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Abstract—Many fields of science rely on software systems to
answer different research questions. For valid results researchers
need to trust the results scientific software produces, and con-
sequently quality assurance is of utmost importance. In this
paper we are investigating the impact of quality assurance in
the domain of computational materials science (CMS). Based
on our experience in this domain we formulate challenges for
validation and verification of scientific software and their results.
Furthermore, we describe directions for future research that can
potentially help dealing with these challenges.

Index Terms—Verification and Validation, Scientific Software,
Computational Materials Science

I. INTRODUCTION

Software has become an important driver for research in many
scientific disciplines such as biology and physics [1]. Scientists
often use software in experiments to produce evidence for the
validity of their theories, and publish scientific papers based
on this evidence [2]. However, in the worst case the validity of
such a computational experiment — and thus of the (published)
research results — may be jeopardized if the software producing
the evidence is not of sufficient quality. A software that has
bugs may produce wrong data leading to erroneous evidence.
Accordingly, scientific papers have been retracted in the past
due to issues with software [3].

Consequently, software engineering principles are being
increasingly adopted [4]-[8], and best practices for scientific
software development processes have been proposed [9], [10].
At the same time, a clash of cultures between software
engineers and domain scientists has been reported [11], [12].

In this context, validation and verification of scientific
software are critical, as they establish trust in the software
for it to perform the required calculations correctly. In this
regard, inadequate behavior of scientific software is a threat
to the validity of research results, and has consequently been a
main subject of research [13]. To demonstrate the correctness
of scientific software, testing is considered essential [14], and
has been investigated for scientific software [2], [15]-[19],
resulting in tools for testing scientific software [20], [21], the
beneficial use of reference data for testing [22], and test-driven
development methods [23], [24]. Despite these advances in
testing scientific software, all approaches suffer from the
oracle problem and large variability (i.e., a large configuration

space and input domain) of the software under test [19].
Carver et al. [25, p.554] faced the oracle problem in five
case studies of computational science and engineering projects,
and concluded: “Validation is problematic because it is often
difficult, or even impossible, to establish the correct output or
result a priori.” In contrast, testing from a software engineering
perspective typically considers accurate oracles, that is, the
expected output of the software under test is precisely known.
This results in a binary oracle: The calculated output either
does or does not match the expected output. This contradicts
the nature of scientific software, where oracles are unknown
or not precisely known. Moreover, the large variability of
scientific software poses a challenge to standard testing tools
from software engineering because of the large number of
tests that are required to comprehensively test the software.
Consequently, tests should be well chosen with the goal of
allowing scientists to increase their trust in the software [26].

In this paper, we investigate the validation and verifica-
tion of scientific software in computational materials science
(CMS). CMS is concerned with the design and discovery of
new materials using computational methods. Based on our
experience in the CMS domain, we discuss corresponding
challenges such as (i) the oracle problem, and (ii) large
configuration spaces of CMS programs, called codes, taking
the specifics of the domain into account. In the context of
the development and use of the NOMAD [27] ecosystem of
codes and data, we further discuss challenges related to
(iii) large-scale, heterogeneous data, and (iv) global software
development. Corresponding to these challenges, we proceed
to discuss directions for future research on validating and
verifying scientific software in CMS.

Throughout the paper, we take the perspective of a CMS
scientist who runs calculations to design and analyze materials
using a code such as exciting [28], ABINIT [29], or
VASP!, or a data-analysis workflow in NOMAD. As the results
of a calculation rely on the validity and correctness of the
used code, our goal is to derive trust levels for codes from
testing, so that the scientist can increase her trust in the code.
This paves the way for trustworthy, reproducible calculations
and research results.

