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1 Abstract 

OBJECTIVES: Whole-body vibration (WBV) training has become a popular training mode in 

the past few years and is nowadays applied in various fields like sports, rehabilitation and 

preventive medicine. WBV training has been shown to improve peripheral perfusion and 

may elicit muscle deoxygenation. We hypothesized that the superposition of WBV to 

resistance exercise would add a pro-angiogenic stimulus to the training and we aimed to find 

a novel training mode that concurrently induces muscle hypertrophy and capillary growth in 

order to improve muscle performance. METHODS: A six-week training study including 26 

healthy males was conducted in a randomized two-group parallel design, in which one group 

performed resistance exercise (RE) and the other group resistance exercise with 

superimposed whole-body vibrations (RVE). Subjects trained 2-3 times per week, concluding 

16 training sessions. The training consisted of squatting exercise and calf raises performed 

with heavy loads that were set at 80% of the one-repetition maximum. During the initial and 

final exercise sessions of the 6-week intervention, measurements were performed at rest, 

during and acutely after exercise. Blood volume and tissue oxygenation were determined in 

gastrocnemius via near infrared spectroscopy. Angiogenic markers (matrix 

metalloproteinase -2 and -9, vascular endothelial growth factor (VEGF) and endostatin) were 

measured in serum via ELISA and the proliferative effect upon human umbilical vein 

endothelial cells was determined in vitro. Finally, long-term effects of the trainings on 

muscle morphology were determined in soleus biopsies. RESULTS: Our data are to our 

knowledge the first to describe transient increases of circulating angiogenic markers after 

resistance exercise. VEGF levels were acutely higher in the RE group, which supposedly 

provoked increased proliferation of endothelial cells in vitro. Furthermore, acute increases in 

circulating endostatin were higher in the RE group after the six-week training intervention. 

These effects were elusive in the RVE group. Despite differences in acute VEGF levels, 

capillary growth in soleus muscle was not different between groups. However, total blood 

volume and exercise hyperemia was increased after six weeks of RVE training.  

CONCLUSIONS: Our data indicate the pro-angiogenic stimulus of RE is not increased by 

superimposing WBV to the training. While structural adaptations in muscle tissue were 

similar in both groups, regular RVE training seems to influence the functional state of small 

arterioles and potentially capillaries, enhancing muscle perfusion and post-exercise 

hyperemia.
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2 Introduction 

2.1 Skeletal muscle plasticity  

Skeletal muscle is a plastic tissue that has unique abilities to adapt its structural properties to 

alterations in demand, such as exercise training, unloading and hypoxia [1]. Generally, 

skeletal muscle plasticity acts according to the principle ‘form follows function’, which is the 

essence of the law of nature described by Aristotle in 350 B.C. [2]. Phenotypic adaptations in 

skeletal muscle induced by physical exercise are determined by contraction mode, 

magnitude of loading, contraction duration, contraction velocity and the number of muscle 

contractions performed [3]. For example, a training stimulus inducing high-frequent 

repetitions with low training loads like endurance exercise will induce adaptations towards 

fatigue resistant muscles (i.e. increases in oxidative capacity and capillarity) [4], whereas 

resistance exercise performed with heavy loads and comparably few repetitions will induce 

adaptations in the trained muscles that enable increased force production via muscle 

hypertrophy [5]. It would be desirable to find a training mode that combines both, i.e. 

concurrently stimulating muscle hypertrophy and capillarization. The present thesis focuses 

on capillary growth induced by resistance training with and without superimposed whole-

body vibrations as well as on acute and long-term effects upon skeletal muscle 

microcirculation. Hence, the following introduction will give insights into how muscle 

perfusion is regulated acutely during exercise and furthermore present an overview on 

angiogenic stimuli and factors inducing capillary growth in skeletal muscle.  

2.2 Mechanical and metabolic stimuli inducing vascular adaptations 

Resting skeletal muscle has a relatively low oxygen consumption and a poor perfusion rate, 

ranging from 1-4ml blood·min-1 per 100g muscle tissue [6]. When skeletal muscle transits 

from a resting to an exercising state, oxygen consumption can increase 20-50 fold, 

depending on intensity and duration of the exercise [7]. It is suggested that muscle 

contractions per se elevate tissue perfusion through the so-called ‘muscle pump’ function 

which increases the capillary-venous pressure gradient in the vascular bed of skeletal 

muscles [8]. However, perfusion induced by the muscle pump is not sufficient to meet the 

increased metabolic demand and oxygen consumption of active skeletal muscles. Hence, 

arteries and arterioles have the ability to dilate, resulting in exercise-induced increases in 
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muscle perfusion (hyperemia) in skeletal muscle, enabling perfusion rates of 50-100ml 

blood·min-1 per 100g muscle tissue [6,9]. This locally stimulated vasodilation results from the 

complex interplay between neural, mechanical and metabolic stimuli. Activity of the 

sympathetic nervous system is elevated during exercise [10,11], mediating alpha-adrenergic 

vasoconstriction (i.e. reduction in vessel diameter) in resistance arteries and arterioles of 

inactive skeletal muscles and peripheral organs like spleen and gastrointestinal tract [7]. This 

mechanism ensures redistribution of blood flow to active skeletal muscles [12–14], where 

systemic vasoconstriction is exceeded by locally stimulated vasodilation [9].  

Mechanical forces derived during shortening and relaxation of myocytes exposes blood 

vessels to tensile forces, acting from the abluminal side on the vasculature [15]. Also, 

extravascular pressure increases during muscle contractions, causing a transient decrease in 

capillary radius [16]. Furthermore, exercise-induced dilation of arteries and arterioles results 

in increased blood cell velocity and capillary hydrostatic pressure within the 

microvasculature of active skeletal muscles. Increased blood cell velocity and / or a 

decreased capillary radius in turn leads to elevated shear stress (τ) which is acting on 

endothelial cells (ECs), according to the formula τ = η (4*VBC / R), where τ is shear stress, η is 

blood viscosity, VBC is blood cell velocity, and R is capillary radius. A decrease in vessel 

diameter and / or elevated hydrostatic pressure (P) increases capillary wall tension (T) 

following La Place’s law T = P*R. Wall tension and shear stress are thought to be the basic 

hemodynamic forces acting on endothelial cells during exercise that induce vascular 

adaptations such as capillary growth, see Fig. 1 [17].  

Moreover, elevated muscle activity leads to increases in metabolic rate and oxygen 

consumption, resulting in decreased partial oxygen pressure (PO2) and hypoxia in muscle 

tissue [18]. Oxygen delivery to the tissue is essential since muscle cells have limited stores of 

oxygen and an enduring under-supply of oxygen causes tissue atrophy. The human body has 

developed multiple oxygen-sensitive mechanisms to induce vascular adaptations that are 

based upon hypoxia or ischemia, when metabolic rate exceeds oxygen delivery [19], see 

paragraph 2.4.2.2. 
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chain kinase action is opposed by myosin light chain phosphatase (MLCP), which de-

phosphorylates the myosin light chain and induces vasorelaxation [20,21]. Key regulatory 

mechanisms leading to vasoconstriction or vasorelaxation act via modulating intracellular 

Ca2+ concentrations, Ca2+ sensitivity, or via modulation of MLCK and MLCP activity [24] and 

are regulated mainly via ion channels and via cyclic nucleotide signaling in VSM cells [25]. 

Potassium (K+) channels modulate intracellular Ca2+ concentrations and play a central role in 

the control of microvascular tone. In VSM, opening of K+ channels and K+ outward flux leads 

to membrane hyperpolarisation and subsequent closure of voltage-driven Ca2+ channels, 

resulting in VSM contraction [26]. Main metabolites and mechanisms involved in locally 

stimulated vasorelaxation in exercise hyperemia are depicted in Fig. 2 and will be introduced 

in the following paragraph. 

2.3.2 Vasoactive Substances 

Muscle activity induces myocytes and ECs to produce vasoactive substances like 

prostaglandines, adenosine, nitric oxide (NO) [25,27] and lactate [28]. The latter is a 

metabolite produced by skeletal muscle upon anaerobic generation of adenosine 

triphosphate (ATP) [29]. These substances diffuse to the adjacent vascular smooth muscle 

cells and induce vasodilation: prostaglandines and adenosine activate adenylyl cyclase, 

whereas NO and lactate activate guanylyl cyclase [25]. This results in increases of 

intracellular levels of cyclic adenosine monophosphate (cAMP) or cyclic guanine 

monophosphate (cGMP), respectively. Subsequently, activation of downstream cGMP or 

cAMP-dependent effector kinases occurs, influencing MLCP and MLCK activity and cytosolic 

Ca2+ concentrations, thereby inducing vasorelaxation [24]. Increased cAMP or cGMP 

concentrations have furthermore been described to induce vasorelaxation via activation of 

K+ channels, thereby causing membrane hyperpolarization [26]. The so-called endothelial 

derived hyperpolarization factor (EDHF) induces VSM hyperpolarization and vasodilation via 

yet not completely understood mechanisms [30], possibly involving K+  channels [31].  

In addition, neural stimulation of muscle contractions induces a spillover of the 

neurotransmitter acetylcholine (AcH) at neuromuscular endplates, which has also a 

vasorelaxing effect, possibly via NO release from ECs [32]. Furthermore, with every 

contraction/relaxation cycle, K+ is lost to the extracellular space [33,34], inducing 

vasorelaxation [35,36]. Moreover, increased oxygen consumption in active skeletal muscle 

implicates decreased venous PO2, which is thought to provoke ECs to release vasodilatory 



factors [37]. Adenosine triphos

which increases in blood and int

is released by ECs [41,42], by sy

in response to mechanical defor

of P2Y purinergic receptors on va

as NO, prostaglandins (PGs) a

contraction state of arterioles via

Figure 2. Simplified overview o
exercise-induced dilation of vasc
Ca2+-Calmoduline (CaM) complex
activates myosin light chain (ML
opposed by myosin light chain
vasorelaxation. Mechanisms that 
MLCP and MLCK activity. Smoo
production by adenylyl- or gua
adenosine activate adenylyl cyc
cyclase. Vasoactive substances ar
or (C) erythrocytes. Endothelial 
factor (EDHF), which induces vaso
‘?’ indicates that the mechanism
but are thought to involve increas
the blood can induce ECs to secr
vasoactive NO and ATP. Acetylch
can induce NO production in ECs
and Hellsten (2004) and Puetz et a

Introduction 

6 

 triphosphate is also considered being a potent 

d and interstitial fluid  during exercise [39,40]. It is t

, by sympathetic nerve terminals [41] and by red b

cal deformation [42]. Finally, ATP induces vasodilatio

ors on vascular ECs, inducing subsequent release of v

 (PGs) and EDHF [43]. Of note, erythrocytes als

rioles via NO release [25].  

erview of metabolic factors and possible mechani
n of vascular smooth muscle. When Ca2+ concentratio
complex activates myosin light chain kinase (MLCK
ain (MLC), leading to smooth muscle contraction. Th

ht chain phosphatase (MLCP), which deactivates M
ms that induce vasodilation act via modulating Ca2+

y. Smooth muscle relaxation can be induced via 
or guanylyl cyclases. Substances like Prostagland

ylyl cyclase, whereas nitric oxide (NO) and lactate a
ances are derived from (A) active skeletal muscle and
othelial cells (ECs) produce the endothelial-derived

uces vasodilation via smooth muscle membrane hyper
chanisms of EDHF-mediated vasodilation are to date
e increases in extracellular K+. Reduced partial oxygen 
s to secrete vasoactive substances. Likewise, erythroc
Acetylcholine (AcH) is spilled over at neuromuscular 
n in ECs. See text above for more information. Modif
uetz et al. (2007) [24,25]. 

potent vasodilator [38], 

. It is thought that ATP 

 by red blood cells (RBC) 

asodilation via activation 

ease of vasodilators such 

ytes also influence the 

 

mechanisms involved in 
centrations are high, the 

e (MLCK), which in turn 
ction. This mechanism is 
ivates MLC and induces 

2+ concentrations and 
ed via cyclic nucleotide 
staglandines (PG’s) and 
lactate acitivate guanylyl 
scle and (B) endothelium 
derived hyperpolarizing 

ne hyperpolarization. The 
 to date mostly unsolved 

gen pressure (PO2) in 
erythrocytes can produce 
uscular endplates, which 
n. Modified from Clifford 



Introduction 

7 

2.3.2.1 NO-mediated vasorelaxation 

NO is a gaseous, easily diffusible radical [44], which has a half-life of only a few seconds  [45]. 

NO is synthesized from the amino acid L-arginine involving molecular oxygen [46], 

Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) and the cofactors 

Tetrahydrobiopterin (BH4) and flavin mononucleotide cofactor (FMN) [47]. The formation of 

NO is catalyzed by nitric oxide synthases (NOS). To date, three types of NOS have been 

described: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). In 

humans, nNOS is expressed in both fibre types of skeletal muscle, whereas eNOS is 

expressed in the endothelium [48]. Previous studies have shown that NO is not only involved 

in regulation of skeletal muscle blood flow during and in recovery from exercise [49–51] but 

also in adjustment of basal vascular tone in skeletal muscle [25]. Red blood cells are capable 

of performing enzymatic and non-enzymatic release of NO. In the former, NO disposal is 

accomplished through shear stress–induced activation of RBC-NOS and in the latter, NO 

release is induced in association with oxygen release and via reduction of circulating nitrite 

to NO by deoxygenated hemoglobin [52]. Vascular endothelial growth factor (VEGF) is an 

important stimulator of endothelial NO production and is capable to induce eNOS activation 

and gene expression [53]. It is commonly accepted that physical exercise elevates 

intravascular shear stress  [54] and it has been shown that physical exercise activates RBC-

NOS activity [55] and has a beneficial effect upon RBC deformability [56]. Furthermore, 

increased shear stress stimulates eNOS-mediated NO production in the endothelium [57,58]. 

Various studies have shown that shear stress affects eNOS mRNA and protein expression 

[27,59–61] and endothelium-dependent dilation was increased in soleus muscle feed 

arteries after an exercise intervention in rats [62].  

2.4 Mechanisms of capillary growth  

Vasculogenesis and angiogenesis are the two fundamental processes through which blood 

vessels are formed [63,64]. Vasculogenesis describes the de novo formation of blood vessels 

through differentiation of endothelial precursor cells (‘angioblasts’ in embryos and 

‘endothelial progenitor cells’ in adults) into ECs, which assemble and form a primary vascular 

plexus. The term angiogenesis describes the outgrowth of new capillaries from pre-existing 

blood vessels and more generally, angiogenesis includes processes involved in growth and 

remodeling of a primitive network to form a complex vascular network [64,65], see Figure 3. 
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enables sprout formation – i.e. ECs migrating into the interstitial matrix, where they 

proliferate towards an angiogenic stimulus such as VEGF [73]. Recent developments have 

shown that angiogenic sprouts are composed of so-called endothelial tip- and stalk cells [74]. 

Filopodia on tip cells express a large amount of VEGF receptors (VEGFR2) [75,76] and secrete 

proteolytic enzymes, so-called matrix metalloproteinases (MMP’s), which digest the ECM 

[77]. Thus, these tip cells make the ECM accessible and via sensing of a VEGF gradient, the 

sprout is guided towards the angiogenic stimulus [78]. Stalk cells follow behind and 

proliferate, enabling the capillary sprout to elongate [74]. As the capillary sprout fuses with 

another sprout, a premature capillary lumen is formed and matures through further EC 

proliferation, by recruitment of pericytes and through the reconstruction of a basement 

membrane [79,80].  

Splitting- or intussusceptive angiogenesis  

Intussusceptive angiogenesis, also called splitting angiogenesis, describes a process in which 

interstitial tissue invades existing blood vessels from the luminal side, thus splitting a single 

capillary into two [81]. This type of angiogenesis is thought to be a very effective process, 

which requires less remodelling of the extracellular matrix compared to sprouting 

angiogenesis [82]. The mechanisms underlying intussusceptive angiogenesis are less well 

understood compared to sprouting angiogenesis. 

2.4.2 Exercise-induced angiogenesis 

Time course and extent of capillary growth varies according to the type of training 

performed. Generally, angiogenesis in skeletal muscle in response to exercise is thought to 

result from a complex interplay of various stimuli involving metabolic stimuli and the 

presence of a variety of growth factors [83] and mechanical forces acting on the 

microvasculature [84]. Yet, there is inconclusive evidence about which of the factors is 

initiating or maintaining capillary growth.  

2.4.2.1 Mechanical stimulation of angiogenesis during exercise 

As introduced in Figure 1, shear stress and wall tension are the main mechanical factors 

acting on the microvasculature, which have been implicated in inducing capillary growth 

[17].  Brown and colleagues [17] provided elegant rat models designed to decipher the 

angiogenic stimulus of intraluminal shear stress elevations versus increases in wall tension 

through elevated extraluminal forces. The essence of these studies was that elevated shear 
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stress induces blood vessel growth via capillary splitting and intussusceptive growth, 

including VEGF-associated EC proliferation but very little involvement of MMP’s [85], 

whereas elevation of extraluminal forces induces capillary growth via proliferation and 

sprouting  under involvement of both MMPs and VEGF [86]. In summary, MMP’s were 

exclusively up-regulated by extravascular forces, whereas VEGF seems to be involved in both 

modes of capillary growth. Despite these findings, it is to date still unclear, which mode of 

capillary growth is induced by which type of physical exercise.  

2.4.2.2 Metabolic stimulation of angiogenesis during exercise 

Nitric oxide is activated by various stimuli derived during exercise, as overviewed in section 

2.3.2.1 Endothelial NOS and its bioactive product NO are well-established pro-angiogenic 

agents [87,88], triggering EC proliferation and differentiation via cGMP-mediated activation 

of mitogen activated protein kinase (MAPK) and inducing basic fibroblast growth factor (FGF-

2) expression [89].  

As introduced in section 2.2, skeletal muscle activity leads to decreased PO2. Hypoxia is a 

strong angiogenic stimulus which can induce the expression of the EC mitogen VEGF directly 

[90] or indirectly via the transcription factor hypoxia-inducible factor-1 alpha (HIF1α) [91]. 

HIF1α furthermore influences the transcription of VEGF receptor 1 (VEGFR1) [92], as well as 

iNOS [93]. Other examples for hypoxia-modulated angiogenic factors are transforming 

growth factor-beta (TGFß) [94], FGF-2 [95], placental growth factor (PlGF)[96], angiopoietin 

(Ang) -1 and -2 [90], and endostatin [97].  

The nucleotide adenosine is found in all cells and is formed by stepwise dephosphorylation 

of adenosine triphosphate (ATP). Exercise-induced hypoxia favors the production of 

adenosine, which acts as both a vasoactive substance and as a pro-angiogenic factor, being 

capable of inducing EC proliferation and –migration under hypoxic conditions in vitro [98,99] 

and blood vessel growth in vivo [100], possibly via VEGF [101]. 

