Mar 2019 doc.: IEEE 802.11-19/0365r0

Consideration on Positioning with 802.11bd

Date: 2019-03-12

Authors:

Name	Affiliations	Address	Phone	email
Stephan Sand,	German Aerospace	Münchener Straße 20,	0049-8153-28-1464	stephan.sand@dlr.de,
Paul Unterhuber,	Center (DLR)	82234 Weßling,	0049-8153-28-2291	paul.unterhuber@dlr.de,
Mohammad Soliman,		Germany	0049-8153-28-1990	mohammad.soliman@dlr.de,
Martin Schmidhammer,			0049-8153-28-1539	martin.schmidhammer@dlr.de,
Fabian de Ponte-Müller			0049-8153-28-2882	fabian.pontemueller@dlr.de
Ioannis Sarris	u-blox	Athens, Greece	+30 6976080735	ioannis.sarris@u-blox.com

Abstract

802.11mc contains Fine Timing Measurement (FTM) Protocol for round trip ranging and positioning.

802.11az proposes some improvements on FTM such as NDP SU/MU ranging, trigger based ranging, AOA/AOD measurements, ...

What are the implications for 802.11bd positioning mode?

This is a discussion document so feedback highly welcome.

Introduction

• PAR [1]:

- "This amendment defines at least one mode that achieves at least 2 times higher throughput" ... "in high mobility channel environments at vehicle speeds up to 250 km/h (closing speeds up to 500 km/h);"
- "this amendment defines procedures for at least one form of positioning in conjunction with V2X communications"
- "This amendment shall provide interoperability, coexistence, backward compatibility, and fairness with deployed OCB (Outside the Context of a BSS) devices."

Use Case (UC) baseline document [2]:

- UC5 Vehicular Positioning & Location
- UC8 Train-to-Train
- UC9 Vehicle-to-Train

Current Situation V2X

Proprietary solution [3] with road side units (RSUs) exists

- RSUs generally broadcast their position information in either,
 - Wave Service Announcements (WSA) (IEEE 1609)
 - Geonetworking messages (ETSI ITS)
- Ranging measurements
- Enhanced signal processing algorithms to
 - improve robustness with regard to multipath effects
 - achieve range accuracy in the order of nanoseconds Time-of-flight even in multipath channels
- RSUs honor SIFS timing: IEEE 802.11 devices should respond to Unicast packets with a short ACK at a very specific period of time after receipt of Unicast packet.
 - **→** 32µs@10 MHz

Fine Timing Measurement (FTM) Protocol

According to [4] FTM

- Time to obtain range ~ 30 ms
- Position: 3 ranges needed
 - \rightarrow 100 120 ms
- 50 km/h=13.9 m/s
 - → 0.4m moved while obtaining one range
 - → 1.4m 1.7m moved while obtaining three ranges
- ACK on FTM Measurement: aSIFSTime (32µs@10 MHz)
 - Default accuracy $\pm 1.3 \mu s \rightarrow 390 m error$
 - 0.1% error (1/3 of sample) $\rightarrow 10$ m error

Discussion

• 5.9 GHz mode:

- V2X (X=V,I,P,T) ranging?
- Limits of round-trip ranging for high mobility?
- One way ranging useful?
- Multi-antenna approaches?
- Bandwidth and aSIFSTime?
- 802.11az features [5]?
- Quality indicators for higher layer(data fusion: Channel impulse response, clock parameters, etc.?
- Can we reuse existing messages or do we need dedicated 11bd ranging message?
- Simulation and channel models [6]?

• 60 GHz mode: ranging mode (large bandwidth → high ranging accuracy)?

References

- [1] TGbd, "Project Authorization Request (PAR)", IEEE 802.11-18/0861r9
- [2] NGV SG, "Use Case Baseline Document Approved By SG", IEEE 802.11-18/1323r2
- [3] Cohda Wireless, "V2X-Locate Positioning Whitepaper", https://cohdawireless.com/wp-content/uploads/2018/08/Whitepaper_V2X-Locate.pdf
- [4] L. Banin, et al., "High-Accuracy Indoor Geolocation using Collaborative Time of Arrival (CToA) Whitepaper", IEEE 802.11-17/1387r0
- [5] L. Chu, et al., "NGV Ranging Discussion", IEEE 802.11-18/1250r0
- [6] P. Unterhuber, et al., "Considerations on Vehicular Channel Models", IEEE 802.11-19/0034r1