIUS Hardware

The hardware used to control and monitor MAIUS experiments is custom-built, which
consist of different circuit board modules, referred as Cards, which can be connected by

7
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stacking them together into a Stack. Each card posses a Field Programmable Gate Array
(FPGA) controller.

Communication between the MAIUS stack and the OBC is done through Ethernet via
Transmission Control Protocol (TCP) protocol. The TCP communication is handled in
the stack by a special Ethernet card which has a separate IP address. The special power-
supply card regulates power within a stack. Each stacks, therefore, have one Ethernet and
one power-supply card. Cards themselves may not necessarily have sensors and actuators
on them, however, they provide interfaces for actuators to control and sensors to monitor
the MAIUS experiment and are be attached as required. Each cards has input- and output-
channels. Data flowing direction in MAIUS is seen from OBC perspective, so sensor values
shall be read via input-channels (input for the OBC) and write command shall be sent to
actuators via output-channels (output for the OBC).

Test-Stack

In a typical MAIUS experiment, numerous number of cards and stacks may be used.
However, MAIUS team in SC only use few cards in Test-Stack (T-Stack) for testing and
debugging the OBSW and communication procedures.

Cards currently present in T-Stack are:

• Ethernet-Interface is the special Ethernet card which handles the communication
between the T-Stack and the OBC.

• Power2 is the special power-supply card which regulates power within the T-Stack.

• Led1 contains seven-segment display and provides one output-channel to write one
byte value to the display. It also contains a rotary-encoder and provides an input-
channel to read the rotary-encoder value.

• NTCIn2 provides 24 input-channels to read temperature value from 24 different
temperature sensors. The card itself does not contain any sensor rather provides
ports to connect them externally. There are no output-channels in the NTCIn2 card.

• Fan1 provides 8 output-channels with boolean values. Internal current driver con-
trols current in these ports, when set to "true" the connected device is supplied with
current and it is turned ON. Analogous if it is the "false" command. Therefore, any
device which meet the power requirement shall be connected to these ports, it does
not necessarily have to be a fan.

• PhotodiodeIn2 provides 24 input-channels to read photodiode values. Analogous
to the other cards, this card also do not contain any photodiode in it, but provides
interfaces to connect them.

• AnalogOut1 provides 16 output-channels for handling the actuators. Each of these
16 ports shall be written with values ranging from -10 to +10, these value represent
voltages in volts.
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• TriggerOutput provides 13 trigger output-channels.

2.1.2 MAIUS Software

The custom-built MAIUS hardware requires specialized drivers. These drivers are auto-
matically generated from the data-model written in a Domain Specific Language (DSL).
DSL are programming language developed to define small class of problems. They are
generally used to define data-models in the Model-Based Software Development (MBSD)
process, such that executable code are generated from these data-models.

In MAIUS, such data-models describe interfaces of the MAIUS stacks and cards. Stack
DSL instantiates all cards in the stack with a unique name and address. It also instantiates
input- and output-channels of different cards that are used in the experiment. Moreover,
the stack DSL also describes the Internet Protocol (IP) address and port of the stack.

A card DSL describes the input- and output-channels of the card. Channels are the inter-
faces which allow access to different memory addresses of the card and are used to read-
/write card-parameters. In order to write/read value to/from these memory addresses,
series of commands is sent to the card by the OBSW. In MAIUS, one command only
reads or writes one byte of the value. So, if the card-parameter is more than one byte long,
multiple commands are sent consecutively. Moreover, individual commands is dispatched
as a separate TCP package. Each of these packets are three bytes long, which consists of
one byte address, one byte of data and a read/write flag. Since, each packets of the data
begins with a unique address, each access to the card’s channels makes a unique pattern
in the byte-stream. This makes it possible to easily read channel values directly from the
TCP byte-stream when the card DSL is given, without having to modify the OBSW.

2.2 Modelling Theory

Modelling, in general, can only cover a certain aspects of the subject and may cast many
shades of meaning. A system model can be interpreted as a mathematical abstraction in
terms of a set of differential equations, or on the other extreme, an engineer may prefer
to take a model as a scaled replica of the system [15].

In terms of the necessity of the domain knowledge of the candidate system, models can be
classified as:

• White-box models require detail domain knowledge about the system. Access to
the system internal states and parameters are needed for the white-box modelling
approach.

• Black-box models, in opposition to the white-box approach, do not need access
to the internal states of the system, rather they work with its peripheries, by only
looking at the inputs and outputs of the candidate system.
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• Grey-box models are the hybrid version of the white-box and black-box modelling
approaches. Here, the system is transparent for certain extend, however, major part
of the system is still unknown or unused in the modelling process.

In any case, a model is desired to represent the system partially, if not completely. In this
study, using a learning method and following a black-box modelling approach, a scaled
simulation model of an experiment with the T-Stack is desired.

2.3 Machine Learning

ML is the state-of-the-art in the applied Artificial Intelligence (AI) field. Arthur Samuel,
an American pioneer in the field of computer gaming and artificial intelligence, coined the
term "machine learning" in year 1959. The major breakthrough which led to the emergence
of ML is the idea developed by Arthur to teach machines to learn on their own instead
of teaching them everything they need to know in order for them to carry out certain
tasks [16].

In [17], the author suggests definition of ML that he claims to be more suitable for computer
scientists and statisticians, which states: ML is the process (algorithm) of estimating a
model that’s true to the real-world problem with a certain probability from a dataset (or
sample) generated by finite observations in a noisy environment.

The core objective of a ML algorithm is to transform a real world problem into a parameter
optimization problem and learn a generalized form of these parameters from the experience
that comes from the training data. Parameter refereed here are the weights/kernel values
and not the hyper-parameters of the neural network. Generalization is very important
in ML, it determine the ability of the learning algorithm to perform accurately on the
unseen data (test set) after having experience with the learning data (training set) [18].
For the good generalization, balance between the complexity of the model and function
underlying the data has to be maintained. Simple model for a complex or large dataset,
and a complex model for a simple or a small dataset, both result in poor learning. It is
the job of the engineer to find the trade-off between these two.

ML algorithms can be divided into different categories, three main categories are:

• Supervised learning is basically a function approximation and can only be ap-
plied when the training data is labelled i.e. for each input feature there is a known
target output. During the supervised training, the algorithm learns to model rela-
tionships and dependencies between input features and target outputs such that it
can be generalized, and based on that, prediction can be made for the new input.
Neural Networks, Support Vector Machines (SVM), Nearest Neighbour, etc. are few
commonly used supervised learning algorithms.

• Un-supervised learning is applied when the data-set is unlabelled. They are
mainly used in pattern detection, and to group the data points, which help in de-
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riving meaningful insights in order to describe the data in a better way. K-Means
clustering algorithm is one of the un-supervised learning methods.

• Reinforcement learning is an iterative learning algorithm which learns from its
experiences with the environment to take action which would maximize the reward
and minimize the risk. Q-Learning, Deep Adversarial Networks are the common
reinforcement learning algorithms.

Difficulties with ML algorithm

ML algorithm must be able to deal with various difficulties [17]. In theory, the ML al-
gorithm can learn arbitrarily many features from a dataset, but there can only be finite
number of observations. It is not possible to generalize so many features by only making
finite observations.

The other usual problem is that the learning algorithm compute their output by a linear
combination of the input and the weighting factor. For example: an output of a feed-
forward layer of a neural network model is given by s = Wx + b, where x, W, and b are
the input vector, weighting matrix, and the bias vector, respectively. However, the real
world problem is usually highly non-linear. The algorithm designer has to take care of
these problem when using ML algorithms as a modelling tool.

2.4 Neural Networks

Neural network is a ML algorithm inspired by the working of neurons in biological brain for
learning. It is one of the most popular ML tool in regression and classification. The neural
networks have neurons referred as units. These units appear in a hierarchical order; these
hierarchies are referred as the layers in the network. Depending on the network topology,
units are connected with the other units of different layers via links. Each of these links
hold a weighting value which controls the information flow through them. Dataset for a
neural network is a high dimensional vector. For the simplest case the dataset has a form
of a matrix, where each column vectors represents one sample.

A neural network topology consists of the following basic components:

• Input layer is the first layer of the network. Number of units and dimension of
the input layer is equal to that of features in the input data. In the multiple input
network topology, there may exist more than one input layer connected to the same
hidden layers.

• Arbitrary number of hidden layers can have arbitrary number of units in them.
They determine the depth and breadth of the network.

• Output layer is the last layer of the network. Number of units in this layer and its
dimension is equal to the target outputs in regression or the target classes in case of
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the classification problem. In the multiple output network topology, there may exist
multiple number of output layers.

• Set of weights and biases are the key components of the neural network. The
whole idea of training is to find the optimum set of weights and biases. Depending
on the topology and the type of the layer, weights can be trainable or non-trainable.
Trainable weights are adjusted during the training process to minimize the output
error, whereas non-trainable weights are constant during training as well as testing.

One unit in each layer is a special one, which is connected to all units of the next
layer. The link between them posses a special weighting factor known as bias. Similar
to normal weights biases can also be either trainable or non-trainable. Biases can be
use to favour one feature over the another in regression and to make one class be
classified more often than the other in classification.

• Activation layer transforms each unit’s output from the previous layer by a known
function. Thus, it has units equal to that of the preceding layer. The units of activa-
tion layers are connected only to the adjacent unit of the preceding layer. For input
and hidden layers this function is usually non-linear and depending on the problem
the output layer may or may not have an non-linear activation. Common practice
in regression is not to alter the output of the last layer, therefore the output layer
of the network usually only has a linear activation.

Figure 2.1: Standard Feedforward Neural Network (FNN) topology with one hidden layer.
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In FNN, the activation of th unit (h) of an arbitrary layer l is computed as shown in
Equation 2.1 [19]. The Figure 2.1 shows a typical FNN topology with one hidden layer.
In FNN, the input sample is fed from the input layer and moves only forward through the
network.

s(l)
 =

∑
ı

w(l)
ı, xı + b(l) (2.1a)

h(l)
 = F

(
s(l)


)
(2.1b)

Here:

s
(l)
 is the state of th unit in layer l,
h

(l)
 is the output of th unit in layer l,
F(.) is the activation function of layer l,
w

(l)
ı, is the weight between ıth unit of (l − 1)th layer and th unit of lth layer,

b
(l)
 is the bias of th unit in layer l.

Equations 2.1a and 2.1b are combined and rewritten in the vector notation in Equation 2.2.

h = F
(
W x + b

)
(2.2)

While designing the neural network topology, there are methods which could be followed
to overcome the difficulties of ML introduced in the previous section. For instance: as a
remedy to the problem of having an arbitrarily many features to be learned from a finite set
of samples, one can use features extraction layers in the beginning of the network. Feature
extraction layers do not learn all features in the dataset but select the most important
ones. Furthermore, activation layers mentioned earlier are used to introduce non-linearity
into the neural network model.

Backpropagation

Supervised learning of weights and biases in neural network is performed using the back-
propagation algorithm, which uses chain-rule to compute gradients in the gradient-descent
learning method. Although already been discovered in th 70s, popularity of backpropaga-
tion in neural network training begin after the publication of the famous paper [20] by
David Rumelhart in year 1986.

In order to apply backpropagation algorithm, first of all the cost function J(Θ) is chosen,
where Θ is the set of weights and biases. Cost function determines the loss L of the
prediction made by the network. L is the measure of deviation of network’s output from
the target. Measures such as Mean Squared Error (MSE), Mean Absolute Error (MAE),
Correntropy Criterion (CEC), are few popular cost functions used in regression. At next,
gradients of the loss with respect to all weights and biases are computed starting from
the last layer up to the first one. The partial derivative gives the measure on how quickly
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the cost changes when the respective weights or biases are changed. During the process,
weights and biases are adjusted in the direction which minimizes the final loss, using some
scaling factor µ known as the learning rate. The weights adjustment process starts at the
last layer and is done back-wards towards the first.

2.4.1 Recurrent Neural Networks (RNN)

In contrast to FNNs, RNNs have forward as well as recurrent links. The forward links are
same as of the conventional FNN, however, the recurrent links connect adjacent time-steps.
There are also self connecting links, which connect same units across the time dimension,
thus giving the notion of time to the model [21]. Figure 2.2 shows a schematic of a RNN
model with one hidden layer; the model is unrolled in the temporal dimension.

…
 

Figure 2.2: Standard RNN topology with one recurring hidden layer.

In analogy to the formulation of FNNs in Equation 2.2, the Equation 2.3 gives the output
of an arbitrary recurrent layer at time-step t [21]:

ht = F
(
Whh ht−1 + Whx xt + b

)
(2.3)

where, xt is the current input vector. ht and ht−1 are the hidden node values at time-steps
t and t − 1, respectively. F is a logistic sigmoid function. Whx is the matrix containing
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weights between the input and the hidden layer and the matrix Whh contains recurrent
weights between the hidden layer and itself in the adjacent time-step. Vector b contains
the bias parameters. The recurrent layers therefore form a temporal dimension T where
the history of input samples is saved. This ability of RNNs serves as a memory and allows
the network to remember previously processed data and enables it to discover temporal
correlations between samples that were observed over time [22].

Cost of the recurrent layer is computed as J =
∑T
t=1 Jt, where Jt = L(ŷt,yt) is the loss at

time-step t, and T is the total number of sample’s history available to the network. Now,
for the gradient based learning, gradients of the cost function is computed as [22, 23]:

∂J

∂θ
=

T∑
t=1

∂Jt
∂θ

, (2.4a)

∂Jt
∂θ

=
t∑

ν=1

(∂Jt
∂st

∂st
∂sν

∂+sν
∂θ

)
, (2.4b)

where, ∂+sν/∂θ refers to the immediate partial derivative of the state sν with respect to θ,
∂Jt/∂θ is a gradient component which gives the measure of how θ at step ν affects the cost
at time-steps t > ν.

Exploding and Vanishing Gradients

Each recurrent layers in RNNs can be unfolded to be represented as a FNN, where each
time samples act as an extra embedded layer. This is why a RNNs structure is very
deep, therefore, learning to store information over extended period of time is slow [23].
Furthermore, in gradient based learning methods such as Backpropagation Through Time
(BPTT) [24], the magnitude of the error signal propagating backwards in time depends
exponentially on the magnitude of the weights [25], therefore, the back-propagating error
either decays too fast and vanishes or grows exponentially large and explodes. Hence, due
to this vanishing/exploding gradient problem, the conventional recurrent networks have
difficulty in learning long-range dependencies in the training samples [21, 23, 26].

Many techniques have been introduced and practised to overcome this problem. Whether
the gradient vanishes or explodes depends on the weighting factor of the link [21]. Training
with the regularization term can suppress the weights in the recurrent links to values with
which the vanishing or exploding of gradient do not occur [22]. Truncated Backpropagation
Through Time (TBPTT) is another solution to the exploding gradient problem [21, 27]. In
TBPTT, the error flow is controlled to a maximum time-step, such that, the gradient do not
explode. However, by using TBPTT for training one cannot learn arbitrarily long-ranged
dependencies. There are special model architectures with gate units such as LSTM, GRU,
Phased LSTM, which are designed to handle this kind of shortcomings of the conventional
RNN [13], and to learn long-range dependencies in the training samples.
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2.4.2 Long Short-term Memory (LSTM)

LSTM networks are seen to be very good in variety of sequence processing tasks such as
natural language processing, speech recognition, handwriting detection [28–30]. One of the
main task within this thesis work is to investigate the capabilities of LSTM in temporal
sensor data prediction. Figure 2.3 shows the schematic of the LSTM unit [28].