2.4.3 Angiogenic factors 

2.4.3.1 Vascular endothelial growth factor (VEGF) 

The VEGF gene family consists of six members: VEGF-A, VEGF -B, -C -D, and -E and placental 

growth factor (PIGF) [102]. VEGF-A is a potent angiogenic factor and EC mitogen as well as a 

major regulator of EC function, being capable to stimulate EC differentiation, proliferation, 

migration, and survival, vascular permeability and NO production [103–106]. VEGF-A was 
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measured in serum after exercise in the present thesis and therefore, the following 

paragraph will focus on this family member. 

The VEGF-A gene is organized in eight exons and seven introns [107] and is expressed in 

various cell types, e.g. ECs, vascular smooth muscle cells, macrophages, fibroblasts as well as 

cardiac and skeletal muscle cells [90]. Via alternative splicing, five different VEGF-A protein 

isoforms are generated, containing 121 to 206 amino acids (VEGF-A121-206) [107]. Heparan-

sulfate proteoglycanes residing within the extracellular matrix are thought to function as an 

extracellular storage modality for VEGF-A isoforms possessing a heparin binding motif [108]. 

The different VEGF-A isoforms have differential affinities to heparin sulfate. In contrast, the 

shortest isoform VEGF-A121 does not bind to heparin and is therefore freely diffusible while 

the largest isoforms VEGF-A189 and VEGF-A206 are tightly bound to heparin-containing 

proteoglycanes. VEGF-A165 is the predominant isoform and has intermediate properties, 

which means that upon secretion, a significant fraction remains associated to the cell 

membrane and extracellular matrix [108]. This enables the establishment of extracellular 

VEGF-A pools of which bioavailability is triggered upon ECM degradation [109]. Furthermore, 

VEGF-A can stimulate the production and secretion of matrix degrading enzymes such as the 

matrix metalloproteinases in endothelial and smooth muscle cells and thus facilitating EC 

migration and tube formation [110]. VEGF-A is EC-specific where its tyrosine kinase receptors 

VEGFR-1 and VEGFR-2 are expressed [111] and VEGF binding promotes EC survival via 

activation of phosphatidylinositol-3 kinase (PI3K) and Akt [112]. EC proliferation is induced 

mainly via Phospholipase C (PLC) - MAPK pathway. VEGF is furthermore known to induce NO 

production via activation of eNOS through phosphorylation by AKT or via calcium influx 

induced by PLC [113]. 

Previous research reveals that VEGF-A is activated upon elevated shear stress perturbation 

[114], muscle stretch [115] and hypoxia [116] and furthermore, VEGF-A has been shown to 

be essential for exercise-induced angiogenesis in skeletal muscle [117,118]. Exercise leads to 

increases of VEGF-A protein concentrations [119] and mRNA [119–121] both within skeletal 

muscle fibres and also in interstitial cells between the muscle fibres [120,121]. VEGF-A is 

released by active skeletal muscle [122] and serum levels of VEGF-A were shown to be 

unaffected [123], decreased [119,124] or elevated [125,126] after endurance-type exercise. 

So far, serum levels of VEGF-A induced by resistance exercise have not been tested, and this 
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task was one aim of the present thesis. In the following, VEGF-A will be referred to as simply 

“VEGF”. 

2.4.3.2 Matrix Metallo Proteinases (MMP) 

The family of zinc- and calcium-dependent enzymes known as MMPs are extracellular 

proteinases that play important physiological roles in extracellular matrix remodeling during 

development, tissue remodeling, angiogenesis and during pathological conditions such as 

wound healing, inflammatory disease and tissue invasion by tumors [127]. Major 

characteristics of MMPs are that (i) they are synthesized as zymogenes, which are activated 

upon proteolytic removal of an amino-terminal propeptide [128]; (ii) the presence of the co-

factor zinc in the active site is essential for their activity; (iii) MMP activity is inhibited by 

specific inhibitors of metalloproteinases and (iv) MMPs collectively degrade all major 

components of the ECM [129]. Several subclasses of MMPs have been described including 

collagenases, gelatinases, membrane-type metalloproteinases and stromelysins [129]. The 

present thesis deals with the effect of exercise on serum levels of gelatinases. Therefore, the 

following passage will focus on this subclass.  

The gelatinase subgroup has two members, namely MMP-2 /gelatinase  A [130] and MMP-9 

/ gelatinase B [131]. MMP-2 and -9 are expressed in a large variety of tissues, MMP-2 being 

produced by chondrocytes, fibroblasts, keratinocytes and monocytes [130] and MMP-9 by 

e.g. keratinocytes, monocytes and leukocytes [132]. Of note, both gelatinases are produced 

in ECs and are thought to play a vital role in initiating angiogenesis [133,134]. The 

importance of MMPs in the angiogenic process has been underlined by several studies 

showing that inhibition of MMP activity disrupted angiogenesis [135–138]. The proteases 

MMP-2 and -9 seem to play a crucial role in the formation of new capillaries in skeletal 

muscle [139,140] and their plasma concentrations were significantly elevated in serum after 

endurance exercise [133,141–144]. MMPs have also been implicated in the release of 

growth factors such as VEGF [145], transforming growth factor beta (TGFß) or FGF [146]. 

Previous in vitro research reveals that MMP-9 is more prone to release VEGF compared to 

MMP-2 [145]. Moreover, MMP-2 has shown to increase the bioavailability of  insulin-like 

growth factor (IGF) through proteolysis of the IGF binding protein and might therefore be 

involved in anabolic stimulation of skeletal muscle [147,148].  
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Upon ECM cleavage, bioactive degradation products are generated which have signaling 

properties [149,150]. One of these factors is the angiogenic factor endostatin which will be 

introduced in the following paragraph. 

2.4.3.3 Endostatin 

Endostatin corresponds to the C-terminal fragment of the non-collagenous (NC1) domain of 

type XVIII collagen [151] and is proteolytically released by proteases like cathepsins, elastase, 

MMP-2 and -9 [149,152]. Endostatin has a strong affinity to heparan sulfate proteoglycans, 

which determines its localization at capillary basement membranes [153]. Endostatin was 

first identified in murine hemangioendothelioma cells as an ‘endogenous inhibitor of 

angiogenesis’ and it has been shown that endostatin inhibits primary and metastatic tumor 

growth in animal models [154–156]. To date, the role of endostatin in the angiogenic 

process is not clear due to its complex signaling functions and because both pro-angiogenic 

and anti-angiogenic characteristics have been described [157].  

The anti-angiogenic effect of endostatin may be exerted via its interaction with integrin 

α5β1, resulting in inhibition of matrix adhesion and signaling [158], involving down 

regulation of MAPK and focal adhesion kinase (FAK) pathways [188]. Moreover, endostatin 

inhibits EC proliferation and –migration via competitive inhibitory binding to VEGFR2 [159] 

and suppression of Wnt signaling [160]. Endostatin has also been shown to inhibit EC 

proliferation via inducing cell cycle arrest and down regulation of cyclin D1 [189]. In addition, 

endostatin action has been attributed to induce EC apoptosis, possibly via reducing anti-

apoptotic proteins [159].  

Studies performed by Schmidt and colleagues (2004) reveal that endostatin can elicit pro-

migratory and pro-proliferative effects on ECs and that the pro- or anti-angiogenic effect of 

endostatin is determined by its concentration and the proliferation status of ECs [157]. 

Isolated ECs and endothelial progenitor cells from hemangiomas showed increased 

adhesion, proliferation and migratory activity in response to endostatin treatment [161]. 

Moreover, endostatin was shown to increase NO release from ECs in vitro a[162] and local 

levels of endostatin may therefore be crucial for regulation of peripheral vascular tone. 

These studies collectively reveal that endostatin might function as an angiogenic modulator  

rather than an anti-angiogenic agent [157]. 

Collagen turnover has been reported to be increased by physical exercise [163] and previous 

studies reveal that endostatin seems to play a role in exercise-induced adaptations, as serum 
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3 Purpose of the Thesis  

The training study Molecular and functional Effects of Vibration Exercise (‘EVE’) was 

conducted within the scope of the present thesis. The study was designed to evaluate effects 

of resistance exercise with and without superimposed whole-body vibrations (WBV) on the 

microvasculature of skeletal muscle. The underlying idea was derived from the field of 

aerospace medicine where vibration training in combination with resistance exercise has 

proven to prevent disuse-induced adaptations in skeletal muscle, such as myofibre atrophy 

[166,167] and capillary loss [168–170]. Hence, WBV is currently being considered as a 

potential training modality for human space flight [171]. WBV training is nowadays 

commonly applied in various fields like sports, preventive medicine and rehabilitation 

[171,172] and has been described to improve neuromuscular performance [173–175]. 

Whole-body vibration exercise has also been shown to moderately increase metabolic 

activity and ATP consumption [176–179] and to elicit muscle deoxygenation [180,181]. 

Previous studies reveal that the mechanical stimulus of WBV increases blood viscosity [182] 

and may have beneficial effects upon peripheral perfusion as blood flow velocity was 

increased in skeletal muscle during and immediately after termination of WBV [183,184] . 

Increased viscosity and blood flow may all result in an elevated shear stress in the 

microvasculature of skeletal muscle [172,182], as overviewed in section 2.2.. 

Based on the finding that shear stress and hypoxia are able to induce angiogenesis 

[19,185,186] and inspired by a previous study showing increased circulating VEGF 

concentrations upon WBV exposure during cycling exercise [164], we hypothesized that the 

superposition of a WBV stimulus to resistance exercise would add a pro-angiogenic stimulus 

to the training. To test this hypothesis, 26 healthy male subjects were subjected to a 6-week 

training intervention, in which 13 subjects performed resistance exercise (RE) and 13 

subjects performed resistive vibration exercise (RVE). High resistance training has in previous 

studies been shown to decrease capillary density probably as a result of fibre hypertrophy 

with insufficient angiogenesis [187]. Hence, we aimed to find a novel training mode that 

concurrently increases muscle strength and induces capillary growth to optimize the flux of 

oxygen and nutrients to the muscle and thereby improve muscle performance in terms of 

power output and endurance capacity.  
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The present thesis is organized as follows: 

• Paper 1 outlines the study design, feasibility and demands of the study as well as 

cardiovascular adaptations to the two training regimes.  

• Paper 2 highlights changes in circulating concentrations of the angiogenic factors 

MMP-2, MMP-9, VEGF and Endostatin and their effect upon EC proliferation. We 

hypothesized that superposition of WBV to resistance exercise would enhance 

circulating concentrations of pro-angiogenic factors acutely after training, which 

would induce more pronounced EC proliferation in vitro.  

• The purpose of Manuscript 1 was to evaluate acute and long-term effects of the 

training interventions upon skeletal muscle microcirculation and capillary growth in 

calf muscles. We hypothesized that (i) superposition of WBVs to RE would induce 

muscle deoxygenation and increase exercise-induced hyperaemia compared to 

training without WBV and (ii) that this effect would lead to more pronounced long-

term adaptations in the RVE group, leading to increased capillarity and improved 

perfusion of skeletal muscle. 
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Abstract 

Objectives: A training intervention comparing resistance exercise with or without whole-

body vibration (WBV) was conducted to compare acute and chronic effects on functional 

and molecular parameters.  

Methods: A six-week training intervention was performed including 26 healthy males (26 

years, SD=4). Two groups were analyzed in a parallel design performing either resistive 

exercise (RE, n=13) or resistive vibration exercise (RVE, n=13) training with weekly increasing 

vibration frequencies (20-40Hz). Resting and exercising blood pressure and heart rate were 

measured before and after the 6-week intervention.  

Results: Both training interventions decreased resting systolic blood pressure (P = 0.003). 

Resting diastolic blood pressure was significantly decreased only in the RVE group (P = 0.01). 

Exercising diastolic blood pressure was significantly decreased during the final training 

(P<0.001) with no additional effect of superimposed vibrations. Resistance exercise with 

superimposed vibrations evoked back pain to a higher degree than resistance exercise alone 

when training at frequencies above 30Hz (P<0.01).  

Conclusions: These data suggest positive effects of resistance exercise upon cardiovascular 

health and vascular responsiveness and a further beneficial effect of superimposed 

vibrations in decreasing resting diastolic blood pressure. Finally, development of back pain 

may be fostered by superimposed vibrations to high training loads, particularly at higher 

frequencies. 
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INTRODUCTION 

Regular performance of aerobic exercise is commonly known to have beneficial effects upon 

cardiovascular health such as decreases in heart rate and ambulatory blood pressure [1,2]. 

However, studies on cardiovascular adaptations to resistance exercise remain inconclusive. 

In the early 1980’s, resistance exercise was believed to cause hypertension [3]. However, 

other studies showed that resting blood pressure was decreased by a resistance training 

intervention [4,5] whereas other studies showed no effect upon resting blood pressure in 

normotensive individuals [6–8]. The divergence in the reported effects indicates the need for 

further investigations in the field of cardiovascular adaptations to resistance exercise. Here 

we report acute and long-term responses of blood pressure and heart rate to a resistance 

training intervention performed with and without superimposed vibrations. Whole-body 

vibration (WBV) training has become increasingly popular during the past two decades and is 

nowadays applied in various fields like sport, rehabilitation and in clinical settings. Previous 

studies have made a great effort to describe physiological effects of whole-body vibration 

and have been reviewed elsewhere [9,10]. Unfortunately, many of the reported vibration-

induced effects vary from study to study, which may derive from discrepancies in the applied 

training protocols, subject heterogeneity and divergence in the duration of the 

interventions. Furthermore, training supervision and diet control were neglected in many of 

the studies, and there was likewise no uniformity in the control conditions: studies either 

lacked a control group or compared their results to a passive control group; only few studies 

applied an exercise control condition [10]. Also, there is a lack of consistency in the way of 

reporting the results, as highlighted in the recommendations of the international society of 

musculoskeletal and neuronal interactions [11]. Many of the potential benefits of whole-

body vibration may thus not have been clearly demonstrated. To the best of our knowledge, 

no study has yet compared acute effects of a specific exercise to its long-term adaptations. 

However, and considering that exercise is usually conducted regularly and over a longer 

period of time, it is pertinent to ask whether long-term training alters acute responses and if 

superimposed vibrations promote a beneficial training effect. Here we present the design, 

feasibility and demands of a conducted study that allows investigation of the adaptation of 

acute responses during exercise to a long-term training intervention. Acute functional 

parameters (cardiovascular responses, neuromuscular activation, oxygen consumption, 

muscle perfusion and oxygenation) are complemented with investigations of acute 
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responses on circulating factors in serum as well as acute and long-term responses within 

muscle tissue. The various measurements within a single training study using an exercising 

control group will hopefully provide a broader insight into the effects of the vibration 

stimulus per se. The present article focuses on acute and long-term cardiovascular responses 

as well as feasibility and demands of the training. 

MATERIAL AND METHODS 

Study design: 

The EVE study (“Molecular and functional Effects of resistive Vibration Exercise”) was 

conducted in a two-group parallel design and was carried out in compliance with the 

Declaration of Helsinki following approval by the Ethics Committee of the Northern Rhine 

medical association (Ärztekammer Nordrhein) in Düsseldorf (application no. 2010-174). After 

providing a written informed consent, 28 healthy male subjects were included into the study 

and stratified according to their vertical jumping height into two matched groups with 

comparable neuromuscular fitness, using the maximum vertical jump height as an indicator 

[12]. A coin was then tossed to determine which group would perform either resistive 

vibration exercise (RVE) or resistive exercise (RE) only. The study was conducted in two 

campaigns due to feasibility reasons: the first campaign with 12 subjects took place between 

October 2010 and March 2011, the second campaign with 16 subjects took place between 

May and October 2011. 

Participants and group design 

Healthy, male subjects were targeted who were recreationally physically active (exercised 2-

3 times per week). Any competitive sports, participation in strength training during the past 

six months, smoking, diabetes as well as any current medication were considered as 

exclusion criteria. Subject recruitment involved a telephone questionnaire checking for 

general suitability (224 applicants), a medical screening comprising a short medical history, 

blood analysis (involving a complete blood count and investigation of clinical parameters -

creatinin, urea, protein, albumin, SGOT, SGPT, γGT, Lipase, alk. phosphatase, electrolytes, 

glucose, C-reactive protein and haematological parameters:  PTT, aPTT, Quick, INR), as well 

as a urine test checking for glucose, protein and urobilinogen. Finally, a stress 

electrocardiogram on a cycling ergometer and a training familiarisation were performed. The 

medical screening involved 60 applicants out of which 28 were included in the study. The 
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subject’s anthropometric data at baseline are given in Table 1, and no statistically significant 

group difference was found (P > 0.08). 

 

 

Table 1. Anthropometric data of EVE subjects at baseline. BMI: Body Mass Index., CMJ: 
Counter movement jump. There was no difference between the two groups. 

Training design: 

The present study was designed to compare acute and long-term effects of two training 

interventions: Resistive Exercise (RE) and Resistive Vibration Exercise (RVE). Subjects trained 

for six weeks, 2-3 times per week with additional weights. In order to align the squatting 

movement, the weights were put on a guided barbell (PTS Dual action Smith, Hoist, U.S.A). A 

vibration platform (Galileo® Fitness, Novotech, Germany) was placed underneath, as 

illustrated in Figure1A. The subjects in the RVE group performed the resistive exercise 

training protocol with simultaneous side-alternating whole-body vibrations, whereas 

subjects of the RE group trained with the same setting, without superimposed vibrations. 

We aimed to test physiological responses at 40Hz side-alternating vibration, which has not 

been tested before. Preliminary testing yielded that this is challenging for people not 

acquainted with whole-body vibration. We therefore decided to initially set the vibration 

frequency to 20 Hz and to increase the vibration frequency throughout the study to 

eventually arrive at 40Hz. 

Maximal performance on cycle      

ergometer test                                 

[W / kg body weight]

3.3 (± 0.3) 3.3 (± 0.4) 1.00

RE group              

(n = 13)

RVE group             

(n = 13)
P - value

41.7 (± 2.2) 0.97

75.0 (± 4.7) 74.7 (± 6.9) 0.08

42.2 (± 4.6)

1.79 (± 0.05) 1.8 (± 0.1) 0.31

CMJ height [cm]

Body mass [kg]

BMI 23.4 (± 1.4) 23.5 (± 2.1) 0.11

Height [m]

Age [yrs] 23.4 (± 1.4) 24.3 (± 3.3) 0.52
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corresponding % of the 1-RM was evaluated according to Baechle and Earle [13]. An example 

is illustrated in Figure 2: if the barbell was loaded with 90kg and the subject’s maximum 

number of repetitions was 5, which corresponds to 87% of the 1-RM, the training load was 

adjusted to 85kg. 

 

Figure 2. Determination of training load. Left: calculation of the performed % of the One-
Repetition. Maximum (1-RM) according to the number of concluded repetitions (adapted 
from Baechle and Earle). Right: example for estimation of training load at 80 % the 1-RM. 

