Railway Use Cases for NGV

Date: 2018-11-12

Authors:

Name	Affiliations	Address	Phone	email
Stephan Sand,	German Aerospace	Münchener Straße 20,	0049-8153-28-1464	stephan.sand@dlr.de
Paul Unterhuber,	Center (DLR)	82234 Wessling, Germany	0049-8153-28-2291	<u>paul.unterhuber(@dlr.de</u> mohammad soliman@dlr.de
Mohammad Soliman			0049-8153-28-1990	<u>monumuu.sommun(u)un.ue</u>
Andreas Lehner	German Aerospace	Münchener Straße 20,	0049-8153-28-2804	andreas.lehner@dlr.de
	Center (DLR),	82234 Wessling, Germany		
	Intelligence on Wheels	Argelsrieder Feld 13	0049-8153-2994023	andreas.lehner@intelligence-
	GmbH	82234 Wessling,		on-wheels.de
		Germany		
Friedbert Berens	FBConsulting Sarl	21, Route de Luxembourg	+4916097971846	friedbert.berens@me.com
		6633 Wasserbillig		
		Luxembourg		
Juan Moreno García-	Universidad	Calle Nikola Tesla s/n	+34 637931878	juanmorenogl@diac.upm.es
Loygorri	Politécnica de Madrid	28031 Madrid (Spain)		

Abstract

Railway use cases also relevant to NGV besides road vehicle use cases:

- Use Case 1: Onboard Train
 - Wireless train control and monitoring system (TCMS), operator oriented services, customer services (passenger information services, connection to mobile hot spot for public internet)
- Use Case 2: Train-to-Train
 - Autonomous train protection & operation (ATP/ATO): collision avoidance, remote control, automatic coupling and train integrity; virtual coupling (platooning)
- Use Case 3: Train-to-Trackside
 - Signaling, operator oriented services, customer services (passenger information, ...)
- Use Case 4: Vehicle-to-Train
 - Shared space in level crossings & shared spectrum

Why Railways?

Definition of vehicle [1]:

A vehicle is a machine that transports people or cargo. Vehicles include

- wagons, bicycles, motor vehicles (motorcycles, cars, trucks, buses),
- railed vehicles (trains, trams),
- watercraft (ships, boats),
- amphibious vehicles (screw-propelled vehicle, hovercraft),
- aircraft (airplanes, helicopters) and spacecraft.

Why Railways?

Current situation in road traffic:

- Very efficient use of roads
- EU: 75% of freight, 82% of passengers
- Many accidents, traffic jams, less energy efficient

Current situation in railways:

- Very safe and energy efficient
- EU: 18% of freight, 8% of passengers
- Inefficient use of railways due to old and national safety system

Why Railways?

Current situation in road traffic:

• Large Market: 1.3 billion motor vehicles, 1.35 trillion \$ trade (2015)

Current situation in railways:

• Small Market: 6.2 million rail vehicles, without freight cars only 0.7 million, 167 billion \$ (2015)

Society and politics: Shift traffic from road to rail [4]

- → Need for highly efficient and safe railway operation with less infrastructure
- → Reliable low-latency communications and ranging essential

Railway terms

- Rail vehicle: Wagon, railcar, locomotive, ...
- Consist: a single vehicle or a group of vehicles that cannot be uncoupled

• Train: composition of one or a set of consists or rail vehicles that can be operated as an autonomous unit

• Train Control and Monitoring System (TCMS) state-of-the-art [5][6]

- Inside rail vehicle or consist: Multifunction vehicle bus (MVB) or Ethernet consist network (ECN)
- Connecting multiple vehicles: wired train bus (WTB) or ethernet train backbone (ETR)
- Between consists or wagons mechanical and electrical couplers

Stephan Sand, German Aerospace Center (DLR)

• Train Control and Monitoring System (TCMS) state-of-the-art [5][6]

Submission

Stephan Sand, German Aerospace Center (DLR)

• Wireless Train Control and Monitoring System (TCMS) [5][6]

Submission

• Train Control and Monitoring System (TCMS) Data classes [6]:

- Process data= small dimension data (byte or bit) that are sent periodically [8]
- Message data= differ from process data for bigger size and not sent periodically [8]
- Supervisory data= as message data, not periodically, used for supervision and inauguration process [8]
- Stream data= big amount of data sent continuously
- Best Effort data= data rate and delivery time depend on traffic load

• Train Control and Monitoring System (TCMS) [6]: Key performance attributes: Inside consist