Uhttps://www.vasp.at/
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II. COMPUTATIONAL MATERIALS SCIENCE

The convergence of theoretical physics and chemistry, ma-
terials science and engineering, and computer science into
computational materials science (CMS) enables the modeling
of materials (both existing materials and those that can be
created in the future) at the electronic and atomic level. This
allows the accurate prediction of how these materials will
behave at the microscopic and macroscopic levels, and of
their suitability for specific research and commercial appli-
cations. CMS is characterized by a healthy, but heterogeneous
ecosystem of many different CMS programs, called codes,
developed by different research groups across the globe.
These codes are highly domain-specific scientific software
packages implementing various theoretical methods. They are
executed in high performance computing centers, with millions
of CPU hours spent every day, some of them at petascale
performance, producing a large stock of equally heterogeneous
CMS data.

The NOMAD Center of Excellence? (EU/Horizon 2020)
aims to enable the CMS community to provide CMS data
along the FAIR (findable, accessible, interoperable, and re-
usable [30]) principles of data sharing. The NOMAD platform
provides services that allow scientists to upload raw code
inputs and outputs and to automatically convert data from
all relevant codes into a code-independent normalized for-
mat. It further allows scientists at various levels of expertise
to search, inspect, analyze, and visualize all data in this
code-independent format. Currently, NOMAD supports over
40 codes, and stores more than 50 million results of complex
calculations regarding properties of materials, including those
of the largest US databases, provided by several hundred indi-
vidual researchers and research groups. Its code-independent
format uses a hierarchical data schema with over 400 common
code-independent and almost 2.000 code-specific attributes.

The architecture of the NOMAD platform (see Fig. 1),
consists of six major components: 1) The raw data files
Repository where scientists upload, search, and download
raw data. 2) Parsers and normalizers that convert raw data
in a code-specific format to so-called Archive data whose
format is code-independent. 3) The Archive data, that is,
the normalized data that can be accessed through an API.
4) The Analytics Toolkit that allows scientists to apply ma-
chine learning techniques to CMS data. 5) The Encyclopaedia
that aggregates calculations to provide a comprehensive and
consistent collection of data for all materials. 6) The advanced
visualization that uses 3D and virtual-reality techniques to
visualize materials at an atomic level.

Following an hour-glass model, the most crucial part of
NOMAD is the Archive of normalized data. All supported
40+ codes use a different format to represent input and out-
put data for their individual simulations/calculations. Codes,
data, and data formats differ in the following aspects. First,
codes implement different methods, with varying compu-
tational parameters — and thus, numerical precision — and

Zhttps://nomad-coe.eu/
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individual limitations and trade-offs. Second, codes focus on
different aspects and produce different physical properties of
a simulated material. For instance, a code may specialize
in electrical, optical, or thermal properties. Third, data is
provided in different unit systems (e.g., International System
Units (SI) or atomic units). Fourth, although most codes use
a text format that adheres to some community standards, all
quantities are presented in different orders, and matrices and
vectors are laid out differently. Quantity values range from
strings and dates, simple numerical values, to large vectors,
matrices, and tensors of several GB, or even TB, in size. Data
formats are not formalized, and documentation is often sparse.
Data of individual calculations is often spread over multiple
files. Relations between calculations may exist as typically one
calculation is based on another. However, such relations are not
formalized and have to be deduced from common practices,
for instance, a commonly used layout of directories.

Fig. 1. Architectural view of NOMAD.

To represent data in a normalized and homogeneous form,
NOMAD defines an ontology-like data model that unifies
all codes with a common schema. The schema is used
to formalize, categorize, and document all codes, as well
as code-common and code-specific quantities, in a single
evolving model, called meta-info. It uses a proprietary schema
language that specializes in describing physical quantities
(e.g., with units and vector/matrix dimensions). meta-info is
independent of distinct technical data formats, and the Archive
data can be represented in different technical file formats. For
example, NOMAD stores the archive data in HDF5, but the
API supports access to the data via a JSON representation.