Training protocol 

The training was supervised by a graduated exercise scientist throughout the study and two 

spotters were standing left and right of the guided barbell providing subject security. A 

metronome guided the training rhythm to provide standardisation of the movement. Squats 

were performed dynamically with 2 sec. eccentric and 2 sec. concentric phase; calf raises 

were performed with 1 sec. eccentric and 1 sec. concentric phase (Figure 1B). Each training 

session included a warm-up with the unloaded barbell (15kg), which consisted of two sets; 

each set with 10 squats and 15 heel raises. The actual training was performed in three sets: 

the first two sets comprised 8 squats and 12 calf raises; in the third set, as many squats and 

calf raises as possible were performed (Figure 3A). Immediately after completion of the last 

set of squats, each subject’s perceived exertion was rated via the Borg RPE Scale [14]. 

Altogether, the subjects concluded 16 training sessions in a period of 6 weeks (week 1-2: two 

sessions per week; week 3-6: three sessions per week). Both training regimens differed only 

in the vibration component. 

Increase of training load and vibration frequency during the 6-week intervention 

The number of squats in the third set was used to readjust the training weight to 80% of the 

1-RM for the following training. When the number of squats in the third set was equal to 8, 

the training weight remained unchanged for the subsequent training. When the subjects 

performed more or less than 8 repetitions, the training weight was recalculated, i.e. 



Paper 1 Implementation of EVE-Study 

38 

increased or decreased for the next training.  However, the top limit for weight increases 

was set at 10kg in order to guarantee steady weight increments. The RVE group started the 

training with 20Hz vibration with weekly increments by 5Hz; during the last two weeks, 

vibration frequency was set at 40Hz. A schematic overview of the incremental study design is 

displayed in Figure 3B. 

 

 

Figure 3. (A) Training design. After a warm-up, subjects performed three sets of squats and 
calf raises. The first two sets included 8 squats and 12 calf raises, in the third set, a maximum 
number of squats and calf raises was performed. (B) Increase of of training intensity over the 
6-week training intervention. Left: increase of training load for both intervention groups. 
Right: increase of vibration frequency in the resistive vibration exercise (RVE) group. 1-RM: 
One-Repetition Maximum. 

Diet  

During the initial and final training sessions, subjects ate a standardised breakfast two hours 

before training (two wheat bread rolls with butter and jam). During the long-term training 

intervention, subjects were asked to abstain from food two hours before every training 

session and to drink a protein energy drink (Fresubin® protein energy drink, Fresenius Kabi, 

Germany) one hour prior to training.  
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Measurements 

The present study was designed to characterize the acute and long-term effects of resistive 

exercise and superimposed vibrations on both functional and molecular levels. An overview 

of the measurements with the corresponding time points is depicted in Figure 4.  

Determination of daily physical activity 

The Freiburg Questionnaire [15] was applied to assess the subject’s daily physical activities. 

Subjects filled the questionnaire one week prior to and three days after the 6-week training 

intervention. 

Blood pressure and heart rate at rest and during exercise  

Resting heart rate and blood pressure were recorded after 20 minutes in horizontal position 

with an automated sphygmomanometer (Medicus pc, Boso, Germany). Exercise blood 

pressure was measured during each break between the sets and immediately after training 

termination by a medical doctor using a manual sphygmomanometer. Heart rate was 

measured manually by an exercise scientist.  

Rating of perceived exertion (RPE) 

The Borg RPE scale[14] was used for the assessment of the perceived exertion of the 

training. Within 20sec after the last set of squats, subjects provided their individual RPE.  
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Figure 4. Overview of the EVE-Study design. BDC (Baseline Data Collection) was performed 
during 4 weeks prior to the initial training; follow- up measurements were performed 3, 4 
and 90 days (d) after the final training. MRS: Magnetic Resonance Resonance Spectroscopy, 
MVC: Maximal Voluntary Contraction, MRI: Magnetic Resonance Imaging, EMG: 
Electromyography, NIRS: Near-Infrared Spectroscopy. 

Statistical analyses 

Statistical analyses were performed using STATISTICA 10 for Windows (Statsoft, Tulsa, 

Oklahoma, USA, 1984-2010). For estimation of differences in training load increments, rating 

of perceived exertion, blood pressure and heart rate, a repeated measures ANOVA was 

applied with time (initial vs. final) and intervention (resistive exercise vs. resistive vibration 

exercise) as factors; Tukey’s test was used for post-hoc testing. For estimation of daily 

physical activity (Freiburg Questionnaire), a paired, two-sided Student’s t-test was 

performed to compare physical activity before and after of the 6-week training intervention; 

an unpaired, two-sided t-test was performed to test differences between the two 

intervention groups. For estimation of vibration-induced back pain, a chi-square analysis was 

performed. Values are given as means ± standard deviation, statistical significance was set at 

P < 0.05. 
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RESULTS 

Freiburg Questionnaire of physical activity 

Daily physical activities like walking, biking, stair climbing, activity at work, sleeping and 

weekly sportive physical activity did not differ before and after the 6-week training 

intervention (P – values between 0.12 and 0.96) and did not differ between the two 

intervention groups (P – values between 0.32 and 0.75). 

Important events during the study 

When training at frequencies above 30Hz, eight of the RVE subjects complained about back 

pain. In one of the subjects, back pain was the cause for dropping out of the study. The 

sudden onset of back pain in the drop-out subject was caused by an incident during training. 

The impression of the personal trainer and his assistants present during that exercise session 

was that the incident resulted from training with poor body balance, which led to bending of 

the back. An independent orthopaedic surgeon diagnosed a facet joint syndrome L1-2, which 

did not implicate sensory or motor deficits. The back pain lasted for seven days after the 

incident and was ranked by the subject to an intensity of 8 using a scale ranging from 0 to 

10, where 0 indicated “no pain” and 10 indicated “severe, unbearable pain”. The subject had 

demonstrated questionable commitment before that event, which reinforced the decision 

was made to exclude him from the further participation. 

Back pain reported by the other seven subjects that completed the study successfully was 

assessed via a questionnaire. All seven subjects reported low back pain without 

radiculopathy. One subject complained about pain during training, whereas the majority (6 

out of 7 subjects) perceived back pain after training termination. The duration of the pain 

varied: two subjects reported acute pain until 1-2 hours after training, and four subjects 

reported pain until 2-3 days after training. The pain intensity estimated by the subjects 

ranged from 3 to 7 and was on average 4.4 (SD=1.4), using a 0-10 scale (as described above). 

None of the subjects had to take analgetics to relieve the pain. There were only two cases of 

back pain in the RE group: one subject complained about local neck pain at the site of weight 

application, the other subject complained about “light” muscle tenderness in the lumbar 

spine. Statistical analyses revealed that resistive vibration exercise at frequencies of 30 Hz 

and above caused back pain in a higher number of cases than resistive exercise alone (Chi-

value < 0.01); details are listed in Table 2. 
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Furthermore, four subjects in the RVE group complained about a training-induced headache 

with an onset after the second training set, out of which one subject dropped out after four 

weeks of training because of a headache that was reproducibly generated by the 

combination of vibration, application of the bar bell and calf raises. A post-hoc medical check 

revealed the absence of the physiological lordosis of the cervical spine as a likely explanation 

for this reaction.  

 

 

Table 2. Important events during the study. Numbers of subjects are indicated perceiving 
headache or back pain in the respective training week. RE: resistive exercise group; RVE: 
resistive vibration exercise group. **Higher compared to RE group  (chi-value<0.01). 

Conduct of exercise: missed training sessions 

In the RVE group, four subjects completed all 16 training sessions and nine subjects missed a 

single training session. In the RE group, ten subjects completed all 16 training sessions and 

three subjects missed a single training session.  

Increase of training load  

The training loads were comparable between the two groups at the initial training (RVE: 81.5 

± 7.7 kg, RE: 75.2 ± 6.5 kg; P = 1.0) and increased over time in both groups (P < 0.001).  

Compared to the initial training, the increase in training load over the six-week training 

intervention was significantly higher in the RE group and accounted for 59.8 ± 17.3 %, 

compared to 46.9 ± 19.0 % in the RVE group (time * intervention: P < 0.001). As the weight 

increase was more pronounced in the RE group, post-hoc analyses reveal that RE subjects 

trained with significantly higher training loads compared to the RVE group in trainings 13 to 

16 (P < 0.01). During the final training, the RE group trained with 130.2 ± 18.5 kg and the RVE 

group trained with 110.2 ± 15.8 kg (P = 0.003), see Figure 5. 

RVE RE RVE RE

1 20 Hz - - - -

2 25 Hz - - - -

3 30 Hz 3 1 1 -

4 35 Hz 1 1 2 -

5, 6 40 Hz 4 - -

Sum 8** 2 3 0

Training week Vibration 

Frequency

Back Pain Headache
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Figure 5. Training load increase during the 6-week training intervention. Bars indicating 20-
40Hz refer to the applied vibration frequency in the RVE group. Training loads increased over 
time in both groups (time effect: P<0.001). The training load increase was more pronounced 
in the Resistive Exercise group and after the 13th training session, the RE group trained with 
significantly higher training loads (*P<0.01). 

Rating of Perceived Exertion (RPE) 

The perceived exertion of the initial training was rated as “hard” according to the Borg RPE 

scale, and there was no difference between groups: 15.5 ± 1.6 (RE) vs. 15.9 ± 1.3 (RVE), P = 

0.52, see Figure 6. RPE data derived during the 6-week training reveal that superimposed 

vibrations did not alter RPE as there was no significant group effect (P = 0.73). However, 

there was an overall increase in RPE over time (P = 0.048). Post-hoc analyses showed that 

the RPE was higher during training 9-16 when compared to training 1-4 (P < 0.05). During the 

last training, RPE accounted for 15.9 in the RE group and 16.38 in the RVE group. Of note, 

RPE during the last training was comparable between groups (P = 0.15), although the RE 

group trained with significantly higher training loads (P = 0.003). Furthermore, there was no 

correlation between RPE and heart rate (R= -0.13; R2 = 0.017; P = 0.42) as previously 

described for endurance exercise[16]. 
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Figure 6. Rating of the training’s perceived exertion. The subjects in both groups rated the 
perceived exertion (RPE) of the training to “hard” and there was no difference between the 
Resistive Exercise (RE) and Resistive Vibration Exercise (RVE) groups. RPE was significantly 
higher in trainings 9-16 compared to trainings 1-4 (*P < 0.05). 

Cardiovascular parameters at rest 

Resting Systolic Blood Pressure (SBP) and Diastolic Blood (DBP) pressure were both 

decreased from pre levels during the follow-up measurement after 6 weeks of training (SBP: 

P = 0.003; DBP: P = 0.001) with no significant differences between the two groups (SBP: P = 

0.06; DBP: P = 0.5) as depicted in Table 3. Post-hoc analyses revealed that the decrease of 

DBP was more pronounced in the RVE group as this group depicted significant decreases (P = 

0.01), whereas the decrease of DBP did not reach significance in the RE group (P = 0.055). 

Resting heart rate (HR) remained unaffected by the training intervention in both groups (P = 

0.14), see Table 3.  
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Table 3. Cardiovascular parameters at rest (left) and during exercise (right). Stars indicate 
significant difference (time effect) within the same group: *P<0.05; **P<0.01; ***P<0.001. 
Pre and Post refer to resting values before and after 6 weeks of training; Initial and Final 
Training refer to the first and last exercise session of the 6-week training intervention. SBP: 
systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate. 

Cardiovascular parameters during exercise 

Blood pressure and heart rate measured within single training sessions were comparable 

between sets (P > 0.28) and therefore, data of the three sets were pooled for further 

analysis. There was a trend of decreased systolic blood pressure during exercise after 6 

weeks of training in both groups, which however failed to reach the level of significance (P = 

0.052). Diastolic blood pressure during exercise was significantly decreased in both groups (P 

< 0.001). As a result of the decreased DBP with unaltered SBP, exercise pulse pressure (=SBP-

DBP) was significantly increased in both groups after 6 weeks of training (P = 0.04). Six weeks 

of training did not alter exercise heart rate in neither of the groups (P = 0.39), see Tab.3. 

Exercise blood pressure and exercise heart rate did not differ when comparing RE to RVE 

(SBP: P = 0.9; DBP: P = 0.6; HR: P = 0.5).  

DISCUSSION 

Feasibility 

The incremental design of the training was reflected by an increase in Borg RPE over time 

(Fig. 6), as the training was perceived as significantly “harder” in training sessions 9-16 

compared to training sessions 1-4. The subject’s daily physical activities were comparable 

between the two groups and did not change over the duration of the study (Freiburg 

Questionnaire). These data indicate that the obtained results from the EVE study actually 

derive from the training intervention itself and were not induced by external factors.  

Group

Variable Pre Post Pre Post Initial Final Initial Final

SBP [mmHg] 126 ± 8 118 ± 11** 122 ± 4 113 ± 9** 147 ± 18 143 ± 13 147 ± 13 142 ± 18

DBP [mmHg] 71 ± 9 65 ± 11 ** 71 ± 6 62 ± 8** 81 ±8 72 ± 9 *** 82 ± 7 74 ± 10***

HR [bpm] 55 ± 9 52 ± 7 56 ± 8 54 ± 7 125± 17 127 ± 15 126 ± 21 131 ± 23

RE RVE

Rest During Training

RE RVE
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While vibration frequency was increased on a weekly basis, the RVE group trained at equal 

or higher training loads compared to the previous week. Only in four cases out of 52 

individual increases in vibration frequency (= 4 frequency increases * 13 subjects), training 

loads had to be decreased due to an increase in vibration frequency when training with 

frequencies above 35Hz. When training with frequencies between 20 and 30Hz, 

superimposed vibrations were well tolerated. However, data from the present study suggest 

that the risk of low back pain is substantially increased when performing resistance exercise 

with superimposed vibrations and frequencies above 30Hz (see Tab.2). Seven out of thirteen 

subjects that concluded the study successfully complained about low back pain, which would 

probably be classed as uncomfortable, but not severe. The back pain might either derive 

from the vibration itself, or from the way that the guided bar-bell was employed, which was 

always with a certain reclination toward the back. This could have increased the amount of 

instability in the movement when training with high vibration stimulation. This lack of 

stability might have caused the training incident that led to the drop-out of one subject in 

the RVE group. However, it remains unknown whether the vibration component was actually 

the cause for the training incident.  

Demands  

Increase of training load with and without superimposed vibrations 

There was no difference between the two groups concerning One-Repetition Maximum or 

jump height at the beginning of the study, indicating two groups with comparable muscular 

performances. As expected, training loads were increased over time. However, after the 

13th training session, when RVE subjects trained with 40Hz simultaneous vibrations, the 

increase of training weight was hampered (Fig. 5) compared to the group training without 

vibrations. In the end of the study, the RE group trained at 18% higher training loads 

compared to the RVE group. It is known that sinusoidal vibrations engender increases in 

peak foot acceleration to the power of two [10], and thus, increases in vibration frequency 

lead to pronounced elevations of musculoskeletal forces. We conclude from our data that 

the increase of training weight (external training load) might be hampered by vibration-

induced elevation of musculoskeletal forces (internal training load) and the combination of 

the two add up to the total muscle loading during RVE. This idea is supported by the Rating 

of Perceived Exertion data, which indicate that training at lower weights with 40Hz WBV was 

perceived equally demanding as training without vibrations and higher weights. 
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Chronic cardiovascular adaptations at rest 

There is strong evidence supporting beneficial effects of endurance exercise upon 

cardiovascular health such as decreases in blood pressure and heart rate [1,2]. However, 

limited data are available on the effect of long-term resistance exercise training in healthy, 

recreationally active people. Resistance exercise has been reported to have beneficial effects 

in obese subjects as well as in people with metabolic syndrome or hypertension [17–19]. 

Previous studies involving healthy young males show that resting systolic and diastolic blood 

pressures were decreased by a resistance training intervention [8,20]. Another study shows 

a 4% decrease in resting systolic with no change in diastolic blood pressure [5]. Results from 

the present study show that resting systolic and diastolic blood pressures were both 

decreased by 7 to 12 % after only six weeks of training and there were no alterations in 

resting heart rate. Our data support the view that high-resistance exercise is beneficial for 

cardiovascular health. Further, our data suggest that superimposed vibrations might be 

additionally beneficial as diastolic blood pressure was significantly decreased only in the RVE 

group. 

Chronic adaptations of the acute cardiovascular responses to resistance 

exercise 

It has been shown that body builders have lower systolic and diastolic blood pressures and 

heart rates during resistance exercise compared to recreationally active people [21]. 

Previous studies have reported that resistance training results in adaptations that hamper 

the acute training-induced increases in heart rate and blood pressure [22,23]. In the current 

study, we found that 6 weeks of resistive exercise decreased diastolic blood pressure during 

exercise whereas systolic blood pressure and heart rate were unaltered compared to the 

initial training. This decrease in diastolic blood pressure might derive from increased 

vasodilation during exercise and thus, the applied training interventions in the current study 

seem to have improved vascular responsiveness. This idea is supported by previous studies 

showing that WBV increases blood flow velocity after vibration termination [24,25], 

indicating vibration-induced dilation of feeding arteries. Our data reveal that only exercising 

diastolic blood pressure was decreased after 6 weeks of training, whereas systolic blood 

pressure remained unaltered, yielding increases in pulse pressure (=SBP-DBP). As pulse 

pressure is known to be proportional to stroke volume [26], there is evidence that the 

resistive exercise intervention conducted in this study increased cardiac stroke volume and 
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maybe cardiac output. There was, however, no additional effect of superimposed vibrations, 

neither during the first training nor after 6 weeks of training.  

Summary and Conclusion 

In summary, both training interventions were feasible and the incremental training design 

was reflected by an increase in RPE. Superposition of vibrations to resistive exercise for 

some reasons hampered the increase of training load when training at frequencies above 

35Hz. Furthermore, our data show that 6 weeks of resistance exercise decreased resting 

blood pressure (systolic and diastolic) as well as exercising diastolic blood pressure. We 

conclude that WBV in combination with high-resistance exercise is well tolerated when 

training with frequencies below 35Hz. However, when training with 35Hz and above, this 

exercise type seems to foster back pain and to reduce training performance. It is possible 

that training with side-alternating vibration above 30 or 35Hz may elicit sub-optimal results. 