Figure 2.3: Schematic of a LSTM unit.

LSTM was introduced by Hochreiter and Schmidhuber in 1997 to overcome the problem
of conventional RNNs to store information over long period of time due to insufficient
error backflow i.e. vanishing gradient [31]. This is achieved in the LSTM networks by the
use of three multiplicative gate units, namely, input, output, and forget gate. Each of these
gates learn to open and close access to ensure that the error does not vanish. In addition,
unlike RNNs which overwrites its content at each time-step, the update of the LSTM
cell is regulated by these gates [32]. With the help of the forget gate, LSTM networks
learn to forget irrelevant details in the training sample and at the meantime, they learn to
remember useful feature informations. Open and close gates control access to the cell state
vector. Furthermore, LSTMs are local in time and space; its computational complexity per
time-step and weight is O(1) [31].
In Equation 2.5a-2.5e formulas for updating the state of a LSTM cell at time-step t are
given. These formulas are analogous to the ones listed in [28].

it = F
(
Wxi xt + Whi ht−1 + Wsi st−1 + bi

)
(2.5a)

ft = F
(
Wxf xt + Whf ht−1 + Wsf st−1 + bf

)
(2.5b)

st = ft � st−1 + it � tanh
(
Wxs xt + Whs ht−1 + bs

)
(2.5c)

ot = F
(
Wxo xt + Who ht−1 + Wso st + bo

)
(2.5d)

ht = ot � tanh
(
st

)
(2.5e)

Here, i, f , o, and s are the state vectors for the input gate, forget gate, output gate, and
the LSTM cell, respectively. All of these vectors have same length as of the hidden output
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vector h. In analogy to the cell update equation of the conventional RNN cell given in
Equation 2.3, F is also a logistic sigmoid function. The weighting matrix subscripts have
the obvious meaning, for example Whi is the matrix containing weights between the hidden
and input gate, the matrix Wxo holds weights between the input and output gate, and
so on. The weighting matrix between the LSTM cell and the gates are diagonal, such
that an element p in each gate vectors (i, f , and o) only gets input from element p of
the s vector [28]. Similarly, vector b holds the respective biases. The current cell state st
is updated with a fraction of the previous cell state controlled by the forget gate state
ft and the fraction of new state determined by the input gate state it (Equation 2.5c).
Hidden output value is controlled by the open gate state it (Equation 2.5e). All vector
multiplications are done element-wise and is denoted by the � operator.

2.4.3 Gated Recurrent Unit (GRU)

GRU is a simpler derivative of the LSTM unit, proposed by K. Cho in 2014 [33]. Similar
to the LSTM unit, the GRU unit also have gates to control the update of cell states,
thus, they have the same goal of learning long-range dependences in the sequential data
by reducing the vanishing/exploding gradient problem of the conventional RNN. Unlike
LSTM unit, a GRU unit does not have separate input and forget gates but it has a reset
gate and a update gate. When the reset gate is close to 0, the previous hidden state is
ignored, thus allowing the cell to forget information which are seen to be irrelevant in
the future [33]. The update gate controls how much information from the previous hidden
state is used while computing the current hidden state. The schematic of a GRU unit is
visualized in Figure 2.4.

Figure 2.4: Schematic of a GRU unit.

In analogy to that of the LSTM cell, update equations for GRU are given below, which
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are analogous to the ones given in [33]:

rt = F
(
xt Wxr + ht−1 Whr + br

)
, (2.6a)

zt = F
(
xt Wxz + ht−1 Whz + bz

)
, (2.6b)

st = zt � st−1 + (1− zt)� tanh
(
Wxs xt + Whs (rt � ht−1) + bs

)
, (2.6c)

ht = F
(
st
)
, (2.6d)

here, r and z are the state vectors for the reset and the update gate, respectively and
they have same length as of the hidden output vector h. All other notations as well as the
weighting matrix subscript convention in Equation 2.6 are analogous to the ones for the
LSTM cell listed in Equation 2.5.

2.5 Related Work

LSTMs have been highly studied for sequence learning ever since Hochreiter and Schmid-
huber introduced it in 1997 [31]. Major earlier work include the introduction of BPTT by
Rumelhart [20] in 1985 and successful training of RNNs to perform supervised learning
with sequential inputs and outputs by Elman in 1990 [34].

In [35], the conventional RNN is compared with the LSTM and GRU models in a sequence
modelling task with music and raw speech signal data. The result of the paper show
improved performance with the gated units, however, no concrete evidence is given on
which of the gate units is better.

In [4], the author put LSTM network to the financial market prediction task and also show
the backtest overfitting problem in time-series forecasting task. In [5], LSTM model is used
to predict the sensor temperature for axle bearing of a railway. They train LSTM model
using the history of temperature sensor readings along with other physical properties such
as pressure, velocity of train, etc., and predict the temperature of axle at six different
points. In [6], LSTM is used to model Sea Surface Temperature (SST), and predict future
temperature given history to previously recorded SSTs. In [7], LSTM is used to predict
diagnoses given Electronic Health Record (EHR) of patients. EHR data have varying
length and are irregularly sampled, nevertheless, the paper show good result of LSTM
model together with dropout [12] in classifying diagnoses of critical care patients given
clinical time-series data. In [28], LSTM network is employed in text prediction, handwriting
prediction and synthesis task. In [29], LSTM model is used for speech recognition. In [8],
convolutional LSTM network is used for weather forecasting.

2.6 Tools and Softwares

In this section, tools and softwares used within this thesis work are mentioned in brief.
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2.6.1 Wireshark

Wireshark is the network protocol analyser tool [36]. It is used to record the TCP/IP
communication between MAIUS T-Stack and OBC. The recorded file is saved in packet
capture (.pcap) format, which is later loaded in Python for constructing the dataset for
neural network.

2.6.2 Python, Keras with Tensorflow Backend

Python is used for preparing dataset for the neural network training. The network itself is
built in Python using Keras [37] library. Keras is a high level neural network API written
in Python and is capable of running on top of Tensorflow [38] or Theano. Tensorflow
is an open-source software library developed by Google for high performance numerical
computation. It is one of the widely used in machine learning and deep learning tasks.
Tensorflow API supports computations on CPU and GPU platforms.

In this thesis work, Keras v2.2.4 with Tensorflow v1.11 backend is used to build and
compile all neural network models.

2.6.3 GPyOpt

GPyOpt [39] is a Python open-source library for Bayesian Optimization. It is based on
GPy [40], which is a Gaussian processes framework in Python. GPyOpt performs global
optimization of black-box functions using Gaussian processes. The python package is used
to find optimum hyper-parameters of the neural network.

2.6.4 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) facilitates MBSD process by allowing source
code as well as other artefacts generation directly from the user-defined data model using
tools like Xtend. Data model in MAIUS is developed using EMF and is based on Ecore
meta-model. Ecore is a subset of Unified Modelling Language (UML).

2.6.5 Xtext

Xtext is a open-source framework used to develop DSLs. It allows user to define grammar
of the DSLs as an instance of the Ecore language. Xtext is build on the top of the EMF.

2.6.6 Xtend

Xtend is a high-level programming language and a dialect of Java. In the Xtext framework,
Xtend is used for the code generation and model transformation. Artefacts generated from
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MAIUS stack and card DSLs are used in the data preparation. The generator application
which generates these artefacts are written in Xtend language.

2.6.7 High Performance Data Analytics (HPDA) Cluster

The training of all the neural network models are executed in the Graphics Processing
Unit (GPU) node of the HPDA cluster of SC, DLR. The cluster is a Linux machine. The
specification of the GPU node are as follows [41]:

• 2x Intel Xeon Scalable Processor "Skylake" Silver 4112, 2.60 GHz, 4-Core Socket 3647

• 192 Gigabyte Double Data Rate 4 (DDR4) Random Access Memory (RAM)

• 2x 256Gigabyte (GB) storage

• 2x 10GBase-T Ethernet ports

• Infiniband network card with Endpoint Detection and Response (EDR)

• 4x nVidia Tesla V100 graphics card



CHAPTER 3

Methodology

This chapter explains the methodology of the thesis work. The chapter introduces and
elaborates different steps on which the thesis project is executed. It sheds light on the
training-data preparation procedure, illustrates the neural network architecture, and other
technical details.

Figure 3.1: Different steps of the project phase.

The methodology of the thesis can be divided into four phases. These phases are illustrated
as steps of the ladder structure in Figure 3.1. In Step-I, an experiment with the candidate
hardware is performed and input-output data is collected. The acquired data is analysed
in Step-II, from which the datasets to train the RNN are prepared. In Step-III, the model
architecture is designed and the hyper-parameters are optimized. Different model instances

21
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are trained using the optimum configuration obtained from the hyper-parameter search.
Step-IV is the last step where all model instances are evaluated. In the following section,
these project phases are explained in detail.

3.1 Experiment with Real Hardware

The learning process and the network architecture depend on the amount, type, and
dimension of the available dataset, therefore data collection and preparation is done before
the learning begins.

Figure 3.2: Setup of the experiment with the real hardware.

In order to collect data for training, an experiment is performed with the real hardware
as shown in Figure 3.2. The entities in the dotted region are the candidate to be modelled
by the neural network. Arbitrary sensors and actuators are denoted by dark-grey circles.
The environment is where the physical process happens. The peripheral hardware provides
interfaces for the external components such as actuators and sensors. Actuators are used
to make changes in the environment and manipulate the ongoing physical process. Sensors
take measurements and give the measure of the effect caused by the manipulation. The
hardware accepts commands from the central processing unit hereby allowing access to its
channel values. The central processing unit can be a OBC or any kind of a computing unit.
The hardware component along with all the actuators and sensors, as well as the ongoing
physical processes in the environment are taken as a whole to be modelled together by the
neural network.

The experiment as seen from the data-space perspective is basically random read/write
commands sent to the peripheral device via OBC. A write command sets the state of an
actuator, whereas, a read command gets the reading of a sensor. The process of randomly
dispatching commands is automated, thus it can be executed for arbitrary period of time.
During the execution of the experiment, the communication between the peripheral device
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and the OBC is recorded into a database from the communication channels, which is done
once the message has been dispatched by the peripheral device and the OBC. So, the
data-collection procedure do not interfere with the communication between the peripheral
device and OBC. Thus, the data collection procedure does not demand changes on the
OBSW, therefore, it is in compliance to requirement req_04 and req_05.

The experiment is configured in such a way that dependencies between the channels of the
peripheral hardware are created. Actuators states are changed from outside of the system
(by the user via OBC), thus, they are the independent variables of the system. Sensors
readings depend on the state of the system, hence, they are the dependent variables. The
RNN as a supervised learning method learns the mapping between these dependent and
independent variables in time (covers requirement req_02 ).

The physical process is not defined yet; the experiment is generic and can be replaced by
any other in the future. Moreover, the dimension of the experiment is generic as well. At
this point, it is assumed that an arbitrary number of sensors and actuators can be involved
in the experiment. Details on the sensors and actuators used to test this hypothesis are
given in Section 4.2.

3.2 Datasets

The learning process of the neural network depends on the dataset. In order to ensure
efficient learning, dataset should only contain features which are relevant to the underlying
problem, otherwise the learning process may deviate heavily from the solution resulting in
poor or no convergence. In theory, dataset can contain arbitrarily large number of features.
Carefully selecting and refining features helps to optimize the learning process. The bound
and scale of individual features also affect the learning process. If the features-scaling is not
done correctly, the network will end up emphasizing some feature more than others [42],
thus the effect of some features can be completely lost. In addition to this, poorly scaled
features demand very low learning rate, thus resulting in slow convergence. Lower learning
rate also increases the risk of convergence to a local optimum.

In the supervised learning method, the model learns to map an input to a known target,
therefore, the input data and target data has to be aligned perfectly otherwise the whole
learning process breaks down. In addition, the structure and dimension of the input and
target data should also be carefully engineered, as they affect many aspects of the learning
process. The shape and dimension of the input data determine the shape and dimension of
the input layer of the neural network, and therefore, also affect that of the hidden layers.
Similarly, the shape and dimension of the output layer should be same as of the target
data. Furthermore, the number of features in the input affects the number of units in
the input layer, thus affecting the breadth of the network and thereby the computational
cost. Moreover, values of the hyper-parameters also depend on the dataset. Important
hyper-parameters are explain in section 3.4.
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The byte-stream collected in the previous step is filtered to find the actuators and sensor
values from which the input/target matrices as illustrated in Equation 3.1 and 3.2 are
constructed. Each column vectors of these matrices represent a sample. Since, supervised
learning requires to have a target for each input, both matrices have same N number of
columns. Altogether, there are P number of features in an input sample which map with
Q number of targets. Since, actuator states are independent variables they are the input
features, similarly, sensor reading are the dependent variables which are to be predicted,
thus they are the targets. Since, time is crucial in modelling a physical process, in addition
to actuator’s states, the time-interval between two samples is collected from the communi-
cation protocol and is included as a extra feature and takes the first position in the input
column vector. The time-interval value act as an excitation signal for the neural network
model when all actuators are in the same state for a long period of time.

X =



x1,1 · · · x1,n · · · x1,N
... . . . ... . . . ...

xp,1 · · · xp,n · · · xp,N
... . . . ... . . . ...

xP,1 · · · xP,n · · · xP,N


(3.1)

Y =



y1,1 · · · y1,n · · · y1,N
... . . . ... . . . ...
yq,1 · · · yq,n · · · yq,N
... . . . ... . . . ...

yQ,1 · · · yQ,n · · · yQ,N


(3.2)

The process of finding the actuators and sensors values in the byte-stream is target-driven,
meaning, each input and target column vectors are constructed when values of all sensors
for one time step are found. Readings of all sensors are taken in a fixed interval, thus,
this interval resembles a time step. The values of actuators are updated as they are found,
otherwise their last state is maintained.

3.2.1 Normalization

Next step of the data preparation for the neural network training is normalization or scaling
of feature and target values or data standardization. When features are not properly scaled,
back-propagation emphasizes some features over the other, which result in some features
contributing to the weight update more than the other, hence, resulting in a higher error
rate [42].

Different data normalization techniques can be used, for examples, data could be normal-
ized between 0 and 1, or -1 and 1. These normalization techniques are known as linear
transformation [42]. Another popular technique is that statistical standardization, which
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transforms the data to have a zero mean and unit variance [42]. This is achieved by ap-
plying Equation 3.3 to all features and target values.

xp,n = xp,n − x̄p
σp

(3.3)

Here, x̄p and σp are the mean and standard deviation of the feature p, respectively. Fig-
ure 3.3 shows the example histogram of the transformed data using the statistical standard-
ization method. The red curve represent the probability distribution function computed
from the histogram i.e. the integral of this curve is equal to one. This technique provides
statistical bounds to the feature and target values, in return, it results in smaller weights
in the neural network layers which ultimately improves the learning process by stabilizing
the gradient descent process [42].