To convert raw CMS data to Archive data, NOMAD uses
40+ parsers (one per code) and several normalizers. Each
set of code input/output data is parsed and then processed
by all normalizers. Parsers re-produce all quantities found in
the raw data in their respective meta-info form. Normalizers
then compute derived properties, classify simulations, convert
units, and relate data with other sources (e.g., external ma-
terials databases). In computer language terms, parsers and
normalizers only work on a syntactical level, all semantics is
added by other NOMAD and potential third-party services.

One of the 40+ codes used in the context of NOMAD
is exciting, a software package implementing density-
functional theory (DFT) and many-body perturbation the-
ory [28]. As suggested by its name, exciting has a major
focus on calculating excited-state properties of materials.
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III. PROBLEM STATEMENT AND CHALLENGES

In this section, we first discuss the problem statement, includ-
ing its relevance to scientific software with a focus on codes
in computational materials science (CMS). We then proceed
to detail challenges in verifying and validating such software.

A. Problem Statement

To design and discover new materials, CMS scientists conduct
computational experiments, in which large-scale, heteroge-
neous data is processed by data-analysis workflows including
codes. While certain steps of a workflow are concerned
with preparing data (e.g., parsers), the codes perform scien-
tific calculations. For an experiment, scientists reuse existing
codes and data, as well as develop new codes that pro-
duce new data. Subsequently, they combine all elements in a
workflow for execution. The results of such experiments often
provide the evidence that the scientists’ theories work, which is
consequently the basis for scientific papers. A recent example
from CMS is the work by Rodrigues Pela et al. [31] who use
exciting to perform all required calculations.

In this context, there is a multitude of codes in CMS
implementing a range of theoretical methods. Each of these
methods relies on a set of computational parameters that gov-
ern the numerical precision of the respective implementation of
the method. Choosing the best code, and optimal parameters
that guarantee high precision is a non-trivial issue, which
greatly influences the calculation results. Similar observations
of configuration choices impacting research results are re-
ported in bioinformatics [32]. This large configuration space
results in high variability, which challenges CMS scientists in
predicting how configuration choices impact the results.

Consider, for example, the basic input file for exciting
in Listing 1. This input file is used for DFT-1/2 calculations
(specifically, LDA-1/2) for silicon, in order to compute single-
particle band gaps. It first defines the title (line 2) and the
material structure, in this case silicon (lines 3-11). It also
features several parameters, such as the presence of dfthalf (see
line 19), which triggers the DFT-1/2 calculation rather than the
default standard DFT. The DFT-1/2 method is configured by
the parameters in lines 12—14. Certain parameters have to be
determined variationally to obtain optimal results (e.g., cut)
while others are constant (e.g., exponent is usually set to 8).3

Listing 1. Example of an input for exciting.
1 <input>
2 <title >Bulk Silicon: LDA—1/2 example </title >
3 <structure speciespath="$EXCITINGROOT/species”>
4 <crystal scale="10.26">
5
6
7
8

<basevect >0.0 0.5 0.5</basevect>
<basevect >0.5 0.0 0.5</basevect>
<basevect >0.5 0.5 0.0</basevect>
</crystal>
9 <species speciesfile="Si.xml” rmt="2.1">
10 <atom coord="0.00 0.00 0.00”></atom>
11 <atom coord="0.25 0.25 0.257></atom>

12
13
14
15

<dfthalfparam cut="3.90" ampl="1" exponent="8">
<shell number="0" ionization="0.25" />
</dfthalfparam>
</species>

3For further details, see http://exciting-code.org/nitrogen-dft05.
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</structure >

<groundstate do="fromscratch” rgkmax="7.0" gmaxvr="14"
ngridk="6 6 6” outputlevel="high” xctype="LDA_PW’>
<dfthalf printVSfile="false”/>

</groundstate>

21 </input>

This (extremely simple) example illustrates only a very
small fraction of the complexity of configuring codes, as
there exist configuration parameters that are mutable or con-
stant, as well as dependencies between parameters (e.g., only
if the dfthalf method is selected, it can be further configured
by the parameters in dfthalfparam).