Thus, it might not be recommendable to use these high frequencies combined with 

resistance exercise, at least not for non-athletes. Finally, our data also demonstrate a 

beneficial effect upon arterial blood pressure. 
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Abstract 

Knowledge about biological factors involved in exercise-induced angiogenesis is to date still 

scanty. The present study aimed to investigate the angiogenic stimulus of resistance exercise 

with and without superimposed whole-body vibrations. Responses to the exercise regimen 

before and after a 6-week training intervention were investigated in twenty-six healthy male 

subjects. Serum was collected at the initial and final exercise sessions and circulating levels 

of matrix metalloproteinases (MMP) -2 and -9, Vascular Endothelial Growth Factor (VEGF) 

and endostatin were determined via ELISA. Furthermore, we studied the proliferative effect 

of serum-treated human umbilical vein endothelial cells in vitro via BrdU-incorporation 

assay. It was found that circulating MMP-2, MMP-9, VEGF and endostatin levels were 

significantly elevated (P<0.001) from resting levels after both exercise interventions, with 

higher post-exercise VEGF concentrations in the resistance exercise (RE) group compared to 

the resistive vibration exercise (RVE) group. Moreover, RE provoked increased endothelial 

cell proliferation in vitro and higher post-exercise circulating endostatin concentrations after 

6 weeks of training. These effects were elusive in the RVE group. The present findings 

suggest that resistance exercise leads to a transient rise in circulating angiogenic factors and 

superimposing vibrations to this exercise type might not further trigger a potential signaling 

of angiogenic stimulation in skeletal muscle. 
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INTRODUCTION: 

There is growing evidence that physical activity is a potent stimulator of angiogenesis in 

skeletal and cardiac muscle [1]. Endurance training is thought to increase capillarity in 

skeletal muscle [2], whereas high resistance training has been shown to decrease capillary 

density [3], most likely as a result of fibre hypertrophy with insufficient angiogenesis. 

Knowledge about the exact mechanisms of blood vessel growth is to date still scanty. In the 

current models of sprouting angiogenesis, capillary formation involves two essential steps, 

namely (i) degradation of the extracellular matrix (ECM) surrounding the capillary and (ii) 

activation, migration and proliferation of capillary endothelial cells [4]. 

ECM breakdown is mediated by a family of zinc- and calcium-dependent enzymes, the matrix 

metalloproteinases (MMP) [5]. The proteases MT1-MMP, MMP-2 and -9 seem to play a 

crucial role in the formation of new capillaries in skeletal muscle [6] and previous studies 

reveal that their serum concentrations are significantly elevated after endurance exercise 

[7]. Furthermore, members of the MMP-family are known to release endostatin by 

proteolytic cleavage of the C-terminal NC1 domain of Collagen XVIII [8]. To date, the role of 

endostatin in the angiogenic process is not clear due to its complex signaling functions. As 

both pro-angiogenic [9] and anti-angiogenic [10] characteristics have been described for 

endostatin, it has been considered to function as an angiogenic modulator [11]. Endostatin 

seems to play a crucial role in exercise-induced angiogenesis, as serum concentrations were 

acutely elevated after endurance exercise [12,13]. However, other studies have reported 

decreased serum concentrations of endostatin as an adaptation to long-term endurance 

training [7]. 

Endothelial cell activation, migration, and proliferation is mediated by Vascular Endothelial 

Growth Factor (VEGF), a potent endothelial cell mitogen [14]. VEGF has been shown to be 

activated upon elevated shear stress perturbation [15], muscle stretch [16] and hypoxia [17]. 

Additionally, VEGF has been reported to be essential for exercise-induced angiogenesis in 

skeletal muscle [18]. The findings of a previous study evaluating the effects of endurance 

exercise with and without whole-body vibrations revealed that circulating VEGF was 

specifically increased in the group where vibrations were superimposed to the exercise 

stimulus [13].Of note, it has been suggested that the mechanical stimulus of whole-body 
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vibration (WBV) increases shear stress at the walls of blood vessels [19], leads to increases in 

blood flow velocity after vibration termination [20] and can elicit muscle de-oxygenation 

[21]. Based on the finding that shear stress and hypoxia are able to induce angiogenesis [4], 

we hypothesized that the superposition of a vibration stimulus to resistance exercise would 

add a pro-angiogenic stimulus to the exercise. It would be desirable to find a novel training 

mode that concurrently increases muscle strength and induces capillary growth to optimize 

the flux of oxygen and nutrients to the muscle and thus improve muscular performance. In 

order to investigate the pro-angiogenic stimulus of the exercises, we determined serum 

concentrations of the angiogenic factors MMP-2, MMP-9, VEGF and endostatin at rest and in 

response to resistance exercise and resistive vibration exercise. Additionally, we performed 

in vitro assays to evaluate the proliferative property of exercise-serum treated endothelial 

cells. 

MATERIAL AND METHODS 

Ethics statement 

Twenty-six healthy, recreationally active male subjects (26±0.8 years) were included into the 

study after providing a written informed consent. The study was conducted in compliance 

with the Declaration of Helsinki following approval by the Ethics Committee of the Northern 

Rhine medical association (Ärztekammer Nordrhein) in Düsseldorf (application no. 2010-

174).  

Study design and subject characteristics 

The present EVE study (“molecular and functional Effects of Vibration Exercise”) was 

conducted in a stratified, randomized two-group parallel design. A detailed description of the 

exercises and study design has been published elsewhere [22]. Any competitive sports, 

participation in strength training during the past six months, smoking, diabetes as well as any 

current medication were considered as exclusion criteria. Subjects were stratified into two 

matched groups according to their maximum jumping height, forming two groups with 

comparable neuromuscular fitness [23]. A coin was then tossed to randomly assign the 

groups to one of the two training interventions: resistance exercise or resistive vibration 

exercise. The subjects anthropometric data at baseline are given in Table 1, and no 

statistically significant group difference was found (P > 0.11).  
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Table 1. Anthropometric data of EVE subjects at baseline. BMI: Body Mass Index., CMJ: 
Counter movement jump. There was no difference between the two groups. Values are 
means ± SD 

Training design 

The present study was designed to compare acute and long-term effects of two training 

interventions: resistance exercise (RE) and resistive vibration exercise (RVE). Participants 

trained 2-3 times per week for six weeks (completing 16 exercise sessions), with each session 

lasting 9min. Participants trained with weights on a guided barbell (PTS Dual action Smith, 

Hoist, U.S.A). The individual training load was set at 80% of their One-Repetition-Maximum 

(1-RM), which was determined according to the method described by Baechle and Earle [24].  

The exercise consisted of squats (with each 2 sec. eccentric and 2 sec. concentric phase) and 

heel raises (with each 1 sec. eccentric and 1sec. concentric phase), divided by a 1-min break. 

Movement rhythm was guided by a metronome. Each exercise session consisted of a warm-

up composed of two sets with each 10 squats and 15 heel raises with the unloaded barbell 

(15kg) as training weight. The actual exercise was carried out in three sets: first and second 

sets were composed of 8 squats (= 32sec. per set) and 12 calf raises (=24sec. per set) and in 

the third set, maximum number of repetitions for squats and calf raises were performed. 

The subjects in the RVE group performed the resistance exercise protocol with simultaneous 

side-alternating whole-body vibrations (Galileo® Fitness, Novotech, Germany) with a 6mm 

peak-to peak displacement, whereas subjects in the RE group trained with the same setting, 

without superimposed vibrations.  

Maximal performance on cycle           

ergometer test                                  

[W / kg body weight]

3.3 (± 0.3) 3.3 (± 0.4) 1.00

BMI 23.4 (± 1.4) 23.5 (± 2.1) 0.11

CMJ height [cm] 42.2 (± 4.6) 41.7 (± 2.2) 0.97

Body mass [kg] 75.0 (± 4.7) 74.7 (± 6.9) 0.08

Height [m] 1.79 (± 0.05) 1.8 (± 0.1) 0.31

RE group            

(n = 13)

RVE group          

(n = 13)
P - value

Age [yrs] 23.4 (± 1.4) 24.3 (± 3.3) 0.52
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The training followed an incremental training design with regards to weight and vibration 

frequency. Training weights were increased over time according to the subjects’ individual 

training progressions, as described previously [22]. In brief, the number of squats in the 3rd 

set was used as a reference to re-determine the subjects’ individual 80% of the 1-RM for the 

following training, using the method described by Baechle and Earle [24]. Training weights in 

the RE group increased from 75.2 ± 1.8kg during the initial exercise to 130.2 ± 5.1kg during 

the final exercise. Weight increase was significantly smaller the RVE group, which increased 

from 81.5 ± 2.1kg during the initial exercise to 110.2 ± 4.4kg during the final exercise. 

Training weight increase was hampered by training with vibration frequencies above 35Hz, 

as discussed in the methodological paper on the training design previously published [22]. 

Vibration frequencies were increased from 20Hz in the first week to 40Hz during the last two 

weeks with 5-Hz weekly increments. The reason for the increase in vibration frequency was 

that we aimed to test physiological responses when exercising at 40Hz side-alternating WBV, 

which to the best of our knowledge has not been tested in any other study. Pilot testing 

revealed that resistance exercise with 40Hz side-alternating WBV is more challenging for 

people not accustomed to WBV, suggesting that it could potentially elicit greater effects 

than lower vibration frequencies, but also that one must envision problems when embarking 

directly on such high a frequency. Thus, in order to prevent problem-related drop-out from 

the RVE group and thus a study bias, we decided to initially set the vibration frequency to 

20Hz and to gradually increase the vibration frequency to 40Hz. 

Serum collection 

Venous blood samples were collected at the initial and final exercise sessions of the 6-week 

training intervention as illustrated in Figure 1. On that day, subjects had a standardised 

breakfast (two wheat bread rolls with butter and jam) two hours before exercise. Blood was 

collected one hour prior to exercise (Rest) and +2min, +5min, +15min, +35min and +75min 

after exercise through a short catheter into serum monovettes (Sarstedt, Nümbrecht, 

Germany) from the cephalic vein, allowed to clot for 10 minutes, centrifuged at 3000 rpm at 

4°C (Heraeus Multifuge 1S-R, Thermo Scientific, Waltham, MA, USA), distributed into small 

tubes and immediately frozen at -20°C until analysis.  

ELISA analyses 
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Serum levels of MMP-2 (free pro- and active MMP-2 [ng/ml]), MMP-9 (92 kDa pro- MMP-9 

and 82 kDa active MMP-9 isoforms [ng/mL]), VEGF (total VEGF, [pg/ml]) and endostatin 

(total endostatin, [ng/ml]) were detected in double determinations using Enzyme-linked 

Immunosorbent Assay (ELISA) kits (R&D Systems, Wiesbaden, Germany) according to the 

manufacturer’s instructions. 

 

 

Figure 1: Study Design. Serum was collected at the initial and final exercise sessions of a 6-
week training intervention. Time points of serum collection were 1 hour prior to exercise 
(Rest) and 2, 5, 15, 35 and 75 minutes after exercise termination. Serum concentrations of 
angiogenic markers (MMP-2, MMP-9, VEGF and endostatin) were determined for all serum 
samples, BrdU incorporation assay was performed with the serum samples indicated with 
(*): Rest, +2min and +75min. 

Cell lines and culture conditions  

Human Umbilical Vein Endothelial Cells (HUVEC, #C-12200, PromoCell, Heidelberg, Germany) 

were cultured at 37°C and 5% CO2 in basal medium with added growth supplements 

(Endothelial Cell Growth Medium KIT, #C-22110, PromoCell, Heidelberg, Germany). Prior to 

incubation with human serum and 5-Bromo-2-Deoxyuridine (BrdU), cells were split into 96-

well plates (Detach Kit, #C-41210, PromoCell, Heidelberg, Germany) and cultured in 

starvation medium (i.e. basal medium with only 0.5% Fetal Calf Serum as growth 

supplement) for 24 hours. BrdU incubation was performed in conditioned medium (i.e. basal 

medium containing 2% of human serum providing growth and proliferation factors). Sera 
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obtained from pre- and post-training (Rest, +2min and +75min post) at each initial and final 

exercise sessions were used for generating the conditioned medium, see Figure 1.  

BrdU incorporation assay 

Samples were incubated with BrdU for 20 hours and detection of BrdU incorporation was 

performed in double determinations via ELISA (BrdU Cell Proliferation Assay Kit, #6813, Cell 

Signaling Technology, Danvers, MA, USA) according to the manufacturer’s instructions.  

Statistical Analyses 

Statistical analyses were performed using STATISTICA 10 for Windows (Statsoft, Tulsa, 

Oklahoma, USA, 1984-2010). The acute effect of either resistive exercise (RE) or resistive 

vibration exercise (RVE) on serum concentrations of the angiogenic factors MMP-2, MMP-9, 

VEGF and endostatin was determined via repeated measures ANOVA with time (Rest vs. 

+2min, +5min, +15min, +35min, +75min after training) and training status (initial vs. final 

training session) as factors. BrdU incorporation data were normalised to fold increases from 

resting levels (i.e. absorption of cells incubated with serum derived +2min and +75min after 

exercise divided by absorption of cells incubated with serum at Rest). A repeated ANOVA was 

performed with time (+2min vs. +75min) and training status (initial vs. final training) as 

factors. Tukey’s test was used for post-hoc testing. Values are given as means ± SEM. 

Statistical significance level was set at P < 0.05. 

RESULTS 

Resting levels 

Resting levels of the circulating angiogenic factors MMP-9, VEGF and endostatin were 

comparable before and after the 6-week training intervention (P > 0.19) and there were no 

significant differences in resting levels between the two groups (P > 0.68), as shown in Table 

2. Resting levels of MMP-2 measured at the final exercise session differed between groups 

with the RVE group depicting higher values than the RE group (RVE: 193.0±8.71ng/mL vs. RE: 

172.0±8.5ng/mL, P < 0.001), which had not been the case at the initial exercise session (P = 

0.37). 
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Table 2. Resting levels of angiogenic markers measured at the initial and final exercise 
sessions of the 6-week training intervention. ###Significant difference (P < 0.001) between 
the groups at the final exercise. RE: resistance exercise, RVE resistive vibration exercise 
MMP: Matrix metalloproteinase, VEGF: Vascular Endothelial Growth Factor. Values are 
means ± SEM.  

Effect of Resistance Exercise upon angiogenic factors 

MMP-2, MMP-9, VEGF and endostatin were all significantly increased from resting levels 

after both resistive exercise and resistive vibration exercise (time effect: P < 0.001) and all 

factors depicted maximum concentrations two minutes after exercise termination. In the 

following, relative increases from resting levels are given for the maximum concentrations 

that were measured at the time point +2min. 

MMP-2 

Acute effect: In the RE group, MMP-2 levels were increased from resting levels by 8% (SEM = 

2%, P = 0.001) two minutes after the initial training and decreased by 5% (SEM = 1%, P = 

0.035) at the time point +75min. In the RVE group, on the contrary, MMP-2 levels were not 

significantly elevated from resting levels after the initial training (P = 0.9), and were 

decreased by 8% (SEM = 2%, P = 0.01) at the time point +75min (Fig. 2A). There were no 

significant differences between RE and RVE groups at the initial training (P = 0.99). 

Long-term effect: In the RE group, there were no significant differences in the time courses 

when comparing initial and final training sessions (P = 0.99) as depicted in Fig. 2B(i). At the 

final training of the RVE group, however, the acute MMP-2 response was generally elevated 

over the time course of the initial training (time*intervention effect: P = 0.049), see Figure 

4B(ii). Post-Hoc testing revealed that MMP-2 concentrations were significantly higher at the 

time points +2min (P = 0.028), +15min (P = 0.019) and +75min (P = 0.015) in the RVE group 

compared to the same time point at the initial training. While MMP-2 was not elevated from 

resting levels in the RVE group after the initial training of the 6-week training intervention, 

Initial exercise Final exercise Initial exercise Final exercise

MMP-2 [ng/ml] 181 ± 9 172 ± 8 186 ± 6 193 ± 8###

MMP-9 [ng/ml] 231 ± 17 218 ± 19 203 ± 21 224 ± 35

VEGF [pg/ml] 234 ± 53 242 ± 50 211 ± 37 216 ± 38

Endostatin [ng/ml] 102 ± 4 99 ± 5 105 ± 3 103 ± 4

RE RVE
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MMP-2 concentrations were significantly elevated by 8% (SEM = 2%, P = 0.02) two minutes 

after the final training. Due to the RVE-specific increases in MMP-2 concentrations, clear 

group differences were apparent at the final exercise session with the RVE group depicting 

significantly higher MMP-2 concentrations compared to the RE group at rest and after 

exercise (RE vs. RVE: P < 0.01). 

MMP-9 

Acute effects: MMP-9 was elevated from resting levels 2-15min after exercise (time effect: P 

< 0.001). The MMP-9 increase after the initial exercise accounted for 71±19% in the RE group 

and 74±16%) in the RVE group with no significant differences between groups (RE vs. RVE: 

initial exercise: P = 0.439; final exercise: P = 0.35), see Fig. 3A.  

Long-term effects: There was no effect of the 6-week training intervention upon the acute 

MMP-9 response in serum (initial vs. final exercise: RE: P = 0.44; RVE: P = 0.98), see Figure 

3B. 
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Endostatin  

Acute effects: Serum levels of endostatin were increased from resting levels 2-15min after 

both RE and RVE (time effect: P < 0.001). After the initial training, endostatin levels were 

elevated by 17±3% in the RE group and by 22±4% in the RVE group with no significant 

differences between groups (P = 0.85), see Figure 4A. 

Long-term effects: After the final exercise, endostatin concentrations in the RE group were 

uniformly greater than concentrations after the initial exercise (time * intervention effect: P 

< 0.001, see Figure 4B(i). This long-term effect was not seen in the RVE group (time * 

intervention effect: P = 0.991), see Figure 4B(ii). 

VEGF 

Acute effects: In the RE group, VEGF was elevated from resting levels 2-15min after the initial 

exercise (time effect: P < 0.001). In the RVE group, the response differed as this group 

showed elevated VEGF concentrations only at the time point +2min (time effect: P < 0.001). 

VEGF concentrations were significantly higher in the RE group with a 41±16% increase from 

resting levels compared to the RVE group, which showed a 33±7% increase at the time point 

+2min (P = 0.014). Significantly higher VEGF concentrations in the RE group compared to the 

RVE were also detected at the remaining time points 5-75min after exercise termination (P-

values between 0.02 and 0.004), see Figure 5A. 

Long-term effects: There were nonsignificant changes in the responses to the exercises after 

6 weeks of training, (initial vs. final exercise: RE: P = 0.520; RVE: P = 0.814, see Figure 5B) and 

VEGF concentrations after the final exercise were also higher in the RE group compared to 

the RVE group (RE vs. RVE: P- values between 0.01 and 0.005). 
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DISCUSSION 

To test our hypothesis that superimposing whole-body vibrations to resistance exercise 

would add a pro-angiogenic stimulus to the training, we evaluated serum concentrations of 

angiogenic markers in vivo and their proliferative capacity upon endothelial cells in vitro. Our 

data indicate that resistance exercise leads to a transient increase of circulating angiogenic 

markers. Post-exercise serum concentrations of VEGF were higher in the resistance exercise 

(RE) group compared to the resistive vibration exercise (RVE) group. Additionally, the RE 

group provoked increased endothelial cell proliferation in vitro and showed higher exercise-

induced endostatin concentrations. Both effects were elusive in the RVE group.  

