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Abstract—Non-stationary channel models play a crucial role
in today’s communication systems. Mobile-to-mobile channels
are known to exhibit non-stationary behavior caused by the
movement of transmitter and receiver. Non-stationarity can be
addressed by introducing time-variant stochastic functions such
as the time-variant instantaneous Doppler probability density
function or time-variant instantaneous characteristic function.
An algebraic analysis of time-variant Doppler probability density
function (pdf) in a classical Cartesian coordinate system is
only numerically tractable due to trigonometric functions in
the resulting expressions. In contrast, it has been shown that
using prolate spheroidal coordinates for 2D vehicle-to-vehicle
channels the algebraic analysis becomes analytically tractable.
In this paper, the analysis is extended to aircraft-to-aircraft
channels. It is shown that the time-variant Doppler pdf can be
represented without trigonometric functions. The description of
the Doppler frequency in prolate spheroidal coordinates allows
to describe it as an algebraic curve. This permits the use of
algebraic methods to analyze the Doppler frequency and derive
the boundaries of the resulting Doppler pdf. Using the developed
tools, we investigated exemplary aircraft-to-aircraft scenarios.
However, the methodology can be extended to any aircraft-to-
aircraft configuration.

Index Terms—Characteristic function, Doppler pdf, mobile-
to-mobile channel, geometry-based stochastic channel modeling,
prolate spheroidal coordinates.

I. INTRODUCTION

DEVICE-TO-DEVICE communication or mobile-to-

mobile (M2M) communication will be one of the

key technologies for 5G communication networks [1]. An

important class of M2M communication is air-to-air (A2A)

communication, which is needed for both manned [2] and

unmanned aerial vehicles, see [3]. Thus, a fundamental

understanding of the propagation environment is crucial in

order to optimally adapt new communication systems to

the channel conditions. The A2A channel, however, is more

complicated than the fixed-to-mobile channel of previous

communication generations, e.g., 2G-4G cellular, since both

transmitter (TX) and receiver (RX) are moving.

In the early days of channel modeling, mainly stochastic

models were used to characterize the propagation channel

[4]. Those stochastic models are based on the wide-sense

stationary uncorrelated scattering (WSSUS) assumption that
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was introduced in the seminal paper of Bello [5]. This assump-

tion is fulfilled for narrowband fixed-to-mobile channels for

some limited spatial extent or temporal duration. For wideband

channels the wide-sense stationary (WSS) approximation can

pertain to individual multipath components as well as to the

entire channel impulse response, still of course for some

limited spatial extent. For azimuthally uniformly distributed

scatterers, Clarke derived in [4] the so called Jakes Doppler

power spectrum [6], whose inverse Fourier transform - the au-

tocorrelation function of the channel’s narrowband amplitude -

is a Bessel function. This description has been used for a long

time for the case of a fixed base station and mobile receiver.

A WSSUS model for the M2M channel was introduced in

[7]. Its extensions were derived in [8]–[11] for various 2D

and 3D scenarios as well as for multiple input multiple

output (MIMO) scenarios in [12]–[16]. For the aeronautical

channel the authors in [17] use the WSSUS¸ assumption

when proposing aeronautical Doppler spectra. According to

Bello [18], the so-called surface scatter channel for air-to-

satellite communications possesses three main components:

the line-of-sight (LOS) component, the specular reflection

(SR) component from the earth surface, and diffuse scattering

components. The Bello model applies to narrowband channels,

so all diffuse components are essentially combined with the

others.

For mobile-to-mobile channels, however, the WSSUS as-

sumption is mostly violated due to the simultaneous movement

of transmitter and receiver. This leads to a higher rate of

time variation, which can cause non-stationarity, or a shorter

stationarity time/distance. This has been observed for vehicle-

to-vehicle (V2V) channels according to [19] and [20]. But this

observation can be extended to other M2M channel scenarios.

To address non-stationarity Matz extended Bello’s model

in [21] to non-WSSUS scenarios. The resulting model is

represented by four-dimensional channel functions, which

are unfortunately difficult to handle in practice. Following

[22], who suggested to model the Doppler spectrum as time-

variant function, we proposed in [23] a simpler solution by

considering time-variant delay Doppler pdfs for V2V channels.

Our resulting model preserves the uncorrelated scattering (US)

assumption only. In [24] the proposed model was extended to

A2A scenarios. Our theoretical models were verified using

measurement data for both V2V in [25], [26] and A2A in

[27] and [28]. Similar modeling was applied in [29]–[31] for

air-to-ground (A2G) channels.

The modeling approach in the cited works on time-variant,

delay-dependent Doppler pdfs was done in Cartesian coor-
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dinates. Due to the presence of mobile TX and RX the

corresponding geometrical description of the channel implies a

two-center problem. Therefore, a fixed delay naturally defines

an ellipse for a 2D scenario and an ellipsoid for a 3D scenario,

since this particular geometric shape defines the locations,

where the delay between TX and RX via a scatter is constant.

In the original model we inserted a parametrized ellipse

into the Cartesian coordinates to obtain the results. Although

tractable, the resulting models were nonetheless difficult to

analyze analytically.

It is know that two-center problems are conveniently repre-

sented in prolate spheroidal coordinates. In our case the ellipse

of a constant delay would thus define a single coordinate in the

prolate spheroidal coordinate system (PSCS). Therefore, it was

advantageous to transform the time-variant, delay-dependent

Doppler pdf description into prolate spheroidal coordinates.

This was done in [32] for V2V channels. We observed that

the resulting models have a much simpler description of the

delay-dependent Doppler frequency. This allowed us to obtain

closed-form Doppler pdfs and their characteristic functions

for line-of-sight and its vicinity, as well as for infinite delays

in general V2V scenarios in [33]. The generalization of the

results for arbitrary delays required the application of algebraic

curve analysis due the ambiguities of the Doppler frequency.

This only becomes apparent through the use of a PSCS and

allows for an algebraic analysis of Doppler frequencies. For

V2V channels this investigation was reported in [34]. The

extension of these results for A2A channels is, however, still

missing.

In this paper, we study the model of time-variant, delay-

dependent Doppler pdfs in the PSCS. Specifically, we derive

the 3D time-variant, delay-dependent Doppler pdf and its

Fourier dual – the characteristic function – for single-bounce

scattering based on the 2D V2V model presented in [33].

We explicitly derive analytical expressions of delay-dependent

characteristic functions and Doppler pdfs for the LOS compo-

nent, the SR component, and the diffuse scattering components

for arbitrary velocity vectors of the aircraft. Moreover, the

frequencies that determine the support of the Doppler pdf,

which we term the limiting frequencies, are derived and

analyzed using the theory of algebraic curves. The limiting

frequencies can be calculated by a sixth order polynomial for

arbitrary delays for any velocity configuration. We discovered

that in addition to extreme points that describe the support

of the Doppler pdf, the algebraic curve analysis reveals the

presence of singular points. Under specific conditions these

singular points can become extreme points and have to be

taken into account for calculating the limiting frequencies of

the Doppler pdf.

The remainder of the paper is structured as follows. In

Section II, we introduce the prolate spheroidal coordinate

system and derive the Doppler pdf and characteristic function

in prolate spheroidal coordinates. An algebraic analysis of

the Doppler frequency leads to closed-form expressions of

Doppler pdf, characteristic function, and the limiting frequen-

cies of the Doppler pdf in Section III. The results for typical

A2A scenarios are shown in Section IV and the paper is

concluded with Section V.
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Fig. 1. Aircraft positions in the prolate spheroidal coordinate system. An
ellipsoid represents the surface of constant ξ, which intersects with the
ground forming an ellipse. The slope m and the y-intercept d of the ground
intersecting the coordinate plane is also displayed.