Figure 3.3: Histogram of a example data transformed using statistical standardization method. The red
curve shows the probability distribution function of the underlying data.

In this study, input as well as target datasets are normalized to have a zero mean and a
variance of one in the sample axis i.e. each features and target values are normalized inde-
pendently using Equation 3.3. All further steps are preformed in the normalized dataset.
Since, the neural network is trained with the normalized data, the output produced by it
is also normalized one. Therefore, target values predicted by the network should be denor-
malized back to their proper representation using the same normalization parameters. For
this reason, the normalization parameters: mean and standard deviation of each actuator
values and sensor readings are saved.
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3.2.2 Input Data

The input data is fed into the network. It must have same shape as of the first layer in
the network. So, unless it is intended that the input is one dimensional, the input matrix
constructed in the earlier step must be reshaped according to the desired input dimension
of the first layer.

The RNN networks take a temporal sequence as an input. Therefore, the input matrix
created from the channel values is reshaped to facilitate the time-dimension of length T .
Moreover, RNN layers such as LSTMs, GRUs in Keras framework requires the temporal
dimension to be in the second axis of the input, such that the required input shape
is [N × T × P ].

The temporal dimension is created by implementing look-back in the input samples, mean-
ing, the previous T − 1 input vectors are included in a input sample. For the first T − 1
input vectors, the oldest vector is repeated (T − n) times, where n is the sample index.
Equation 3.4 shows the input data as a 3-dimensional array, each elements in the first axis
is a sample of shape [T × P ] – there are N number of elements in the first axis. In order
to maintain similarity with input matrix representation from Equation 3.1, each samples
in Equation 3.4 are shown as the transpose of [P × T ] matrix. Hence, the required shape
of the input data i.e. [N × T × P ] is achieved.





x1,1 · · · x1,1
... . . . ...

xp,1 · · · xp,1
... . . . ...

xP,1 · · · xP,1



>

︸ ︷︷ ︸
1st sample

, · · · ,



x1,N−T+1 · · · x1,N
... . . . ...

xp,N−T+1 · · · xp,N
... . . . ...

xP,N−T+1 · · · xP,N



>

︸ ︷︷ ︸
Nth sample


(3.4)

Input data is divided into three datasets from the first axis (N dimension) to get the
training, validation, and the test set. Training set consists of the first 70% of the samples,
validation set consists of the next 20%, and the remaining 10% of the samples are separated
for the testing purpose. The validation set is used during training to compute the loss such
that the weights are adjusted to minimize the error on the validation data and not on the
training data. This reduces the over-fitting of the network as the validation set is not used
to train the network, thus simulates the test scenario. Over-fitting is the condition, when
the network learns irrelevant details from the training set. The test set is unused during
training and is only used to evaluate the model after the training is over.

3.2.3 Target Data

Each [T × P ] shaped input sample produces an output of shape [Q × 1], therefore, there
is no need to extend the dimensions of the target matrix from Equation 3.2, however,
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it needs to be reshaped by taking a transpose, so that the length of the first dimension
is equal to batch size N . Hence, the target data has shape [N × Q]. In analogy to the
input data, target data is also divided into three datasets keeping the alignment with the
respective input set.

3.3 Model Design and Training

Within this study, two RNN topologies each with the LSTM and GRU memory units
are trained and evaluated separately. All network topology follow a simple design pattern
which basically has four block of layers. The first and last neural-blocks consist of one
feed-forward layer each, which are the input and output layers, respectively.

The second one is the memory-block, which is composed of recurrent layers. The LSTM
and GRU as recurrent layers in the memory block make two instances of a model architec-
ture. Two network architectures are developed within this study, which are described in
Sections 3.3.1 and 3.3.2. Each recurrent layer is followed by a Batch Normalization (BN)
layer. While training deep neural networks, the distribution of each layer’s inputs changes,
this phenomenon is referred as internal covariate shift [43]. This effect slows down the
training significantly, requires lower learning rate, and carefully engineered weight initial-
ization techniques [43]. BN layer address this problem by allowing normalization to be
a part of the model architecture and performs normalization for each mini-batch during
training. BN of an arbitrary input xi over a mini-batch is given by yi and is computed
as [43]:

x̄B = 1
b

b∑
i=1

xi (3.5a)

σ2
B = 1

b

b∑
i=1

(xi − x̄B)2 (3.5b)

x̂i = xi − x̄B√
σ2
B + εBN

(3.5c)

yi = γBN x̂i + βBN (3.5d)

Where, B = {x1, . . . , xb} is the mini-batch for training. x̄B and σ2
B are the mini-batch

mean and variance, respectively. x̂i is the normalized value and yi is the same after scaling
and shifting it by γBN and βBN , respectively. Parameters γBN and βBN are learned during
training. εBN is a fixed small value used to avoid singularities.

The third block of the network topology is composed of time-distributed dense layers.
Dense layers are composed of feed-forward units and are fully connected in sequence axis T .
Each of the dense layers are followed by a Dropout layer and a BN layer. Dropout layers
address the over-fitting problem by randomly removing units from the layer along with
their weights. The randomness is controlled by a probability factor referred as the dropout
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rate. The dropout rate is a hyper-parameter which is further discussed in Section 3.4.9.
There is a Flatten layer between the third and last block. Flatten layer is a transition layer
whose sole function is to reduce input dimension to one and has no trainable parameters.
In RNN, the input has two dimensions (time and feature) but the target only has one
dimension, thus flattening is needed.

3.3.1 One-to-One Architecture

One-to-one model architecture has one input layer and one output layer, the shape of
these layers are T × P and Q × 1, respectively. The Figure 3.4 illustrates the one-to-one
network topology in its general form. The structure of the memory and time-distributed
dense block are shown on the right-hand side (sub-block). A variable number of these
sub-blocks are concatenated to form the respective blocks. The number of sub-blocks and
units in these layers are determined by the hyper-parameter search.

Figure 3.4: One-to-one network architecture – network topology with one input and one output layer.

3.3.2 One-to-Many Architecture

The one-to-many architecture has only one input layer but has multiple output layers. The
model branches in the middle to facilitates these multiple output tails. Number of such
neural branches are equal to the number of targets. The Figure 3.5 shows the one-to-many
network architecture. The neural blocks are analogous to the ones from the one-to-one
architecture, however their internal structure as well as the hyper-parameter values may
differ.
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Figure 3.5: One-to-many network architecture consisting of one input layer and multiple output layers.

Generally, neural networks are used with similar type of output data, such as labels,
images, speech-signals, etc. Since, the goal of this study is to model a physical system
consisting of multiple sensors and actuators with various signal types. It is a unique neural
network application. Empirical method show that producing different ranges of values
through a single output layer is difficult, mainly because, the output behaviour differ so
much that the model optimized to produce continuous output signal fails to simultaneously
produce the step-function and vice-versa.

The one-to-many neural architecture developed within this study allows the customiza-
tion of the tail of the network for each target outputs separately, hence, predicting variety
of signals at once, without having to compromise on the prediction accuracy, becomes
possible. The neural branches are independent of each other in their structure and hyper-
parameter values. Further benefit of the branching structure of the model is that each
branch could be trained separately. It further opens the door of concurrent training where
each branches are trained in parallel. However, within this study, all neural branches are
trained in a single process. Parallel training shall facilitate efficient training of a signifi-
cantly large network in the future. Moreover, the branching is done after the memory-block
which allows the model to share the RNN layers between different neural branches, hence
the weights in the memory block are shared.
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3.3.3 Training the Network

Two instances of each model architecture described earlier are trained separately, once
with the LSTM as the memory unit, and the other time with the GRU memory unit.
Optimum hyper-parameter values are used to design these models and the training sets
defined in Section 3.2 are used to train them. The models are trained in the GPU node of
the HPDA cluster.

During the training, L{CEC} in the validation set is minimized. The formulation of
L{CEC} is given in Equation 3.11. All models are trained for about 10 epochs. Empirical
method show all models already converge sufficiently at the 10th epoch, training longer
causes the model to over-fit to the training set and result in high error on the test set. In
all training sessions, the mini-batch size of 256 is used. The value is also chosen such that
the model do not over-fit to the training set. Furthermore, the initial learning rate of all
training sessions is fixed to 0.002. This value show good result in all types of target signals
and model types. The learning rate decays by 0.02 factor after each weight update. An
update happens when a mini-batch of sample is passed through the network.

Callback functions from Keras are used to assist the training process of all model instances.
These functions are called at the end of each epoch of training. The following callback
methods are used:

Early Stopping

Although the training is said to be iterated epoch times, it can be terminated earlier in
case the performance stops improving [44]. For this purpose, a built-in callback function
from Keras Early Stopping is used. Validation loss is monitored, if it does not decrease
for 4 consecutive epochs the training session is terminated. Early stopping helps to prevent
over-fitting of network by not letting it to learn irrelevant details from the training set.

Reduce Learning Rate on Plateau

This callback method also monitors validation loss, if no improvement is seen for 2 consec-
utive epoch learning rate is reduced to 20% of the original learning rate. 2 more epochs of
training is conducted using the reduced learning rate, if the performance does not improve,
the training session is terminated.

Model Checkpoint

This callback method provide an option to save optimum weights during training, such
that, not the last set of weights but the optimum one among all epochs is used in the
evaluation phase. Validation loss is monitored, set of weights saved in a file only when the
validation loss is smaller than the previously saved epoch.
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3.4 Hyper-Parameters

Deep learning with neural networks consists of the optimization of a complex function
which takes an input and give a predicted output. There are many parameters involved
in this process such as, number of epochs to train, mini-batch size, learning rate, etc.,
which are not selected by the network itself. In order to get full advantage of the network
architecture and the used dataset, optimum values for these parameters must be found and
fixed before the network could make meaningful predictions [45]. These parameters are
generally referred as hyper-parameters of the neural network. Different hyper-parameters
affect different aspect of the neural network model. The Table 3.1 summarize them in a
list, where different hyper-parameters are given in the row and in the column, different
aspects of the model which are affected by tuning these parameters are marked.

# Hyper-parameter Stability Convergence
Speed Over-fitting Under-fitting Computation

Cost

1 Cost Function x x

2 No. of Layers x x x x

3 No. of Units x x x x

4 No. of Epochs x x x

5 Mini-batch Size x x

6 Activation Function x x

7 Learning Rate x x x

8 Kernel Initializers x x

9 Kernel Regularizer x

10 Dropout rate x

11 BN Parameters x x x

Table 3.1: Different hyper-parameter affect different aspects of the neural network model.

Hyper-parameter search is mostly driven by the requirement req_07 (see all requirements
in Table 1.1), which ensures the model to work well with the unseen data in the test
phase. Poor performance of the model in the test phase is mainly due to over-/under-
fitting of the neural network model. Hyper-parameters such as number of layers, number of
units, training epochs, mini-batch size, regularization factor, dropout rate, early-stopping
criterion, etc. address these problems.

There are several hyper-parameters is a neural network, adjusting all of them to their
optimum value for the given problem is one of the most difficult task in deep learning with
neural networks. Thus, hand-crafting them takes lot of time and is inefficient, therefore the
search process needs to be automated. In this study, the Bayesian optimization algorithm
is used to find the optimum hyper-parameters of the neural network model. The algorithm
is much faster in comparison to grid-search and random-search algorithms [46, 47]. For
the automatic optimization process, CEC is maximized. Not all hyper-parameters are
optimized using the Bayesian optimization process; due to time constraints and logical
reasons, some of them are done empirically. Detail on the usages of the algorithm is
explained in Section 4.6. The optimization algorithm itself is not within the scope of the
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thesis work.

Nevertheless, due to large number of tunable hyper-parameters of the RNN models, only
course-grain search is made which give fairly good result. Fine-grained search of these
parameters is the work to be done in the future. The hyper-parameter value which showed
good result in similarity metrics on the test set are selected. In the following sub-sections,
the most important hyper-parameters are explained and their values are given.

3.4.1 Cost Function

During the training, the model predicts outputs for each input samples in the training set.
Then, the cost function is computed, which measures the error of the predictions. Then,
the learning method modifies the weights in the network to minimize the error. In order
to modify the weight values properly, gradients of the cost/error function are computed
with respect to each weights in the network. These gradients indicate by what amount
the error would increase or decrease if the weight is increased by a small amount. Then,
the weights are adjusted to the negative direction to the gradient vector, such that the
error is minimized. The Figure 3.6 shows the gradient descent to minimize error J(Θ);
Θ = {θ1, θ2, . . . , θH} is the set of weights and biases in the network, where θ1 is the matrix
containing the weights and biases between input layer and the first hidden layer, similarly,
matrix θH contains weights and biases between (H− 1)th and (H)th layer.

Figure 3.6: Gradient descent to minimize error [48].

The cost function when averaged over all samples in the training set have kind of a hilly
surface in the high-dimensional space of weights [13]. Thus, a negative gradient direction
indicates the direction of the steepest descent in the hilly surface moving towards the bot-
tom, where the average prediction error is lowest [13]. The weight update for an arbitrary
weight w is computed as:

∆w = −µ∂J(Θ)
∂w

, (3.6)
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where, µ is the learning rate. Then, the weight update at iteration ξ is given by: w(ξ+1) =
w(ξ) + ∆w(ξ). The partial derivative ∂J(Θ)

∂w is computed for all weights in the network.

Three different cost functions are compared, formulation of these measures are given below:

• Mean Squared Error (MSE) is one of the popular measure for quantifying re-
gression models [49]. It is easy to understand and also easy to compute. MSE is
computed by squaring the difference between each samples in y and ŷ and finally
averaging them such that the measure is a scalar.

MSE = 1
N

N∑
n

(yn − ŷn)2 (3.7)

MSE penalize large errors more (squaring the difference) make it very sensitive to
outliers, which is one of the drawback of this measure. Moreover, MSE is not within
the scale of the data, therefore, common practice is to square the result to compute
another metric, namely, Root Mean Squared Error (RMSE).

• Mean Absolute Error (MAE) is not quadratic as MSE. It is computed by aver-
aging the absolute difference between each samples in y and ŷ as following:

MAE = 1
N

N∑
n

abs
(
yn − ŷn

)
(3.8)

Thus, MAE treat large and small error the same way and do not increase the penalty
when the error is large.

• Correntropy Criterion (CEC) is a generalized correlation function which is get-
ting popular in signal processing and machine learning [49, 50]; maximization of cor-
rentropy has increasingly been used to replace the minimization of MSE in training
regression models. Correntropy is a non-linear and local similarity measure between
two signals [50]. The locality of CEC is given by the bandwidth of the kernel func-
tion [50]. Unlike MSE, correntropy are insusceptible to outlying predictions. It is
computed as:

CEC = 1
N

N∑
n

κλ
(
yn, ŷn

)
, (3.9)

where, κλ(·, ·) is the Gaussian kernel function, which is defined as:

κλ
(
yn, ŷn

)
= exp

(
− (yn − ŷn)2

2λ2

)
, (3.10)

where, λ is the bandwidth of the Gaussian kernel. CEC = 1 represent perfect match
of two sequences, on the other hand, CEC < 1 represent the mismatch. When used
as a loss function, Equation 3.9 is modified as following:

L{CEC} = 1− CEC (3.11)



34 CHAPTER 3. METHODOLOGY

Figure 3.7: Candidate loss functions.