MMPs 

Degradation of the vascular basement membrane is an initial step in angiogenic sprout 

formation and allows endothelial cells to migrate into the interstitial matrix in order to form 

a premature capillary lumen. Matrix metalloproteinases are crucial for extracellular matrix 

degradation and are thought to be essential for physiological angiogenesis [25]. MMPs have 

furthermore been implicated in the release and bioavailability of growth factors [26,27] and 

play a role in initiating endothelial cell migration and proliferation [28]. Our data show 

elevated serum MMP-2 levels two minutes after resistance exercise. In the group where 

whole-body vibrations were superimposed to the exercise, MMP-2 was not elevated after an 

initial exercise bout but showed an adaptation to long-term training; after 6 weeks of RVE, 

MMP-2 was elevated above resting levels and concentrations were higher (at rest and post-

exercise) compared to the group that had trained without vibrations. This might be a 

compensatory adaptation to the initial lack of MMP-2. Beyond initiating capillary growth, 

MMP-2 has furthermore been shown to increase the bioavailability of insulin-like growth 

factor (IGF) through proteolysis of the IGF binding protein [26,27]. If this is the case, the 

observed increases in circulating levels of MMP-2 after six weeks of RVE might reflect an 

increased IGF-associated anabolic stimulation. 

The presented MMP-9 data showed a prolonged increase compared to MMP-2 and MMP-9 

was elevated from resting levels until 15min after both exercise regimes with no detectable 

long-term effect. A previous study measuring serum MMP-9 concentration pre and post 

eight weeks of resistance training vs. eight weeks of callisthenic training report an increase in 

the acute MMP-9 response after eight weeks of training only in the callisthenic group [29]. A 

study on downhill running showed no acute changes in serum MMP-2 but increased serum 
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MMP-9 levels immediately after exercise [30]. Running step tests increased plasma MMP-2 

one hour post-exercise whereas plasma MMP-9 was increased immediately after exercise 

with decreased resting MMP-9 levels after six months of training [7]. 

Together with the present findings, these data suggest that MMP-responses to acute and 

long-term training interventions highly depend on workload, volume and contraction form of 

the exercise. The exposure to different mechanical stimuli seems to foster extracellular 

matrix remodeling in divergent ways, revealing a potential role of MMPs in initiating 

training-specific muscle adaptations. A limitation of the procedure is that the available 

antibodies do not differentiate between the active and pro-enzyme forms of MMPs and we 

did not measure serum concentrations of tissue inhibitors of metalloproteinases. Therefore, 

increased MMP-2 and MMP-9 immunoreactivity does not necessarily indicate an increased 

enzymatic activity. 

Endostatin 

Our data show that circulating endostatin was elevated from resting levels 2-15min after a 

bout of resistance exercise with no additional effect of superimposed vibrations. Previous 

studies report prolonged elevations of circulating endostatin compared to the time curves 

we observed: elevations in plasma from 1h [31] until 6h post exercise [12] have been 

reported after endurance exercise. After 90min of cycling exercise, Suhr and colleagues [13] 

found endostatin to be elevated in plasma 0-60min after exercise termination and 

superimposing vibrations to this exercise type shortened the elevation from baseline levels 

to 0min after exercise, which is an effect of superimposed vibration we did not observe in 

the present study.  

Although we did not see any long-term adaptations in basal endostatin levels, as previously 

reported for endurance training [7], the response was altered after the 6-week training 

intervention. Endostatin concentrations in serum were acutely higher after 6 weeks of 

training and this adaptation was specific for the RE group. Thus, superimposed vibrations 

seemed to inhibit this biological adaptation to long-term training. Due to endostatin’s 

complex signaling functions, it is not a simple task to interpret the physiological impact of 

elevated endostatin concentrations after exercise. Initially, endostatin was described as an 

anti-angiogenic protein [10] capable of inducing apoptotic signals in endothelial cells [32] 

and to inhibit EC migration, -proliferation and tube formation [33]. Conversely, it was later 

shown that endostatin has both pro- and anti-angiogenic functions depending on its 
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concentration and the proliferation status of endothelial cells [11]: towards the running 

opinion, Schmidt and colleagues [11] showed that endostatin concentrations of 50ng/mL 

induced EC proliferation and migration with no induction of apoptosis; whereas 

concentrations of 1000ng/mL and above had the contrary effect. Based on these data, the 

endostatin concentrations we reported in the present study (90-140ng/mL) lie close to the 

concentrations that were considered as a pro-angiogenic range. Thus, the observed increase 

in endostatin response after 6 weeks of training (RE only) might reflect a pro-angiogenic 

long-term training adaptation, which is inhibited by superimposed vibrations. 

The acutely elevated endostatin levels seem to have a critical function during exercise. As 

recently demonstrated by our group, endostatin induces the release of the vasodilator NO in 

endothelial cells [34]. The acute exercise-dependent endostatin release therefore seems to 

be essential to activate signaling pathways that result in peripheral vasodilation and 

consequently improves oxygen delivery to working skeletal muscles to maintain the muscle 

performance capacity. 

VEGF 

The process of endothelial cell proliferation is mediated mainly by Vascular Endothelial 

Growth Factor (VEGF), a potent endothelial cell mitogen [14]. Exercise leads to increases of 

VEGF protein in muscle tissue [31] and VEGF has shown to be essential for exercise-induced 

angiogenesis in skeletal muscle [18]. VEGF serum concentrations were shown to be 

decreased [12,31] or elevated [35] after endurance-type exercise. Our data are to our 

knowledge the first that reveal acute increases of circulating VEGF immediately after 

resistance-type exercise. We could show that VEGF was elevated in serum 2-15 minutes 

after resistance exercise, whereas superposition of vibrations to the exercise shortened this 

response to only two minutes after exercise and provoked significantly lower VEGF 

concentrations compared to the group that trained without vibrations. As we did not 

measure VEGF expression in muscle tissue, this finding gives rise to multiple possible 

explanations. First, decreased circulating VEGF could indicate that more VEGF is still held and 

active in the tissue and has not been washed out into the blood. Second, reduced circulating 

VEGF upon vibration exposure could indicate that whole-body vibrations in some way 

prevented VEGF secretion or release in muscle tissue, which would indicate that 

superimposing vibrations would not be beneficial for a potential activation of angiogenic 

signaling in skeletal muscle. Third, VEGF is produced in many cell types and the increased 
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circulating VEGF might also derive from a systemic exercise effect which is not related to 

muscle tissue and could indicate enhanced endothelial regeneration, which would reflect a 

beneficial effect of resistance exercise that was inhibited by superimposed vibrations. 

In a previous study in our lab, the effect of high-intensity cycling exercise with and without 

whole-body vibrations was evaluated and this study revealed contrary results considering 

vibration exposure: plasma VEGF levels were only increased in the group where vibrations 

were superimposed to the exercise stimulus [13]. As previous studies reveal that WBV 

increase the shear stress in blood vessels [19], Suhr and colleagues concluded that vibration-

induced increases in shear stress-stimulated VEGF release as described by Milkiewicz and 

colleagues [15]. This explanation does not seem to be applicable in the present study, as our 

data reveal the contrary, i.e. reduced VEGF upon vibration exposure. Thus, whole-body 

vibration stimulation seems to have differential effects according to the mode it is applied. 

In the case of endurance cycling exercise, superimposed vibrations might be beneficial for 

promoting angiogenesis (reflected by increases in VEGF), whereas our data reveal that the 

contrary seems to be the case for resistance exercise. As exercise times in the 

aforementioned study (90min) were much longer compared to the present study (9min), it 

might well be that the initial effects of the exercises are comparable but the measured VEGF 

kinetics may differ due to the time shift in the measurements.  

It is well known that levels of angiogenic markers differ according to the type of blood 

product in which they were measured (serum vs. plasma). Previous studies were 

inconsistent in the type of blood product used and this might contribute to discrepancies 

between studies. 

Endothelial cell proliferation 

One limitation of measuring angiogenic markers in serum is that their site of action resides 

within the muscle tissue itself and we determine merely the ‘wash-out’ in serum. 

Consequently, we sought to investigate whether and in which manner elevated serum 

concentrations would possibly influence endothelial cells in vitro, because this model is well-

established to test general defined reactions of endothelial cells in vitro that might reflect in 

vivo situations. 

As all factors showed maximum concentrations +2min after exercise and were back at 

resting levels +75min after exercise, we chose to treat human umbilical vein endothelial cells 

(HUVEC) with serum derived from these time points. We found that endothelial cells 
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incubated with serum derived +2min after RE showed increased proliferation compared to 

cells incubated with serum derived+75min after exercise. This effect was not seen in the RVE 

group. VEGF was the only angiogenic factor that showed group-specific differences after 

exercise (see Figure 5A). VEGF serum concentrations were higher +2min after RE 

([352±104pg/mL] after initial- and [369±107pg/mL] after final exercise) compared to +2min 

after RVE ([280±50pg/mL] after initial- and [268±43pg/mL] after final exercise), which may 

be an explanation for the group-specific differences in cell proliferation. The recommended 

VEGF concentration for HUVEC culture is 500pg/mL (Endothelial Cell Growth Medium KIT, 

#C-22110, PromoCell, Heidelberg, Germany), which lie close to the VEGF concentrations we 

measured in the RE group. However, there are various additional factors that were not 

measured in the present study that, however, could have influenced HUVEC proliferation, 

i.e. basic Fibroblast Growth Factor [36], epidermal growth factor (EGF) or heparin-binding 

EGF-like growth factor [37]. 

Thus, our data, with certain limitations, reveal that superimposed whole-body vibrations to 

resistance exercise leads to decreased endothelial cell proliferation, probably due to 

decreased release or expression of VEGF. Considering long-term adaptations, we did not find 

any differences in HUVEC proliferation when comparing initial and final exercise sessions. 

Despite acutely higher endostatin levels during the final exercise in the RE group and higher 

MMP-2 concentrations in the RVE group, these effects were not reflected by increased cell 

proliferation during the final exercise.  

Comparison of Time curves: 

When comparing the time curves of MMP-9 with VEGF and endostatin, it seems that the 

exercise-induced increase of MMP-9 is paralleled by VEGF and endostatin. First, all factors 

were increased 2-15min after exercise and second, all three factors show increased mean 

concentrations after 6 weeks of training (although only significant for endostatin), see Figure 

3B(i), 4B(i) and 5B(i). Conversely, the factor MMP-2 showed different kinetics as it was 

elevated only for two minutes after exercise and the long-term adaptation that was seen for 

MMP-2 in the RVE group was specific for MMP-2 and did not affect any of the other factors. 

In sum, these observations indicate that MMP-9, VEGF and endostatin seem to be 

interdependent, whereas MMP-2 seems to be differentially regulated. Our data are in line 

with previous observations in cell culture which showed that MMP’s are capable of inducing 

VEGF release [38]. Moreover, the presented data confirm a previous finding in which the 
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authors described that MMP-9 was more prone to release VEGF compared to MMP-2 in vitro 

and that that MMP-2 regulation occurred independently of VEGF signaling [28]. The parallel 

increase of MMP-9 and endostatin confirms that endostatin is proteolytically released by 

MMP`s, as described previously [8] and our data hint to MMP-9 playing a larger part in this 

release compared to MMP-2, at least after bouts of resistance exercise.  

Summary and Conclusion 

In summary, our data show that RE leads to transient increases in circulating pro-angiogenic 

markers and furthermore, endothelial cell proliferation in vitro is increased by factors in 

serum obtained acutely after RE. Superimposing vibrations to resistance exercise decreases 

post-exercise circulating VEGF concentrations, which supposedly results in reduced 

endothelial cell proliferation in vitro. Six weeks of RE increased endostatin concentrations 

acutely after exercise, which is considered as a pro-angiogenic adaptation which was 

prevented by training with superimposed vibrations. In other words, the presented data 

suggest that superimposing a vibrations stimulus to resistance exercise might not be 

beneficial for triggering angiogenic-inducing signaling pathways in skeletal muscle. 
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Abstract 

Whole-body vibration (WBV) training is today commonly practiced and previous research 

has suggested that it enhances peripheral circulation. Here we investigated muscle 

morphology and acute microcirculatory responses before and after a six-week training 

intervention applying resistive exercise (RE) and resistive vibration exercise (RVE) in 26 

healthy males in a randomized, controlled parallel-design study. Total haemoglobin (tHb) 

and tissue oxygenation index (TOI) were measured in gastrocnemius muscle (GM) with near 

infrared spectroscopy (NIRS), whole-body oxygen consumption (VO2) was measured via 

spirometry and skeletal muscle morphology was determined in soleus (SOL) muscle biopsies. 

Our data reveal that training-induced muscle deoxygenation was similar in both RE and RVE 

groups (P = 0.76), although VO2 was higher in the RVE group. The RVE group showed an 

increased reactive hyperaemia in GM (P = 0.007) and increased blood volume (P < 0.01) after 

six weeks of training. The number of capillaries around fibres was increased after six weeks 

training in both groups (P < 0.001) with no specific effect of superimposed WBV (P = 0.61). 

The present findings suggest an increased blood volume and vasodilator response in 

gastrocnemius muscle as an adaptation to long-term WBV exposure combined with resistive 

exercise which was not observed after resistive exercise alone. We conclude that RVE-

training has a specific effect on the vasodilator capacity of small arterioles and possibly 

capillaries. This effect might be advantageous for muscle thermoregulation and the delivery 

of oxygen and nutrients to exercising muscle.  
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INTRODUCTION 

Whole-body vibration (WBV) was first applied in the training of athletes in 1985 and has 

received increasing scientific interest since [1]. Nowadays, WBV training is applied in various 

fields like sports, preventive medicine and rehabilitation [2,3]. Resistive exercise combined 

with WBV has been demonstrated to effectively attenuate disuse-induced muscle 

adaptations [4,5] such as reductions in fibre cross-sectional areas and capillary loss [6–8]. 

Consequently, resistive exercise combined with WBV is currently being considered as a 

potential training modality for future long-term human space missions [40]. 

While occupational exposure to high-frequency vibrations in the hand has been reported to 

induce vasospasm and tissue damage [9], brief exposures to low-frequency vibrations in 

healthy people acutely increases muscle perfusion and blood flow velocity during [10] and 

immediately after termination of WBV [11]. Furthermore, WBV is thought to increase blood 

viscosity within small vessels, resulting in increased total peripheral resistance followed by a 

compensatory dilation of arterioles [12]. Increased blood viscosity and elevated blood flow 

may both result in elevated shear stress in the microvasculature of skeletal muscle. This is 

significant as elevated shear stress can induce angiogenesis [13,14]. In support of this, it has 

been shown that WBV increases serum concentrations of pro-angiogenic vascular 

endothelial growth factor [15]. The angiogenic stimulus is potentially enhanced when 

combined with squatting, via eliciting muscle deoxygenation [16,17] which is also being 

considered as pro-angiogenic stimulation [18].  

In the present study, we therefore hypothesized that superimposing whole-body vibration to 

resistive exercise would be a more potent pro-angiogenic stimulus than resistive exercise 

(RE) alone. More specifically, we hypothesized 1) that RE with superimposed WBV (RVE) 

depicts a more larger muscle deoxygenation and exercise-induced hyperaemia than RE alone 

and 2) that this effect would lead to more pronounced long-term adaptations, such as 

increased capillarity and blood volume in SOL after an exercise period of 6 weeks of RVE 

compared to RE. This study is to our knowledge the first to evaluate acute responses of WBV 

superimposed upon resistive exercise before and after a long-term training intervention with 

concurrent morphological analyses in muscle tissue. Our aim was to design a novel training 

approach that simultaneously stimulates muscle hypertrophy as well as capillarization to 

ensure optimal flux of oxygen and nutrients to the muscle in order to improve muscle 

performance.  
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MATERIAL AND METHODS 

Study design  

After comprehensive medical examinations, twenty-six recreationally active, healthy male 

subjects (age: 26 yrs (SD 4); height: 1.79 m (SD 0.04); body mass: 74.7 kg (SD 7.7); body mass 

index: 23.3 kg·m-2 (SD 1.96)) were included into this randomized controlled training study. All 

subjects provided written informed consent before participation in the study. The study was 

conducted in a two-group parallel design, in which one group performed resistive exercise 

(RE) and the other group resistive exercise with simultaneous whole-body vibrations 

(Resistive Vibration Exercise: RVE). The study was carried out in compliance with the 

Declaration of Helsinki following approval by the Ethics Committee of the Northern Rhine 

medical association (Ärztekammer Nordrhein in Düsseldorf, application no. 2010-174).  

Training design 

A detailed description of the study and training design has been published elsewhere [18]. In 

brief, a training session was composed of a warm-up (two sets with each 10 squats and 15 

calf raises with a 15-kg barbell) followed by the resistive exercise that consisted of three sets 

of squats and calf raises with a loaded barbell, separated by a one-minute break. The rhythm 

of the squats and calf rises was guided by a metronome. The squats consisted of a 2-s 

eccentric and 2-s concentric phase, and the calf raises of a 1-s eccentric and a 1-s concentric 

phase. First and second sets were composed of each 8 squats (= 32 sec) and 12 calf raises (= 

24 sec) and in the third set, squats and calf raises were performed until exhaustion. Training 

weights were determined four weeks prior to the study and set at 80% of the One-

Repetition Maximum and accounted for 75.2kg (SD 6.5) in the RE group and for 81.5 kg (SD 

7.7) in the RVE group with no difference between groups (P = 1.0). The subjects in the RVE 

group performed the resistive exercise protocol with simultaneous side-alternating whole-

body vibrations with a 6-mm peak-to peak displacement (Galileo® Fitness, Novotech, 

Germany), whereas subjects in the RE group trained without superimposed vibrations.  

Long-term study design 

Participants concluded 16 exercise sessions in a period of 6 weeks (week 1-2: two training 

sessions per week; week 3-6: three training sessions per week). Training weights and 

vibration frequencies were progressively increased during the 6-week period. Vibration 

frequencies in the RVE group were increased from 20 Hz in the first week to 40 Hz during the 
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last two weeks with 5-Hz weekly increments. Training load was adjusted after each exercise 

session according to the subjects’ individual training progressions applying the method 

described by Baechle and Earle [19] and using the number of repetitions performed in the 

third set of squats as a reference. So, if the subject completed eight repetitions in the third 

set, training load remained unchanged for the subsequent training session. If the 

participants conducted more or less than eight repetitions, training load was recalculated, 

i.e. increased or decreased, respectively, for the subsequent training session. The increase in 

training load over the 6-week intervention was 59.8 % (SD 17.3) in the RE group, which 

trained with 130.2 kg (SD 18.5) during the final exercise session. Training load was only 

increased by 46.9 % (SD 19.0) in the RVE group, which was significantly smaller compared to 

the RE group (time * intervention: P < 0.001). During the final training, RVE subjects trained 

with 110.2 kg (SD 15.8). Increase of training load in the RVE group was probably hampered 

by training with vibration frequencies above 35 Hz during the last two weeks, as discussed in 

the methodological paper previously published [20]. 