Consequently, given the complexity of configuring codes
for their use, and of initially developing such codes, scientists
may generally ask themselves two questions:

(1) Is the theoretical method I have developed valid?, or in
the case of reusing an existing method: Have I selected
and configured appropriately the theoretical method and
therefore, the code implementing this method?

(2) Is the code implementing this method correct?

While the first question concerns the validation of software
(“Am I building the right product”), the second one addresses
its verification (“Am I building the product right”, c¢f. [33]).
Thus, validation is about the adequate (proper use), and
verification about the correct (absence of bugs), functional
behavior of software such as the codes in CMS. Hence,
both validation and verification of CMS codes are required
to obtain trustworthy results from calculations. Otherwise,
the codes pose a potential major threat to the validity of
the experiments and research results, as any inadequate or
incorrect code refutes these results. However, validating and
verifying codes in computational materials science poses
challenges, which we will discuss in the next section.

B. Challenges for Validating and Verifying CMS Codes

In the following, we discuss major challenges for the verifi-
cation and validation of scientific software, which - based on
our experience in (research) software engineering - are caused
by the described factors: experimental nature and complexity
of codes, and complexity of the data processed by them.

1) Lack of Precise Oracles: As scientists use computational
calculations to explore new ideas and theoretical methods, the
outcome of a calculation is generally not known at all, or at
least not precisely known a priori [4], [25], [34]. Other reasons
for this are the complexity of the calculations, and the fact that
the calculations may return a range of different answers, which
makes it difficult for scientists to predict the outcome [19].

This causes uncertainty about calculation results, as there
is no precise notion of their correctness. Consequently, the
same is true for the software used to explore such new ideas
and methods, which prohibits precise oracles to be defined for
quality assurance techniques such as software testing.

Consider, for example, a CMS scientist who performs one
of the following calculations. She simulates existing materials
with well-known properties on a new implementation (code)
of an existing, altered, or completely new method, or she sim-
ulates unknown materials on an existing code of established
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methods, or even does so in bulk to explore the huge space of
unknown potential materials. To be more specific, considering
the example presented previously (see Listing 1), estimating
the impact of varying input parameters such as cut on the
results may be difficult. In all cases, the expected result of the
calculation is not known and cannot be predicted a priori.

In contrast, the result obtained for a specific property of an
input material is likely to be correct if the calculated property
value is statistically similar to that of other well-known mate-
rials of the same class, assuming we can classify the material.
Outliers, in turn, may indicate one of the following cases:

(i) Discovery of a highly interesting material. In this positive
case, a material has been discovered, whose properties are
different from existing materials of the same class.
Faulty theoretical method and/or parameters. In this nega-
tive case, a scientist either made a mistake when develop-
ing a new method, which manifests in its implementation
(code), or used a nonsensical combination of method
and parameters when using an existing method and code.
Here, the code is, or may be, free of bugs.

A bug in the software (code). This is the other negative
case, in which the code contains a bug that caused the
faulty results. More specifically, the code is a faulty
implementation of a valid theoretical method.

(ii)

(iii)

This perspective gives rise to developing statistical oracles,
which judge the plausibility of computational results and
provide corresponding feedback to scientists, which in turn
establishes confidence in these results. Non-plausible results,
which are expected to be rare, need to be inspected manu-
ally and classified according to the cases (i), (ii), and (iii).
The use of such statistical oracles is conceivable in quality
assurance techniques such as software testing. However, from
a software engineering point of view, testing mainly focuses
on precise oracles and assertions, so that state-of-the-art and
state-of-the-practice testing approaches, or even test-driven
development, cannot be directly applied here. Consequently,
quality assurance techniques such as systematic testing known
from software engineering [4], [10] are rarely adopted for
scientific software [19]. Therefore, increasing the confidence
of scientists in computational results requires quality assur-
ance techniques which can be applied to scientific software
packages a-posteriori and in an automated manner [10].