These three candidate loss functions are shown in Figure 3.7. Separate training sessions
are conducted using each of them, and their predictions on the test-set are observed. Worst
performance is seen when the model is trained using MAE as the cost function. As also
illustrated in Figure 3.7, MSE increases rapidly when the error is large, thus it is very
sensitive to occasional outlying predictions. The CEC loss on the other hand, performs
as MSE when the error is small, and saturates about 1 when the error is large, thus its
performance is much stable. The saturation rate of the CEC loss is determined by the
kernel bandwidth, denoted by λ in Equation 3.10. Large λ value result in slow saturation.
In all calculations, λ = 1/

√
2 is used; this value of is λ obtained empirically. Hence, L{CEC}

is minimized to train all types of models.

3.4.2 Hidden Layers and Hidden Units

Conventionally, every layer between input and output of a neural network are referred
as hidden layers. The number of hidden layers and the number of unit in each of those
layers determine the depth and breadth of the network, respectively, therefore they directly
correspond to the complexity and the computation cost of the model. A large number of
hidden layers with many units in them result in very deep and wide network. Efficient
training of such large networks is very difficult and requires enormous amount of training
samples. Large networks are able to learn irrelevant details from the training samples,
and hence, result in overly fitted model. Also, back-propagation is slow in large networks,
as there are large number of weights to be adjusted. Furthermore, when gradients flow
through very deep network, they tend to either grow very large and explode causing
instability in the model. Or, decay excessively and vanish, which causes loss of valuable
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information and no learning becomes possible. Large networks are also computationally
expensive to train.

On the other hand, less number of hidden layers with inadequate number of units result
in shallow network and result in under-fitting of the model. Under-fitting is the opposite
of over-fitting of neural networks where the network is too simple and cannot properly
model the underlying problem. Thus, adequate number of hidden layers and number of
units in them are hyper-parameters which need to be tuned. The number of layers and the
number of units in each of the one-to-one and one-to-many models are given in Table 3.2.
These values are obtained from the hyper-parameter search.

Architecture Output Type No. of Layers × No. of Units
LSTM/GRU Time-distributed Dense

One-to-one All 1× 50 5× 100

One-to-many
Step Function }

1× 50
2× 60

Constant 2× 50
Continuous 3× 60

Table 3.2: Number of layers and units in different neural blocks of two different network architectures.

3.4.3 Training Epochs

One epoch of training is said to be finished when the whole batch of samples (Ntrain

number of samples) from the training set are passed through the network. Usually, these
samples of data are passed through the network several time during training. The number
of epoch to train depends on the complexity of the network, complexity of the underlying
problem, and the type and amount of samples available for training.

Number of epochs to train also addresses the under-/over-fitting problems of the model.
Training very less number of epoch may not be sufficient to update all the weights to their
optimum values – under-fitting of the network. On the other extreme, training for large
number of epochs results the model to fit the training data so well that it performs poorly
in unseen data – over-fitting of the network.

Number of epochs for training is obtained empirically by monitoring the validation loss.
Saturation point of the validation loss is seen around ≈ 10 epochs for all models.

3.4.4 Mini-batch Size

In the stochastic learning method, in each update step, weights are adjusted by averaging
the gradients of small number of samples from the training set [13]. This small batch of
samples are referred as the mini-batch. One epoch of training consist of many number of
mini-batches. The size of the mini-batch also addresses the over-fitting problem. When the
mini-batch size is large, weights are updated only after looking into so many samples from
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the training set that it fits them better – over-fitting of the model. Too small mini-batch
size result in a large number of weight update per epoch, which is obviously slow. Moreover,
updating weights too frequently without sufficient examples results in convergence to a
local minima resulting in high error. Models are trained with different mini-batch size from
32 to 512, each time doubling the size. Maximum CEC on the test set is achieved when
the mini-batch size is 256.

3.4.5 Activation Function

In each layer of the neural network, the output is computed by a linear combination of
its input and weights. In most cases, the underlying problem is very complex and can not
always be modelled by a linear system, therefore, non-linearity has to be introduced in
each layer’s output, this is done by evaluating the layer’s output by a non-linear function,
commonly refereed as an activation function.

There are many kinds of activation functions. Following are the formulation of the ones
used in the models:

• Sigmoid: F(h) = 1
1+e−h ∈ [0, 1]

• Tangent Hyperbolic (Tanh): F(h) = tanh(h) = 1− 2
1+e−2h ∈ [−1, 1]

• Rectified Linear Unit (ReLu): F(h) = max(0, h)

• Linear: F(h) = h

where, h is the output of th neuron of an arbitrary layer.

Activation function of a layer is chosen according to the range of its input as well as the
desired output. The ReLu function facilitates smooth gradient flow [13], therefore it is used
in all time-distributed dense layers. However, the ReLu function do not bound positive val-
ues, therefore, when used in a recurrent layer, the recurring activation grows exponentially
which cause instability in the network; this behaviour is observed by empirical methods.
Therefore, tanh function is used to activate forward signals, and Sigmoid function is used
in the recurring signals of all recurrent layers in both model architectures.

In regression, the basic idea is to disfigure the input by the hidden layers in a non-linear
way such that linear discrimination is possible in the output layer [13], therefore, a linear
activation function F(h) = h is used in the output layer.

3.4.6 Optimizer

In this study, Adam, a first-order gradient-based stochastic optimization algorithm intro-
duced by Kingma in 2014, is used as the optimization function. The algorithm calculates
an exponential moving averages of the gradient and the squared gradient [51]. The mov-
ing averages are estimates of the first moment (the mean) and the second raw moment
(the un-centred variance) of the gradient [51]. The algorithm then uses these to compute
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individual adaptive learning rates for different weights. Parameters β1 and β2 control the
decay rate of these moving averages [51].

Instead of looking for other learning methods, more focus is made on optimizing hyper-
parameters for Adam. Hyper-parameters for Adam optimizer include initial learning rate µ,
learning rate decay µdecay, moment decay rates (β1 and β2), and epsilon εadam.

In all training sessions, µ = 0.002 with µdecay = 0.02 is used. These values are obtained
by the Bayesian optimization process. The moment decay rates, β1 = 0.9 and β2 = 0.999,
are left to their default values as given in the Keras package.

3.4.7 Kernel Initializer

Neural network trained using stochastic learning algorithm start with randomly initialized
weights on all layers, optimum values for weights are searched through back-propagation
during training. The performance of the learning algorithm based on the stochastic gra-
dient descent (Adam), therefore, depends on the initial weights [52].

Moreover, it is important to initialize them with a random distribution, when initialized
with a same value (zeros/ones) all weights update would be same therefore no learning is
possible. Also, when initialized with a random distribution any particular feature is not
favoured at the beginning and therefore learning variety of features becomes possible.

Different types of initializers glorot normal [53], glorot uniform [53], orthogonal are com-
pared by monitoring the convergence rate. In order to ensure reproducibility of the result,
a constant seed value 1337 is used for all weight initializers. This seed value is obtained
empirically, and also by monitoring the convergence rate.

Hyper-parameter search result show fastest convergence when the weights of forward sig-
nals in the recurrent layers are initialized with a uniform distribution with variance scaled
by a factor of 2, glorot uniform [53]. For the weights of the recurring signals in the mem-
ory blocks and for that of the time-distributed dense blocks, orthogonal initializer showed
faster convergence.

3.4.8 Kernel Regularizer

Kernel regularization is one of the techniques to fight the over-fitting problem in neural
networks. The idea here is to penalize large weights so that they do not dominate others.
This is done by modifying the cost function as:

J(Θ) = J(Θ) + ε2‖w‖2, (3.12)

where ‖w‖2 is the L2 norm of the all-weight vector w. Vector w contains all weights in Θ
(see Section 3.4.1). ε2 is the regularization factor for the L2 norm.

Weight update Equation 3.6 is then modified as:

∆w = ∆w − µε2w (3.13)
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A large ε2 result in harsh penalty causing loss of important feature information, on the
other hand, too lower values might be ineffective or insufficient penalty allowing larger
weights to be still dominating. Thus, the regularization factor ε2 is an important hyper-
parameter which needs to be optimized. The Table 3.3 show the values for the kernel
regularization in each layers. The two comma-separated values of the LSTM and GRU
layer are the regularization values of the forward and recurring signals, respectively. The
regularization of the recurring signal is 0.99 which is very harsh, this is required to prevent
the recurring activations from growing exponentially large. High recurrent regularization
also prevents over-fitting of the RNN model.

Architecture Output Type Kernel Regularization
LSTM/GRU Time-distributed Dense

One-to-one All 0.4, 0.99 0.6

One-to-many
Step Function }

0.4, 0.99
0.4

Constant 0.4
Continuous 0.9

Table 3.3: Kernel regularization parameters in different neural blocks of two different network architec-
tures.

3.4.9 Dropout

Dropout is another technique to address the over-fitting problem of the neural networks.
The key idea of dropout is to randomly drop units along with their connections from the
network during training [12]. The dropping of weights is done randomly, controlled by a
probability parameter p. This is an effective way to significantly reduce over-fitting and to
improve regularization [12], however, dropout causes random loss of information, therefore
large dropout are avoided. Hyper-parameter search is performed to find the appropriate
value of p for all layers in the model. The dropout rate of 0.3 is used in all time-distributed
dense layers and no dropout is used in the recurrent layers.

3.5 Evaluation Measures

Qualitative as well as quantitative analysis are performed to evaluate all models. Evalua-
tion metrics defined in this section are used to make evaluation of the models in Chapter 5.

3.5.1 Qualitative Analysis

Qualitative analysis of neural network models already begins in the training phase. During
training, the loss function as well as other evaluation metrics are computed at the end of
each epoch. This is done using the training set as well as the validation set. When the
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training session is over, losses and metric values are plotted against epochs of training. By
observing these graphs, especially the loss on training and validation set, one can make
decisions about the efficiency and sufficiency of the training session as well as the quality
of the trained model. Following observation are made via empirical methods:

1. Training loss J(Θ)train and validation loss J(Θ)vali are undefined or very
large. This could either mean that the dataset is not correctly normalized; the learn-
ing algorithm is not appropriate for the dataset; or the learning rate is too high. In
summary, the network is not learning at all. Different techniques such as normal-
izing the dataset differently, using smaller learning rate, and different optimization
criteria, are tried to address this issue.

2. Even the training loss does not decrease sufficiently, J(Θ)train � 0. This is
the indication of under-fitting of the neural network, which means that the network
is too simple to model the problem [52]. In such cases, the number of parameter to
train is very less in comparison to the data samples available for training. To address
this problem, deeper and wider network is trained for increasing number of epochs
till the training loss starts to decrease.

3. Training loss decreases continuously, however validation loss starts to in-
crease after some point. This is usually the case when the amount of dataset
and the network structure are fairly good to model the problem, however, the net-
work starts to learn un-necessary detail from the training set, which led to the poor
performance in the validation set after some time of training, indicating an over-
fitting [52]. There are different ways to address this problem. One is to decrease the
parameter space of the model [44], meaning use less number of layers, decrease the
number of units in them, etc. Another way is to decease the size of weights through
regularization [44]. BN also have some regularization effect [43] and help to reduce
over-fitting. Another technique is to terminate the training session when the model
stops improving through Early Stopping [44] mentioned in Section 3.3.3.

4. Training and validation losses decrease constantly and saturate about the
same value, which is ideally very close to zero. This is the desired spot between
under-fitting and over-fitting of the neural network. Once this stage is reached, net-
works performance can further be improved by fine tuning other hyper-parameters.
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3.5.2 Quantitative Analysis

Predictions are made with the optimally trained models in an iterative fashion – by taking
one input sample from the test set at a time to make the prediction. This is different
approach than in training stage, where the predictions were made in mini-batch of samples.
The reason to make iterative prediction on the test data is to simulate the real-world test
environment where only one input is available at a time. Sensor values predicted in the
iterative way ŷ and the true sensor values obtained from the hardware y are used to
compute different evaluation metrics, which give the quantitative measure for the quality
of the models. Since it is difficult to judge one metric over the other as they capture
different properties of the prediction performance, more than one performance metrics
are computed. Distance measures and similarity measures are described in the following
subsections.

Distance Measures

Distance measures are computed directly from raw data without making use of any other
signal information such as mean and variance. All the distance measures when zero rep-
resent perfect agreement. Prediction can be infinitely worst, so they can have arbitrarily
larger value. For the quantitative evaluation purpose, the euclidean distance measure MSE
and Manhattan distance measure MAE are computed. Since, the MSE is quadratic and
not within the scale of the data, square-root is taken to get an another metric, namely,
RMSE. Finally, the RMSE and MAE are normalized to range from 0 and 1 using the
minimum and maximum of the respective signal.

Figure 3.8: Example graph showing original signal in green and arbitrary predictions in orange and red.
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Similarity Measures

Distance based measurements are highly sensitive to scaling and shifting of candidate
signals. Similarity measures make use of other information about the signals, such as,
frequencies and phases, apart from the raw temporal data. Figure 3.8 illustrates an example
prediction scenario, where green signal represent the original signal, the red signal is just
the mean of original signal and orange signal is the original signal with amplitude scaled by
2. The distance measures show that the red signal is closest to the original signal, however,
in-terms of the behaviour resemblance, the orange signal is more appropriate. Therefore,
there is the need of similarity measures which can make better comparisons. The CEC
parameter given in Equation 3.9 is a similarity measure computed in the time-domain. The
Surface Similarity Parameter (SSP) score described below is computed in the frequency
domain using the frequency spectrograms of the candidate signals.

SSP is a quantitative comparison of two sequences, spatial or temporal, introduced in [54].
Time domain comparison methods are too general and do not make use of fundamental
properties of signals such as frequencies and phase of the candidate signals [54]. SSP makes
use of phase as well as amplitude information in frequency domain and is derived as:

SSP =

(∑
`

∑
k | Y`,k − Ŷ`,k |2

)1/2

(∑
`

∑
k | Y`,k |2

)1/2
+
(∑

`

∑
k | Ŷ`,k |2

)1/2
(3.14)

where, Y`,k and Ŷ`,k are the Fourier transform of true and predicted signals, respectively.
Subscript terms ` and k are the frame index and frequency-bin index, respectively. | · |
denotes the modulus operation of the complex term. SSP is normalized and dimensionless,
such that SSP ∈ [0, 1], with zero representing perfect agreement and one representing
perfect disagreement between two signals [54].

Computation of the SSP score requires to compute the Fourier transform of y and ŷ, which
is done using Fast-Fourier Transform (FFT) algorithm. For the framing purpose, Hanning
window of length 256 is used, with 50% overlap-shift. In order to choose the window length,
the frequency spectrum of the each signal is recovered back in time-domain performing
Inverse Fast-Fourier Transform (IFFT), then the MSE against the un-transformed time-
signal is computed. Longer frame length result in better FFT resolution, however, while
recovering signal in time-domain, one frame of the signal is lost (half frame length from
front and other half from the back of the signal) due to the over-lap add operation of IFFT
algorithm. Thus, the window length of 256 is chosen which balances the trade-off between
recovery precision and the signal loss.