II. PROLATE SPHEROIDAL COORDINATE SYSTEM

The mathematical tractability of the Doppler pdf, charac-

teristic function, and limiting frequencies of a general 3D

M2M channel is based on the selection of an appropriate

coordinate system. We use the A2A channel similar to [24]

as an exemplary M2M channel. As shown in [32], a suitable

coordinate system for the M2M channel is the PSCS, since it

enables a natural delay-dependent description of the Doppler

pdf. In general, the PSCS is a three-dimensional, curvilinear,

orthogonal coordinate system, which adequately describes

two-center problems, exemplified well by the A2A channel

with the transmitter and receiver forming the two centers, as

shown in Fig. 1. The origin of the coordinate system is always

located in the middle between the two aircraft and moves along

with them, which means the coordinate system itself becomes

time-variant.

The relationship between Cartesian and prolate spheroidal

coordinates is according to [35] given by

x = l
√

(ξ2 − 1)(1− η2) cosϑ , (1)

y = l
√

(ξ2 − 1)(1− η2) sinϑ ,

z = lξη ,

with l being the focus distance, i.e., the distance from the

aircraft to the origin. The three coordinates are given by

ξ ∈ [1,∞), η ∈ [−1, 1] and ϑ ∈ [0, 2π). With this coordinate

transform, the z-axis is always aligned with the major axis

of the ellipsoid and the aircraft are found in the y-z-plane.

Since the coordinate system is time-variant, the focus distance

l is time-variant as well. The coordinate ξ = τ
τlos

corresponds

to the propagation delay normalized by the LOS delay. This

choice allows for a very general description of the Doppler

frequency later, where the absolute delay between transmitter

and receiver does not matter anymore. The absolute delay,

however, can be calculated by τ = τlosξ = 2lξ
c

with c being

the speed of light. Iso-surfaces of ξ are prolate spheroidal

ellipsoids, whereas constant values of η produce hyperboloid

surfaces. The third orthogonal surface in the PSCS is formed

by a half-plane seen in Fig. 2. Geometrically, a fixed ξ-

coordinate represents locations where the sum of the delays

to the foci, i.e., aircraft, is constant. A fixed η-coordinate

represents locations where the difference of the delays to the
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Fig. 2. Prolate spheroidal coordinate system with the surfaces of constant ξ
(ellipsoid), η (hyperboloid), and ϑ (half-plane).

aircraft is constant, yet in contrast to ξ we do not need to use

this physical interpretation in the following. As we show later,

this coordinate transform effectively leads to mathematically

tractable expressions of the Doppler frequency.

Let us point out that the big advantage of the PSCS is

that by fixing the ξ-coordinate, we naturally obtain a delay-

dependent description of the Doppler frequency. As such,

the resulting description becomes only dependent on the

other two coordinates η and ϑ in the PSCS. In contrast to

that, fixing the delay in a Cartesian coordinate system still

implies the dependency on all three spatial coordinates x,

y, and z, which makes the resulting expressions much more

difficult to interpret and analyze. Thus, the description in the

new coordinate system allows us to express both delay and

Doppler frequency in mathematically tractable expressions in

comparison to Cartesian coordinates.

The distance from transmitter to an arbitrary scatterer dt
and the distance from this scatterer to the transmitter dr can

be defined as

dt = (ξ + η) l , (2)

dr = (ξ − η) l ,

dsc = dt + dr = 2ξl ,

where the total distance dsc or the total delay τsc = dsc

c

depends only on the ξ-coordinate. As has been shown by the

authors in [23], the Doppler frequency is calculated as the

spatial gradient of the transmitter and receiver distances dt
and dr projected onto their velocity vectors, i.e.,

fd(x) =
(

v
T
t ∇dt(x) + v

T
r ∇dr(x)

) fc
c
. (3)

A delay-dependent representation of the Doppler frequency

in Cartesian coordinates depends, however, on the x-, y-,

and z-coordinates, so that the calculation of the Doppler pdf

becomes very cumbersome. To circumvent this, we transform

the mathematical analysis in the PSCS and express the gradient

in (3) in prolate spheroidal coordinates.

Consider an arbitrary scalar function Ψ(ξ, η, ϑ) in the PSCS.

Its gradient ∇Ψ can be computed as [36]

∇Ψ(ξ, η, ϑ) =
1

hξ

∂Ψ

∂ξ
eξ +

1

hη

∂Ψ

∂η
eη +

1

hϑ

∂Ψ

∂ϑ
eϑ , (4)

where eξ, eη, and eϑ are the orthonormal basis vectors of the

PSCS. They are obtained by transforming the Cartesian basis

vectors ex, ey and ez using the following identity

eα =
∂x

∂α

ex

hα

+
∂y

∂α

ey

hα

+
∂z

∂α

ez

hα

, (5)

where the subscript is in the set α ∈ {ξ, η, ϑ}. In (4) and

(5) the scalars hξ, hη , and hϑ are the so called scale factors.

They account for the normalization of the basis vectors in the

transformed coordinate system to ensure that the transformed

basis is also orthonormal. For orthogonal coordinates the scale

factors are the roots of the three non-zero elements hi =
√
gii

of the metric tensor g, see [36] for more details. For the PSCS,

the scale factors are calculated as

hξ = l

√

ξ2 − η2

ξ2 − 1
, hη = l

√

ξ2 − η2

1− η2
, (6)

hϑ = l
√

(ξ2 − 1)(1− η2) .

By transforming (3) into prolate spheroidal coordinates, the

Doppler frequency can be expressed as

fd (t; ξ, η, ϑ) =
fc
c

(

(7)

√

(ξ2 − 1) (1− η2)

ξ + η
(vtx cosϑ+ vty sinϑ) +

ξη + 1

ξ + η
vtz

+

√

(ξ2 − 1) (1− η2)

ξ − η
(vrx cosϑ+ vry sinϑ) +

ξη − 1

ξ − η
vrz

)

,

where vt = [vtx, vtyvtz ]
T

and vt = [vrx, vryvrz]
T

are the

Cartesian components of the velocity vectors of TX and RX,

respectively. The alignment of the PSCS and the Cartesian

coordinate system is shown in Fig. 1. Due to the implicit

time-variance of the velocity vectors, the Doppler frequency

becomes time-variant, which is noted by the variable t. In the

following, we show how delay-dependent Doppler pdfs and

the corresponding characteristic functions are computed for

A2A channels in the PSCS.

A. Time-Variant, Delay-Dependent Doppler PDF

In an A2A scenario, the scattering of the transmitted signal

takes only place on the ground. Thus, we expect the scattering

to take place when the propagation delay exceeds a certain

value. Geometrically, this corresponds to the delay ellipsoid

intersecting the ground plane, see also Fig. 1. Naturally, this

intersection results in an ellipse – the scattering ellipse. A

plane ground obviously is an approximation of the curved

earth for relatively small distances and low altitudes. This

assumption is, however, fulfilled for low altitudes or take-off

and landing scenarios, since the power of the scattering from

the ground is low and thus only received at low altitudes. At

cruising altitude the received scattering is negligible.
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In the following, we study the delay-dependent conditional

Doppler pdf p(t; fd|ξ) in the PSCS that is induced by the scat-

terers lying on the scattering ellipse. The derivation is obtained

by a coordinate transformation of the scatterer distribution

p(η|ξ) as has been shown in [32]. In this paper, however, we

extend the 2D V2V case from [32] to a 3D A2A configuration.

