Metalized aerogels for applications in catalysis

Background:
- The majority of heterogeneous catalysts are linked to inorganic carrier matrices.
- Relatively few aerogel matrices are being used; examples are predominantly restricted to gas-phase reactions.

Advantages of organic aerogel matrices:
- Tailored (hierarchical) porosity allows for an optimization of reagent flow.
- Different solvent systems are feasible when compared to inorganic carrier systems.
- Sustainable Feedstocks may be used.
- Redox-active aerogels backbones may facilitate electroless metal deposition.

Electroless plating:
- Compared to nanoparticle loading, a more film-like metal coating is possible.
- Catalyst bleeding should be less likely compared to nanoparticle loading because of chemical matrix-metal interaction.

Results

Preparation of wet gels:
- Resorcinol-formaldehyde (RF) Aerogels were prepared by sequential sol-gel process followed by aging in an oven.
- Cellulose-based gels (CA) were obtained by reversible dissolution with salt melt hydrates.

Advantages of (electroless) plating methods:
- Use of aerogels as matrix for electroless plating of metals.
- Implementation of (bio)organic aerogels as matrices in heterogeneous catalysis.
- Further applications of metalized aerogels (thermal management (e.g. heat pipes/heat pumps) and sensors).

Electroless plating:
- Plating was achieved in two steps: a) seeding with metal nanoparticles/sensitizing with Sn(II) and b) plating with metal salt/chemical reductant (e.g. tartrate).
- Final drying (RF: ambient conditions; cellulose: supercritical CO2) afforded metalized aerogels.

Table 1: Properties of aerogel metal composites

<table>
<thead>
<tr>
<th>Properties</th>
<th>Envelope density [g/cm³]</th>
<th>Skeletal density [g/cm³]</th>
<th>Porosity [%]</th>
<th>Specific surface area [m²/g]</th>
<th>Gas permeability [μm]</th>
<th>Thermal conductivity (Hot Disk) [mW/m*K]</th>
<th>Compressive modulus E' (DMA, 1Hz) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>0.2910</td>
<td>1.5012</td>
<td>80.1</td>
<td>< 1</td>
<td>8.08</td>
<td>70</td>
<td>4.28</td>
</tr>
<tr>
<td>RF-Ag</td>
<td>0.6072</td>
<td>3.1283</td>
<td>78.4</td>
<td>1.19</td>
<td>1.88</td>
<td>205</td>
<td>15.51</td>
</tr>
<tr>
<td>RF-Au</td>
<td>0.6202</td>
<td>2.7871</td>
<td>77.9</td>
<td>< 1</td>
<td>3.34</td>
<td>124</td>
<td>15.07</td>
</tr>
<tr>
<td>RF-Pt</td>
<td>0.6386</td>
<td>3.3025</td>
<td>77.2</td>
<td>0.53</td>
<td>3.07</td>
<td>83</td>
<td>14.68</td>
</tr>
<tr>
<td>RF-NB</td>
<td>0.6990</td>
<td>3.1298</td>
<td>75.1</td>
<td>1.15</td>
<td>2.87</td>
<td>87</td>
<td>19.48</td>
</tr>
<tr>
<td>CA (3 wt.%)</td>
<td>0.0571</td>
<td>1.4547</td>
<td>96.2</td>
<td>192.13</td>
<td>0.465</td>
<td>32</td>
<td>4.30</td>
</tr>
<tr>
<td>CA-Ag</td>
<td>0.0930</td>
<td>2.2494</td>
<td>95.9</td>
<td>98.46</td>
<td>0.410</td>
<td>-</td>
<td>12.41</td>
</tr>
</tbody>
</table>

Preliminary catalytic test:
- Reduction of nitrophenol with CA-Ag composite:
 - Apparent rate kapp of ca. 1.10⁻⁵ s⁻¹ (high concentrations of NaBH₄; pseudo-1st order kinetics).
 - Comparable to colloidal Ag nanoparticles (kapp of ca. 2.10⁻⁵ s⁻¹).

Summary:
- Several metal aerogel composites were prepared using wet gels and electroless plating approach.
- Ag-plated cellulose gels show competitive performance in the reduction of nitrophenol.

Conclusions:
- Other late transition metals will be plated to both cellulose and resorcinol-formaldehyde gels.
- Based on the initial results in catalysis, further studies on synthetically useful reactions (e.g. hydrogenations, cross-coupling reactions) are planned.

Acknowledgements
The authors gratefully acknowledge funding by the Program Directorate Transport of the German Aerospace Center (as part of the metaproject “Next Generation Car”) and the European Space Agency.

References

René Tannert¹, Maria Schestakow², Falk Muench², Wolfgang Ensinger², Barbara Milow¹
¹German Aerospace Center (DLR), Institute of Materials Research, Department of Aerogels, Linder Höhe, 51147 Cologne, Germany
²Technical University Darmstadt, Alarich-Woess-Straße 2, 64287 Darmstadt, Germany

Outlook:
- Other late transition metals will be plated to both cellulose and resorcinol-formaldehyde gels.