CHAPTER 4

Implementation

In this chapter, the experimental setup used to evaluate the hypothesis of the study is
described. Sensors and actuators involved in the experiment are explained and their de-
pendencies with each other are defined. Furthermore, the chapter explains the software
modules developed within this thesis work. The chapter realizes the methodology in order
to fulfil the requirements.

4.1 The System

Figure 4.1 gives an overview of the entire system, where, HP-Search represents the hyper-
parameter search process which gives the set of optimum hyper-parameter values with
which the model is designed and trained. The terms ȳ and σy are the vectors containing
the mean and standard deviation of different targets, respectively. All other terms have
their usual meaning.

The system is divided into four parts, which correspond to the four project phases shown
as a ladder structure in Figure 3.1 at the beginning of Chapter 3. In Figure 4.1, these parts
are grouped by solid rectangles. The top-left part corresponds to the Step-I of the project
phase and shows the experiment with the real hardware, which in this case is the MAIUS
T-Stack. In MAIUS, the communication between the OBC and the T-Stack is via TCP
protocol. During the experiment, the messages exchanged between the OBC and the T-
Stack are recorded as TCP packets. The top-right part of the system diagram corresponds
to the Step-II and shows the filtering of these TCP packets using patterns generated by the
pattern-generator. Similarly, the middle section visualizes Step-III of the project phase,
where the designing and training of the RNN model are done. At the bottom, the testing
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and evaluation of the trained RNN model are shown. And finally, the evaluation metrics
are computed. The system diagram is valid for all model instances i.e. for one-to-one as
well as one-to-many model architecture with both, LSTM and GRU memory units.

Figure 4.1: The system diagram.

4.2 Experimental Setup

MAIUS cards described in Section 2.1.1, page 7 of this report are used to design the
experiment. The experiment is designed in a such a way that it covers the requirements
of the study and is yet simple to understand. Components for the experiment are chosen
accounting the requirement req_06 which enforces the model to work with various type
of signals such as, binary, continuous, step-like, and constants. Table 4.2 and 4.4 lists the
sensors and actuators used in the experiment along with the associated card and their
signal types.

Sensors and actuators listed in Table 4.2 and 4.4 are connected with the MAIUS T-Stack
as shown in Figure 4.2. The figure also shows the OBC and the PC connected with the
T-Stack. A fan and a resistor are connected to the output-channels of the Fan1 card and
a temperature sensor is connected to the input-channel of the PhotodiodeIn2 card. The
fan and resistor only have two states, i.e. they can be turned ON and OFF, thus they
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Card # Sensor Signal Type

NTCIn2 1 temperature sensor continuous

PhotodiodeIn2 2 photodiodes step

Led1 1 rotatory encoder constant

Table 4.2: Sensors used in the experiment.

Card # Actuator Signal Type

Fan1 1 resistor binary

Fan1 1 fan binary

AnalogOut1 3 LEDs step

Table 4.4: Actuators used in the experiment.

Figure 4.2: The experimental setup.

resemble two independent binary variables. The temperature sensor produces continuous
value depending on the state of the fan and the resistor, therefore it resembles a dependent
continuous variable. During the experiment, the fan and the resistor are turned ON and
OFF in random interval between 2 to 20 seconds and the temperature is monitored every
≈ 500ms.

Two LEDs, namely, led-1 and led-2 are connected together, both of them pointing to-
wards the photodiode-1 allowing maximum light to the photodiode. Similarly, led-3 and
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photodiode-2 are connected together. There is a divider in between these photodiodes such
that neither of the LEDs are affecting the other photodiode’s reading. During the exper-
iment, voltages in all LEDs are changed randomly to 0, 2.5 and 5 Volts. Depending on
the voltage level on the LEDs, their brightness differ which is reflected by the photodiode
reading. Thus, the LEDs and photodiodes together make-up the step-like independent and
dependent variables, respectively. In analogue to the temperature-sensor, the photodiode
readings are also taken in the same interval.

The experiment is automated and is conducted for approximately 150 minutes. The com-
munication between the OBC and the T-Stack is via Ethernet. The network monitoring
tool Wireshark introduced in Section 2.6, page 18 is used to capture the TCP packets
during the experiment.

4.3 Dataset Preparation

Figure 4.3: Block diagram shows the pattern search process taking the pattern file and TCP byte-stream
as an input to compute input and target matrices defined in Section 3.2.

4.3.1 Pattern Generator

In the MBSD methodology, the OBSW source-code is generated from the DSL data-
models. The data-models in MAIUS are written using Xtext framework, and can be used
to generate executable code as well as other artefacts. The source-code generator for
MAIUS is written in Xtend language.

In this study, a pattern-generator is developed using the Xtend language. It uses T-Stack
data-model to generate the pattern-file, which is basically a Python dictionary and con-
tains unique pattern for each channel of cards present in the stack. These patterns are
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used to find channel values from the TCP communication between OBC and T-Stack.
This implementation is driven by requirements req_04 and req_05. Requirement req_04
forces the data-collection procedure to be independent of the normal OBC operation,
and requirement req_05 does not allow the OBSW to be changed for the data-collection
purpose. Collecting the data from the TCP packets do not require any changes on the
OBSW, moreover, the normal communication between the OBC and the T-Stack is also
not disturbed. Requirements are listed in Table 1.1 on page 5 of this report. The block
diagram in Figure 4.3 shows the pattern search process which takes the pattern file and
the TCP byte-stream as an input and computes the input and target matrices as defined
in Section 3.2.

A simple pattern-generation instance is explain below. Since, the MAIUS software is not
in focus within this study, only the most relevant information is given. Listing 4.1 shows
a typical input-channel definition from the PhotodiodeIn2 card (also see Section 2.1.1).
In the first line, the channel parameter is defined with a data-type, range, and a default
value. In the next line, the channel variable is set to 1, indicating an access to that channel.
Then, a call to the getADCResult process is made. Finally, a linear-scaling of the data is
done to the range defined in the parameter definition, and finally, the resultant scaled
value is returned.

Listing 4.1: Definition of a typical input-channel in MAIUS card data-model.
parameter photodiode1_FullRange f l o a t 0 . 0 to 1e6 d e f au l t = 1 .0
inputchanne l photodiode1 f l o a t read only
begin

s e t channel = 1
c a l l getADCResult
re turn extern l inea rSca l ingRange ( data , 0 , photodiode1_FullRange )

end inputchanne l

Definition of the getADCResult process is shown in Listing 4.2. A process basically makes
read operation to out variables and write operation from in variables. The read and write
operations are done sequentially and are defined as a series of patterns. Each of these
patterns put 3-bytes into the TCP byte-stream. The first byte indicates the memory
address. The memory address is composed of a unique card address and an auxiliary
address within the card. Second byte is the data. The read/write operation is done for one
byte at a time. If the data is larger than one byte, the operation is carried out in several
steps, each time reading and writing different bits of the value until all bits are read or
written. For example, in the getADCResult process, first the bit-positions 15 to 8 of the
data variable is read, then later, the remaining bits 0 to 7 are acquired. The third byte is
the access flag, such that "1" indicates a write access and "0" indicates a read access.
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Listing 4.2: Definition of the getADCResult process in the PhotodiodeIn2 card data-model.

proce s s getADCResult
in channel
out data
pattern w 0x00 0 0 channel [ 4 : 0 ] 1
pattern r 0x00 data [ 1 5 : 8 ]
pattern w 0x00 0 0 channel [ 4 : 0 ] 0
pattern r 0x00 data [ 7 : 0 ]

end proce s s

Thus, each call to the process makes an unique mark in the byte-stream, which is used
to identify the process been called and capture the underlying data. Hand-crafting these
patterns is tedious and is prone to errors, thus they are automatically constructed using
the T-Stack data-model and written in a file by the pattern-generator. The generated file
is produced as a Python dictionary in order to facilitate easy usage as all further steps
are written in Python. List 4.3 shows the pattern of the getADCResult process for the
input-channel defined in Listing 4.1.

Listing 4.3: Pattern of getADCResult process for an input channel.
’name ’ : ’ getADCResult_photodiode1 ’ ,
’ pattern ’ : [ 0 x62 + 0x00 , 0x5 , 0x1 ,

0x62 + 0x00 , 0x0 , 0x0 ,
0x62 + 0x00 , 0x4 , 0x1 ,
0x62 + 0x00 , 0x0 , 0x0 , ] ,

’mask ’ : [ 1 , 1 , 1 ,
1 , 0 , 1 ,
1 , 1 , 1 ,
1 , 0 , 1 , ] ,

’ in_param ’ : {
’ count ’ : 1 ,
0 : {

’name ’ : ’ channel_1 ’ ,
’ byte_pos i t i ons ’ : [ 1 , ] ,
’ b i t_po s i t i on s ’ : [ [ 2 , 3 , 4 , 5 , 6 , ] , ] ,

} ,
} ,
’ out_param ’ : {

’ count ’ : 1 ,
0 : {

’name ’ : ’ data_1 ’ ,
’ byte_pos i t i ons ’ : [ 4 , 10 , ] ,
’ b i t_po s i t i on s ’ : [ [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , ] ,

[ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , ] , ] ,
} ,

} ,
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The pattern is indicated by "pattern" key in the dictionary and is represented by a hex-
adecimal array. Starting from the index 0, elements in the pattern-array can be grouped
together to form a set of three elements, each of these sets corresponds to the respective
pattern defined in the process definition (see Listing 4.2) and occupy exactly 3 bytes in
the byte-stream. In this way, the pattern-array always has length which is a multiple of 3.

In Listing 4.3, the address byte is (0x62 + 0x00) hex, which means, the card-address is
0x62 hex and the auxiliary address is 0x00. The second byte value 0x5 is computed from
the first pattern in the process (see Listing 4.2), here, the data-byte is presented in its
binary form as [0 0 0 0 0 0 1 1], where the bits printed in black are the five bits (index 0
to 4) of the channel parameter. In this example, value of the channel parameter is 1, as
shown in Listing 4.1. The access byte is 0x1 representing the first pattern in the process
is a write operation.

Analogously, rest of the byte values are computed form the pattern-array. Since, the exam-
ple shown here is of an input-channel, the parameter-of-interest is the out variable which
is data defined in the process. Value of variable data is unknown and needs to be acquired
from the byte-stream, therefore, its position is masked with 0x0.

Moreover, there is a mask-array in the dictionary consisting of binary values. In analogy
to the pattern-array, positions where the value of parameter-of-interest lies are masked
with 0 and rest of the positions have value 1. Furthermore, there are relative byte and
bit position arrays for each parameters involved in the process. Byte positions are integer
arrays; each element of which represents the corresponding relative byte position of the
parameter. For each byte position, there is a corresponding array of bit positions, hence,
the bit positions are defined in a matrix. In the above example, the value of the channel
parameter can be found on bit positions 2 to 6 of the second byte (start index is 0). The
parameter data has 16 bits; these bits are collected from two locations, precisely, 8 bits
each are acquired from 4th and 10th byte positions.

4.3.2 Pattern Search Algorithm

Pattern search algorithm uses patterns generated by the pattern-generator to find channel
values in the TCP byte-stream. The algorithm is written in Python and starts by loading
all .pcap files from the work-space directory recursively using scapy version 2.4.0. Scapy
is a Python program which can be used to analyse network packets [55]. Iterating over all
packets, raw-data is collected in an array ignoring un-necessary TCP header informations.
Direction of the packets are identified by the source and destination IP addresses. In the
meantime, relative time between two consecutive packets is collected starting at 0 seconds
for the first packet, such that, the raw-data array (the byte-stream) and the time-stamps
are of the same length. In the next step, pattern search is performed in the byte-stream
to find the channel values.

In the pattern search process, starting at index 0, a chunk of bytes with the same length
as of the pattern-array is taken from the byte-stream. Every elements of this sub-array
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is multiplied with the respective byte of the mask-array, such that, the byte positions of
the parameter-of-interest are masked. Then, the resultant array is compared element-wise
with the pattern-array. The comparison is done for all patterns i.e. for all processes of each
channels of every cards in the T-Stack, until all bytes in both arrays match. If there is no
match at all, the start position is incremented by 1, and the search process is repeated,
otherwise, the start position is incremented by the length of the pattern that has the
match. For the comparison purpose, pattern-arrays of different processes are arranged in
the descending order of their length i.e. longer patterns are matched first. This is important
because short patterns of a certain process could be part of a longer pattern. If there is
a match, all bits of the parameter-of-interest are collected from their respective positions.
Bits are arranged accordingly and are converted to a decimal value. Optionally, the decimal
value is scaled according to the given parameter range. The scaling is done only when it
is defined in the channel definition (see Listing 4.1).

Finally, the parameter is identified to be either an input or a target. Parameters declared as
out in the process definition (see Listing 4.2) are inputs, similarly, parameters declared as in
are the targets. If the parameter is identified as an input, the input vector is updated at the
respective parameter position defined in the config file (see Listing 4.4). Similarly, when the
parameter is a target, the target vector is updated. The data-collection procedure is target-
driven as already mentioned in Section 3.2, so input and target vectors are appended in
their respective matrices only when values of all targets listed in the config file are obtained.
The time interval is also updated at this point. All sensor values are read sequentially in a
fixed interval, therefore all of them are expected to be found together in the byte-stream.
Latency caused by the communication channels is assumed to be negligible and act as
noise for the neural network. Perhaps the performance can be improved by sophisticated
data-sampling techniques in the future.

Hence, the pattern search process outputs two matrices, namely, the input and target
matrices. These matrices have the structure as defined in Section 3.2. Furthermore, the
input matrix is reshaped according to Section 3.2.2.

4.4 System Configuration

Configurations for the system are defined as a Python dictionary in the system config
file. Patterns generated by the pattern-generator are also a part of the config file. Beside
the pattern information, the config file contains informations regarding the inputs and
targets for the neural network as shown in Listing 4.4. In "nn_config" section of the file,
indices of different features and targets in their respective vectors are given. In order to
identify a feature and a target, a simple naming convention <card name>_<parameter
name>_<postfix> is followed. The postfix is optional. It is added only when multiple
channels make call to the same process, in such case, the parameter name would be the
same, therefore the postfix is needed to deal with the ambiguity.
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The config file is identifiable using the integer ID, such that, easy switching between
different configurations is possible. The config file can further be extended by defining other
neural network settings, such as the model type, data-normalization technique, hyper-
parameters value, etc. However, such extension is left for the future improvement.