To this end, we will summarize the key steps in computing

p(t; fd|ξ) for this set-up.

For this reason, we assume that the scatterers are uniformly

distributed on the scattering ellipse. As such, the distribution

of the scatterers will be inversely proportional to the length of

the scattering ellipse. To compute the length of the ellipse in

the PSCS, we recall that a general differential element for the

3D case can be computed as follows

ds =
√

h2
ξ dξ

2 + h2
η dη

2 + h2
ϑ dϑ

2 . (8)

Now we distinguish two cases for aircraft arrangement. In

Case 1 we consider a situation, in which two aircraft are

flying directly above each other so that z-direction is normal

to the ground plane. In Case 2 we consider all other remaining

configurations.

Case 1: Since the aircraft are vertically above each other,

the scattering ellipse becomes a circle for 2lξ > at + ar. The

latter condition implies that the delay ellipsoid is large enough

to intersect the ground plane. For this case there exists a fixed

relationship between coordinates ξ and η given by

η =

{ at+ar

2lξ , at > ar
−at+ar

2lξ , at < ar .
(9)

Now, we insert (9) into (7) to eliminate the dependency on

η in the Doppler frequency. Therefore, the Doppler frequency

only depends on ϑ, since ξ is fixed. The differential length in

(8) can be computed as

ds = hϑ dϑ = l
√

(ξ2 − 1)(1− η2) dϑ , (10)

since dξ = dη = 0. Thus, p(t; fd|ξ) is a transformation of the

angular distribution p(ϑ|ξ). The latter can be computed for

Case 1 as

p(ϑ|ξ) = l
√

(ξ2 − 1)(1− η2)
∫ 2π

0
l
√

(ξ2 − 1)(1− η2) dϑ
=

1

2π
. (11)

This result shows that the distribution of the scatterers on the

circle is uniform. Moreover, such a distribution automatically

induces a Doppler spectrum that coincides with the well-

known Jakes spectrum [37], which can be created by equiva-

lent scatterers on a circle.

For the time-variant, delay-dependent Doppler frequency

pdf, we then get the following expression

p(t; fd|ξ) =
∑

ϑ′∈{F−1(fd)}

p(ϑ|ξ)
∣

∣

∣

∂fd(t;ϑ|ξ)
∂ϑ

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϑ=ϑ′

(12)

=
∑

ϑ′∈{F−1(fd)}

1

2π
∣

∣

∣

∂fd(t;ϑ|ξ)
∂ϑ

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϑ=ϑ′

,

with ϑ ∈ [0, 2π). The sum in (12) accounts for the fact that one

Doppler frequency results possibly in several values of ϑ. Due

to the trigonometric functions, there are at most two values

of ϑ with the same Doppler frequency, since the Doppler

frequency is periodic with 2π.

Case 2: Here, the intersection of the delay ellipse with the

ground plane is no longer a circle, but rather an ellipse. In

this case, the relationship between η and ϑ can be established

through an analysis of the following set of equations

y = mz + d

l
√

(ξ2 − 1)(1 − η2) sinϑ = mlξη + d , (13)

where m is the slope of the ground plane with respect to the

major axis of the ellipsoid and d the intercept of the y-axis

with the ground plane as shown in Fig. 1. The slope m is

calculated as

m =
ar − at

√

(2l)
2 − (ar − at)

2
, (14)

and the intercept d of the ground plane with the y-axis is

computed from the relationship

d =
√

m2 + 1at +ml . (15)

In the A2A case the parameter η in general does not attain

the whole range η ∈ [−1, 1]. It is only attainable, when the

scattering ellipse lies in the x-z-plane, i.e., both aircraft are

on the ground. To find the attainable range of η values in

a particular aircraft configuration, we solve (13) for η with

sin(ϑ) = ±1 in order to calculate the maximum ηmax and

minimum ηmin values of η as

ηmin = −dmξ −
√

(ξ2 − 1) (l2 ((1 +m2) ξ2 − 1)− d2)

l ((1 +m2) ξ2 − 1)
,

ηmax = −dmξ +
√

(ξ2 − 1) (l2 ((1 +m2) ξ2 − 1)− d2)

l ((1 +m2) ξ2 − 1)
.

(16)

The fixed relation between η and the angle ϑ for the resulting

scattering ellipse on the ground can then be established again

from (13), which gives the following relationship

ϑ = arcsin

(

mlξη + d

l
√

(ξ2 − 1) (1− η2)

)

. (17)

Finally, we insert (17) into (7) to eliminate ϑ. By doing this,

we eliminate the dependency on the trigonometric functions

in (7) and define

w =
mlξη + d

l
√

(ξ2 − 1) (1− η2)
(18)

to simplify the further notation.

Let us point out that the principal value of the arcsin
function is defined for values [−π/2, π/2]. It follows then that

in (17) we have to distinguish the left and right half-space

S1 = {ϑ : ϑ ∈ [−π/2, π/2)} and S2 = {ϑ : ϑ ∈ [π/2, 3π/2)}
to cover the complete range of 2π. In one half-space, the x-

component of the velocity vectors have a positive sign and

in the other half-space a negative sign. After combining these

half-spaces together and inserting (17) in (7) we obtain the
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expression for the Doppler frequency in Case 2 without any

trigonometric functions as follows

fd±(t; ξ, η) =
fc
c

(

ξη + 1

ξ + η
vtz +

ξη − 1

ξ − η
vrz (19)

+

√

(ξ2 − 1) (1− η2)

ξ + η

(

±vtx
√

1− w2 + vtyw
)

+

√

(ξ2 − 1) (1− η2)

ξ − η

(

±vrx
√

1− w2 + vryw
)

)

.

The Doppler frequency is split up in two parts for the two

half-planes: fd+, where all terms in (19) have positive leading

signs, and fd−, where the leading sign in front of vtx and vrx
is negative.

Let us consider a differential line element on the ellipsoidal

surface, i.e., when ξ is fixed. In this case (8) can be formulated

as

ds = l

√

ξ2 − η2

1− η2
+ (ξ2 − 1) (1− η2)

(

dϑ

dη

)2

dη , (20)

where dξ = 0 on the ellipsoidal surface. We restrict the

ellipsoid surface to a scattering ellipse on the ground. This

restriction invokes the fixed relation between coordinates η and

ϑ in (17), which eventually allows us to express the differential

length segment as a function of the coordinate η only.

Consider the parameter η ∈ [ηmin, ηmax] of the half-ellipse

that specifies a scatterer lying on it. For a fixed ξ, it can be

shown that the conditional pdf p(η|ξ) can be computed in each

half-space S1 and S2 by applying standard rules of probability

density transformations [38] by

p(η|ξ) = 1

2
p1(η|ξ)

∣

∣

∣

∣

ϑ(η)∈S1

+
1

2
p2(η|ξ)

∣

∣

∣

∣

ϑ(η)∈S2

(21)

=
1

2

l

√

ξ2−η2

1−η2 + (ξ2 − 1) (1− η2)
(

dϑ
dη

)2

∫ ηmax

ηmin
l

√

ξ2−η2

1−η2 + (ξ2 − 1) (1− η2)
(

dϑ
dη

)2

dη

+
1

2

l

√

ξ2−η2

1−η2 + (ξ2 − 1) (1− η2)
(

dϑ
dη

)2

∫ ηmax

ηmin
l

√

ξ2−η2

1−η2 + (ξ2 − 1) (1− η2)
(

dϑ
dη

)2

dη

,

where dϑ
dη is calculated using (17). The pdf p(η|ξ) could be

simplified, since the probability in both half-spaces is naturally

the same. Yet, we purposely keep the expression in this form,

since the Doppler frequency can be different in both half-

planes.