Near Infrared Spectroscopy 

Near Infrared Spectroscopy (NIRS) utilizes differential absorption properties of oxygenated 

and deoxygenated haemoglobin and myoglobin at 760 and 840 nm [21–23]. NIRS is a useful 

technique to continuously evaluate tissue oxygenation index (TOI) and total haemoglobin 

(tHb) content in resting and exercising skeletal muscle [21]. The NIRS device used in this 

study was custom-built at the Rhein-Ahr Campus (University of Applied Sciences, Koblenz, 

Germany) and the mode of operation has been published elsewhere [24]. During the first 

and final training session of the 6-week intervention, NIRS data were collected at a 

frequency of 0.4 Hz. The NIRS optode was fixed above the lateral gastrocnemius muscle 

(GM) of the right leg and the distance to malleolus medialis and tibia edge was documented 

to ensure that the optodes were placed at the same location during the follow-up 

measurement. Prior to training, 5-min baseline data were collected while the subject was 

seated with a knee angle of 90°. Markers in the recorded files indicated baseline, warm-up, 

squats and calf raises. A typical data set is illustrated in Figure 1. 
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Acute study evaluating the effect of different vibration frequencies upon NIRS 

data 

An acute training study including four healthy male subjects (age: 27.5 yrs (SD 7.0); height: 

1.82 m (SD 0.05); body weight: 78.7 kg (SD 7.6), body mass index: 23.8 (SD 2.0)) was 

conducted in a cross-over design to evaluate the effect of two different vibration 

frequencies (20 Hz and 40 Hz) on GM deoxygenation during training and reactive 

hyperaemia after training. The two training sessions were separated by one week and the 

weights lifted were 85 ± 11 kg. The training conditions were identical to those applied in the 

long-term study with the only difference that the third set was composed of 8 squats and 12 

calf raises. NIRS data were captured as described above.  

Spirometry 

Whole-body oxygen consumption (VO2) during training was measured via spirometry with a 

portable spirometer (OxyconTM Mobile, CareFusion, Rolle, Switzerland). Measurements were 

performed at the initial and final exercise sessions of the 6-week training intervention. VO2 

data during calf raises were normalized to the subjects’ body weight and are presented in 

[ml/kg(BW)], where BW is body weight. For the present paper, mean values for the three sets 

were calculated in order to compare whole-body oxygen consumption with local oxygen 

consumption that were measured via NIRS.  

Soleus muscle morphology 

Collection of muscle biopsies 

Soleus muscle (SOL) biopsies were collected one week before the initial exercise and 3 days 

after the final exercise session. Biopsies were taken after an overnight fast (≥ 8 hours) from 

the lateral side of the SOL muscle, approximately 1 cm below the belly of the lateral 

gastrocnemius muscle. The disinfected skin surface area was anesthetized with 1.5 to 2 ml of 

2% lidocaine solution and a 10-mm incision through skin and muscle fascia was made. 

Muscle samples were taken with a Weil–Blakely rongeur (Gebrüder Zepf Medizintechnik, 

Tuttlingen, Germany) and snap frozen while agitating rapidly in liquid nitrogen and stored at 

-80°C for further analyses.  

Histological Methods 

Transverse 10-µm muscle sections were cut in a cryostat at -20°C, transferred to microscope 

slides, dried for 30 minutes and stored at -80°C until analysis. For histochemical analyses, 
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sections were thawed and dried for 10 minutes at room temperature, fixed for 10 min in 

pre-cooled acetone (-20°C), blocked for one hour in 5% Bovine Serum Albumin (BSA: # 

A9418, Sigma-Aldrich, St. Luis, US) dissolved in Tris Buffered Saline (TBS: TRIS-HCl [0.05 M], 

NaCl [0.6 M], pH 7.6). Then they were co-incubated over night with primary antibodies 

against Myosin Heavy Chain Type I (#A4840, Developmental Studies Hybridoma Bank, Iowa 

City, US) and Caveolin-1 (#SP5142P, Acris, San Diego, US). After incubation with appropriate 

biotinylated secondary antibody (DakoCytomation, Glostrup, Denmark) and Horseradish 

Peroxidase (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) for each hour each; the final 

reaction was carried out using 3,3`-diaminobenzidine (DAB) solution (phosphate buffer [0.09 

M], pH 7.4, DAB [2.2 mM], ammonium chloride [7.03 mM], nickel sulphate [0.93 mM], ß-D-

glucose [10.44 mM] and glucose oxidase [24 nM]). After dehydration, sections were 

embedded in Entellan (#107960, Merck, Darmstadt, Germany) and mounted with a cover 

slip. 

Analysis of stained sections: 

Stained biopsy sections were photographed with a USB-Monochrome camera with a 

1280x960 pixel chip (ICX205AL, Sony Corporation, Tokyo, Japan) using a light microscope 

(Axio Scope.A1, Carl Zeiss Microscopy GmbH, Göttingen, Germany). Areas in the muscle 

section with perpendicularly cut fibres (i.e. circular or polygonal in shape) were chosen for 

analysis and areas with longitudinally or obliquely cut fibres were avoided. Images were 

analysed by the same operator using the custom-made ‘Histometer’ software (Version 1.3d), 

which was implemented as plugin into the ImageJ image processing software (ImageJ 1.46r, 

National Institute of Health, US). The following morphological parameters were calculated: 

capillary density (CD; capillaries⋅mm-2) as the overall number of capillaries divided by the 

area of the region of interest (ROI); capillary-to-fibre ratio (C:F ratio) as the overall number 

of capillaries divided by the overall number of fibres; capillaries around fibres (CaF) as the 

number of capillaries surrounding a fibre (distance between capillary and fibre < 20 pixels ≙ 

9.3 µm); fibre cross sectional areas (FCSA) [µm2]; smallest fibre diameters (DiaMin) as the 

smallest diameter of each fibre crossing the centre of gravity [µm]; fibre type distribution as 

the relative distribution of type I and type II fibres. The average number of fibres analysed 

per section was 106 (SD 51), depending on size, shape and quality of the section. 
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Statistical Analyses 

Statistical analyses were performed using STATISTICA 10 for Windows (Statsoft, Tulsa, 

Oklahoma, USA, 1984-2010). For NIRS and morphological data, a repeated-measures ANOVA 

was applied with time as within-subject factor (pre vs. post exercise) and intervention as 

between-subject factor (resistive exercise vs. resistive vibration exercise). Tukey’s test was 

used for post-hoc testing. For evaluation of the effect of different vibration frequencies in 

the acute study, a two-sided, paired Student’s T-test was performed. Values are given as 

means ± SD; delta values are given in per cent change from baseline. Statistical significance 

was set at P < 0.05. 

RESULTS 

Levels of tHb and TOI in GM were comparable between the three sets of calf raises at 

Minduring (tHb: P = 0.42; TOI: P = 0.52) and at MaxPost (tHb: P = 0.14; TOI: P = 0.50). Therefore, 

values of the three sets per training were lumped together as means and used for further 

analysis.  

Angiogenic stimuli during exercise 

Deoxygenation during training 

TOI, a marker of muscle oxygenation, decreased in GM during calf raises by -35.0 % (SD 24.5) 

in the RE group and by -37.2 % (SD 26.7) in the RVE group during the initial training. The 

training response did not differ significantly between RVE and RE groups (initial training: P = 

0.76; final training: P = 0.31) nor was there a detectable long-term adaptation of the acute 

responses to the 6-week training intervention (RE: P = 0.89; RVE: P = 0.23), see Figure 3A. 

Reactive Hyperaemia as an indicator of increased shear stress 

An increase in tHb over baseline is indicative for reactive hyperaemia. There was an overall 

effect of group, which suggested that the RVE group exhibited a larger reactive hyperaemia 

than the RE group (P = 0.007). This difference seems to be induced by increased reactive 

hyperaemia in the RVE group after the 6-week intervention, reflected by a trend in the 

group*time interaction (P = 0.094), see Figure 3B. 
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Figure 3. Evaluation of deoxygenation and reactive hyperaemia. RE: resistive exercise, RVE: 
resistive vibration exercise, n = 13. (A) Deoxygenation during calf raises (∆TOI: tissue 
oxygenation index) was comparable between the two groups (P = 0.79) and training types (P 

= 0.5). (B) reactive hyperaemia after calf raises (∆tHb: total Haemoglobin) were assessed as 
relative changes from baseline. The RVE group depicted higher hyperaemia compared to the 
RE group (** group effect: P = 0.007) with a trend towards an enhanced hyperaemic 
response after 6 weeks of RVE (time*intervention effect: (#)

P = 0.094). 

The effect of different vibration frequencies on hypoxia and reactive hyperaemia 

As the subjects trained with 20 Hz vibration during the initial training and with 40 Hz 

vibration during the final training, the results in Figure 3 do not allow discrimination 

between the effect of different vibration frequencies and long-term training adaptations. To 

rule out the bias induced by training at different frequencies, we conducted a post-hoc acute 

study including four subjects to test the impact of these different frequencies on TOI and 

tHb. We observed that no significant difference in GM deoxygenation (P = 0.31) or reactive 

hyperaemia (P = 0.36) during 20-Hz and 40-Hz calf raises, see Figure 4. 
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Tissue Oxygenation Index 

The RE and RVE groups responded comparably to the trainings as there was no significant 

difference between groups (P > 0.43) in GM. Although the RE group showed decreased TOI 

during the final training compared to the initial training (P = 0.024), this effect has to be 

treated with caution as the group*time interaction revealed no difference between groups 

(P = 0.33), see Figure 6.  

 

 

Figure 6: Tissue Oxygenation Index (TOI) in gastrocnemius muscle during and after calf 
raises. Data points represent mean TOI values (±SD) measured at the initial training (black) 
and final training (grey) of a 6-week training intervention with (A) resistive exercise (RE) or 
(B) resistive vibration exercise (RVE), n = 13. Minduring: minimum values during calf raises, 
MaxPost: maximum values acutely after calf raises. TOI levels were unaffected by the 6-week 
training intervention (P > 0.43) 

Whole-body oxygen consumption during calf raises 

The RVE group had a higher whole-body oxygen consumption (VO2) during calf raises 

compared to the RE group, as represented by a significant group effect (P < 0.001). 

Furthermore, there was a long-term adaptation to the 6-week training intervention and VO2 

was higher in both groups during the final training compared to the initial training 

(intervention effect: P = 0.0018) with similar adaptations in both groups (time*intervention 

effect: P = 0.69), see table 1. 
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Table 1. Whole-body oxygen consumption during calf raises. Values represent consumed 
volume of oxygen (VO2) per body mass (kg(BW); BW: body weight) and are calculated as 
means of three sets of calf raises. The RVE group had a higher whole-body oxygen 
consumption compared to the RE group (group effect: *P < 0.001). Both groups showed 
increased VO2 after the 6-week training intervention (intervention effect: #

P = 0.0018) with 
no significant time*intervention effect (P = 0.69).  

 

Capillarity and morphology in SOL pre and post the 6-week training intervention 

After both 6 weeks of RE and RVE, the mean number of capillaries around a fibre was 

significantly increased (P < 0.001) in SOL. The absence of a significant intervention * time 

interaction (P = 0.27) indicates that this response was similar in both groups. The capillary-to 

fibre ratio and capillary density did not differ significantly between groups or before and 

after training (Table 2).  

 

Table 2. Capillarity in soleus muscle pre- and post the 6-week training intervention. CaF: 
capillaries around fibres; CD: capillary density; C:F ratio: capillary-to fibre-ratio; RE: resistive 
exercise, RVE: resistive vibration exercise. The number of capillaries around fibres was 
significantly increased by the 6-week training interventions. 
 

VO2 [ml/kg (BW)] VO2 [ml/kg (BW)] 

 Initial Training  Final Training

RE 18.4 ± 6.5 21.2# ± 3.0

RVE 22.0∗ ± 3.5 25.5∗# ± 2.6

Group

CaF pre 

CaF post

P- values

CD pre

CD post

P- values

C:F ratio pre

C:F ratio post

P- values

357.3  ± 12.9

297.2 ± 71.9

337.8 ± 73.1

309.2 ± 87.7

Time effect: P = 0.081; Group effect: P = 0.61; Interaction effect: P = 0.87

Time effect: P = 0.39; Group effect: P = 0.77; Interaction effect: P = 0.82

3.76 ± 0.89  

4.04 ± 0.95

5.10 ±  2.79

4.080 ± 0.85 

Time effect: P < 0.001; Group effect: P = 0.89; Interaction effect: P = 0.27

RE RVE

4.77 ± 1.30

5.66 ± 1.30

4.91 ± 1.26

5.44 ± 0.79
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The size of the fibres in SOL was similar in both groups and neither size nor fibre type 

composition were significantly changed after either intervention (Table 3). 

 

 

Table 3. Morphological data in soleus muscle pre and post the 6-week training intervention. 
FCSA: fibre cross-sectional area, DiaMin: minimum fibre diameter RE: resistive exercise, RVE: 
resistive vibration exercise. Morphological parameters were not changed by the 6-week 
training intervention.  

Group

Muscle fibre Type Type I Type II Type I Type II 

FCSA pre [µm 2̂] 10187 ± 3291 16102  ± 8230 9920 ± 2977 11865 ± 3530

FCSA post  [µm 2̂] 11278 ± 62211 17271 ±  10039 9804 ± 3084 12965 ± 3699

P-values (pre vs. post) 0.93 0.97 0.99 0.99

DiaMin pre [µm] 56.77 ± 8.39 69.67  16.04 62.56 ± 8.26 67.88  10.31

DiaMin post [µm] 57.47 ± 8.36 72.83  16.71 60.71 ± 6.21 69.54  7.55

P-values (pre vs. post) 0.99 0.91 0.53 0.99

Fibre type distribution pre [%] 75.35 ± 12.81 24.65 ± 12.81 69.11 ± 16.54 30.98 ± 16.54

Fibre type distribution post [%] 74.52 ± 14.38 25.48 ± 14.38 71.24 ± 15.68 28.76 ± 15.68

P- values (pre vs. post) 0.99 0.99 0.99 0.99

RE RVE
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DISCUSSION 

The main observation in the present study is that a 6-week training program with whole-

body vibrations superimposed on resistance exercise (RVE) results in a larger reactive 

hyperaemia and increased blood volume in GM compared to 6 weeks of resistance exercise 

(RE) only. Despite these findings, muscle oxygenation is similar in both conditions. While this 

could imply a better perfusion of the RVE- than RE-trained muscles, the capillary bed in SOL 

was not differentially affected by the two training programs. Thus, despite the higher 

reactive hyperaemia, and hence albeit increased mechanical stress acting on endothelial 

cells during RVE, the vibration training regime was not sufficient to augment structural 

adaptations in terms of capillary formation in SOL. 

RVE does not aggravate muscle deoxygenation compared to RE 

Previous studies show that WBV moderately increases muscle activity [29–31] and ATP 

consumption [32]. In line with this it has been reported that WBV can induce muscle 

deoxygenation and serve as a training stimulus [33,34]. Based on these reports we 

hypothesized that WBV superimposed on resistance exercise would result in a more 

pronounced deoxygenation of the muscle than resistance exercise only. In contrast to our 

expectation, we observed that gastrocnemius oxygenation was decreased similarly by short-

duration exercise (~ 24 s) performed with heavy loads with or without WBV. This finding is in 

line with previous studies, which likewise showed no vibration specific effect upon tissue 

oxygenation in vastus lateralis and GM muscles during static squats [35] or during isometric 

contractions of the calf muscle [36]. The reason for the differential effects of WBV may be 

the training settings, which differed between studies: Mieva et al. [37] and Yamada et al. 

[38] applied lower vibration frequencies (10 and 15 Hz, respectively) and measured in vastus 

lateralis muscle. Furthermore, the two studies applied different training modes and 

durations of WBV exposure. Thus, WBV stimulation may have differential effects according 

to the way it is applied. Taken together, the available evidence suggests that superimposing 

WBV on resistance exercise does not enhance deoxygenation induced training adaptations.  

We found that whole-body oxygen consumption (VO2) was 16 % higher in the RVE than in 

the RE group during the final training (Table 1), even though the RE-trained subjects were 

able to lift significantly larger weights than the RVE group. It is not immediately clear how 

this can be explained, but it does suggest that the metabolic work at the end of the 
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intervention is larger in the RVE than RE group despite the lower training loads. From these 

data, one would expect the RVE group to have more pronounced muscle deoxygenation 

after the 6-week intervention than the RE groups. This was, however, not the case; the 

decrease in TOI was similar in both groups during calf raises. An accentuated decrease in TOI 

is most likely prevented by a concomitant improvement in muscle perfusion as reflected by 

the higher tHb after 6 weeks RVE, during calf raises that was not observed for the RE group. 

Six-week RVE intervention increases blood volume and dilation capacity of arteries in GM 

The increased reactive hyperaemia after training and the increased blood volume at baseline 

after 6 weeks RVE may be due to capillary proliferation. At first glance the increase in the 

mean number of capillaries around SOL fibres supports this notion, but there are two 

problems with this interpretation. First, similar increases were seen after 6 weeks of RE and 

RVE, and probably more important is the observation that the capillary density was not 

significantly changed. Under the assumption that adaptations were similar in SOL and GM 

muscles (assessed by both biopsy and NIRS in this study), the augmented tHb levels in the 

RVE group are thus probably not associated with increased capillarity but could be derived 

from an increased number of perfused capillaries, which hints to a functional adaptation. 

The perfusion of the capillary bed controlled by arterioles [39] and the measured increase in 

tHb might thus derive from increased vasodilation of feeding arteries and arterioles. An 

increased perfusion would mean an increased flow through the feeding artery. Weber and 

colleagues (2012) demonstrated, however, in the participants of the present study that 

while 6 weeks of RE and RVE increased the diameter of the superficial femoral artery (SFA), 

there was no additional effect of superimposed WBV and flow-mediated dilation (FMD) was 

unaltered by the training intervention [40]. An explanation for this conundrum could be that 

WBV might lead to increased vasodilator capacity of small arterioles downstream of the SFA. 