DOMAIN	DATA CLASS	DATA SIZE	DATA RATE NEED	CYCLE TIME	LATENCY [The latency should be between 0 and max]
		max	max	min	max
	Process	1432 [acc. IEC61375-2-3]	10Mbit/s	16ms	80ms [5 x Cycle Time min]
	Message	65388 [acc. IEC61375-2-3]	10Mbit/s	Not relevant [Message is not a periodic communication]	250ms
TCMS	Superv [Not relevant – slow PD]	Not relevant	10Mbit/s	50ms	250ms
	BestEffort e.g. for data upload/ download relevant	Not relevant	10Mbit/s	N/A	N/A
	Streaming [Not applicable]	N/A	N/A	N/A	N/A

Submission

• Train Control and Monitoring System (TCMS) [6]: Key performance attributes: Inside train

DOMAIN	DATA CLASS	DATA SIZE	DATA RATE NEED	CYCLE TIME	LATENCY [The latency should be between 0 and max]
		max	max	min	max
	Process	1432 [acc. IEC61375-2-3]	10Mbit/s	40ms [from knowledge of expertise]	Between 3CycleTime and 7CycleTime [from knowledge of expertise]
TCMS	Message	65388 [acc. IEC61375-2-3]	10Mb/s	Not relevant [Message is not a periodic communication]	250ms
	Superv [Not relevant - slow PD]	Not relevant	10Mb/s	Not relevant	250ms
	BestEffort	Forbidden	Forbidden	Forbidden	Forbidden
	Streaming [Not applicable]	N/A	N/A	N/A	N/A

Submission

• Train Control and Monitoring System (TCMS) [6]:

- Required bandwidth ~ 100 Mb/s in one train
- 30 years innovation cycle

• Operator oriented services

- Improve operational parameters of train, e.g. maintenance costs, vehicle availability, closed circuit television (CCTV)
- Required bandwidth \sim 1-10 Gb/s in one train
- 10 years innovation cycle

• Customer services

- Passenger comfort, e.g. public internet, passenger info portal; customer's own devices, WiFi
- Required bandwidth \sim 1-10 Gb/s in one train
- 5 years innovation cycle

- Overview
 - Safety critical and for efficient operation
 - Wireless train control and monitoring system (TCMS)
 - Operator oriented services (CCTV, maintenance)
- Deployment time line >2025
- Requirements
 - For a speed of 400 km/h and distance of 500m, NGV provides at least a data rate of 100 Mbps and latency of 1 ms and supports reliability (SIL2/3)
- Limitations
 - Communication range "onboard" train to avoid interference with other trains

September 2018

Use Case 2: Train-to-Train

Enabling Future Applications

Autonomous train protection & operation (ATP/ATO)

Remote control, automatic coupling and train integrity [10]

Virtual coupling: Platooning [11]

Collision avoidance [9]

Use Case 2: Train-to-Train Enabling Future Applications

Autonomous train protection & operation (ATO): Collision avoidance [9]

• 150 bit message

Use Case 2: Train-to-Train Enabling Future Applications

Autonomous train operation (ATO): Collision avoidance [9]

- 150 bit message (excl. authentication and encryption)
- Dense train station /shunting yard: 200 static & 25 moving trains, update rates 0.2 Hz static & 1 Hz moving train
 → Minimum message rate = 200 · 0.2 Hz + 25 · 1 Hz = 65 Hz
- System data rate = $150 \text{ bit} \cdot 65 \text{ Hz} = 9.75 \text{ kbit/s}$
- Communication range 5 km for 2 km breaking distance of train @ 200 km/h (~125 mph)
- Sufficient for informing train driver as safety-overlay in addition to other safety measures
- → Higher rates needed to include authentication and encryption also for stand alone system or autonomous operations

Use Case 2: Train-to-Train

Enabling Future Applications

Autonomous train operation (ATO): Remote control, automatic coupling and train integrity [10]

- Communication and ranging for control
- Ranging accuracy 1% of actual distance
- 6-sigma of Cramér–Rao lower bound (CRLB)
- ITS-G5 (802.11p, 10 MHz), IR-UWB¹⁰ ⁰ and mm-Wave (both 500 MHz bandwidth)

Use Case 2: Train-to-Train Enabling Future Applications

Virtual coupling: Platooning [12]

• Demonstration at Innotrans 2018 by Siemens, Bombardier, CAF

Use Case 2: Train-to-Train Enabling Future Applications

Virtual coupling: Platooning [12]