Following [32], we compute a time-variant, delay-dependent

Doppler pdf as

p(t; fd|ξ) =
∑

η′∈{F−1(fd+)}

1

2

p1(η|ξ)
∣

∣

∣

∂fd+(t;η|ξ)
∂η

∣

∣

∣

∣

∣

∣

∣

∣

∣

η=η′

(22)

+
∑

η′∈{F−1(fd−)}

1

2

p2(η|ξ)
∣

∣

∣

∂fd−(t;η|ξ)
∂η

∣

∣

∣

∣

∣

∣

∣

∣

∣

η=η′

,

with the Doppler frequency fd±(t; ξ, η) computed according

to (19). The sum in (22) accounts for the fact that a single

Doppler frequency value can correspond possibly to several

values of η. However, the maximum number of possible values

for η leading to the same Doppler frequency is four, which we

prove later here using the theory of algebraic curves.

In [33] we have shown the proportionality between the

Doppler power spectrum and the Doppler pdf for the US case.

Using the properties of the Fourier transform, this proportion-

ality translates into the proportionality between the correlation

function and the corresponding characteristic function. The

latter becomes a time-variant and delay-dependent function

that has the same interpretation as the correlation function yet

in a non-stationary setting.

B. Time-Variant, Delay-Dependent Characteristic Function

The characteristic function is defined as the inverse Fourier

transform of the probability density function, see, e.g., [38]

and [39]. It thus gives an alternative description of a random

variable and can be used to facilitate the computation of the

moments of a random variable, or compute a distribution of a

sum of independent random variables.

In order to calculate the characteristic function, we compute

the inverse Fourier transform of the pdf pi(η|ξ) with i = 1, 2
instead of using the Doppler pdf p(t; fd|ξ) for both half-spaces

S1 and S2. We show the calculations only for Case 2; for

Case 1 the computation can be performed in a similar way

with the distinction that instead of using p1(η|ξ) and p2(η|ξ),
the scatterer distribution p(ϑ|ξ) is used. A similar approach

of calculating the characteristic function is presented in [39,

Appendix A]. Thus the characteristic function is calculated as

Φ(t;u|ξ) = 1

2

ηmax
∫

ηmin

p1(η|ξ) exp (j2πufd+(t; ξ, η)) dη (23)

+
1

2

ηmax
∫

ηmin

p2(η|ξ) exp (j2πufd−(t; ξ, η)) dη ,

where fd+ is the Doppler frequency in the half-space S1 and

fd− the Doppler frequency in the half-space S2 according

to (19). The variable u := ∆t – an independent variable of

the characteristic function – is equivalent to a time lag in the

classical correlation function.

The characteristic function – an equivalent representation

of the channel correlation function – permits deriving other

important statistical parameters that summarize the instan-

taneous dynamics of the channel. Thus, we can determine

the time-variant, delay-dependent, first and second central

moments of the channel Doppler spread, which are known

as the mean Doppler µ(t; ξ) and the corresponding standard

deviation σ(t; ξ). This is done by calculating the first and

second derivative of the characteristic function at u = 0.
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The first and second derivative with respect to the coordinate

u of the characteristic function Φ(t;u|ξ) are calculated to

determine the mean and Doppler spread like in [39] as

µ(t; ξ) =
∂
∂u

Φ(t;u|ξ)
j2π

∣

∣

∣

∣

∣

u=0

, (24)

σ(t; ξ) =

√

(

∂
∂u

Φ(t;u|ξ)
)2 − ∂2

∂u2Φ(t;u|ξ)
2π

∣

∣

∣

∣

∣

∣

u=0

. (25)

The first derivative ∂
∂u

Φ(t;u|ξ) can be computed with the

following expression

∂

∂u
Φ(t;u|ξ) = j2π

(

(26)

1

2

ηmax
∫

ηmin

p1(η|ξ)fd+(t; ξ, η) exp (j2πufd+(t; ξ, η)) dη

+
1

2

ηmax
∫

ηmin

p2(η|ξ)fd−(t; ξ, η) exp (j2πufd−(t; ξ, η)) dη
)

,

and the second derivative ∂2

∂u2Φ(t;u|ξ) is similarly given as

∂2

∂u2
Φ(t;u|ξ) = −4π2

(

(27)

1

2

ηmax
∫

ηmin

p1(η|ξ)fd+(t; ξ, η)2 exp (j2πufd+(t; ξ, η)) dη

+
1

2

ηmax
∫

ηmin

p2(η|ξ)fd−(t; ξ, η)2 exp (j2πufd−(t; ξ, η)) dη
)

.

By using ∂2

∂u2Φ(t;u|ξ), it becomes possible to calculate the

delay-dependent level crossing rate (LCR) and average du-

ration of fades (ADF), if Rayleigh or Rice fading for the

amplitude distribution is assumed [39].

III. ALGEBRAIC ANALYSIS OF THE DOPPLER PDF OF THE

AERONAUTICAL CHANNEL

In what follows, we perform a detailed analysis of the delay-

dependent Doppler spectrum computed in the previous sec-

tions, specifically for the A2A case. Our intention is to study

the poles of p(t; fd|ξ) caused by the extrema of the Doppler

frequency for arbitrary delays. These constitute themselves as

the zeros of ∂fd(t; η, ϑ, ξ)/∂ϑ for Case 1 or ∂fd(t; η, ϑ, ξ)/∂η
for Case 2. The set of extrema naturally include minimum

and maximum Doppler frequencies, since due to the physical

limitation of the Doppler frequency fd, the corresponding pdf

p(t; fd|ξ) must have a finite support. For Case 1, we obtain

∂fd(t; ξ, η, ϑ)

ϑ
= (28)

fc
c

(

√

(ξ2 − 1) (1− η2)

ξ + η
(vty cosϑ− vtx sinϑ)

+

√

(ξ2 − 1) (1− η2)

ξ − η
(vry cosϑ− vrx sinϑ)

)

,

with two solutions for ϑ ∈ [0, 2π).
Now, we look at the more interesting Case 2. To this end, we

use the theory of algebraic curves [40] and consider the curve

C(fd, η) in coordinates fd and η. The curve is obtained by

isolating the roots in (19) and squaring the resulting equation.

This leads to an algebraic curve of degree six with the highest

monomial f2
dη

4. The highest exponent of variable η is four,

which means the resulting curve can have a maximum of four

solutions of (31) for a fixed Doppler frequency fd according

to Bézout’s theorem [41]. The curve C(fd, η) is given by the

following expression in (31).

To be able to determine the extrema of the Doppler fre-

quency let us consider the gradient [∂C/∂η, ∂C/∂fd]T of the

algebraic curve. The extrema of the Doppler frequency are

obtained as points on the curve that satisfy ∂C/∂η = 0 and

∂C/∂fd 6= 0, i.e., these are the points, where the gradient

is normal to the η-axis. Clearly, we see from (22) that these

extrema will induce poles in the resulting Doppler spectrum.