This results in the following challenges for leveraging
statistical oracles in testing of scientific software:

« Which methods and techniques shall be used to provide
a statistical oracle?

« How can such methods reliably judge the success and
potential failure of a set of executed tests?

2) Large Configuration Space: As discussed above, the
experimental nature of scientific software (codes) typically
results in a large configuration space. This comprises the
selection of algorithms provided by a software, as well as
fine-tuning the selected algorithm through parameters, which
in turn results in high variability and a large number of options
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for executing the software [35], [36]. At the same time, the
choice of configuration influences the calculation results [32].

An example from CMS is the calculation of single-particle
band gaps, for which exciting can be customized to
perform a calculation that is further configured by a set of
parameters (see Section III-A). In the context of NOMAD,
40+ codes such as exciting are used, which multiplies
the variability that CMS scientists have to cope with.

This variability challenges scientists to select and configure
appropriate codes for calculations. As the selection and
configuration of codes can greatly influence the calculation
results, CMS scientists should be supported a-priori and in an
automated manner during this process. Such support should
guide scientists in implementing a method to prevent the
introduction of basic faults, before a calculation is conducted.
It therefore promotes the validation of the configured meth-
ods/codes and of the conducted calculations. In CMS, such
support may suggest to scientists the use of trusted codes and
methods (including parameters) for specific materials and/or
properties that are of interest for a specific calculation. For
example, a recommendation may be to use an all-electron
code and a self-interaction corrected exchange-correlation
function to properly account for electron-electron interactions
for a heavy material like cerium.

Moreover, the large configuration space and the corre-
sponding variability of codes also challenges the validation
and verification of these codes through testing, in that it
is infeasible to test all possible configurations. The large
configuration space impedes manual identification of test cases
and thereby of configurations to be tested (cf. [19], [35], [36]).
Thus, an automated sampling of the configuration space to
identify representative configurations to be tested is required.
In general, this constitutes a combinatorial interaction testing
problem [37] while a solution for this problem has to be tai-
lored to the CMS domain. Consequently, coping with the large
configuration space requires automated support for scientists in
using codes, as well as intelligent testing techniques, which
account for the following challenges:

o What are appropriate sampling strategies for selecting a
subset of scientific computations (i.e., a combination of
code, code configuration, and input data in CMS) that
are likely to reveal a failure in a scientific software?
How to exploit results of previous calculations and test
runs of codes, to automatically determine the required
support for scientists? Particularly, how to exploit statisti-
cal information from automated testing, to suggest meth-
ods and corresponding codes (including configuration
parameters) to scientists for a specific calculation?

3) Large-Scale, Heterogeneous Data: Scientific software
often processes large-scale, heterogeneous data, e.g., in climate
research [38], and in CMS [27] where software operates
on data up to several TB in size and encoded in different
code-specific formats that are mostly neither formalized nor
well-documented. Thus, calculations using results of multiple
codes in NOMAD require pre- and post-processing steps to
transform input/output data between the normalized Archive



format (cf Section II) and the code-specific formats, to
integrate machine learning, or for visualization. For instance,
parsers (one for each code-specific format) and normalizers
are used to translate code-specific input/output data of a
code for storage in the Archive and future use. Consequently,
codes implementing theoretical methods are embedded in a
workflow, together with programs implementing such pre- and
post-processing steps. One workflow example is a machine
learning approach applied to properties computed by multiple
codes over many materials, to find predictors for a specific
materials property. Here, the properties have to be computed,
parsed, and normalized for the learning.

Consequently, validation and verification have to address the
whole workflow. Otherwise, a faulty pre- or post-processing
step might introduce faults into the data causing either wrong
calculations by the (bug-free) codes, or wrong presentations
and interpretations of the results by scientists. Hence, a fault
might be located in any part of a data-analysis workflow
(¢f. NOMAD workflow in Section II).