Listing 4.4: System configuration file showing the network configuration which is used for preparing
the datasets.

id = 55
nn_config = {

’ input_data ’ : {
’ no_of_samples ’ : None ,
’ no_of_features ’ : 6 ,
’ f e a tu r e s ’ : {

’ delta_t ’ : 0 ,
’ fan_output1 ’ : 1 ,
’ fan_output2 ’ : 2 ,
’AnalogOutDAC_data_0 ’ : 3 ,
’AnalogOutDAC_data_1 ’ : 4 ,
’AnalogOutDAC_data_2 ’ : 5 ,

} ,
} ,
’ target_data ’ : {

’ no_of_samples ’ : None ,
’ no_of_targets ’ : 4 ,
’ t a rge t s ’ : {

’ photodiode_data_0 ’ : 0 ,
’ photodiode_data_1 ’ : 1 ,
’ led_rotEnc ’ : 2 ,
’ ntc_data ’ : 3 ,

} ,
} ,

}

4.5 Keras Implementation

All RNN models in this study are built in Keras using the functional API. Keras is a
high-level Python library that runs on top of the Tensorflow framework. Tensorflow is
a opensource machine learning framework developed by Google. In the core of the Ten-
sorflow, every mathematical expression is defined, optimized, and calculated in a multi-
dimensional array called tensor. Thus, tensor is the basic data-structure in the Tensorflow
language. Building a neural network model in Tensorflow involves in defining each layer in
the network as a tensor, including the activation functions, cell states, weights, and biases.
These tensors are then arranged and stacked in same order in which they are executed,
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such that, a graph structure of the tensors is formed. This tensor-graph basically resem-
bles the neural network model. For training the network, a Tensorflow session is initialized
and data is passed through the tensor-graph while tuning the internal weights and biases
according to the learning algorithm.

The following example shows a simple implementation of a LSTM model with one input,
one output, and one hidden layer using the functional API in Keras.

Listing 4.5: An example one-to-one LSTM model implementation using the Keras functional API.

from keras . models import Model
from keras . l a y e r s import Input , Dense , LSTM

input_layer = Input ( shape=(100 , 6 ) , name=’ in0 ’ )
hidden_layer = LSTM(50 , name=’ lstm0 ’ ) ( input_layer )
output_layer = Dense (4 , name=’ out0 ’ ) ( hidden_layer )

model = Model ( inputs=input_layer , outputs=output_layer )

In the above example, the input layer is defined with shape given by the tuple, where
the first element of the tuple gives the sequence length and the second element gives
the feature count. The LSTM layer has 50 units and the output layer has 4 units. It is
important to note that only the shape of the input layer is defined, because for all other
layers, the shape is same as the output shape of the preceding layer in the model. For this
purpose, the tensor instances are called by passing the previous layer as an argument; this
call basically connects these tensors together. In order to make the successful connection,
the output shape of the preceding layer must match the input shape of the succeeding
layer. Optionally, each layer can be given a unique name. This name can be used to query
different layers.

Similarly, the model with multiple input and output layers can be defined. In such case,
a dictionary containing the inputs and output layers are passed to the model as shown
in the Listing 4.6. The multiple input/output model have neural branches, which can
split/merge inside of the model. In the Tensorflow framework, it is possible to train the
individual layers separately. In order to do so, the layers which aren’t to be trained should
frozen by setting their trainable flag to false. The name of the layers are helpful for this
kind of query operations. The weights and biases of the frozen layer are not updated during
training.

Listing 4.6: Instantiating Keras model with multiple inputs and outputs.

model = Model ( inputs={ ’ in0 ’ : input_layer0 ,
’ in1 ’ : input_layer1 } ,

outputs={ ’ out0 ’ : output_layer0 ,
’ out1 ’ : output_layer1 })
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Once the model is instantiated, it is compiled by calling the compile method on the model.
During compilation the cost function, evaluation metrics, and the optimization technique
to use are defined. For the model with only one output layer, an scalar loss function is given,
whereas, for the one with multiple outputs a dictionary of loss functions to compute at
the end of each output layers is given. The output layer dictionary and the loss dictionary
have same number of entries and the same set of keys, so that, the loss functions and the
output layers are mapped.

Listing 4.7: Compilation of the Keras model.

from keras . op t im i z e r s import Adam
from keras import backend as K

def cor r ent ropy_los s ( y_true , y_pred , sigma =1. ) :
return 1 − K.mean(K. exp(−K. square ( y_true − y_pred )/ sigma ) )

model . compile ( l o s s=correntropy_loss ,
met r i c s=[ ’mae ’ , ’mse ’ ] ,
opt imize r=Adam( l r =0.0005 , decay =0.01))

The Listing 4.7 shows the compilation steps of the model. Here, the model is compiled with
the CEC loss; the method to compute the cost is defined as correntropy_loss. Additionally,
MAE and MSE metrics are computed during training. The Adam optimizer is used with
an initial learning rate of 0.002 and the learning rate decay of 0.02.

After the model has been compiled, it is ready to be trained. There are different ways to
train the model in Keras framework. In this study, all models are trained by simply calling
the fit method with the references to the training and validation datasets, along with the
number of epochs and the mini-batch size. In addition, a list of callback methods to call
at the end of each epoch, a shuffle flag, and a verbose parameter is passed to the method.
The shuffle flag when true, shuffles the training samples after each epoch, so that, in each
epoch the model receives samples in different order. This helps to reduce over-fitting of
the model, as the model always sees the data in an unique order. The verbose parameter
controls the verbosity of the training process. The verbosity of 0 means silent, 1 means
detailed, and 2 means only one line per epoch is printed in the console during the training
process.

The Listing 4.8 shows a call made to the fit method. Here, the model is trained for 10
epochs with the mini-batch size of 256. The callbacks argument contains the instances of
the Keras callback methods explained in Section 3.3.3. The model is trained by shuffling
the training samples in the N axis after each epoch. The verbosity parameter is 2. The fit
process returns the history object, which contains informations about the training session,
such as lists of training, validation loss values after each epoch and other metric values
which were given during the compilation of the model.
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Listing 4.8: Fitting the Keras model to the training samples.

h i s t o r y = model . f i t ( x=X_train ,
y=y_train ,
va l idat ion_data=(X_vali , y_val i ) ,
epochs=10,
batch_size=256 ,
c a l l b a ck s =[ ear ly_stopping ,

reduce_lr_on_plateau ,
model_checkpoint ] ,

s h u f f l e=True ,
verbose=2)

Testing of the model is done by calling the predict method on the trained-model as shown
in Listing 4.9. In order to simulate the real-world scenario, the predictions are made for
each samples, therefore the batch size is 1.

Listing 4.9: Testing the Keras model with the test samples.

y_hat = model . p r ed i c t ( x=X_test , batch_size=1)

Thus obtained y_hat and the y_test from the actual hardware are used to compute the
evaluation metrics. The methods to compute the evaluation metrics are also written in
Python. This is illustrated in the bottom part of the system diagram in Figure 4.1.

4.6 Bayesian Optimization Process

Optimum values for the hyper-parameters explained in Section 3.4 are found using the
Bayesian optimization process. GPyOpt Python library is used to implement and configure
Bayesian optimization process. The library can run Bayesian process with user-specific
configurations. The Bayesian process take many argument such as model type, the type of
the acquisition function to use, evaluation interval, evaluation type etc. In this study, only
the required parameters are given; For rest of the parameters, their default values given in
the GPyOpt package are used. Perhaps, the optimization process can achieve better result
with different configuration; this is left out for the future work. The standard Gaussian
process is used as the model type and the Expected Improvement (EI) as the acquisition
type; the model is updated every iteration and is evaluated sequentially.

A Bayesian optimization object from the GPyOpt package is instantiated with the objec-
tive function and a search domain. The setup is illustrated in Figure 4.4. Search domain is
a Python dictionary containing hyper-parameter’s bounds, for which the optimum values
are to be search. In the objective function, neural network model is created, trained and
then tested. The average test result is returned to the Bayesian process. The optimiza-
tion process is started by calling run_optimization method. The process runs for given
number of iterations. At the end, the process returns the best set of hyper-parameter
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values. The optimization process only takes numerical values, therefore, non-numerical
hyper-parameters are mapped to an integer value in the search domain. Several iteration
of the search is carried out with different range of hyper-parameter values. If the optimum
value lie on the border of the range, iteration is repeated with values beyond the border.
Finally, a hyper-parameter set with the best values of all hyper-parameters is selected and
used to train the network.

Figure 4.4: Setup for hyper-parameter search using Bayesian optimization process.





CHAPTER 5

Results

This chapter begins by presenting the results of the qualitative and quantitative analysis on
all the model instances. In the last section, the coverage of the requirements as identified
in the first chapter are presented.

In this chapter, the evaluation results of altogether four RNN model instances, which are
developed within this study, are presented. Two of them have the one-to-one architecture,
out of which one with the LSTM and other with the GRUmemory unit. Similarly, the other
two model instances implement the one-to-many architecture. These model architectures
are defined in Section 3.3.

All four models are evaluated qualitatively as well as quantitatively. These evaluation
approaches are described in Section 3.5.1 and 3.5.2. For the quantitative analysis on the
prediction results, time and frequency domain evaluation metrics are computed. For all
evaluation purposes, the test-set is used. The test-set is unseen by the network during
training. Moreover, in later part of this chapter, the requirement coverage based on the
methodology and results are presented.

Altogether N = 24067 samples are collected from the experiment. These N samples are
divided into training, validation, and the test sets, as explained in Section 3.2. The per-
formance of the training as well as the accuracy of the predicted results can be improved
by using more training samples. However, in this study, the limited number of samples are
taken as constraint and is solved in the model.

Furthermore, extendibility of the models in space is tested. For the space-scalability tests,
the scaled dataset is constructed by replicating the original, rolling the replica in N axis
by 2000 samples, and concatenating them back together in the feature/target axis. In this
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way, extended datasets are produced very fast, which are used to train the scaled networks.
The number of samples to roll is incremented by additional 2000 samples every-time the
scaling factor is increased. Hence, each samples have different set of actuator/sensor values,
thus resembling new signals. In order to maintain the correlation between the input and
target datasets, the scaling is done for both datasets in the exact same way.

The models are scaled up-to 8 times, each time with a step of 2. Hyper-parameters are
optimized for the unscaled condition and the same configuration is used when the models
are scaled. An unscaled model consists of 6 inputs (5 actuators + 1 time duration between
two consecutive samples in seconds), and 4 targets (sensors). The experimental setup with
these hardware components are explained in Section 4.2. Scaling the model by 2 in the
above mentioned fashion mimics the scenario of modelling 10 actuators and 8 sensors
together. Similarly, the model when scaled by 4 incorporates 20 actuators and 16 sensors,
and so on.

Whenever an up-scaling happens, the input as well as the output-space of the model in-
creases, this in return increases the number of irrelevant inputs (noise) per output that the
network must discard in order to maintain the accuracy of the prediction. The scalability
test gives the measure of the model’s capability to deal with the increasing irrelevant input
information. Moreover, it checks the feasibility of the model in terms of the error increase
rate, increment of the training time, and the increment in the number of weights in the
model at different scaling conditions.

5.1 Qualitative Approach

The one-to-one model performs poorly and cannot predict different types of sensor values
simultaneous. The red signal in Figure 5.1a and 5.1b are the predictions made by the
one-to-one LSTM model, and the ones in Figure 5.1c and 5.1d are from the same model
but configured differently. From these graphs, it is seen that when the one-to-one model
predicts the photodiode values properly, it fails to simultaneously maintain the accuracy
of the temperature sensor prediction, and vice-versa. The photodiode outputs different
states depending on the voltage level of the corresponding LEDs, thus has step-function
as an output signal. The temperature sensor produces a continuous temperature readings
depending on the state of the resistor and the fan. The problem of the one-to-one model is
because of vastly different output-space, which models like neural networks have difficultly
producing through the same output layer. Having a single body and a output layer would
mean that the weights, cell states as well as the activation functions are shared between
different targets. But, the output of the network is bounded by the activations of each
hidden layers, thus producing different ranges of value through the same layer is difficult.
This is a unique problem, which does not occur in normal neural network application,
as they usually only deal with similar kind of data, such as images, speech-signals, or
categories of classification.
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(a) A temperature prediction. (b) A photodiode-2 output prediction.

(c) A temperature prediction. (d) A photodiode-2 output prediction.

Figure 5.1: Predictions made by the one-to-one LSTM model are shown in red colour. The green signal
is the one obtained from the respective hardware.

Perhaps a deeper and wider network trained with sufficiently large number of samples
can discriminate between variety of signals through common layers, such that the prob-
lem of one-to-one model is solved. However, in this study, an alternative solution is pro-
posed, which addresses the problem by changing the network architecture to have neural-
branches, so that each of such branches can be optimized independently to produce a
specific type of output signal. The proposed model thus have one-to-many architecture,
meaning, a common input layer feed into multiple neural branches, and thus, posses many
output layers, one for each target. The branching network is not only able to maintain but
is capable of significantly improving the prediction accuracy of all output signals without
needing more training examples than that of the one-to-one model.

Figure 5.2 shows the sensor value predictions made by the unscaled one-to-many model,
which in comparison to the one made by the unscaled one-to-one model is significantly
better. The red signals are predicted by the LSTM model whereas the ones in the magenta
colour are from the GRU model with the one-to-many architecture. The sub-figures (a)
and (b) show the output of photodiode-1 and photodiode-2, respectively. The photodiode-1
is the one with 1 LED and the photodiode-2 is with the 2 LEDs (detailed in Section 4.2).
The sub-figure (c) shows the output of the rotatory encoder, and finally, in the sub-



60 CHAPTER 5. RESULTS

figure (d) the output of the temperature signal is shown.

Predictions made by the GRU model are better than the LSTM model in all types of
signals. Due to the inadequate performance of the one-to-one model already in the unscaled
condition, the model architecture is discarded and further evaluations are performed only
on the one-to-many architecture.

(a) Photodiode-1 output. (b) Photodiode-2 output.

(c) Rotatory encoder output. (d) Temperature sensor output.

Figure 5.2: Predictions made by an instance of the one-to-many LSTM model are shown in red colour
and the ones from the GRU model are shown in magenta.

Further analysis on the one-to-many architecture is made based on the loss values com-
puted during the training sessions in different scaling conditions. The outcome of this
analysis acts as a baseline that the networks are sufficiently and correctly trained. The
sufficiency and efficiency of the training, as well as, the accuracy of the predictions made
by the model are dependent on the amount and the quality of the training data. Using
more training data, the efficiency of the training and hence the accuracy of the results
can further be improved. The training statistics of the LSTM and the GRU models are
similar.
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Figure 5.3: Total loss on the training and the validation set computed at the end of each epoch while
training the one-to-many LSTM model at different scaling conditions.

Figure 5.3 shows the loss on the training and the validation set computed at the end of
each epoch while training one-to-many LSTM models at different scaling conditions. The
colour-code is per the scaling conditions, the scaling factor is shown with a preceding ’x’.
The circular marker represents the loss on the validation set, whereas, the triangular
marker represents the loss on the training set. From the loss graph, it is clearly seen that
the model already converges sufficiently at the 10th epoch. The validation loss is less than
the training loss in all cases, which shows that the model is not over-fitting to the training
set. Furthermore, it is seen that, when the model is scaled, the initial losses is significantly
high, however, only after few epochs of training the network is able to minimize the loss
such that the value of all scaling conditions are already close at the 10th epoch.

