Metalized aerogels for applications in catalysis

Background:

Iction

Ο

0

ntr

- The majority of heterogeneous catalysts are linked to inorganic carrier matrices
- Relatively few aerogel matrices are being used; examples are predominantly restricted to gas-phase reactions^[1]

Advantages of organic aerogel matrices:

- Tailored (hierarchical) porosity allows for an optimization of reagent flow
- Different solvent systems are feasible when compared to inorganic carrier systems -> different reactivity/selectivity profiles
- Sustainable Feedstocks may be used

Advantages of (electroless) plating methods:

- Compared to nanoparticle loading a more film-like metal coating is possible -> different reactivity/selectivity profiles in catalysis
- Catalyst bleeding should be less likely compared to nanoparticle loading because of chemical matrix-metal interaction
- Redox-active aerogels backbones may facilitate electroless metal deposition
- Electroless plating is scalable and yields higher loading than electroplating
- In contrast to electroplating electroless plating methodologies may be applied to non-conductive aerogels

Our Goals:

- Use of aerogels as matrix for electroless plating of metals
- Implementation of (bio)organic aerogels as matrices in heterogeneous catalysis
- Further applications of metalized aerogels (thermal management (e.g. heat pipes/ heat pumps) and sensors)

Preparation of wet gels:

Resorcinol-formaldehyde (RF) Aerogels were prepared by sequential sol-gel • process followed by aging in an oven

Wet RF Gel Monolith

Cellulose-based gels (CA) were obtained by reversible dissolution with salt melt hydrates^[3]

Preparation of CA Gels:

Scheme 1: Preparation of wet gels from RF (left) and Cellulose, respectively (right)

Electroless plating:

- Plating was achieved in two steps: a) seeding with metal nanoparticles/ sensitizing with Sn(II) and b) plating with metal salt/ chemical reductant (e.g. tartrate)
- final drying (RF: ambient conditions; cellulose: supercritical CO₂) afforded metalized aerogels

50µm

t T U Expe

> Composites were characterized with respect to density, porosity, and thermal and mechanical properties (Table 1)
> Table 1: Properties of aerogel metal composites

Composites of Ag, Au, Pt, and NiB were prepared with RF and cellulose gels, respectively (Table 1)

	Proportios	Envelope density	Skeletal density	Porosity	Specific surface area	Gas permeability	Thermal conductivity	Compressive modulus E*
sults	Properties	[g/cm³]	[g/cm ³]	[%]	[m²/g]	[µm²]	(Hot Disk) [mW/m*K]	(DMA, 1Hz) [MPa]
	RF	0.2910	1.5012	80.1	< 1	8.08	70	4.28
	RF-Ag	0.6072	3.1283	78.4	1.19	1.88	205	15.51
lesi	RF-Au	0.6202	2.7871	77.9	< 1	3.34	124	15.07
	RF-Pt	0.6386	3.3025	77.2	0.53	3.07	83	14.68
	RF-NiB	0.6990	3.1289	75.1	1.15	2.87	87	19.48
	CA (3wt.%)	0.0571	1.4547	96.2	192.13	0.465	32	4.30
	CA-Ag	0.0930	2.2494	95.9	98.46	0.410	_	12.41

Preliminary catalytic test:

- reduction of nitrophenol with CA-Ag composite:
- apparent rate k_{app} of ca. $1 \cdot 10^{-3} \cdot s^{-1}$ • (high concentrations of NaBH₄: pseudo-1st order kinetics)^[3]
- comparable to colloidal Ag nanoparticles $(k_{app} \text{ of ca. } 2 \cdot 10^{-3} \cdot \text{s}^{-1})^{[4]}$

Summary:

- Several metal aerogel composites were prepared using wet gels and electroless plating approach
- Ag-plated cellulose gels show competitive performance in the reduction of nitrophenol

Outlook:

 \rightarrow Other late transition metals will be plated to both cellulose and resorcinol-formal dehyde gels

S

S

 \rightarrow Based on the initial results in catalysis, further studies on synthetically useful reactions (e.g. hydrogenations, cross-coupling reactions) are planned

Acknowledgements

The authors gratefully acknowledge funding by the Program Directorate Transport of the German Aerospace Center (as part of the metaproject "Next Generation Car") and the European Space Agency.

References [1] J. G. Reynolds, L. M. Hair, P. R. Coronado, M. W. Droege, J. Wong, MRS Online Proc. Libr. 1996, 454, 225-233. [2] D. R. Rolison, Science 2003, 299, 1698-1701. [3] M. Schestakow, F. Muench, C. Reimuth, L. Ratke, W. Ensinger, Appl. Phys. Lett. 2016, 108, 213108. [4] J. Tang, Z. Shi, R. M. Berry, K. C. Tam, Ind. Eng. Chem. Res. 2015, 54, 3299-3308.

NaBH_⊿

CA-Ag

René Tannert^{*1}, Maria Schestakow¹, Falk Muench², Wolfgang Ensinger², Barbara Milow¹

¹German Aerospace Center (DLR), Institute of Materials Research, Department of Aerogels, Linder Höhe, 51147 Cologne, Germany ²Technical University Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany

on the basis of a decisior by the German Bundestag

and Energy

Next Generation Car