After some involved but straightforward algebra, these poles

can be computed as roots of the polynomial g(η)

g(η) = a6η
6 + a5η

5 + a4η
4 + a3η

3 + a2η
2 + a1η+ a0 . (29)

Let us point out that coefficients ai, i = 0, . . . , 6, are repre-

sented by rather lengthy expressions, which, nonetheless, can

be computed in closed form.Using (29) it becomes possible

to bound the total number of poles in the Doppler spectrum.

Despite the polynomial in (29) having a rather involved form

of the coefficients, it structurally coincides with the polynomial

obtained in the V2V case in [34], i.e., it has the same order.

By solving (29), we are able to calculate the delay-

dependent minimum and maximum Doppler frequency for any

position and velocity vector configuration of the A2A channel.

A general formula for solving solvable sextic equations is

provided in [42].

In addition to the roots of (29) that indicate locations

on the curve with the gradient normal to the η-axis,

C(η, fd) in (31) possesses singular points at locations where

[∂C/∂fd, ∂C/∂η] = 0. For the considered case the location of

the singular point can be computed in closed form as follows

ηs =
vtx + vrx
vtx − vrx

ξ . (30)

One might inquire, if the singular point can also contribute to

the extrema of the Doppler frequency. Unfortunately, a formal

answer to this question is elusive at the moment. Yet, our

experimental evidence allows us to state certain conjectures

about the behavior of the singular point and the zeros of (29).

First, a closer look at (30) reveals that this singular point is

only observable, if vtx + vrx < vtx − vrx, since |η| ≤ 1 and

ξ > 1 for scattering by definition. This means that the velocity

vectors in the x-direction have to be anti-parallel. Moreover,

ηs is likely to be present for small ξ under realistic velocity

assumptions. We also observed in [34] that the maximum

number of poles is likewise typically observed for small

delays. For ξ → 1 the poles of (29) can be computed in closed

form. Two of them are given for η → vtx−vrx
vtx+vrx

, which is exactly

the reverse condition for the existence of the singular point,

see also Sec. III-A later. This allows us to state the following.
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(

fd
c

fc

(

ξ2 − η2
)

− (ξη + 1) (ξ − η) vtz − (ξη − 1) (ξ + η) vrz −
√

(ξ2 − 1) (1− η2) (vtyw (ξ − η) + vryw (ξ + η))

)2

=

(

±
√

(ξ2 − 1) (1− η2)
(

vtx
√

1− w2 (ξ − η) + vrx
√

1− w2 (ξ − η)
)

)2

. (31)

Conjecture 1. The number of real roots given by the poly-

nomial (29) is 6, if the x-components of the velocity vectors

point in the same direction, i.e., when vtx + vrx > vtx − vrx.

If the velocity vectors in the x-direction are anti-parallel, (29)

has a maximum of 4 real roots and a singular point according

to (30) is observed.

This means that the total number of poles in the Doppler

spectrum remains at 6 according to our theorem in [34],

although the number of solutions for ∂C/∂η = 0 increase to 7
to account for the singular point. As such, Theorem 1 in [34]

likewise applies here and holds in general for A2A channels.

Thus, the Doppler spectrum for general A2A channels is also

characterized by at most 6 poles. In contrast to the V2V

channel, though, the domain of η in the A2A case is restricted

to the interval [ηmin, ηmax] given in (16).

Now, we return to the singular point ηs and study it in more

detail. In general, the singular point can be classified as a so

called crunode, acnode or cusp on the curve. See [40] for more

information. The type of singular point is determined from the

properties of the Hessian matrix evaluated at the singular point

on the curve [40]. In particular, for

(

∂2C
∂fd∂η

)2

>, <, or =
∂2C
∂f2

d

∂2C
∂η2

, (32)

we obtain a crunode, an acnode, or a cusp, respectively.

Let us discuss the nature of a singular point in the context

of channel modeling by providing some underlying physical

interpretation. In general, the singular point is obtained when

the curve C crosses itself in a plane vertical to the y-z-

plane, i.e., in the ground plane here. Depending on the spatial

relationship between the aircraft and the ground plane, we get

the following properties:

• A crunode is obtained when the crossing point lies within

the intersection plane, i.e, for ηmin < η < ηmax,

• A cusp is obtained when the crossing point is at the

border of the intersection plane, i.e, for η ∈ {ηmin, ηmax},

and finally,

• An acnode is obtained when the crossing point is found

outside the intersection plane, i.e., for −1 ≤ η < ηmin or

ηmax < η ≤ 1.

Expression (30) naturally holds for V2V channels as well.

However, in 2D V2V channels, like those considered in [33],

acnodes do not occur, since −1 ≤ η ≤ 1, i.e., the crossing

point always lies within the intersection plane. The different

types of singular points are visualized in Fig. 3 for different

delays ξ. To generate these curves we used Scenario 4 that

will be discussed later in Section IV. In Table I, we summarize

types of a singular points for the delay range 1 < ξ ≤ 9.

TABLE I
GENERAL CLASSIFICATION OF SINGULAR POINTS FOR SCENARIO 4

Normalized Delay Crunode Cusp Acnode

1 < ξ < 1.422 o

ξ = 1.422 ♦

1.422 < ξ < 7.987 x

ξ = 7.987 ♦

7.987 < ξ <= 9 o

TABLE II
SPECIFIC VALUES FOR THE SINGULAR POINTS SHOWN IN FIG. 3

ξ η fd Singular Point

1.3 −0.144 −79.27Hz Acnode

1.422 −0.158 −76.32Hz Cusp

1.707 −0.189 −73.03Hz Crunode

2.943 −0.327 −73.56Hz Crunode

7.987 −0.878 −138.08Hz Cusp

8.5 −0.944 −147.19Hz Acnode

As we can see, for 1 < ξ < 1.422 an acnode is obtained. For

ξ ≥ 1.247 the Doppler curve C begins to intersect the ground

plane. The blue curve in Fig. 3 shows the result for ξ = 1.3.

As we can see, the curve is closed, possesses two extreme

Doppler frequencies, and has one acnode. As the delay reaches

ξ = 1.422, a cusp is obtained. Still, for ξ = 1.422 we obtain

two extreme Doppler frequencies.

As the delay increases, the singular point then becomes a

crunode for 1.422 < ξ < 7.987. This implies that the curve

C crosses itself once in the ground plane. We can see this in

Fig. 3 for ξ = 1.707. Here, four extreme Doppler frequencies

are obtained. For ξ = 2.943, however, the curve still has the

crunode, yet the number of Doppler extrema reduces to only

two. For ξ = 7.987 the crunode becomes a cusp again and then

it changes to an acnode for 7.987 < ξ <= 9. An example for

the acnode at ξ = 8.5 is shown in Fig. 3.

Let us mention that singular points are observable due to

the fact that the Doppler frequency representation in (7) is

squared in (29). In our previous work [34], the analysis of the

Doppler frequency has been done by distinguishing solutions

in the different ϑ-half-planes S1 and S2. Since these cases

were considered separately, the singular points were thus not

observed. The approach used here, however, reveals these

singular points and in this respect generalizes the result in

[34].

Finally, we display the values of the real roots of the

polynomial and the singular point (green line) in Fig 4.