This assumption is supported by Yamada and colleagues, who linked the augmented blood 

flow induced by WBV to an increased dilation capacity of small arterioles, while dilation 

capacity of conduit arteries was unaltered [41]. Thus, our data might reflect a redistribution 

of the blood flow due to an improved vasodilator capacity in resistance arteries of the lower 

leg, but not the thigh (SFA). A possible explanation might be that accelerations during WBV 

decrease with increasing distance from the vibration platform due to damping properties of 

the muscles and tendons [42]. WBV has been reported to increase intraluminal shear stress 

in blood vessels [2,43]. Various studies have shown that shear stress affects endothelial 
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nitric oxide synthase (eNOS) mRNA and protein expression [44–47] and shear stress 

furthermore activates NOS in red blood cells (RBC) [48]. It is therefore tempting to speculate 

that the observed increases in tHb in the present study derived from WBV-induced increases 

in shear stress, which subsequently increased expression and activation of eNOS and 

potentially RBC-NOS, thereby increasing NO-mediated vasodilation. Another possible 

explanation might thus be structural adaptation in capillary diameters i.e. that the capillary 

radius was increased after training intervention upon increased NO production as it has been 

observed in rat soleus muscles that the luminal diameter of capillaries is reduced after 

hindlimb suspension (Kano et al. 2000). Another potential explanation for the increased 

blood volume in GM after 6 weeks of RVE might be related to the so-called ‘tonic vibration 

reflex’, which elicits a high frequency of action potentials at neuromuscular endplates upon 

vibration exposure [49]. This might increase acetyl choline spillover at neuromuscular 

endplates, which is known to be a potent vasodilator [50]. Furthermore, with each action 

potential, potassium is released from skeletal muscle, which also has vasodilating properties 

[51]. However, these interpretations are hypothetical and remain to be clarified in future 

studies. 

It is interesting to note that resting tHb and reactive hyperaemia after training were higher 

after six weeks of RVE than RE. Yet, TOI and deoxygenation was the same in both conditions. 

Thus, our data indicate that adaptations induced by 6 weeks of RVE increase oxygen demand 

of the tissue. As discussed above, WBV-induced dilation may over time change the functional 

status, but not the morphology of the microvasculature, where there is a redistribution of 

blood to the vibrated muscles. One possible explanation could be that this increased flow 

and commensurate increase in oxygen extraction even during rest (as the TOI is the same) is 

due to repair of tissue damage induced by vibration. However, there is no evidence that 

WBV superimposed on resistance exercise does cause damage [52]. It remains unknown 

what causes this increased oxygen demand and flow, even at rest, after 6 weeks RVE. One 

explanation could be a higher basal tone of the muscle. 

SOL morphology  

Our morphological data in SOL indicate that six weeks of RE or RVE did not induce any fibre 

type shift or hypertrophy. The absence of hypertrophy in SOL has been confirmed via 

magnetic resonance imaging measuring muscle volume pre and post training intervention 

within the same study (unpublished observations).  
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Study limitations 

Morphological and functional data in the present study were captured in different muscles 

(SOL and GM, respectively). The underlying reason was that preliminary testing revealed that 

NIRS measurements in SOL muscle during WBV were not feasible and therefore data were 

captured in GM. Biopsies were however only available from SOL, which had been considered 

for other measurements in the study protocol and a post-hoc decision was made to 

determine SOL morphology. However, we expect that an intervention-specific adaptation 

would not be limited to certain muscles and we therefore assume that the increases in SOL 

capillarity, which we observed after 6 weeks of training with no group-specific effect, can be 

transferred from SOL to GM muscle. 

Summary and Conclusion 

In summary, our data indicate that a whole-body vibration stimulus superimposed to 

resistive exercise does not accentuate muscle deoxygenation during a training session but at 

the same time increases whole-body oxygen consumption. Also morphological adaptations 

in the microvasculature after six weeks resistance exercise were similar after 6 weeks of 

resistance exercise with or without whole body vibrations. Yet, total blood content in the 

gastrocnemius muscle was specifically enhanced in the group that performed resistive 

exercise with superimposed WBV, and so was reactive hyperaemia. We therefore conclude 

that RVE-training has a specific effect on the functional state of small arterioles and possibly 

capillaries and that a potential explanation for this could imply shear-stress induced chronic 

increases in NO-mediated vasodilation of small arterioles. 
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5 Primary Findings of the Thesis and Conclusion 

We could show in paper 1 that resistance exercise combined with superimposed whole-body 

vibrations (WBV) at frequencies between 20 and 30Hz was well tolerated. However, training 

with vibration stimuli of 40Hz hampered the increase of training load compared to the group 

that trained without WBV and additionally, seven out of thirteen subjects complained about 

low back pain when performing resistance exercise with 35-40Hz vibration. These results 

allow the recommendation that side-alternating WBV above 35Hz should not be applied in 

combination with heavy training loads, as it might reduce training performance and foster 

back pain. Furthermore, resting systolic and diastolic blood pressures were decreased in 

both groups after the six-week resistance training intervention. It is commonly accepted that 

endurance exercise has beneficial effects upon cardiovascular health [1,2]. Conversely, 

studies on cardiovascular adjustments to long-term resistance exercise remain inconclusive. 

Previous studies show increased [3] or decreased [4] resting blood pressure in resistance-

trained athletes and resistance exercise has also shown to be effective to decrease blood 

pressure in obese and hypertensive subjects [5–7]. However, limited data are available in 

healthy recreationally active people and our findings reveal that resistance exercise 

potentially exerts a beneficial effect to the heart. 

 

To test the hypothesis that the superposition of WBVs to resistance exercise adds a pro-

angiogenic stimulus to the training, we evaluated serum concentrations of the angiogenic 

markers MMP-2, MMP-9, VEGF and endostatin in exercise-trained human subjects and 

determined their proliferative capacity upon endothelial cells in vitro (paper 2). The data 

show that both RE and RVE induced transient increases in circulating pro-angiogenic markers 

which all depicted maximum concentrations two minutes after exercise. This is a novel 

finding as previous studies evaluated the effect of endurance exercise on these markers [8–

14]. According to our hypothesis, we would have expected higher post-exercise VEGF 

concentrations in the RVE group. Contrarily, our data reveal that the superposition of WBV 

to resistance exercise decreases circulating post-exercise VEGF concentrations and this 

effect supposedly results in reduced EC proliferation in vitro. Post-exercise endostatin 

concentrations were elevated after six weeks of RE, which according to Schmidt and 

colleagues (2004) can be considered a pro-angiogenic training adaptation as endostatin 

concentrations that we measured (ranging from 90-140 ng/mL) lie close to concentrations 
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that were shown to induce EC proliferation and migration [15]. This training adaptation was 

inhibited by training with superimposed WBV. 

From the VEGF and endostatin data in paper 2, one would suggest that superimposing WBV 

to RE might not be beneficial for promoting angiogenesis in skeletal muscle. The data in 

manuscript 1, however, do not confirm this conclusion, as capillarity in soleus muscle did not 

adapt differently to the six-week training interventions RE and RVE. Hence, higher VEGF 

concentrations in serum after RE may be related to a systemic training effect, e.g. increased 

endothelial cell regeneration rather than reflecting angiogenic events occurring in muscle 

tissue. As the serum was taken pre and post training, another possible explanation might be 

that VEGF concentrations were comparable or even higher in the RVE during training and 

that the time curve might have been shifted to the left by WBV stimulation.  

Another interesting finding in paper 2 was that resting and post-exercise MMP-2 levels were 

increased by the six-week RVE intervention. As MMP’s have multiple functions in the body, 

this finding does not necessarily reflect increased angiogenic stimulation in muscle tissue but 

might for example indicate increased IGF-associated anabolic stimulation upon long-term 

WBV exposure, as MMP-2 has been shown to increase IGF bioavailability via degradation of 

the IGF binding protein [16,17]. 

 

The main observation in Manuscript 1 is that a six-week training program with WBV 

superimposed on resistance exercise results in a larger hyperaemic response and increased 

blood volume in gastrocnemius muscle compared to six weeks of resistance exercise only. 

Despite these findings, muscle oxygenation is similar in both conditions. While this could 

imply a better perfusion of the RVE- than RE-trained muscles, the structure of the capillary 

bed was not differentially affected by the two training programs. These data indicate that 

regular exposure to WBV in combination with resistance exercise influences the functional 

state of small arterioles and potentially capillaries, possibly via shear-stress induced chronic 

increases in NO- mediated vasodilation. Hence, WBV-induced dilation may over time change 

the functional status, but not the morphology of the microvasculature.  

 

We conclude that the superposition of WBV to RE acutely decreases circulating 

concentrations of angiogenic factors (VEGF and endostatin), which supposedly does not 

influence capillary growth in skeletal muscle as we saw similar adaptations in skeletal muscle 
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morphology in both groups after six weeks of training. Functional measurements indicate 

that six weeks of RE training with superimposed WBV increases skeletal muscle perfusion. 

Hence, WBV may influence the functional state of small arterioles and potentially capillaries 

but does not induce additional capillary growth. The mechanisms leading to increased 

muscle perfusion remain unknown and represent an interesting target for future 

investigations. 
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6 Appendix 

6.1 Abstract (German) / Zusammenfassung  

Hintergrund: Ganzkörper-Vibrationstraining (‚Whole-Body Vibration‘, WBV) ist in den letzten 

Jahren zu einer beliebten Trainingsmethode geworden und findet heutzutage in vielen 

Bereichen Anwendung, z.B. in Fitnessstudios oder in der Rehabilitations-und 

Präventionsmedizin. Bisherige Studien zeigen, dass WBV u.a. einen positiven Effekt auf die 

Durchblutung hat und eine Deoxygenierung der vibrierten Muskeln herbeiführen kann. Die 

dieser Arbeit zu Grunde liegende Hypothese ist, dass Ganzkörpervibrationen in Kombination 

mit konventionellem Widerstandstraining einen zusätzlichen angiogenen Stimulus erzeugen. 

Ziel war es, eine neue Trainingsmethode zu entwickeln und wissenschaftlich zu überprüfen, 

die gleichzeitig Hypertrophie und Kapillarwachstum im Muskel induziert und dadurch 

Muskelleistung im Sinne von Maximalkraft und Ermüdungswiderstandsfähigkeit verbessert.  

Methoden: Eine sechswöchige Trainingsstudie mit 26 gesunden Männern wurde im Parallel-

Design durchgeführt. Eine Gruppe trainierte mit konventionellem Widerstandstraining 

(‚resistive exercise‘: RE), während die andere Gruppe ein Widerstandstraining kombiniert mit 

Ganzkörpervibrationen (‚resistive vibration exercise‘: RVE) absolvierte. Die Probanden 

trainierten 2-3 Mal pro Woche. Das Training bestand aus Kniebeugen und Zehenständen, 

welche mit hohen Zusatzgewichten durchgeführt wurden (80% des One-Repetition 

Maximums). Funktionelle Messungen wurden während des ersten und letzten Trainings der 

sechswöchigen Intervention durchgeführt: jeweils vor, während und direkt nach dem 

Training. Muskeldurchblutung und Oxygenierung im Gastrocnemius Muskel wurden mit Nah-

Infrarot Spektroskopie gemessen. Desweiteren wurden die Angiogenesemarker Matrix 

Metalloproteinase -2 and -9, Vascular Endothelial Growth Factor (VEGF) und Endostatin im 

Serum via ELISA gemessen und deren Effekt auf Endothelzellen (human umbilical vein 

endothelial cells) wurde in vitro bestimmt. Außerdem wurden Langzeit-Anpassungseffekte 

auf die Morphologie des Soleus Muskels bestimmt.  

Ergebnisse: Nach dem Widerstandstraining konnten wir eine Erhöhung der gemessenen 

Angiogenesemarker im Serum feststellen. VEGF-Konzentrationen und Endothelzellen-

Proliferation waren in der RE Gruppe höher im Vergleich zur der RVE Gruppe. Außerdem  

wurde nach der 6-wöchigen Trainingsintervention in der RE Gruppe eine erhöhte Endostatin-

Konzentration direkt nach dem letzten Training gemessen, während solch ein Effekt in der 
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RVE Gruppe ausblieb. Morphologische Daten zeigen, dass die strukturellen 

Muskelanpassungen zwischen beiden Gruppen vergleichbar waren, obwohl sich die 

funktionelle Muskeldurchblutung der RVE Gruppe erhöhte. 

Schlussfolgerungen: Die Daten zeigen, dass der Zusatz von Ganzkörpervibrationen zu 

konventionellem Widerstandstraining den pro-angiogenen Stimulus des Trainings nicht 

erhöht. Es wurde gezeigt, dass zwischen den beiden Gruppen strukturelle 

Muskelanpassungen vergleichbar sind. Dennoch scheinen Ganzkörpervibration, wenn sie in 

Kombination mit Widerstandstraining appliziert werden, die Dilatationsfähigkeit von 

Arteriolen und eventuell auch von Kapillaren zu beeinflussen was sich in der erhöhten 

funktionellen Muskeldurchblutung widerspiegelt. 
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Introduction

Regular performance of aerobic exercise is commonly
known to have beneficial effects upon cardiovascular health
such as decreases in heart rate and ambulatory blood pressure1,2.
However, studies on cardiovascular adaptations to resistance
exercise remain inconclusive. In the early 1980’s, resistance
exercise was believed to cause hypertension3. However, other
studies showed that resting blood pressure was decreased by a
resistance training intervention4,5 whereas other studies showed

no effect upon resting blood pressure in normotensive individ-
uals6-8. The divergence in the reported effects indicates the need
for further investigations in the field of cardiovascular adapta-
tions to resistance exercise. Here we report acute and long-term
responses of blood pressure and heart rate to a resistance train-
ing intervention performed with and without superimposed vi-
brations. Whole-body vibration (WBV) training has become
increasingly popular during the past two decades and is nowa-
days applied in various fields like sport, rehabilitation and in
clinical settings. Previous studies have made a great effort to
describe physiological effects of whole-body vibration and
have been reviewed elsewhere9,10. Unfortunately, many of the
reported vibration-induced effects vary from study to study,
which may derive from discrepancies in the applied training
protocols, subject heterogeneity and divergence in the duration
of the interventions. Furthermore, training supervision and diet
control were neglected in many of the studies, and there was
likewise no uniformity in the control conditions: studies either
lacked a control group or compared their results to a passive
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control group; only few studies applied an exercise control con-
dition10. Also, there is a lack of consistency in the way of re-
porting the results, as highlighted in the recommendations of
the international society of musculoskeletal and neuronal inter-
actions11. Many of the potential benefits of whole-body vibra-
tion may thus not have been clearly demonstrated. To the best
of our knowledge, no study has yet compared acute effects of
a specific exercise to its long-term adaptations. However, and
considering that exercise is usually conducted regularly and
over a longer period of time, it is pertinent to ask whether long-
term training alters acute responses and if superimposed vibra-
tions promote a beneficial training effect. Here we present the
design, feasibility and demands of a conducted study that al-
lows investigation of the adaptation of acute responses during
exercise to a long-term training intervention. Acute functional
parameters (cardiovascular responses, neuromuscular activa-
tion, oxygen consumption, muscle perfusion and oxygenation)
are complemented with investigations of acute responses on
circulating factors in serum as well as acute and long-term re-
sponses within muscle tissue. The various measurements within
a single training study using an exercising control group will
hopefully provide a broader insight into the effects of the vi-
bration stimulus per se. The present article focuses on acute
and long-term cardiovascular responses as well as feasibility
and demands of the training.

Material and methods
Study design

The EVE study (“Molecular and functional Effects of re-
sistive Vibration Exercise”) was conducted in a two-group par-
allel design and was carried out in compliance with the
Declaration of Helsinki following approval by the Ethics Com-
mittee of the Northern Rhine medical association (Ärztekam-
mer Nordrhein) in Düsseldorf (application no. 2010-174).
After providing a written informed consent, 28 healthy male
subjects were included into the study and stratified according
to their vertical jumping height into two matched groups with
comparable neuromuscular fitness, using the maximum verti-
cal jump height as an indicator12. A coin was then tossed to de-
termine which group would perform either resistive vibration
exercise (RVE) or resistive exercise (RE) only. The study was
conducted in two campaigns due to feasibility reasons: the first
campaign with 12 subjects took place between October 2010
and March 2011, the second campaign with 16 subjects took
place between May and October 2011.

Participants and group design

Healthy, male subjects were targeted who were recreation-
ally physically active (exercised 2-3 times per week). Any
competitive sports, participation in strength training during the
past six months, smoking, diabetes as well as any current med-
ication were considered as exclusion criteria. Subject recruit-
ment involved a telephone questionnaire checking for general
suitability (224 applicants), a medical screening comprising a
short medical history, blood analysis (involving a complete

blood count and investigation of clinical parameters -creatinin,
urea, protein, albumin, SGOT, SGPT, γGT, Lipase, alk. phos-
phatase, electrolytes, glucose, C-reactive protein and haema-
tological parameters: PTT, aPTT, Quick, INR), as well as a
urine test checking for glucose, protein and urobilinogen. Fi-
nally, a stress electrocardiogram on a cycling ergometer and a
training familiarisation were performed. The medical screen-
ing involved 60 applicants out of which 28 were included in
the study. The subject’s anthropometric data at baseline are
given in Table 1, and no statistically significant group differ-
ence was found (P>0.08).

Training design

The present study was designed to compare acute and long-
term effects of two training interventions: Resistive Exercise
(RE) and Resistive Vibration Exercise (RVE). Subjects trained
for six weeks, 2-3 times per week with additional weights. In
order to align the squatting movement, the weights were put
on a guided barbell (PTS Dual action Smith, Hoist, U.S.A). A
vibration platform (Galileo® Fitness, Novotech, Germany) was
placed underneath, as illustrated in Figure1A. The subjects in
the RVE group performed the resistive exercise training pro-
tocol with simultaneous side-alternating whole-body vibra-
tions, whereas subjects of the RE group trained with the same
setting, without superimposed vibrations. We aimed to test
physiological responses at 40 Hz side-alternating vibration,
which has not been tested before. Preliminary testing yielded
that this is challenging for people not acquainted with whole-
body vibration. We therefore decided to initially set the vibra-
tion frequency to 20 Hz and to increase the vibration frequency
throughout the study to eventually arrive at 40 Hz.

Estimation of training load

The individual training load was set at 80% of the subjects
One-Repetition Maximum (1-RM), which was estimated in
the familiarisation session four weeks prior to the first training,
applying the method of Baechle and Earle13 and performing
squats in a non-vibrating condition. 

RE group RVE group P-value
(n = 13) (n = 13)

Age [yrs] 23.4 (± 1.4) 24.3 (±3.3) 0.52
Body mass [kg] 75.0 (± 4.7) 74.7 (±6.9) 0.08
Height [m] 1.79 (± 0.05) 1.79 (±0.05) 0.31
BMI 23.4 (± 1.4) 23.5 (±2.1) 0.11
CMJ height [cm] 42.2 (± 4.6) 41.7 (±2.2) 0.97
Maximal performance 3.3 (± 0.3) 3.3 (± 0.4) 1.00
on cycle ergometer test 
[W/kg body weight]

Table 1. Anthropometric data of EVE subjects at baseline. BMI: Body
Mass Index, CMJ: Counter movement jump. There was no difference
between the two groups.
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Figure 1. (A) Illustration of the training device. A guided barbell with a vibration plate placed underneath, embedded into a custom-built frame.
(B) Illustration of the exercise movements. Squats (left) and calf raises (right).