Thus, the selection of test data (including the pre- and post-
processing steps) for testing workflows is crucial. For instance,
considering a workflow that classifies materials based on their
electrical resistivity and conductivity, tests should cover calcu-
lation data from different codes implying different methods,
unit systems, respective parser and normalizer chains, as well
as representatives from different classes of materials (e.g.,
super-, semi-, non-, conductors).

This heterogeneity, together with the scale of the data,
results in high variability at the data level (in addition to the
variability of the codes discussed in the context of large
configuration spaces), which challenges the validation and
verification of data-analysis workflows:

« How to identify and sample valid/realistic test data for

codes and workflows that likely reveal a failure?

« How to improve the quality of the pre-/post-processing

steps that handle large-scale, heterogeneous data?

4) Global Software Development: In CMS, scientists across
the globe explore theoretical methods and develop codes. An
ecosystem of several hundred scientists and research groups
has emerged around NOMAD, fostering reuse of data for new
and reproducing calculations, reuse of codes in workflows,
and development of new codes based on existing ones.

However, reuse is often kept implicit, e.g., for lack of
common workflow descriptions [39]. For instance, relations
between calculations do exist, but such relations often have
to be deduced from common practices such as a commonly
used layout of directories. For example, to derive elasticity
properties for a material with exciting, a series of simula-
tions with varying forces acting on the simulated material has
to be performed [40]. Only an analysis of all these simula-
tions allows scientists to derive the desired elastic constants.
Howeyver, the intent behind the series of simulations is not
always formalized. From the perspective of NOMAD, or data
reuse in general, the parameter study’s relations between those
simulations and their underlying intent have to be deduced.
Even originally unrelated simulations from different codes
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could be used in a parameter study, provided one identifies
respective data based on comparable methods and parameters.

Moreover, codes are sometimes not well-documented —
with regards to any and all levels of documentation, e.g.,
requirements, system modeling, architectural design, main-
tenance guidelines, and user documentation — or no longer
maintained, their data format may not be formalized, and
the corresponding parser may only produce partial parses
of the format. Finally, the quality of a code might be
unknown or the quality might differ, depending on the degree
to which quality assurance techniques such as testing are
adopted. These aspects are caused by general issues of global
software development concerning knowledge, project, and
process management [41], and they challenge the validation
and verification of codes that are (re)used by scientists other
than the scientists developing the codes:

o How to validate and verify third-party code that is not
well-documented, not sufficiently tested, and whose data
format is not formalized? How to achieve trustworthy
workflows that use data from different sources in dif-
ferent codes?

How to extract and mine relations between calculations
to leverage integration testing and to generally improve
quality/trust levels of codes, for instance, by external-
izing assurances obtained for reused codes?

IV. DIRECTIONS FOR FUTURE RESEARCH

1) Lack of Precise Oracles: Currently, the confidence about
scientific research results in the CMS domain is addressed by
scientific workflow systems using the notion of provenance,
since all executions of codes and the corresponding input and
output data are documented in NOMAD*. A recent community
effort [42] has, for the first time, assessed and compared the
quality of DFT results computed by several codes for a
set of materials. More recently, the effect of computational
parameters have been systematically assessed, involving four
different codes [43]. The goal here is to automate the
collection of workflow metadata to enable reproducibility of
scientific results.

Based on the available NOMAD data, the next step will be
to define a notion of a statistical oracle, which uses statistical
methods for identifying the correctness of a computational
calculation [44]. Unlike usual oracles used in software testing
such as oracles derived from requirement specifications or
models, gold standard oracles, or human oracles, the decision
of a statistical oracle as envisioned is, by definition, not
always correct. To apply statistical methods, results in the
neighborhood of the computational calculation need to be
investigated. Chan et al. [45] provide a general algorithm
based on mesh specifications and machine learning for this
problem. However, defining the neighborhood in CMS requires
looking at the used materials, codes including its parameters,
and computational environment. Furthermore, the selection of
appropriate heuristics, which keep the oracle’s failure at a

“https://metainfo.nomad-coe.eu/nomadmetainfo_public/archive.html
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minimum, is an open problem that has been little researched
in general [44] and needs to be tailored to data-driven CMS.
Finally, if the neighborhood of a calculation is not available in
NOMAD, specific computational calculations can be provided
by mutation sensitivity testing [46] and modeling as well as
approximation techniques of the input space [36].