Interestingly, the real roots start in pairs of two for small, but

different delays. As the delay reaches ξ = 1.247, the ellipsoid

intersects the ground plane for the first time. At this delay, the

roots marked by the blue and red line appear. The second pair
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Fig. 3. Sextic curve C(fd, η) for Scenario 4. The singular points are acnodes,
cusps, and crunodes, which are marked as circles, diamonds, and crosses,
respectively.

of real roots, marked by the yellow and purple lines, appears

as the delay reaches ξ = 1.4. The roots represented by the

red and yellow curves become a double root at the delay

ξ = 2.94; yet as the delay increases further they become a

complex conjugated pair of roots and they disappear from the

spectrum. Thus, only one root pair remains, which then leads

to the minimum and maximum Doppler frequencies.

The classification of the singular point can also be derived

from Fig 4. In particular, the intersections of the green line,

i.e., the locations of the singular point ηs, with the locations of

the roots η3 (orange line) and η4 (purple line) are of interest.

Although the exact numerical analysis of the intersections is

quite challenging, the empirical analysis of the results allows

us to state the following: In case of a cusp, the intersection of

the singular point with the root implies that the resulting point

is not necessarily an extreme point with ∂fd/∂η = 0; rather

it defines the boundary value of the Doppler frequency given

by the ηmin (or ηmax) curve. This can be seen for ξ = 1.422
and ξ = 8.5, where η4 = ηs = ηmin.

In case of a crunode the intersection leads to an extreme

point in one of the branches of the curve C, where η3 = ηs.
This can be well seen at ξ = 1.510 and ξ = 2.524, where the

green curve intersects the yellow curve in Fig 4.

The singular point given by (30) is valid for all intersection

planes that are orthogonal to the y-z-plane; this naturally

includes any ground plane. Moreover, in this case only the

velocities in the x-direction determine the location of the

singular point. A similar argument can be used for vertical

intersection planes, such as building walls in street canyons,

since these are the intersection planes orthogonal to the x-z-

plane. Thus, only velocities in the y-direction are responsible

for the emergence of the singular points. An example of this

case is, however, left outside the scope of this work as it is

less relevant for aircraft.

Finally, we consider the following degenerate case: The

velocity vector components are vtx = vrx = vty = vry = 0
and the aircraft are at the same altitude, i.e., at = ar. In

general for degenerate cases, roots of the polynomial g(η) in

0 2 4 6 8 10
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1

PSfrag replacements
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Fig. 4. Real roots η1, η2, η3, η4 of the polynomial, ηs of the singular point,
and minimum value ηmin.

(29) become singular points. In this particular degenerate case,

the extrema become cusps with values ηmin or ηmax, since

the algebraic curve degenerates into a line. The solutions are

thus boundary values of the Doppler frequency, which are the

minimum and maximum values of the Doppler pdf.

As in [33], we investigate closed-form solutions for the

Doppler pdf and its corresponding characteristic function for

the three different channel components mentioned by Bello in

[18]: the LOS component, the SR component, and the diffuse

scattering components.

A. LOS Delay (ξ = 1)

The results for the LOS case concur with those obtained for

the V2V channel in [33]. The Doppler pdf is naturally given

by a Dirac distribution with the support at flos corresponding

to the Doppler frequency caused by the LOS. As a result, the

Doppler spread is zero and the characteristic function Φ(t;u|ξ)
is simply a complex exponential with the frequency given by

flos. The stochastic channel functions are calculated as

Φ(t;u|ξ) = exp (j2πuflos) , (33)

p(t; fd|ξ) = δ(fd − flos) ,

µ(t; ξ) =
vtz − vrz

c
fc = flos , σ(t; ξ) = 0 .

Poles of the Doppler PDF close to LOS (ξ → 1)

In [33], we have shown that the poles of the pdf in the

vicinity of LOS, i.e., as ξ → 1, are located at the following

frequencies:

lim
ξ→1

f1,2(t) =
vtz − vrz

c
fc (34)

lim
ξ→1

f3,4(t) =
±‖vt‖‖ − vrz

c
fc , (35)

lim
ξ→1

f5,6(t) =
±‖vr‖‖+ vtz

c
fc . (36)

In this case, the intersection of the ellipsoid with the ground

plane has to be close to the major axis of the ellipsoid, i.e.,
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when ξ → 1. These scenarios are mainly relevant for taxiing,

take-off, and landing. In these cases, the first double pole is

found for η → vtx−vrx
vtx+vrx

and the other four poles are obtained

for η → ±1. The contribution to the Doppler frequency,

however, is only made by the velocity vector components vt‖

and vr‖ that are parallel to the ground plane.

The above equations are generally valid for 3D M2M

channels when the ellipsoid is intersected with a scattering

plane that includes the z-axis, i.e., TX and RX have to lie in

the scattering plane in A2A and V2V scenarios.

B. Specular reflection

The specular reflection is in many respects similar to LOS

case. In particular, the spectrum likewise consists of a Dirac

distribution at the specular frequency fsr with a Doppler spread

of zero. Also, in the vicinity of the specular reflection the spec-

trum “widens”, which reflects close-to-reflection scattering; it

then becomes wider as delay ξ increases.

For the specular reflection we need to distinguish Case1 and

Case 2. Furthermore, if the aircraft are placed on the ground,

i.e., m = 0 and d = 0, the specular reflection becomes the

LOS consistent with the results of the V2V channel. As can be

seen in Fig. 1, the specular reflection occurs, when the delay

ellipsoid first touches the ground. From the geometry, the delay

ξ for the specular reflection can be obtained for both Case I

and Case II. The calculated value for ξ is then inserted into

(7) to obtain the specular Doppler frequency fsr. The delay

and stochastic channel functions are calculated as follows

Case 1: ξ =
at + ar

2l
or Case 2: ξ =

√

d2 + l2

l2 +m2l2
(37)

Φ(t;u|ξ) = exp (j2πufsr) ,

p(t; fd|ξ) = δ(fd − fsr) ,

µ(t; ξ) = fsr , σ(t; ξ) = 0

Case 1: fsr(t) = ±vtz + vrz
c

fc

Case 2: fsr(t) =
fc
c

√

l2 + d2

1 +m2
×

l (vtz − vrz +m (vty − vry)) + d (vty + vry −m (vtz + vrz))

l2 + d2

The sign convention for calculating fsr(t) in Case 1 is the

same as in (9). The positive sign is used, when the TX is

above the RX and the negative sign, when the RX is above

the TX.

C. Distant delay (ξ → ∞)

For ξ → ∞, the delay ellipsoid becomes a sphere and

thus the intersection between delay ellipsoid and ground plane

results in a circle. The circular symmetry then causes the

Doppler pdf to become the well-known Jakes spectrum. For

the distant delay case, we obtain the following results, which

again concur with the V2V case.

lim
ξ→∞

Φ(t;u|ξ) = J0

(

2πu
‖vt‖ + vr‖‖

c
fc

)

, (38)

lim
ξ→∞

p(t; fd|ξ) =
1

π|f7,8|
√

1−
(

fd
f7,8

)2
,

lim
ξ→∞

µ(t; ξ) = 0 , lim
ξ→∞

σ(t; ξ) =
‖vt‖ + vr‖‖√

2c
fc ,

lim
ξ→∞

f7,8(t) = ±‖vt‖ + vr‖‖
c

fc ,

The results depend, however, on the intersection of the

ground plane with the ellipsoid. For airborne aircraft and

scattering from the ground the equation reduces to the velocity

vectors components vt‖ and vr‖ that are parallel to the ground

plane. For Case 1 only the vtx, vty , vrx vry components

have an effect on the limiting frequencies of the Doppler

spectrum. For equal altitudes in Case 2 only the vtx, vtz ,

vrx vrz components are used in the calculation, which is in

agreement with the results obtained for the V2V channel.