- Trains per platoon: 3/6/18 in rural/suburban/urban
- Message rate 10 Hz

Update-Delay ∆ <i>t</i>	0.01 s	0.1 s	1 s	10 s
$(a_{max} = 1 m/s^2)$				
Position uncertainty	0.5e-5 m	0.5e-2 m	0.5 m	50 m
$ \Delta x _{max}$				
Velocity uncertainty	0.01 m/s = 0.036 km/h	0.1 m/s = 0.36 km/h	1 m/s = 3,6 km/h	10 m/s = 36 km/h
$ \Delta v _{max}$				

- Message size 167 bytes
- → 13.36 kb/s for one train broadcasting to platoon
- → 40.08/80.16/240.48 kb/s for 3/6/18 trains per platoon in rural/suburban/urban

Use Case 2: Train-to-Train

- Overview
 - Safety critical and for efficient operation
 - Autonomous train protection & operation (ATP/ATO): collision avoidance, remote control, automatic coupling and train integrity; virtual coupling (platooning)
- Deployment time line >2030
- Requirements
 - For a relative speed of 500 km/h (with directional antennas 800 km/h) and distance of 2000 m, NGV provides at least a data rate of 1 Mbps, a ranging accuracy of 1% of distance, and latency of 10 ms as well as supports reliability (SIL2)

Use Case 3: Train-to-Trackside

• Signaling: Safe operation of trains

- European Train Control System (ETCS)
 - GSM-R, future railway mobile communication system (FRMCS) using LTE/5G or WLAN
 - FRMCS traffic analysis [13]: ETCS, ATO, telemetry, remote control, critical video transmission

Scenario for Reference Train	Train-to-Tracksid	e (Uplink)	Trackside-to-Train (Downlink)	
Critical Video Transmission	Yes	No	Yes	No
Future Evolution [Mbps]	7.42	3.46	4.38	0.42
Co-Existence / Mitigation [Mbps]	3.49	0.19	3.50	0.20

- Positive Train Control (PTC) [14]
- Communication Based Train Control (CBTC) [15]
 - Application standard
 - 802.11b/g or LTE @ 1.8 GHz as well as proprietary solutions @ 5.9 GHz, e.g. based on 802.11a with 5MHz channels

Use Case 3: Train-to-Trackside

• Signaling: Safe operation of trains

- European Train Control System (ETCS)
 - GSM-R, future railway mobile communication system (FRMCS) using LTE/5G or WLAN
- Positive Train Control (PTC) [14]
- Communication Based Train Control (CBTC) [15]
 - Application standard
 - 802.11b/g or LTE @ 1.8 GHz as well as proprietary solutions @ 5.9 GHz, e.g. based on 802.11a with 5MHz channels
- Remote train operation in degraded mode for autonomous train operation (ATO)
- Issues:
 - In urban areas capacity problems
 - Dedicated links (link setup, link loss) to access points/base stations
 - → Broadcast to multiple access points for redundancy, lower latency

Use Case 3: Train-to-Trackside

• Overview

- Safety critical and for efficient operation
- Signaling of European Train Control System (ETCS), Positive Train Control (PTC), Communication Based Train Control (CBTC), Remote train operation in degraded mode for autonomous train operation (ATO)

• Deployment time line >2025

- Requirements
 - For a speed of 400 km/h and distance of 2000 m, NGV provides at least a data rate of 100 Mbps (50 Mbps without critical video), absolute position accuracy of 2 m cross and 0.5 m along track with at least 99% reliability, and latency of 100 ms as well as supports reliability (SIL4)

Use Case 4: Vehicle-to-Train

• Shared space: Level crossings

- Basic safety message/ CAM
- Long breaking distance of trains compared to cars, e.g. 250m @ 100 km/h (62 mph) compared to 50m
- → Need for increased communication range

• Shared spectrum

- EC Mandate for regulation:
 - Shared spectrum use of 5.9 GHz ITS band between V2X and urban rail communications
 - Spectrum segregation not an option

Use Case 4: Vehicle-to-Train

- Overview
 - Safety critical and for efficient operation
 - Shared space at level crossings, shared spectrum for 5.9 GHz ITS band between V2X and urban rail communications
- Deployment time line >2020
- Requirements
 - For a relative speed of 500 km/h and a distance of 2000 m, NGV provides at least a data rate of 1 Mbps, a ranging accuracy between 5% and 10% of distance, and a latency of 100 ms, as well as supports reliability (SIL2)
- Limitations
 - Interference between V2X and T2X limited while enabling safe cooperation

Summary

Railway use cases also relevant to NGV besides road vehicle use cases:

- Use Case 1: Onboard Train
 - Wireless train control and monitoring system (TCMS), operator oriented services, customer services (passenger information services, connection to mobile hot spot for public internet)
- Use Case 2: Train-to-Train
 - Autonomous train protection & operation (ATP/ATO): collision avoidance; remote control of automatic coupling and train integrity; virtual coupling (platooning)
- Use Case 3: Train-to-Trackside
 - Signaling, operator oriented services, customer services (passenger information, ...)
- Use Case 4: Vehicle-to-Train
 - Shared space in level crossings & shared spectrum

References

- 1. Source wikipedia https://en.wikipedia.org/wiki/Vehicle
- 2. Souce wikipedia https://commons.wikimedia.org/wiki/File:Autobahn_A8_bei_Holzkirchen.JPG
- 3. Source wikipedia <u>https://commons.wikimedia.org/wiki/File:Gleise_zu_Z%C3%BCrich_HB_2010.jpg</u>
- 4. Shift2Rail https://shift2rail.org/
- 5. Juan Moreno García-Loygorri, Javier Goikoetxea, Eneko Echeverría, Aitor Arriola, Iñaki Val, Stephan Sand, Paul Unterhuber, del Rio, Francisco (2018) The Wireless Train Communication Network: Roll2Rail Vision. IEEE Vehicular Technology Magazine. 2018. DOI: 10.1109/MVT.2018.2844408 ISSN 1556-6072
- 6. Roll2Rail. (2015). D 2.1 Specification of the Wireless TCMS. Public deliverable. [Online]. Available: http://www.roll2rail.eu/Page.aspx?CAT=DELIVERABLES&IdPage=45291e18-8d8f-4fd6-99f8-5d4b7a519b9c
- 7. Source CONNECTA Report Summary <u>https://cordis.europa.eu/result/rcn/200968_en.html</u>
- 8. IEC 61375-2-3:2015 Train Communication Network (TCN) Part 2-3:Train Communication Profile
- 9. Lehner, Andreas und Rico Gracía, Cristina und Strang, Thomas (2011) A multi-broadcast communication system for high dynamic vehicular ad-hoc networks. International Journal of Vehicle Information and Communication Systems, Vol. 2 (No. 3/4), Seiten 286-302, Inderscience Publishers, DOI: 10.1504/IJVICS.2011.044267, ISSN 1471-0242. <u>https://www.inderscienceonline.com/doi/pdf/10.1504/IJVICS.2011.044267</u>

Submission

References

- 10. Soliman, Mohammad und Sand, Stephan und Schmidhammer, Martin und Staudinger, Emanuel (2017) Effect of Non-Integer Delay on Ranging Accuracy for Ultra-Reliable Systems. ICL GNSS 2017, 27-29 June 2017, Nottingham, England. <u>http://elib.dlr.de/114201/</u>
- 11. Unterhuber, Paul und Sand, Stephan und Soliman, Mohammad und Siebler, Benjamin und Lehner, Andreas und Strang, Thomas und Gera, Damini (2017) Wide Band Propagation in Train-to-Train Scenarios Measurement Campaign and First Results. EUCAP 2017, 19.-24.März 2017, Paris, Frankreich. <u>http://elib.dlr.de/111876/</u>
- 12. Source Javier Goikoetxea's tweet https://twitter.com/goikotrains/status/1038396656507670528
- 13. Nooijen, Jos (2018) Future Railway Mobile Communication System (FRMCS) Traffic Analysis V2 https://www.cept.org/Documents/fm-56/46006/fm56-18-065_frmcs-traffic-analysis-v220
- 14. M. Hartong, R. Goel and D. Wijesekera, "Communications Based Positive Train Control Systems Architecture in the USA," 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Vic., 2006, pp. 2987-2991.
- 15. IEEE 1474.1-2004 IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, P1474.1 Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements
- 16. Source wikipedia https://commons.wikimedia.org/wiki/File:2018_Crozet,_Virginia_train_crash_2.jpg

Submission

Straw Poll

Question: use cases relevant for NGV?

• Y/N/Need more information: 27/0/18

Straw Polls

Question: Do you agree to adopt the "Onboard Train" use case on slide 14 as one of NGV use cases?

• Y/N/A: 10/8/15

Question: Do you agree to adopt the "Train-to-Train" use case on slide 21 as one of NGV use cases?

• Y/N/A: 21/2/7

Question: Do you agree to adopt the "Train-to-Trackside" use case on slide 24 as one of NGV use cases?

• Y/N/A: 12/4/14

Question: Do you agree to adopt the "Vehicle-to-Train" use case on slide 26 as one of NGV use cases?

• Y/N/A: 24/0/10