The bar-graph in Figure 5.4 visualizes the execution time and the memory usage, while
training the LSTM and GRU models at different scaling conditions. These values are
obtained by training these models for 10 epochs in the GPU node of the HPDA cluster.
Specification of the GPU node is given in Section 2.6.7, page 20. The statistic show that
training time as well as the memory usage of the GRU model is lower than that of the
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LSTM model in all cases. The GRU model has one gate less in each of its units (see
Section 2.4.3, page 17), thus, has less number of weights to train in comparison to the
LSTM model. Therefore, the GRU model is lighter than the equivalent LSTM model in-
terms of the number of trainable parameters, and faster in-terms of the required training
time.

Figure 5.4: The graph shows the execution time and the memory usage while training the LSTM and
GRU model at different scaling conditions.

The largest form of the model in this study (the one scaled by factor 8) simulates 40 actu-
ators and 32 sensors instances. The training time of this model with the LSTM memory
unit is about 21 minutes and when the GRU unit is used, the training time is reduced to
about 18 minutes. There are altogether approximately 1 million weights in the ’x8’ mod-
els, training of which costs about 9GB of memory in the Linux machine when the model
uses LSTM memory unit, and about 8.2GB when it has the GRU memory unit. Hence,
in terms of computation cost and the memory usage, the modelling process is affordable,
as in the current market a normal PC already meets this memory requirement.
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5.2 Quantitative Approach

A detailed evaluation of the LSTM and GRU models with one-to-many architecture is
done using quantitative measures explained in Section 3.5.2.

5.2.1 Time-domain

Time-domain sensor signals predicted by the model ŷ and the true sensor values obtained
from the hardware y are used to compute distance measures for each sensors separately.
For the unbounded distance measures, such as, RMSE, after the computation, the resultant
is normalized to range from 0 to 1. The normalization is done using the minimum and
maximum value of the original signal y of the corresponding sensor from the collected
dataset.

In the following section, the comparison between the predictions made by the LSTM and
GRU models are done for different scaling conditions. In order to compute the metric of
a particular sensor, the same signal predicted by variably scaled models is used. Since,
it is not within the scope of the thesis work to optimize models in all scaled instances,
only the unscaled model is optimized by the hyper-parameter search, and the same con-
figuration is used in all scaled conditions. Therefore, the result of the unscaled model
act as a baseline and the results from the scaled conditions are compared against it.

Sensor Min. Max.
Photodiode-1 0.0061 0.0642
Photodiode-2 0.0047 0.0121
Rotatory Encoder 45.0 45.0
Temperature Sensor 17.91◦C 52.08◦C

Table 5.1: Minimum and maximum values of the sensor outputs.

The input data contains the states of the actuators and the time-interval between samples.
The actuators states are basically, 0 and 1 for the states of the fan and the resistor, voltage
levels 0, 2.5 and 5 Volts for the states of LEDs, and time interval between consecutive
samples. Since the data-acquisition rate is constant, the time interval between two samples
are more-or-less on the same level. Thus, the input space consists similar values that only
occur in different order, which is quite simple for neural network models. Therefore, a fairly
simple model already over-fits the dataset. However, the mapping between the input- and
output-space is still complicated and the underlying physics is difficult to model by a
simple network. Therefore, the difficult part of the modelling process is to find the trade-
off, such that, the model is simple enough that it does not over-fits the dataset and does
not learn irrelevant details, but at the same time, it is complex enough to be able to model
the underlying physics and does not under-fit the problem. This condition is reflected by
the results presented below.

The Figure 5.5 shows the Normalized RMSE (NRMSE) of the sensors at different scaling
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conditions, the normalization is done using the ranges of sensor values listed in the Ta-
ble 5.1. The NRMSE gives the measure of +/-offset of the prediction error in percentage
for the given range. The bar-graph is the average NRMSE among different sensor outputs
at the same scaling condition. In average, the result of the GRU model is slightly better
than that of the LSTM model in all scaling conditions.

Figure 5.5: The NRMSE on sensors value predicted by the LSTM and GRU models at different scaling
conditions.

In Figure 5.5, one can observe that the error on all predictions initially increases when
scaling is increased to 2, and some of them decrease back when the scaling factor is
further enlarged. In some sensors the increase and decrease rates are higher than the
other. This behaviour illustrates the sea-saw between the over-fitting and under-fitting
conditions between the dataset and the model. When the scaling is done by the factor of
2, the dataset doubles, so does the model’s topology. Doubling of the dataset increases
the irrelevant information per sensor output (noise) and doubling of the model increases
its width (complexity). When the model is twice as wide, it becomes more complex than
necessary for the added noise, thus the model is capable of capturing irrelevant information
during training despite of the harsh regularization and the dropouts. This causes it to
perform poorly in the test-set, hence, the test error increases. However, when the scaling
is further increased, the effect is reversed. Now, the noise in the input is dominant than
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the model’s complexity, thus, the model cannot over-fit to noise and discards it – the
test error starts to decrease. This behaviour shall further be seen, if the models are not
configured for the given condition. In order to address this problem, the model structure
and hyper-parameters should be optimized for each scaling conditions.

From the above mentioned behaviour of the different model instances, it is clear that
finding the proper network configuration for the given dataset is one of the most important
job while designing neural network based models. Therefore, the number of units, number
of layers, as well as the regularization parameters in the models are important hyper-
parameters, and need to be tuned properly.

In the LSTM model, the error decreases once the scaling factor is four, in contrast, this
happens in GRU model only when the scaling is six times over. This shows that the GRU
model can fit the dataset already with smaller topology and less number of units. For
example: in the scaling condition 4, the GRU model is able to learn noise, so it over-fitted
the temperature signal, but the equivalent LSTM model is unable to do so. This feature
of GRU model make it lighter and faster than the equivalent LSTM model, which is also
reflected by the bar-graph showing the training time and memory usage of these models
in Figure 5.4.

It is very easy for the RNN models to predict the constant value, so the NRMSE of the
rotatory encoder output is very close to zero. The NRMSE graphs in Figure 5.5 show the
highest percent error for the photodiode predictions. The reason behind this is mainly
because of the time-lag in the predicted signal. For example: whenever the photodiode
output rises from low to high, and falls from high to low, the time-lag in the prediction
only by one sample results in nearly 100% error in the time-domain distance measure, thus
increases overall percentage error. The SSP parameter presented in the next section makes
use of the amplitude as well as th phase of the signals, thus it makes better judgement on
the similarity between two signals.

Figure 5.6: The Worst-case Absolute Error (WCAE) on sensors value predicted by the LSTM and GRU
models at different scaling conditions.

In Figure 5.6, the WCAE on the temperature prediction made by the LSTM and GRU
models at different scaling conditions is shown. The WCAE graph also reflects the trade-off
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between the over-/under-fitting of models at different scaling conditions explained earlier.
The WCAE gives the measure of maximum deviation of the prediction from the actual
value in ◦C. In the unscaled condition, the maximum absolute error is about 7.2◦C in
the LSTM model and about 5.5◦C in the GRU model. Thus, the well-configured GRU
model can predict the temperature value with the worst-case accuracy of about 84% of
the temperature range.

5.2.2 Frequency-domain

The SSP parameter introduced in Section 3.5.2 is computed using the predicted and ac-
tual sensor output signals in frequency domain. The SSP, unlike the time-domain measure,
makes use of the amplitude as well as the phase information, thus can make better judge-
ment on the predicted signals. The SSP is already normalized to range from zero and one,
with 0 representing perfect agreement and 1 representing perfect disagreement between
two signals.

Figure 5.7: The SSP on sensors value predicted by the LSTM and GRU models at different scaling
conditions.
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Computation of the SSP requires to compute the Fourier transform of y and ŷ, which
is done as explained in Section 3.5.2. The Figure 5.7 shows the SSP parameter of sensor
outputs by the LSTM and GRU models at different scaling conditions. The SSP result
reflects the prediction behaviour seen in the NRMSE graph, which is due to the same
over-/under-fitting problems discussed earlier. The SSP result also suggest that the GRU
network fit the dataset better than the equivalent LSTM model in most of the conditions.
The SSP score of all type of signals show lower percentage error in comparison to the
time-domain distance measure, which show that the SSP score are not sensitive to small
shifting of amplitude and phases of the candidate signals. For the well optimized models
(the unscaled condition), the prediction error in terms of the SSP score is less than 10%;
the predicted signal show more than 90% resemblance to the actual signal in the frequency
domain.

On the basis of results presented above, it is clear that the GRU model with the one-
to-many architecture fits the dataset collected from the candidate hardware better than
the equivalent LSTM model. The GRU model under proper configuration is capable of
predicting sensor values for the given actuator states which reflect the realistic hardware
behaviour for more than 90% of the time.

5.3 Requirement Coverage

In this section, the requirements identified in the first chapter (Section 1.3, page 4) are
restated along with their coverage by the model implementation in Table 5.2.

ID Statement Explanation

req_01 The model shall be as abstract as
possible and as detailed as neces-
sary.

The model design addresses the over-
fitting and under-fitting problems. The
well-configured model is only complex
enough to not under-fit the underlying
physics. Meantime, the model is simple
enough that it does not over-fit the rel-
atively simple dataset. Furthermore, the
model design with the neural-branches
facilitates easy extension and integra-
tion of new set of inputs and outputs
by simply attaching new branches of
the desired structure and configuration,
such that, completely different physical
process can be modelled. However, the
model shall be trained and the hyper-
parameter shall be tuned for that par-
ticular dataset.
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req_02 The hardware system and its compo-
nents shall be treated as a black-box.

The RNN based supervised learning
method learns to map the input and
output data-space overtime without ex-
plicitly knowing the underlying physics.
The LSTM and GRU models developed
within this study operate on the inputs
that otherwise be going into the hard-
ware system.

req_03 The model data-space shall also be
highly abstract and outside of the
system.

Once trained, the RNN models operate
standalone without needing any infras-
tructure from the actual system.

req_04 Training data shall be collected with-
out having to interfere with the nor-
mal OBC operation.

The datasets for training all networks are
extracted from the TCP packets which
are the recording of messages between
the OBC and the MAIUS T-Stack dur-
ing the experiment. For this purposes,
the network analyser tool Wireshark
(Section 2.6.1) is used, which records the
network communication without causing
any disturbance in the operation.

req_05 Training data shall be collected with-
out having to change the OBSW.

The training data are collected once
they are dispatched from the OBC into
the network, thus for this purpose the
OBSW does not need to be changed.

req_06 The model shall be able to deal with
various types of input and output
signals, such as, binary, continuous,
step-like, constant signals, etc.

The experimental setup introduced in
Section 4.2 is designed with sensors and
actuators which covers verity of the sig-
nal types. The fan and the resistor states
are the binary signals. Temperature sen-
sor output continuous signal. The photo-
diodes output step-like signal, depend-
ing on the voltage levels on the LEDs.
The rotatory encoder is set before the ex-
periment began to value 45 and remains
constant. The qualitative and quantita-
tive analysis show the RNN based mod-
els with the multiple output layers are
capable of modelling variety of the sig-
nal types at once.
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req_07 The model shall be able to replicate
the system in the test phase, when
the unseen input is passed to the sys-
tem.

Over-fitted model do not perform well
in the test-phase. The modelling pro-
cess mainly focuses on addressing this
problem. Regularization and dropout are
used to make the model robust. The
model is trained only for 10 epochs and is
kept simple enough so that it is capable
of learning underlying relationship be-
tween the input and output but not the
irrelevant detail on the dataset. The pre-
diction results on the test-set explained
in Section 5.1 and 5.2 show that the
LSTM and GRU model is capable pre-
dicting all types of signals depending on
inputs which are not seen during train-
ing. The predicted signals showed more
than 90% resemblance to the actual sig-
nal in the frequency domain.

req_08 The model shall be scalable in space. The space-scalability of the model is
tested by expanding the dataset and the
model topology up-to 8 times, simulat-
ing the scenario with 40 actuators and
32 sensors. The results explained in sec-
tion 5.1 and 5.2 show that prediction
error only increases linearly when the
model is enlarged.

req_09 The model shall have a defined ac-
curacy of operation.

For the optimally configured one-to-
many RNN models, the maximum pre-
diction error is determined to be ap-
proximately 10% in terms of the SSP
score. The SSP is computed in the fre-
quency domain and it takes also the
phase-lags of predicted signals into ac-
count. Thus, the well-configured one-to-
many RNN models are expected to pro-
duce all kinds of output signals, which
are in phase with the actual ones, with
an accuracy of about 90%.

Table 5.2: Requirement coverage by the model implementation.





CHAPTER 6

Conclusion

Hereby, it is concluded that the RNN based models are capable of generalizing different
physical processes and can predict the realistic hardware behaviour with the considerable
accuracy. Through the design, implementation, and the results of the RNN model, the
requirements of the thesis work defined in the first chapter of this report are successfully
achieved.

The study focused on the relatively unique RNN application of the physical system mod-
elling. RNNs have the reputation of being an excellent sequence modelling tool and have
been widely used in the temporal sequence modelling tasks involving speech/music data,
images, videos, etc. Through the results of the thesis work, it is seen that when configured
properly the RNN models with the LSTM and GRU memory units can faithfully predict
different types of sensor values for the given set of actuator states with more than 90%
resemblance to the actual signal in terms of the SSP score. The SSP score is computed
using the frequency spectrograms of the actual and predicted sensor outputs. Thus, the
predicted signals reflect the realistic hardware behaviour most of the time.

6.1 Summary

Within this thesis work, the problem of simulating a physical hardware system is for-
mulated as a time-series prediction problem and altogether four RNN based models are
developed and evaluated to address it. Physical processes are defined by connecting a
fan, a resistor, a temperature sensor, three LEDs, and two photodiodes to five different
MAIUS cards in the T-Stack. The choices on the sensors and actuators are made so that
variety of signals such as, binary, continuous, step, and constant signals are covered by
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the experiment. The actuator states are identified as the independent variables and the
sensor readings are identified as the dependent variables of the system. Two RNN model
architectures, namely, one-to-one and one-to-many, each of them with the LSTM and GRU
memory units are designed and trained using the supervised learning method to learn the
underlying physics between the independent and dependent variables. In order to ensure
that all models are sufficiently and effectively trained, a qualitative analysis on the training
sessions of all models are made by monitoring the loss values on the training and valida-
tion datasets. Moreover, the quantitative analysis on the sensor values predicted by all
model instances are made with the help of evaluation metrics computed in time-domain
and frequency domain. In addition to that, the scalability tests on the one-to-many models
are performed.

Regardless of the memory unit used, the one-to-one model architecture is unable to produce
all types of sensor outputs with considerable accuracy at once. The problem is identified
and addressed by the development of the one-to-many model architecture, which splits
the RNN topology in the middle to facilitate one neural-branch for each target output.
Multiple neural-branches of the one-to-many allow the configuration of individual branches
differently, which makes it possible to predict various types of signals at once without com-
promising the accuracy. Furthermore, one-to-many design also facilitates the extendibility
of the model.