IV. RESULTS

To compute synthetic A2A channels based on the developed

theory, we numerically evaluate the presented equations. In

order to generate the A2A channels, we use the intended future

communication frequency for L-band Digital Aeronautical

Communications System (LDACS) at fc = 1GHz [43]. Thus,

the carrier frequency is in the aeronautical radio navigation

service (ARNS) band that is currently used in civil aviation.

The presented model does not take the effects of polarization

into account. Usually, vertical polarized antennas are used in

the aeronautical field . Our own measurements in [27] and [28]

were likewise performed using vertically polarized antennas.

We selected three typical aeronautical scenarios plus one

artificial, which allows us to demonstrate a varying number of

poles in the spectrum, which can be explained with the theory

of algebraic curves. These scenarios are shown in Fig. 5 and

the details of each scenario are summarized in the list below:

• Scenario 1 (Fig. 5a): Two aircraft flying at equal altitudes

at = ar = 1000 ft at a distance of 2l = 2nm
with velocity vectors vt = [0, 0, 900]Tkm/h and vr =
[0, 0, 900]Tkm/h. The slope is m = 0 and the ratio of

y-intercept to focus distance is d/l = 0.1646.

• Scenario 2 (Fig. 5b): Two aircraft performing a ver-

tical pass-by. TX is at at = 1000 ft and RX at

ar = 2000 ft. Planes are flying on orthogonal trajecto-

ries with velocity vectors vt = [900, 0, 0]Tkm/h and

vr = [0,−900, 0]Tkm/h. The ratio of z-intercept to

focus distance is −at+ar

2l = −3. This is the only scenario,

which covers Case I.

• Scenario 3 (Fig. 5c): Two aircraft landing on two parallel

runways. The runway separation is 915m. The aircraft

are separated by 2l = 2nm. The aircraft altitudes are

at = 1617 ft and ar = 1000 ft The glide slope is 3◦

with velocity vectors vt = [74, 0, 291]Tkm/h and vr =
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Fig. 5. Graphical sketches of the four simulation scenarios. The parameters of the scenarios are found in the scenario description below.

[74, 0, 291]Tkm/h. The slope is m = −0.0508 and the

ratio of y-intercept to focus distance is d/l = 0.2156.

• Scenario 4 (Fig. 5d): Two aircraft are flying at different

altitudes and with different velocity vectors. TX is at

at = 1600m and RX at ar = 600m at a distance of 2l =
2628m with velocity vectors vt = [200,−19, 46]Tkm/h
and vr = [−250,−38, 92]Tkm/h. The slope is m =
−0.4115 and the ratio of y-intercept to focus distance

is d/l = 0.9053. This scenario is introduced to show a

varying number of poles and a crunode in the Doppler

frequency.

In this paper, nm is referring to the unit nautical mile.

Although we provided the scenarios with specific values of

distance and altitude, the results are the same for all scenarios

with the same slope m and the same ratio of axis intercept

to focus distance d/l. Thus, the results are general and apply

also for larger aircraft distances, if they fly at higher altitudes.

The presented scenarios are all snapshots in time. If the reader

is interested in how the model behaves when time elapses, we

recommend to have a look at [44]. There, the aircraft fly on

different altitudes past each other. Subsequently, we consider

the listed scenarios in more details.

Scenario 1: In this case, the delay-dependent Doppler pdf

shows a round shape for fixed t = t∗ and small ξ. As explained

above, the delay-dependent Doppler pdfs for fixed ξ = ξ∗ in

Fig. 8 grows wider for larger delays. The specular reflection

frequency is calculated as fsr(t
∗) = 0Hz. Furthermore the

typical W-shape of the Doppler spectrum for A2A chan-

nels becomes apparent. The widening of the delay-dependent

Doppler pdf leads to a narrowing characteristic function in

Fig. 9, which means the channel is more time-variant for larger

delays. The symmetry of the delay-dependent Doppler pdf is

due to the fact that both aircraft fly along the major axis

of the ellipsoid with the same speed. The delay-dependent

limits of the Doppler pdf are calculated by solving the 6th

order polynomial in (29). There are only two extreme values,

since in Scenario 1 the degenerate case occurs as described

in Section III. This means the extrema are boundary values

of the algebraic curve and thus cusps. The algebraic curve

degenerates into a straight line as can be seen in Fig. 7.

The polynomial, however, still determines the location of the

boundary values correctly, even though the partial derivative

∂fd/∂η 6= 0. Without the theory of algebraic curves, it

cannot be explained, why the root of the polynomial correctly

determines the boundary values. The locations of the boundary

frequencies are shown in Fig. 6 as dashed line. For large ξ
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Fig. 6. Scenario 1: General delay-dependent Doppler pdf p(t∗; fd|ξ) for
vt = [0, 0, 900]Tkm/h and vr = [0, 0, 900]Tkm/h at a distance of 2l =
2nm.
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Fig. 7. Scenario 1: Degenerate sextic curve C(fd, η), where the cusps are
the boundary values of the Doppler frequency marked by a diamond.

the spectral boundaries tend towards f7,8(t
∗) = ±1667Hz

in Fig. 6 and the characteristic function becomes a Bessel

function in Fig. 9.

Scenario 2: The delay-dependent Doppler pdf in Fig. 10

shows an even rounder shape due to the circular intersection

of the vertical ellipsoid with the ground. This is explained

by the circular symmetry, since the vertical ellipsoid cuts the

ground plane as a circle. The specular reflection frequency
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Fig. 8. Scenario 1: Specific delay-dependent Doppler pdfs p(t∗; fd|ξ
∗) for

vt = [0, 0, 250]Tkm/h and vr = [0, 0, 250]Tkm/h at a distance of 2l =
2nm.
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Fig. 9. Scenario 1: Real part of specific delay-dependent characteris-
tic functions ℜ{Φ (t∗;u|ξ∗)} for vt = [0, 0, 900]Tkm/h and vr =
[0, 0, 900]Tkm/h at a distance of 2l = 2nm.

is calculated as fsr(t
∗) = 0Hz, since there is no vertical

velocity component. The delay-dependent Doppler pdfs for

fixed ξ = ξ∗ in Fig. 11 grows wider for increasing delays

ξ. The delay-dependent limits of the Doppler spectrum are

calculated by (29) and shown as dashed lines in Fig. 10. All the

Doppler spectra look like Jakes spectra, which is clearly due to

the circular symmetry of the angular distribution in (11). The

widening of the Doppler pdf leads to a narrowing Bessel func-

tion in Fig. 12, which means higher time-variance. For ξ = 5
the spectral limits tend already towards f7,8(t

∗) = ±1179Hz
as can be seen in Fig. 11.

Scenario 3: The delay-dependent Doppler pdf in Fig. 13

shows a round asymmetric shape due to the different altitudes

of the aircraft. As in the previous scenarios, the Doppler

pdfs for fixed ξ = ξ∗ in Fig. 14 grows wider for increasing

delays ξ. The specular reflection frequency is calculated as

fsr(t
∗) = 6Hz. The first two Doppler pdfs, i.e., for ξ = 1.0317

and ξ = 1.1217, show an asymmetric W-shape for this
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Fig. 10. Scenario 2: General delay-dependent Doppler pdf p(t∗; fd|ξ) for
vt = [900, 0, 0]Tkm/h and vr = [0,−900, 0]Tkm/h at a distance of
2l = 1000 ft.
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Fig. 11. Scenario 2: Specific delay-dependent Doppler pdfs p(t∗; fd|ξ
∗)

for vt = [900, 0, 0]Tkm/h and vr = [0,−900, 0]Tkm/h at a distance of
2l = 1000 ft.

scenario. The last Doppler pdf for ξ = 3.0217 exhibits the

typical Jakes shape. The location of the poles are displayed as

dashed lines in Fig. 13. The widening of the Doppler pdf leads

to a narrowing characteristic function in Fig. 15 and finally to

a Bessel function for large delays. For large ξ the spectral

limits tend towards f7,8(t
∗) = ±555Hz in Fig. 14.

