Mar 2019 doc.: IEEE 802.11-19/0364r0

Performance Analysis of Outer RS Coding Scheme

Date: 2019-03-12

Authors:

Name	Affiliations	Address	Phone	email
Stephan Sand,	German Aerospace	Münchener Straße 20,	0049-8153-28-1464	stephan.sand@dlr.de,
Paul Unterhuber,	Center (DLR)	82234 Weßling,	0049-8153-28-2291	paul.unterhuber@dlr.de,
Mohammad Soliman,		Germany	0049-8153-28-1990	mohammad.soliman@dlr.de,
Martin Schmidhammer,			0049-8153-28-1539	martin.schmidhammer@dlr.de,
Fabian de Ponte-Müller			0049-8153-28-2882	fabian.pontemueller@dlr.de

Abstract

Outer Reed Solomon (RS) Code was proposed in [1] and further analyzed in [2].

The following results are based on simulator [2] analyzing the influence of different performance metrics, MCS, and channels:

- PER/Throughput vs. E_b/N_0 or SNR:
- BPSK/QPSK/16-QAM/64-QAM and different coding rates
- AWGN, highway LoS and NLoS

Results show that carful selection of performance metric needed to evaluate performance gains of novel schemes.

Introduction

Outer Reed Solomon (RS) code proposed in [1]:

Fig. 1 – Reed Solomon outer coding (taken from [1])

Definitions

• Signal-to-noise-ratio
$$SNR = \frac{E_S}{N_0}$$

• Energy-per-bit-to-noise-ratio
$$\frac{E_b}{N_0} = \frac{1}{\rho} \frac{E_S}{N_0}$$

with spectral efficiency
$$\rho = \frac{N_b N_{dspo}}{N_{dbps} N_{samp}}$$

 N_b number of bits per packet

 N_{dbps} number of data bits per OFDM symbol

 N_{dspo} number of data symbols per OFDM symbol

 N_{samp} number of complex samples per packet

Definitions

- Average Packet Error Rate $PER = \frac{N_{Errors}}{N_{Packets}}$
- Average Throughput $TP = (1 PER) N_b T_{Packet}$ packet duration $T_{Packet} = N_{Samp} T_{Samp} + T_{DIFS}$,
- Note: Simulations stopped after 100 packet errors or 10⁵ packets

 N_b number of bits per packet N_{samp} number of complex samples per packet T_{Samp} sampling period

Mar 2019 doc.: IEEE 802.11-19/0364r0

Spectral Efficency for Different MCS

	R=1/2, BPSK	R=3/4, BPSK	R=1/2, QPSK	R=3/4, QPSK	R=1/2, 16-QAM	R=3/4, 16-QAM	R=2/3, 64-QAM	R=3/4, 64-QAM
ρ Outer RS coding scheme [dB]	-3.0	-3.1	-3.2	-3.4	-3.6	-3.9	-4.3	-4.6
ρ 802.11p [dB]	-2.5	-2.7	-2.8	-3.0	-3.2	-3.5	-3.9	-4.1
$oldsymbol{ ho}_{802.11p} - oldsymbol{ ho}_{RS}$	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.5

AWGN (1/2)

Comparison of PER in relation to SNR and E_b/N_0 :

- PER vs. E_b/N₀ for fair comparison, accounts for additional energy on overhead
- Marginal gain for BPSK/QPSK/16-QAM, significant gain only for 64-QAM

AWGN (2/2)

Comparison of throughput in relation to SNR and E_b/N_0 :

- Throughput vs. E_b/N_0 for fair comparison, accounts for additional energy on overhead and channel use
- Outer RS coding scheme has lower throughput for all MCS and AWGN

Highway LoS (1/2)

Comparison of PER in relation to SNR and E_b/N_0 :

- PER vs. E_b/N_0 for fair comparison, accounts for additional energy on overhead
- Marginal gain for BPSK/QPSK/16-QAM, significant gain only for 64-QAM

Highway LoS (2/2)

Comparison of throughput in relation to SNR and E_b/N_0 :

- Throughput vs. E_b/N_0 for fair comparison, accounts for additional energy on overhead and channel use
- Outer RS coding scheme has lower throughput for all MCS and Highway LoS channel

Highway NLoS (1/2)

Comparison of PER in relation to SNR and E_b/N_0 :

- PER vs. E_b/N_0 for fair comparison, accounts for additional energy on overhead
- Marginal gain for BPSK/QPSK(R=3/4), possibly significant gains for QPSK(R=1/2),16-QAM, 64-QAM

Highway NLoS (2/2)

Comparison of throughput in relation to SNR and E_b/N_0 :

- Throughput vs. E_b/N_0 for fair comparison, accounts for additional energy on overhead and channel use
- Outer RS coding scheme has lower throughput for all MCS and Highway NLoS channel

Conclusions

- PER vs. E_b/N_0 and PER vs. SNR:
 - PER vs. E_b/N_0 for fair comparison: Accounts for additional energy on overhead
 - Marginal gains for outer RS coding scheme for BPSK/QPSK/16-QAM
 - Significant gain only for 64-QAM
- Throughput vs. E_b/N_0 and Throughput vs. SNR:
 - Throughput vs. E_b/N_0 for fair comparison: Accounts for additional energy on overhead and channel use
 - Outer RS coding scheme has lower throughput for all MCS and channels (AWGN, H-LoS, H-NLoS)
- → Careful selection of metric to evaluate performance gains of novel schemes

References

- [1] O. Haran, "Backward compatible PHY feasibility," IEEE 802.11-18/1214r0
- [2] I. Sarris, "V2X Reed-Solomon Simulation Model," IEEE 802.11-18/1956r1.