Results from different quantitative evaluation measures suggest that the GRU model with
one-to-many architecture perform better than the equivalent LSTM based model in most
of the test scenarios. The Euclidean distance based percent error (NRMSE) when averaged
over all sensor outputs showed that the prediction error of GRU model is about 1.7% lower
than that of the LSTM model in the unscaled condition. When the model is scaled by 8,
the average NRMSE on both models is ≈ 12%. In the worst-case absolute temperature
prediction error of the GRU model is ≈ 2.5◦C less than that of the LSTM model in the
unscaled case, and on the maximum scaled condition, it is still about 1◦C less than that
of the LSTM model. The SSP parameter computed in the frequency domain suggests that
the GRU model has ≈ 1% better result than that of the LSTM model in average. The SSP
is computed using the amplitude and phase spectrograms of the two signals, therefore, it
provides better insight on their similarity with each other. The GRU based one-to-many
model also showed better performance than the one with the LSTM unit in terms of
the memory usages and the training time in all scaling conditions. This observation is
in coherence with the GRU architecture, as its cell has one gate-unit less than that of
the LSTM cell, which results in at-least 7 less trainable parameters per memory-cell. The
lowest accuracy of the unscaled GRU model in terms of the SSP parameter is for the
photodiode-1, which is about 92%.

Through the thesis work, it is seen that the learning methods, such as RNNs, are able
to generalize a physical process through the experiences gained from the training exam-
ples. This is relatively new RNN application, as they are mainly used in other sequence
modelling tasks, such as, natural language processing, video processing, etc. Thus pre-
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sented modelling technique allows fast creation and deployment of system-models from
the input-output data-space of a complex system, without having to acquire any domain
specific knowledge. The only time-consuming task is identified to be finding the proper
configuration of the model which properly fits the given dataset and underlying problem,
nevertheless, once this is achieved, the RNN models are able to simulate the hardware
behaviour and produce realistic outputs.

The use-case targeted in the study intends to use the learned hardware-model to assist the
OBSW development process by integrating it into the continuous integration system of
the OBSW. However, application of such modelling technique have much broader scope.
Such models can be used in any other domain for any kind of applications. Thus de-
fined modelling technique shall be used whenever there is a need of a black-box system
model and the system’s input-output data-space is defined and the training data can be
collected. Nevertheless, the model shall be sufficiently and correctly trained before the
desired accuracy is reached.

6.2 Future Outlook

The data collection procedure can be improved in the future. Currently, the input and
target data vectors are constructed once all target values are found in the TCP byte-
stream, thus the data collection rate is same as the data acquisition rate of the experiment
(neglecting the latency of the communication channels). This set-up works up-to certain
extend when the number of targets are less and the noise cause by the time-lags in the
network are considerably lower and handleable by the model, however, once the threshold
is breached, this set-up may cause problems. One solution to this problem could be to
define a data-sampling rate outside of the communication channel and produce input and
target samples at an adjustable frequency and update values once they are received from
the hardware and maintain the previous value when there is a delay in the channel.

When dealing with signals from a hardware system for modelling the underlying physical
process, it is imaginable that, at some point in time, one must deal with variably sampled
data which are produced by different sensors in an asynchronous manner. The current
modelling technique is only been tested with the regularly sampled dataset; the sampling
rate is defined by the data acquisition rate of the experiment. There has already been
publication released introducing new LSTM based memory cell known as the Phased-
LSTM [56]. The author in [56] claims that the Phased-LSTM model naturally integrates
irregularly sampled inputs through its resonating memory unit. Thus, designing the RNN
topology to deal with such irregularly sampled sensor data can be a potential improvement
of the thesis work.
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APPENDIX A

Class Definitions

In this chapter, definitions of the Python classes developed within this study are given.

A.1 FilenameProvider

FilenameProvider is responsible for maintaining the file paths for the entire project. The
class is initialized with an instance of the configuration object and a work-space directory.
The class defines getter methods to construct and return respective filenames. Moreover,
filepath existence are checked and directories are created whenever necessary.

A.2 DataProvider

DataProvider provides methods for data collection and preparation procedures. It de-
fines methods for data normalization as explained in Section 3.2.1 as well as for the
de-normalization process. Moreover, it defines methods for reshaping and splitting the
input/target matrices as defined in Section 3.2. Pattern search algorithm explained in
Section 4.3.2 is also implemented in this class. The class takes following constructor argu-
ments:

1. config: Configuration object.

2. fn_provider : FilenameProvider object.

3. normalization_type: Enumeration to determine the data-normalization technique.

• "std": Data normalization to have zero mean and unit variance.
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• "-1and1": Data normalization between -1 and 1.

• "0and1": Data normalization between 0 and 1.

4. time_frames: Integer value to determine the sequence length for the RNN models.

5. load_data: Boolean value, when true the pattern search algorithm is triggered auto-
matically.

6. debug_mode: Boolean value, when true prints debug informations, write a portion
of input/target matrices in text file for manual inspection, plots and saves feature
and target data distributions.

A.3 ModelWrapper

The ModelWrapper class extends CommonModel class, which is written on top of the
Keras model. It facilitates easy parametrization and deployment of different network
topologies, with better code re-usability. CommonModel holds the Keras model instance
and other common functionalities which can be shared by other model-wrappers. Common
functionality include, training and testing procedures, callback function definitions, metric
computations, and the method to plot results. High-level ModelWrapper class is therefore
only responsible for the network architecture. The ModelWrapper class takes following
constructor arguments:

1. config: Configuration object.

2. fn_provider : FilenameProvider object.

3. data_provider : DataProvider object.

4. name: String value define the name of the model. All output files produced in the
training, testing process is identifiable via model name.

5. mini_batch_size: Integer value as mini-batch size for the training.

6. epochs: Integer value give the number of epoch for training.

7. loss_func: String name or loss function method object.

8. rnn_layers: Number of RNN layers to use in the memory block (see figure 3.4).

9. rnn_units: Integer value or tuple determine number of RNN units to use in the
memory block. When integer value is given, same number of units are used in all
layers. Otherwise, elements in tuple determine the number of units, in this case,
number of element in the tuple must be same as the number of layers.

10. rnn_activation: Activation function name or instance for forward signals in RNN lay-
ers.

11. rnn_r_activation: Activation function name or instance for recurring signals in
RNN layers.
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12. rnn_dropout: Dropout rate as float for forward signals in RNN layers.

13. rnn_r_dropout: Dropout rate as float for recurring signals in RNN layers.

14. rnn_k_reg_l2 : L2 regularization factor as float for forward signals in RNN layers.

15. rnn_r_k_reg_l2 : L2 regularization factor as float for recurring signals in RNN lay-
ers.

16. rnn_k_init: Kernel initializer name or instance for the weights of forward signals in
RNN layers.

17. rnn_r_k_init: Kernel initializer name or instance for the weights of recurring signals
in RNN layers.

18. t_dist_layers: Number of time-distributed dense layers.

19. t_dist_units: Integer value or tuple determine number of units in the time-
distributed dense layers.

20. t_dist_activation: Activation function name or instance for the time-distributed
dense layers.

21. t_dist_dropout: Dropout rate as float for the time-distributed dense layers.

22. t_dist_k_reg_l2 : L2 regularization factor as float for the time-distributed dense
layers.

23. t_dist_k_init: Kernel initializer name or instance for the weights between time-
distributed dense layers.

24. adam_lr : Learning rate in float for the Adam algorithm (see Section 3.4.6).

25. adam_lr_decay: Decay rate of the learning rate in float for Adam.

26. adam_beta1 : Decay rate of the first moment in float for Adam.

27. adam_beta2 : Decay rate of the second moment in float for Adam.

28. bn_axis: Normalization axis for all BN layers. bn_axis ∈ [−1, 1, 2] such that:

• -1: Normalize along sequence as well as feature axis.

• 1: Normalize along sequence axis only.

• 2: Normalize along feature axis only.

29. bn_eps: Value of εBN in float (see Equation 3.5)

30. shuffle: Boolean value, if true the inputs are snuffled in N axis after each epoch, such
that the network always sees the samples in different order.

31. save_weights: Boolean value, if true optimum weight is saved at the end of each
epoch (see Section 3.3.3).

32. verbose: Boolean value determines the verbosity.
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Such implementation allows variety of network architectures to be trained and tested with-
out code duplication, thus it is easy to maintain and extend the setup for different kinds
of models. Furthermore, since all hyper-parameters are parametrized, applying automatic
model optimization techniques such as Bayesian optimization is convenient.



APPENDIX B

Models

B.1 Model Settings

The hyper-parameter search determines the model’s settings. In this section, the settings
for different models are listed. The settings for the LSTM and GRU layers are similar,
therefore are listed together and are commonly referred as rnn in table B.1.

B.1.1 Settings for the One-to-One Model

Values of the hyper-parameter for the one-to-one model are given in table B.1. Hyper-
parameters from 1 to 9 are the general settings for all layers of the model, thus, they are
shared by the memory and the time-distributed dense blocks. Hyper-parameters from 10
to 19 are specific for the memory block of the model and the ones from 20 to 25 are for
the time-distributed dense blocks. The model architecture is described in Section 3.3.1.
The name of the hyper-parameter in the table reflect the constructor arguments of the
ModelWrapper class described in appendix A.3.

# Name Value Comment
1 mini_batch_size 256 Mini-batch size for training, Section 3.4.4

2 epochs 10 Number of epochs to train, Section 3.4.3

3 loss_func L{CEC} Cost function, Section 3.4.1; CEC loss, Sec-
tion 3.5.2.

4 adam_lr 0.002 Learning rate for Adam, Section 3.4.6
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5 adam_lr_decay 0.01 Decay rate of the learning rate for Adam, Sec-
tion 3.4.6

6 adam_beta1 0.99 Decay rate of the first moment for Adam, Sec-
tion 3.4.6

7 adam_beta2 0.999 Decay rate of the second moment for Adam,
Section 3.4.6

8 bn_axis -1 Feature as well as sequence axis is normalized
by the BN layer, Section 3.3.

9 bn_eps 0.05 Value of ε
BN

in Equation 3.5, Section 3.3.

10 rnn_layers 1 Number of RNN layers in the memory block,
Section 3.3.1.

11 rnn_units 50 Number of units in each RNN layers of the
memory block, Section 3.3.1.

12 rnn_activation Tanh Activation function (Section 3.4.5) for the for-
ward signals in each RNN layers.

13 rnn_r_activation Sigmoid Activation function (Section 3.4.5) for the re-
curring signals in each RNN layers.

14 rnn_dropout 0.0 Dropout rate (Section 3.4.9) for the forward
signals in each RNN layers.

15 rnn_r_dropout 0.0 Dropout rate (Section 3.4.9) for the recurring
signals in each RNN layers.

16 rnn_k_reg_l2 0.4 L2 regularization factor (Section 3.4.8) for the
forward signals in each RNN layers.

17 rnn_r_k_reg_l2 0.99 L2 regularization factor (Section 3.4.8) for the
recurring signals in each RNN layers.

18 rnn_k_init glorot_uniform Initializer (Section 3.4.7) for the weights of for-
ward signals in each RNN layers.

19 rnn_r_k_init orthogonal Initializer (Section 3.4.7) for the weights of re-
curring signals in each RNN layers.

20 t_dist_layers 5 Number of time-distributed dense layers, Sec-
tion 3.3.

21 t_dist_units 100 Number of units in each time-distributed
dense layers, Section 3.3.

22 t_dist_activation ReLu Activation function (Section 3.4.5) for each
time-distributed dense layers.

23 t_dist_dropout 0.3 Dropout rate (Section 3.4.9) for each time-
distributed dense layers.

24 t_dist_k_reg_l2 0.6 L2 regularization factor (Section 3.4.8) for
each time-distributed dense layers.



B.1. MODEL SETTINGS 87

25 t_dist_k_init orthogonal Initializer (Section 3.4.7) for the weights be-
tween time-distributed dense layers.

Table B.1: Settings of the one-to-one model. The settings is valid for the GRU as well as the LSTM
model instances.

B.1.2 Settings for the One-to-Many Model

The Table B.2 lists the settings of the one-to-many model found through the hyper-
parameter search algorithm. However, the settings values are only course-searched.

The single values are valid for all neural branches of the one-to-many model. The three
comma separated values are for the neural branch of the photodiode, rotatory encoder,
and the temperature sensor, respectively.

# Name Value Comment
1 mini_batch_size 256 Mini-batch size for training, Section 3.4.4

2 epochs 10 Number of epochs to train, Section 3.4.3

3 loss_func L{CEC} Cost function, Section 3.4.1; CEC loss, Sec-
tion 3.5.2.

4 adam_lr 0.002 Learning rate for Adam, Section 3.4.6

5 adam_lr_decay 0.01 Decay rate of the learning rate for Adam, Sec-
tion 3.4.6

6 adam_beta1 0.99 Decay rate of the first moment for Adam, Sec-
tion 3.4.6

7 adam_beta2 0.999 Decay rate of the second moment for Adam,
Section 3.4.6

8 rnn_layers 1 Number of RNN layers in the memory block,
Section 3.3.1.

9 rnn_units 50 Number of units in each RNN layers of the
memory block, Section 3.3.1.

10 rnn_activation Tanh Activation function (Section 3.4.5) for the for-
ward signals in each RNN layers.

11 rnn_r_activation Sigmoid Activation function (Section 3.4.5) for the re-
curring signals in each RNN layers.

12 rnn_dropout 0.0 Dropout rate (Section 3.4.9) for the forward
signals in each RNN layers.

13 rnn_r_dropout 0.0 Dropout rate (Section 3.4.9) for the recurring
signals in each RNN layers.

14 rnn_k_reg_l2 0.4 L2 regularization factor (Section 3.4.8) for the
forward signals in each RNN layers.
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15 rnn_r_k_reg_l2 0.99 L2 regularization factor (Section 3.4.8) for the
recurring signals in each RNN layers.

16 rnn_k_init glorot_uniform Initializer (Section 3.4.7) for the weights of for-
ward signals in each RNN layers.

17 rnn_r_k_init orthogonal Initializer (Section 3.4.7) for the weights of re-
curring signals in each RNN layers.

18 rnn_bn_axis -1 Feature as well as sequence axis is normalized
by the BN layer, Section 3.3.

19 rnn_bn_eps 0.1 Value of ε
BN

in Equation 3.5, Section 3.3.

20 t_dist_layers 2, 2, 3 Number of time-distributed dense layers, Sec-
tion 3.3.

21 t_dist_units 60, 50, 60 Number of units in each time-distributed
dense layers, Section 3.3.

22 t_dist_activation ReLu Activation function (Section 3.4.5) for each
time-distributed dense layers.

23 t_dist_dropout 0.3 Dropout rate (Section 3.4.9) for each time-
distributed dense layers.

24 t_dist_k_reg_l2 0.4, 0.4, 0.9 L2 regularization factor (Section 3.4.8) for
each time-distributed dense layers.

25 t_dist_k_init orthogonal Initializer (Section 3.4.7) for the weights be-
tween time-distributed dense layers.

26 t_dist_bn_axis -1 Feature as well as sequence axis is normalized
by the BN layer, Section 3.3.

27 t_dist_bn_eps 0.1 Value of ε
BN

in Equation 3.5, Section 3.3.

Table B.2: Settings of the one-to-many model. The settings is valid for the GRU as well as the LSTM
model instances.