Scenario 4: This particular scenario was specially selected

to explain the application of the theory of algebraic curves

with the three different types of singular points. The delay-

dependent Doppler pdf shown in Fig. 16 shows a round

shape close to the specular reflection. Due to the different

altitudes and velocity vectors of TX and RX the shape is

asymmetric. The specular reflection frequency is calculated

as fsr(t
∗) = −34Hz. The Doppler pdf for fixed ξ = ξ∗

in Fig. 17 grows wider and consists of one (ξ = 1.2474),

two (ξ = 1.3474, ξ = 3.2474) or three parts (ξ = 1.7474).

The different parts of the spectrum all exhibit the classical

Jakes shape. This knowledge could be used, when estimating

the spectrum. The widening of the Doppler pdf leads to a
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Fig. 13. Scenario 3: General delay-dependent Doppler pdf p(t∗; fd|ξ) for
vt = [74, 0, 291]Tkm/h and vr = [74, 0, 291]Tkm/h. The aircraft are
separated by 2l = 2nm. The glide slope is 3◦.

narrowing characteristic function in Fig. 18. For large ξ the

spectral limits tend towards f7,8(t
∗) = ±139Hz. The delay-

dependent width of the Doppler spectrum is calculated by

solving the 6thth order polynomial in (29). The poles in the

delay-dependent Doppler spectrum are shown as dashed lines

in Fig. 16 and possess a whale-like shape. In this special

scenario, the number of real roots increases from two to four

between the delays ξ = 1.422 and ξ = 2.943. For larger

delays, the number decreases again to two. The number of

poles depends on the number of extrema of the algebraic

Doppler curve, which is shown in Fig. 3 in Section III.

Between the delays ξ = 1.422 and ξ = 2.943, the curve

possesses four extrema and crosses itself once. For delays

2.943 < ξ < 7.987, the curve only has two extrema, but

still crosses itself once.

V. CONCLUSION

In this paper, we have derived a three-dimensional, single-

bounce scattering model for 3D aircraft-to-aircraft channels.
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Fig. 14. Scenario 3: Specific delay-dependent Doppler pdfs p(t∗; fd|ξ
∗) for

vt = [74, 0, 291]Tkm/h and vr = [74, 0, 291]Tkm/h. The aircraft are
separated by 2l = 2nm. The glide slope is 3◦.
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Fig. 15. Scenario 3: Real part of specific delay-dependent characteris-
tic functions ℜ{Φ (t∗;u|ξ∗)} for vt = [74, 0, 291]Tkm/h and vr =
[74, 0, 291]Tkm/h. The aircraft are separated by 2l = 2nm. The glide
slope is 3◦.

Similar to vehicle-to-vehicle channels, the derived model

is likewise time-variant and provides a description of non-

stationary aircraft-to-aircraft channels. Time-variant limiting

frequencies of the delay-dependent Doppler probability func-

tion were derived by an algebraic analysis of the Doppler

frequency in prolate spheroidal coordinates. These frequencies

were shown to be the solutions of a sixth degree polynomial,

which concurs with the vehicle-to-vehicle channel. The alge-

braic curve analysis reveals the presence of singular points,

which might become extreme points, i.e., boundary values of

the curve. Thus, the time-variant boundaries of the Doppler pdf

can be seamlessly calculated for arbitrary delays and aircraft

configurations.

The obtained results readily generalize those obtained for

2D vehicle-to-vehicle scenarios. They can be used to account

for arbitrary combinations of both rotary as well as fixed-wing

aircraft and ground-based vehicles in similar environments.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TWC.2019.2908863

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



13

1 1.5 2 2.5 3 3.5 4

-500

-400

-300

-200

-100

0

100

200

300

400

500

-30

-25

-20

-15

-10

-5

PSfrag replacements

ξ = τ

τlos

f
d
(H

z)

ξ = 1.2574

ξ = 1.3474
ξ = 1.7474

ξ = 3.2474
poles

p
(d
B
)

Fig. 16. Scenario 4: General delay-dependent Doppler pdf p(t∗; fd|ξ)
for vt = [200,−19, 46]Tkm/h and vr = [−250,−38, 92]Tkm/h at a
distance of 2l = 2628m.
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Fig. 17. Scenario 4: Specific delay-dependent Doppler pdfs p(t∗; fd|ξ∗)
vt = [200,−19, 46]Tkm/h and vr = [−250,−38, 92]Tkm/h at a
distance of 2l = 2628m.

REFERENCES

[1] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, “En-
abling device-to-device communications in millimeter-wave 5G cellular
networks,” IEEE Commun. Mag., vol. 53, no. 1, pp. 209–215, Jan. 2015.

[2] M. Walter, N. Franzen, and M. Schnell, “New concepts for a decen-
tralized, self-organizing air-to-air radio link,” in Proc. IEEE/AIAA 29th

Digital Avionics Syst. Conf.(DASC), Salt Lake City, UT, USA, Oct. 2010,
pp. 3.D.1–1–3.D.1–12.

[3] N. Goddemeier and C. Wietfeld, “Investigation of air-to-air channel
characteristics and a UAV specific extension to the Rice model,” in Proc.

IEEE Global Telecommun. Conf. (GLOBECOM) Workshops, Dec. 2015,
pp. 1–5.

[4] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Syst.

Tech. J., vol. 47, no. 6, pp. 957–1000, Jul./Aug. 1968.

[5] P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun., vol. 11, no. 4, pp. 360–393, Dec. 1963.

[6] W. C. Jakes, Microwave Mobile Communications, ser. IEEE Press
Classic Reissue. New York, USA: Wiley, 1994.

[7] A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land
communication channel,” IEEE Trans. Veh. Technol., vol. 35, no. 1, pp.
2–7, Feb. 1986.

[8] F. Vatalaro and A. Forcella, “Doppler spectrum in mobile-to-mobile
communications in the presence of three-dimensional multipath scat-

-0.01 -0.005 0 0.005 0.01

-1

-0.5

0

0.5

1

PSfrag replacements

u (s)

ℜ
{
Φ
}

ξ = 1.2574

ξ = 1.3474

ξ = 1.7474

ξ = 3.2474

Fig. 18. Scenario 4: Real part of specific delay-dependent characteristic
functions ℜ{Φ (t∗;u|ξ∗)} for vt = [200,−19, 46]Tkm/h and vr =
[−250,−38, 92]Tkm/h at a distance of 2l = 2628m.

tering,” IEEE Trans. Veh. Technol., vol. 46, no. 1, pp. 213–219, Feb.
1997.
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“Non-WSSUS vehicular channel characterization in highway and urban
scenarios at 5.2 GHz using the local scattering function,” in Int. ITG

Workshop on Smart Antennas (WSA), Darmstadt, Germany, Feb. 2008,
pp. 9–15.
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