

Radiometric performance assessment of Sen2Cor version 2.8

esa

European Space Agency

12-14 March 2019

Bringfried Pflug (DLR), Jerome Louis (Telespazio), Magdalena Main-Knorn (DLR), Vincent Debaecker (Telespazio), Uwe Müller-Wilm (Telespazio Vega), Ferran Gascon (ESA), Valentina Boccia (ESA)

OPERPICUS

Outline

- 1. Sen2Cor Processor
- 2. Validation procedure
- 3. Validation data set
- 4. Validation results for AOT product
- 5. Validation results for WV product
- 6. Validation results for SR product

Sen2Cor processor overview

- Atmospheric correction processor for Sentinel-2 data
 - > Tool for Sentinel-2 mission
 - > Atmospheric Correction over land surface
 - > Processing mono-temporal orthorectified L1C granules
 - > Two main modules : Scene Classification (SCL) and Atm. Correction (AC)

European Space Agency

- SCL: series of threshold tests on L1C spectral bands, band ratios and indices
- > AOT (550 nm): DDV-algorithm
- > Optional cirrus correction preprocessing
- WV retrieval: Atmospheric Pre-corrected
 Differential Absorption Algorithm (APDA)
- BOA: terrain correction, adjacency corr., empirical Bidirectional Reflectance
 Distribution Function (BRDF) corrections

Validation procedure

Sen2Cor processing:

- rural aerosols
- summer profile
- ozone content from metadata
- no cirrus correction
- terrain correction with SRTM-DEM

AOT & WV validation:

→ 3rd SENTINEL-2 VALIDAT

2-14 March 2019

- direct comparison with AERONET
- satellite overpass time ±15 min
- 9km x 9km area around sunphotometer

TEAM MEE

 all vegetated, non-vegetated and and snow pixels

BOA-validation:

- Pixel-by-pixel comparison with AERONET corrected (surface reflection) data:
- Considered only non-saturated, non-cloudy pixels

statistical metrics:

- Accuracy (A): median difference to reference value
- Precision (P): rms around mean value
- Uncertainty (U): rms around reference value

Validation data set (AOT and WV)

AOT validation Sen2Cor 2.8

	complete set	DDV subset	DDV subset S2A	DDV subset S2B	Complete set SUMMER	Complete set winter
No. of products	702	337	160	177	459	243
within requ.	36%	48%	46%	49%	39%	30%
r (Pearson's corr.)	0.45	0.80	0.78	0.81	0.44	0.50
Accuracy (A)	0.004	-0.01	-0.01	-0.01	0.003	0.01
Precision (P)	0.23	0.10	0.10	0.10	0.18	0.30
Uncertainty (U)	0.24	0.11	0.10	0.11	0.19	0.31

- Acceptable APU for DDV subset, complete set will become better with new fallback solution
- No significant difference between performance of DDV-algorithm for S2A and S2B data
- Data set for winter quite small, dominated by low AOT-values Winter data give worse performance for investigated data set

→ 3rd SENTINEL-2 VAL -14 March 2019

Validation data set (SR)

Rimrock.

- 67 granules from January to July 2016
- from 11 test sites over all climate zones

(akutsk(3)

SR validation Sen2Cor 2.5 (Band 8a)

• APU Analysis: [Eric Vermote]

- Pixel-by-pixel comparison with AERONET corrected (surface reflection) data
- Plotted are average results over 19 test sites including arid locations
- ACIX-1 data set !!! (January to July 2016)
- specs: $0.05\rho^{ref} + 0.005$
- Very detailed performance assessment
- > Accuracy well within requirement
- Uncertainty (and Precision) within requirement for large amount of pixels

esa

European Space Agency

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Surface Beflectance Toth

1 20

and and

CENTRE NATIONAL

SR validation Sen2Cor 2.5 (all bands)

2–14 March 2019

SR validation Sen2Cor 2.5 (Band average)

D'ÉTUDES SPATIALES

esa

European Space Agency

1.))