Beyond this, it will be very interesting to apply the concept
of metamorphic testing [47] that is specifically designed to
test software without an oracle [48], [49]. The idea is to
identify and refine a set of metamorphic relations between
the software inputs and outputs. Just to give an abstract
example, for a square root function sqgrt (x) the relation
x=sqrt (x) *sqrt (x) should hold under reasonable float-
ing point accuracy assumptions. Identifying such relations
is highly domain dependent. However, automatic techniques
based on machine learning have been proposed [44], [50]-
[52] and successfully applied to the bio-medical [53] and
particle physics [54] domains. Transferring the concept of
metamorphic testing requires domain expertise since the iden-
tified relations need to be understood and explained. The
explainability of the relations is a primary challenge. However,
it is also a significant opportunity for the CMS community
since the scientists might learn hidden relations from their
codes which were previously unknown. This may strengthen
the understanding and help to refine the underlying theories.

2) Large Configuration Space: Codes in CMS are used
by selecting a desired method and by fine-tuning this method
through a set of parameters. Thus, there is not the perfect
implementation, but each code is actually a tool box that can
be instantiated in a huge number of variants. In sum, this leads
to a combinatorial explosion of possible computations, and
testing all of them is infeasible. Instead, appropriate sampling
strategies are required which are effective and efficient at the
same time. Possible scenarios for first tests are, for instance,
to stay within the same code family and vary, for a given
method, the parameter space; or select the best possible (fully
converged) calculations from different codes.

The steps for future research to deal with the large configu-
ration space when verifying and validating CMS codes and
calculations require effective methods for configuration space
sampling and automated test input generation. Concerning
the sampling of suitable input data for generated test cases,
one idea [35] is to apply combinatorial testing and test case
selection techniques, which have been exploited in software
product line (SPL) engineering [55], [56]. The goal of these
techniques is to select a promising subset of product variants
when testing all variants of an SPL is infeasible. However,
SPL engineering focuses on testing interactions of features,
which may be present in a product variant, or not. In contrast,
the configuration space of CMS software comprises a set
of non-boolean parameters, which demand different coverage
metrics and sampling strategies. Furthermore, our hypothe-
sis is that the size of the configuration space exceeds the
configuration space of very large existing SPLs such as the
Linux kernel. As a result, we have to enrich the sampling
strategies with modeling techniques for the input space as
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proposed by Vilkomir et al. [36]. Another direction for future
research is to use a recommender system exploiting statistical
information obtained from existing computational calculations
in the NOMAD Repository. Passing and non-passing test cases
will be classified statistically to provide valuable information
about the adequacy of code configurations. Our aim is to
exploit this information to derive a recommender system that
assists scientists in configuring codes for their specific needs.

3) Large-Scale, Heterogeneous Data: There are two as-
pects of the data diversity problem in CMS. First, we have
different representations of the same information, for instance,
different file formats, layouts of matrices, units, etc. Second,
codes provide different kinds of information, for instance,
codes specializing in electronic properties vs. codes spe-
cializing in thermal properties. The former problem can be
solved by finding the right abstractions, the latter by defining
relations between properties (e.g., identifying generalizations,
categories of properties, or associations). Both aspects can be
tackled by formal data models.