Figure 2. Determination of training load. Left: calculation of the performed % of the One-Repetition. Maximum (1-RM) according to the
number of concluded repetitions (adapted from Baechle and Earle). Right: example for estimation of training load at 80 % of the 1-RM.
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Briefly, the guided barbell was initially loaded with weights
corresponding to the subject’s body weight plus 20 kg and sub-
jects were asked to perform as many squats as possible. The
corresponding % of the 1-RM was evaluated according to
Baechle and Earle13. An example is illustrated in Figure 2: if
the barbell was loaded with 90 kg and the subject’s maximum
number of repetitions was 5, which corresponds to 87% of the
1-RM, the training load was adjusted to 85 kg.

Training protocol

The training was supervised by a graduated exercise scien-
tist throughout the study and two spotters were standing left
and right of the guided barbell providing subject security. A
metronome guided the training rhythm to provide standardis-
ation of the movement. Squats were performed dynamically
with 2 sec. eccentric and 2 sec. concentric phase; calf raises
were performed with 1 sec. eccentric and 1 sec. concentric
phase (Figure 1B). Each training session included a warm-up
with the unloaded barbell (15 kg), which consisted of two sets;
each set with 10 squats and 15 heel raises. The actual training
was performed in three sets: the first two sets comprised 8
squats and 12 calf raises; in the third set, as many squats and
calf raises as possible were performed (Figure 3A). Immedi-
ately after completion of the last set of squats, each subject’s
perceived exertion was rated via the Borg RPE Scale14. Alto-
gether, the subjects concluded 16 training sessions in a period
of 6 weeks (week 1-2: two sessions per week; week 3-6: three

sessions per week). Both training regimens differed only in the
vibration component.

Increase of training load and vibration frequency during the
6-week intervention

The number of squats in the third set was used to readjust the
training weight to 80% of the 1-RM for the following training.
When the number of squats in the third set was equal to 8, the
training weight remained unchanged for the subsequent training.
When the subjects performed more or less than 8 repetitions,
the training weight was recalculated, i.e. increased or decreased
for the next training. However, the top limit for weight increases
was set at 10 kg in order to guarantee steady weight increments.
The RVE group started the training with 20 Hz vibration with
weekly increments by 5 Hz; during the last two weeks, vibration
frequency was set at 40 Hz. A schematic overview of the incre-
mental study design is displayed in Figure 3B.

Diet 

During the initial and final training sessions, subjects ate a
standardised breakfast two hours before training (two wheat
bread rolls with butter and jam). During the long-term training
intervention, subjects were asked to abstain from food two
hours before every training session and to drink a protein en-
ergy drink (Fresubin® protein energy drink, Fresenius Kabi,
Germany) one hour prior to training. 

Figure 3. (A) Training design. After a warm-up, subjects performed three sets of squats and calf raises. The first two sets included 8 squats and
12 calf raises, in the third set, a maximum number of squats and calf raises was performed. (B) Increase of training intensity over the 6-week
training intervention. Left: increase of training load for both intervention groups. Right: increase of vibration frequency in the resistive vibration
exercise (RVE) group. 1-RM: One-Repetition Maximum.
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Measurements

The present study was designed to characterize the acute
and long-term effects of resistive exercise and superimposed
vibrations on both functional and molecular levels. An
overview of the measurements with the corresponding time
points is depicted in Figure 4. 

Determination of daily physical activity

The Freiburg Questionnaire15 was applied to assess the sub-
ject’s daily physical activities. Subjects filled the questionnaire
one week prior to and three days after the 6-week training in-
tervention.

Blood pressure and heart rate at rest and during exercise 

Resting heart rate and blood pressure were recorded after
20 minutes in horizontal position with an automated sphyg-
momanometer (Medicus pc, Boso, Germany). Exercise blood

pressure was measured during each break between the sets and
immediately after training termination by a medical doctor
using a manual sphygmomanometer. Heart rate was measured
manually by an exercise scientist. 

Rating of perceived exertion (RPE)

The Borg RPE scale14 was used for the assessment of the
perceived exertion of the training. Within 20 sec after the last
set of squats, subjects provided their individual RPE. 

Statistical analyses

Statistical analyses were performed using STATISTICA 10
for Windows (Statsoft, Tulsa, Oklahoma, USA, 1984-2010).
For estimation of differences in training load increments, rat-
ing of perceived exertion, blood pressure and heart rate, a re-
peated measures ANOVA was applied with time (initial vs.
final) and intervention (resistive exercise vs. resistive vibration

Figure 4. Overview of the EVE-Study design. BDC (Baseline Data Collection) was performed during 4 weeks prior to the initial training; fol-
low-up measurements were performed 3, 4 and 90 days (d) after the final training. MRS: Magnetic Resonance Spectroscopy, MVC: Maximal
Voluntary Contraction, MRI: Magnetic Resonance Imaging, EMG: Electromyography, NIRS: Near-Infrared Spectroscopy.
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exercise) as factors; Tukey’s test was used for post-hoc testing.
For estimation of daily physical activity (Freiburg Question-
naire), a paired, two-sided Student’s t-test was performed to
compare physical activity before and after of the 6-week train-
ing intervention; an unpaired, two-sided t-test was performed
to test differences between the two intervention groups. For
estimation of vibration-induced back pain, a chi-square analy-
sis was performed. Values are given as means ± standard de-
viation, statistical significance was set at P<0.05.

Results
Freiburg Questionnaire of physical activity

Daily physical activities like walking, biking, stair climbing,
activity at work, sleeping and weekly sportive physical activity
did not differ before and after the 6-week training intervention
(P-values between 0.12 and 0.96) and did not differ between
the two intervention groups (P-values between 0.32 and 0.75).

Important events during the study

When training at frequencies above 30 Hz, eight of the RVE
subjects complained about back pain. In one of the subjects,
back pain was the cause for dropping out of the study. The sud-
den onset of back pain in the drop-out subject was caused by
an incident during training. The impression of the personal
trainer and his assistants present during that exercise session
was that the incident resulted from training with poor body
balance, which led to bending of the back. An independent or-
thopaedic surgeon diagnosed a facet joint syndrome L1-2,
which did not implicate sensory or motor deficits. The back
pain lasted for seven days after the incident and was ranked
by the subject to an intensity of 8 using a scale ranging from
0 to 10, where 0 indicated “no pain” and 10 indicated “severe,
unbearable pain”. The subject had demonstrated questionable
commitment before that event, which reinforced the decision
was made to exclude him from the further participation.

Back pain reported by the other seven subjects that com-
pleted the study successfully was assessed via a questionnaire.
All seven subjects reported low back pain without radiculopa-

thy. One subject complained about pain during training,
whereas the majority (6 out of 7 subjects) perceived back pain
after training termination. The duration of the pain varied: two
subjects reported acute pain until 1-2 hours after training, and
four subjects reported pain until 2-3 days after training. The
pain intensity estimated by the subjects ranged from 3 to 7 and
was on average 4.4 (SD=1.4), using a 0-10 scale (as described
above). None of the subjects had to take analgetics to relieve
the pain. There were only two cases of back pain in the RE
group: one subject complained about local neck pain at the site
of weight application, the other subject complained about
“light” muscle tenderness in the lumbar spine. Statistical
analyses revealed that resistive vibration exercise at frequen-
cies of 30 Hz and above caused back pain in a higher number
of cases than resistive exercise alone (Chi-value<0.01); details
are listed in Table 2.

Furthermore, four subjects in the RVE group complained
about a training-induced headache with an onset after the sec-
ond training set, out of which one subject dropped out after
four weeks of training because of a headache that was repro-
ducibly generated by the combination of vibration, application
of the bar bell and calf raises. A post-hoc medical check re-
vealed the absence of the physiological lordosis of the cervical
spine as a likely explanation for this reaction. 

Conduct of exercise: missed training sessions

In the RVE group, four subjects completed all 16 training
sessions and nine subjects missed a single training session. In
the RE group, ten subjects completed all 16 training sessions
and three subjects missed a single training session. 

Increase of training load 

The training loads were comparable between the two groups
at the initial training (RVE: 81.5±7.7 kg, RE: 75.2±6.5 kg;
P=1.0) and increased over time in both groups (P<0.001).
Compared to the initial training, the increase in training load
over the six-week training intervention was significantly
higher in the RE group and accounted for 59.8±17.3 %, com-
pared to 46.9±19.0 % in the RVE group (time * intervention:
P<0.001). As the weight increase was more pronounced in the
RE group, post-hoc analyses reveal that RE subjects trained
with significantly higher training loads compared to the RVE
group in trainings 13 to 16 (P<0.01). During the final training,
the RE group trained with 130.2±18.5 kg and the RVE group
trained with 110.2±15.8 kg (P=0.003), see Figure 5.

Rating of perceived exertion (RPE)

The perceived exertion of the initial training was rated as
“hard” according to the Borg RPE scale, and there was no dif-
ference between groups: 15.5±1.6 (RE) vs. 15.9±1.3 (RVE),
P=0.52, see Figure 6. RPE data derived during the 6-week
training reveal that superimposed vibrations did not alter RPE
as there was no significant group effect (P=0.73). However,
there was an overall increase in RPE over time (P=0.048).
Post-hoc analyses showed that the RPE was higher during
training 9-16 when compared to training 1-4 (P<0.05). During

Training Vibration Back Pain Headache
week Frequency RVE RE RVE RE

1 20 Hz - - - -
2 25 Hz - - - -
3 30 Hz 3 1 1 -
4 35 Hz 1 1 2 -

5,6 40 Hz 4 - - -

Sum 8** 2 3 0

Table 2. Important events during the study. Numbers of subjects are
indicated perceiving headache or back pain in the respective training
week. RE: resistive exercise group; RVE: resistive vibration exercise
group. **Higher compared to RE group (chi-value<0.01).
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the last training, RPE accounted for 15.9 in the RE group and
16.38 in the RVE group. Of note, RPE during the last training
was comparable between groups (P=0.15), although the RE
group trained with significantly higher training loads
(P=0.003). Furthermore, there was no correlation between
RPE and heart rate (R=-0.13; R2=0.017; P=0.42) as previously
described for endurance exercise16.

Cardiovascular parameters at rest

Resting Systolic Blood Pressure (SBP) and Diastolic Blood
(DBP) pressure were both decreased from pre levels during
the follow-up measurement after 6 weeks of training (SBP:
P=0.003; DBP: P=0.001) with no significant differences be-
tween the two groups (SBP: P=0.06; DBP: P=0.5) as depicted
in Table 3. Post-hoc analyses revealed that the decrease of

DBP was more pronounced in the RVE group as this group de-
picted significant decreases (P=0.01), whereas the decrease of
DBP did not reach significance in the RE group (P=0.055).
Resting heart rate (HR) remained unaffected by the training
intervention in both groups (P=0.14), see Table 3. 

Cardiovascular parameters during exercise

Blood pressure and heart rate measured within single train-
ing sessions were comparable between sets (P>0.28) and
therefore, data of the three sets were pooled for further analy-
sis. There was a trend of decreased systolic blood pressure dur-
ing exercise after 6 weeks of training in both groups, which
however failed to reach the level of significance (P=0.052).
Diastolic blood pressure during exercise was significantly de-
creased in both groups (P<0.001). As a result of the decreased

Figure 5. Training load increase during the 6-week training interven-
tion. Bars indicating 20-40Hz refer to the applied vibration frequency
in the RVE group. Training loads increased over time in both groups
(time effect: P<0.001). The training load increase was more pronounced
in the Resistive Exercise group and after the 13th training session, the
RE group trained with significantly higher training loads (*P<0.01).

Figure 6. Rating of the training’s perceived exertion. The subjects in
both groups rated the perceivedexertion (RPE) of the training to
“hard” and there was no difference between the Resistive Exercise
(RE) and Resistive Vibration Exercise (RVE) groups. RPE was sig-
nificantly higher in trainings 9-16 compared to trainings 1-4
(*P<0.05).

Rest During Training

Group RE RVE RE RVE

Variable Pre Post Pre Post Initial Final Initial Final

SBP [mmHg] 126 ± 8 118 ± 11** 122 ± 4 113 ± 9** 147 ± 18 143 ± 13 147 ± 13 142 ± 18
DBP [mmHg] 71 ± 9 65 ± 11 71 ± 6 62 ± 8** 81 ±8 72 ± 9 *** 82 ± 7 74 ± 10***
HR [bpm] 55 ± 9 52 ± 7 56 ± 8 54 ± 7 125± 17 127 ± 15 126 ± 21 131 ± 23

Table 3. Cardiovascular parameters at rest (left) and during exercise (right). Stars indicate significant difference (time effect) within the same group:
*P<0.05; **P<0.01; ***P<0.001. Pre and Post refer to resting values before and after 6 weeks of training; Initial and Final Training refer to the first
and last exercise session of the 6-week training intervention. SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate. 
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DBP with unaltered SBP, exercise pulse pressure (=SBP-DBP)
was significantly increased in both groups after 6 weeks of
training (P=0.04). Six weeks of training did not alter exercise
heart rate in neither of the groups (P=0.39), see Table 3. Exer-
cise blood pressure and exercise heart rate did not differ when
comparing RE to RVE (SBP: P=0.9; DBP: P=0.6; HR: P=0.5).

Discussion
Feasibility

The incremental design of the training was reflected by an
increase in Borg RPE over time (Figure 6), as the training was
perceived as significantly “harder” in training sessions 9-16
compared to training sessions 1-4. The subject’s daily physical
activities were comparable between the two groups and did
not change over the duration of the study (Freiburg Question-
naire). These data indicate that the obtained results from the
EVE study actually derive from the training intervention itself
and were not induced by external factors. 

While vibration frequency was increased on a weekly basis,
the RVE group trained at equal or higher training loads com-
pared to the previous week. Only in four cases out of 52 indi-
vidual increases in vibration frequency (=4 frequency
increases * 13 subjects), training loads had to be decreased due
to an increase in vibration frequency when training with fre-
quencies above 35 Hz. When training with frequencies be-
tween 20 and 30 Hz, superimposed vibrations were well
tolerated. However, data from the present study suggest that
the risk of low back pain is substantially increased when per-
forming resistance exercise with superimposed vibrations and
frequencies above 30 Hz (see Table 2). Seven out of thirteen
subjects that concluded the study successfully complained
about low back pain, which would probably be classed as un-
comfortable, but not severe. The back pain might either derive
from the vibration itself, or from the way that the guided bar-
bell was employed, which was always with a certain reclina-
tion toward the back. This could have increased the amount of
instability in the movement when training with high vibration
stimulation. This lack of stability might have caused the train-
ing incident that led to the drop-out of one subject in the RVE
group. However, it remains unknown whether the vibration
component was actually the cause for the training incident. 

Demands 

Increase of training load with and without superimposed 
vibrations

There was no difference between the two groups concerning
One-Repetition Maximum or jump height at the beginning of
the study, indicating two groups with comparable muscular
performances. As expected, training loads were increased over
time. However, after the 13th training session, when RVE sub-
jects trained with 40 Hz simultaneous vibrations, the increase
of training weight was hampered (Figure 5) compared to the
group training without vibrations. In the end of the study, the
RE group trained at 18% higher training loads compared to the
RVE group. It is known that sinusoidal vibrations engender in-

creases in peak foot acceleration to the power of two10, and
thus, increases in vibration frequency lead to pronounced ele-
vations of musculoskeletal forces. We conclude from our data
that the increase of training weight (external training load)
might be hampered by vibration-induced elevation of muscu-
loskeletal forces (internal training load) and the combination
of the two add up to the total muscle loading during RVE. This
idea is supported by the Rating of Perceived Exertion data,
which indicate that training at lower weights with 40 Hz WBV
was perceived equally demanding as training without vibra-
tions and higher weights.

Chronic cardiovascular adaptations at rest

There is strong evidence supporting beneficial effects of en-
durance exercise upon cardiovascular health such as decreases
in blood pressure and heart rate1,2. However, limited data are
available on the effect of long-term resistance exercise training
in healthy, recreationally active people. Resistance exercise
has been reported to have beneficial effects in obese subjects
as well as in people with metabolic syndrome or hyperten-
sion17-19. Previous studies involving healthy young males show
that resting systolic and diastolic blood pressures were de-
creased by a resistance training intervention8,20. Another study
shows a 4% decrease in resting systolic with no change in di-
astolic blood pressure5. Results from the present study show
that resting systolic and diastolic blood pressures were both
decreased by 7 to 12 % after only six weeks of training and
there were no alterations in resting heart rate. Our data support
the view that high-resistance exercise is beneficial for cardio-
vascular health. Further, our data suggest that superimposed
vibrations might be additionally beneficial as diastolic blood
pressure was significantly decreased only in the RVE group.

Chronic adaptations of the acute cardiovascular responses
to resistance exercise

It has been shown that body builders have lower systolic
and diastolic blood pressures and heart rates during resistance
exercise compared to recreationally active people21. Previous
studies have reported that resistance training results in adap-
tations that hamper the acute training-induced increases in
heart rate and blood pressure22,23. In the current study, we found
that 6 weeks of resistive exercise decreased diastolic blood
pressure during exercise whereas systolic blood pressure and
heart rate were unaltered compared to the initial training. This
decrease in diastolic blood pressure might derive from in-
creased vasodilation during exercise and thus, the applied
training interventions in the current study seem to have im-
proved vascular responsiveness. This idea is supported by pre-
vious studies showing that WBV increases blood flow velocity
after vibration termination24,25, indicating vibration-induced di-
lation of feeding arteries. Our data reveal that only exercising
diastolic blood pressure was decreased after 6 weeks of train-
ing, whereas systolic blood pressure remained unaltered, yield-
ing increases in pulse pressure (=SBP-DBP). As pulse pressure
is known to be proportional to stroke volume26, there is evi-
dence that the resistive exercise intervention conducted in this
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study increased cardiac stroke volume and maybe cardiac out-
put. There was, however, no additional effect of superimposed
vibrations, neither during the first training nor after 6 weeks
of training. 

Summary and Conclusions

In summary, both training interventions were feasible and
the incremental training design was reflected by an increase
in RPE. Superposition of vibrations to resistive exercise for
some reasons hampered the increase of training load when
training at frequencies above 35 Hz. Furthermore, our data
show that 6 weeks of resistance exercise decreased resting
blood pressure (systolic and diastolic) as well as exercising di-
astolic blood pressure. We conclude that WBV in combination
with high-resistance exercise is well tolerated when training
with frequencies below 35 Hz. However, when training with
35 Hz and above, this exercise type seems to foster back pain
and to reduce training performance. It is possible that training
with side-alternating vibration above 30 or 35 Hz may elicit
sub-optimal results. Thus, it might not be recommendable to
use these high frequencies combined with resistance exercise,
at least not for non-athletes. Finally, our data also demonstrate
a beneficial effect upon arterial blood pressure.
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