Band average accuracy:

- > Value increasing with wavelength
- > within specs and within 5% relative to reference except band 5, 12

Band average uncertainty and precision:

- > absolute values for P and U increase, relative values P and U decrease with wavelength
- > outside 5% relative to reference

→ 3rd SENTINEL-2 VALIDATION TEAM MEETING 12-14 March 2019

Summary

- Processor performance for Sen2Cor 2.8 further improved
- AOT estimation: A = 0.004, P = 0.23, U = 0.24, 36% within specification
- WV retrieval: $A = -0.1 \text{ g/cm}^2$, $P = 0.2 \text{ g/cm}^2$, $U = 0.2 \text{ g/cm}^2$, 94% within specification
- BOA reflectance: Results still for Sen2Cor 2.5
- Accuracy (A), Precision (P) and Uncertainty (U) are within specification for large amount of pixels
- Good shape and intensity correctness of SR retrieval relative to reference measurement on surface
- Validation with AERONET-corrected surface reflectance as reference must be supplemented by more measurements

establishment of permanent working test sites, ad-hoc campaigns

Radiometric performance assessment of Sen2Cor version 2.8

→ 3rd SENTINEL-2 VALIDATION TEAM MEET

2-14 March 2019

Jérôme Louis Vincent Debaecker

Magdalena Main-Knorn Bringfried Pflug

Uwe Müller-Wilm

Valentina Boccia Ferran Gascon Bringfried.pflug@dlr.de

ACKNOWLEDGEMENT: The authors thank the PI investigators and their staff for establishing and maintaining the AERONET sites used in this investigation.

AOT550 retrieval ranking per climate zone

Sen2Cor 2.8 public \rightarrow

Complete set	Total no. of products	Products within requ.	U (Uncerta inty)	Fraction of DDV products	DDV subset	Total no. of products	Products within requ.	U (Uncerta inty)
Polar	31	48%	± 0.06	74%	Midlatitude N	89	60%	± 0.07
Temperate	108	47%	± 0.12	77%	Subtropical S	21	52%	± 0.05
Subtropical S	60	42%	± 0.07	35%	Polar	23	52%	± 0.05
Midlatitude N	247	39%	± 0.10	36%	Temperate	83	49%	± 0.08
Tropical	117	37%	± 0.29	75%	Tropical	87	39%	± 0.14
Subtropical N	97	16%	± 0.51	26%	Subtropical N	25	32%	± 0.18
Midlatitude S	42	7%	± 0.12	21%	Midlatitude S	9	22%	± 0.06

DDV subset: All of polar, temperate, midlatitude N and subtropical S perform similar →

- Significant worse performance in Tropics >
- Worst performance: subtropical N, but it is 1 only test site (Kanpur) >

→ 3rd SENTINEL-2 VAL TEAM MEE TDA -14 March 2019

AOT550 retrieval ranking per climate zone

DDV subset top 11 with at least 5 products	Total no. of produc	f ts	Products within requ.	U (Uncertai nty)	DDV subset worst 11 with at least 5 products	Total no. of products	Products within requ.	U (Uncertai nty)
Berlin_FUB	9		78%	± 0.05	Pontianak	11	45%	± 0.15
POLWET_Rzecin	22		73%	± 0.05	XiangHe	9	44%	± 0.13
Madrid	56		64%	± 0.05	Marbel_Univ	5	40%	± 0.06
Alta_Floresta	14		64%	± 0.05	Lope_Gabon	5	40%	± 0.25
Mongu_Inn	5		60%	± 0.05	Medellin	20	35%	± 0.08
Bonanza_Creek	17		59%	± 0.05	Yakutsk	6	33%	± 0.05
GSFC	23		57%	± 0.09	Kanpur	25	32%	± 0.18
Itajuba	14		50%	± 0.04	Jabiru	7	29%	± 0.06
Rimrock	23		48%	± 0.06	CEILAP-BA	8	13%	± 0.07
Bujumbura	13		46%	± 0.14	Belsk	18	11%	± 0.13
Yekaterinburg	11		45%	± 0.06	llorin	11	0%	± 0.26

→ 3rd SENTINEL-2 VALIDATION TEAM MEETING
12-14 March 2019