Modeling data has a long history in computer science, and
has different methods in different rechnical spaces [57] such as
schemas for data exchange (XML, JSON), relational algebra
in databases, ontologies in semantic web, or formal grammars
and meta-models in computer languages. Applications often
require transforming data from a representation in one space
to a representation in another (e.g., reading data from a
database organized in tables and sending it over the internet
in hierarchically nested JSON format). The scale of the data
increases the problem since specialized technologies have to be
combined. For instance, search engines, distributed computing
platforms, and nosql-databases have to work hand in hand.
Each technology potentially requires its own specialized data
representation. To cope with this, data must be modeled at a
level that is independent from concrete technical spaces.

The CMS domain (or scientific software in general) presents
a further challenge, since most existing methods for formally
defining data types fall short as they neglect the nature of
scientific data and offer no or insufficient support for vec-
tors, matrices, tensors, their dimensions, and units. Therefore,
NOMAD defines its own schema language meta-info [58] that
is independent of the concrete data representation (e.g., text
files, HDFS files, or databases). In all its representations, data
retains its inherent structure and types as defined in meta-info.
Furthermore, meta-info categorizes properties into sections,
and defines relations between properties and their categories.
Some of the meta-info is common and shared by many codes,
some definitions are code specific.

This formal model of CMS data can foster the quality
of codes and workflows in several ways, e.g., by applying
methods from model-based testing. First, a formal model can
support generating realistic large-scale test data and asserting
test coverage with respect to the input of codes. Secondly, it
is a formal definition of the possible data space. Constraints
defined at the meta-info level can be used to automatically
assert the plausibility of calculated properties. Finally, it can
automatize the development of mappings between technical



spaces (i.e., parsers and normalizers) by declaratively defining
mappings, from which operational transformations are auto-
matically derived. This avoids error-prone manual implemen-
tations of parsers and normalizers.

4) Global Software Development: Global software develop-
ment challenges to the verification and validation of codes
(re)used in CMS studies pertain mainly to two factors: (i) The
large and diverse development ecosystem, which produces
codes that differ in quality (e.g., levels of documentation and
testing); (ii) the lack of explication of intent when combining
multiple calculations and codes in workflows.

Efforts to consolidate the diversity of the ecosystem in
terms of software quality will have to be implemented as
community processes. Code development should adopt best
practices of software engineering [10], [59]. These practices
must be adapted to the needs of CMS, for instance, in regard
to testing (cf. Section IV-1). Similar efforts have been made in
astronomy®. Such efforts will ease the integration and testing
of codes developed by other scientists in workflows.

Despite the use of workflow systems in CMS (cf Sec-
tion IV-1), metadata explicating the intent behind a
parametrization and combination of calculations/codes
within a single study is often missing. Therefore, any in-
tent can only be deduced from potentially interrelated, non-
formalized information such as directory structures. To expli-
cate intent, future efforts should develop and apply require-
ments for formalized metadata, for instance, by using the
Common Workflow Language [39], a specification for portable
and scalable workflow descriptions with dedicated metadata.
Similarly to efforts regarding the development ecosystem as
such, this must be achieved through a standardization process
within the CMS community. Additionally, automatic methods
for the discovery of intentional process models based on
Hidden Markov Models [60], [61] can be adapted to mine
implicit relations between calculations/codes. These models
can guide the integration testing of data analysis workflows.

V. CONCLUSIONS

In this paper we discussed challenges for the validation and
verification of scientific software in computational materials
science (CMS). We conclude that most of the problems are
similar to other domains [14], [16], [18], [21], [23], [26], [44],
[62], [63] and solution principles derived for the CMS domain
might be generalizable to other domains. However, the effort
of the CMS community to provide results of their compu-
tational experiments in the NOMAD Repository [27] based
on the FAIR principle [30] provides a significant opportunity
for fundamental research on validation and verification of
scientific software. For instance, based on the NOMAD data,
novel strategies to tackle the oracle problem, can be developed.
With this research, we envision trust levels for codes so that
scientists increase their trust in codes to obtain trustworthy,
reproducible calculations and research results.
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