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Abstract—The classical approach to the multipath problem
in positioning algorithms is to try to mitigate the influence of
multipath components (MPCs) on the line-of-sight (LoS) path.
Over the last years, a contrary approach has emerged with
multipath assisted positioning, where MPCs of terrestrial signals
are regarded as LoS signals from virtual transmitters. Thus, the
spatial information in MPCs is exploited for localization. The
locations of the physical and virtual transmitters can be estimated
together with the user position using simultaneous localization
and mapping (SLAM). To decrease the possibly long convergence
time of SLAM, maps of transmitters can be exchanged among
users. The information in a map can then be fused with the
user observations. However, in the general case, the users do not
know their starting locations and/or headings, and therefore are
in their own local coordinate systems. When maps of transmitters
are exchanged, the relative rotation and translation between the
coordinate systems of a user and a received map need to be
estimated. Within this paper, we propose a variant of the random
sample consensus (RANSAC) algorithm for this estimation as it is
very robust against outliers. We show by simulations in an indoor
scenario that RANSAC increases the accuracy significantly.

Index Terms—Channel-SLAM, RANSAC, simultaneous local-
ization and mapping

I. INTRODUCTION

The amount of services and applications that require a

precise localization of a user has grown considerably over the

past years. Global navigation satellite systems (GNSSs) can

satisfy the needs of many such services in conditions with a

clear view to the sky. Though, in GNSS denied scenarios such

as in urban canyons or indoors, alternative methods for precise

localization have to be found and developed. One approach is

to use terrestrial radio signals for positioning. Such signals can

be wireless local area network (WLAN) or cellular signals, for

example [1]. In particular in indoor scenarios, these signals are

subject to multipath propagation. They are reflected, scattered

or diffracted by structures in the environment.

Typically, multipath propagation deteriorates the perfor-

mance of positioning systems [2]. Over the last years, however,

a new approach named multipath assisted positioning has

emerged. While standard approaches in localization try to

remove the influence of multipath components (MPCs) on

the line-of-sight (LoS) path, the spatial information contained

in MPCs is exploited in multipath assisted positioning. Each

MPC can be regarded as a signal transmitted in a pure LoS

condition by a virtual transmitter. The locations of the virtual

transmitters are in general unknown. They may be calculated

in advance if the location of the physical transmitter and the

geometry of the environment are known [3], [4]. If no such

information is available, the locations of both the physical

and virtual transmitters can be estimated jointly with the

user position using simultaneous localization and mapping

(SLAM).

The authors of [5] have introduced such an approach named

Channel-SLAM. Channel-SLAM does not differentiate be-

tween physical and virtual transmitters. Each signal component

that is received in a multipath environment is regarded as being

transmitted by a transmitter in a LoS condition. Accordingly,

there is no differentiation between the LoS component and the

MPCs.

In certain scenarios such as in shopping malls or museums,

a high amount and fluctuation of users can be expected.

Thus, maps of estimated physical and virtual radio transmitter

locations may be shared. When a user receives a transmitter

map, the a-priori information on transmitters can decrease the

convergence time and increase the positioning performance of

SLAM. If the starting location and direction of a user are

unknown, the relation of the coordinate system of the user

and the coordinate system of a received map is unknown as

well. Hence, the rotation and translation parameters relating

the two coordinate systems need to be estimated. We denote

this estimation together with finding correspondences among

transmitters in two maps by map matching.

In [6], we have presented a first approach to estimate the ro-

tation and translation parameters relating two transmitter maps

in Channel-SLAM. Within this paper, we extend this approach

by using a variant of random sample consensus (RANSAC)

[7] in order to increase the robustness and accuracy of map

matching. RANSAC is an algorithm widely used in computer

vision for image registration, for example. Its fundamental

goal is to find the parameters of a mathematical model given

a data set with outliers. In our respect, the data set are the

transmitter locations, and the model parameters are the rotation

and translation relating two coordinate systems. There are

numerous variations and extensions of the original RANSAC

algorithm in the literature [8], [9].

The remainder of the paper is organized as follows. Sec-

tion II introduces the basic ideas of multipath assisted position-

ing and Channel-SLAM. In Section III, we explain RANSAC

and derive its adaption to the map matching problem. Evalua-

tions based on simulations in an indoor scenario are presented
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Fig. 1. The signal from the physical transmitter Tx is received by the
user via two propagation paths. The signal component reflected at the wall
can be regarded as a LoS signal from the virtual transmitter vTx1, and the
signal component scattered at the point scatterer as a LoS signal from the
virtual transmitter vTx2. In the latter case, there is a time offset τ0 between
the physical transmitter and the virtual transmitter vTx2. It is the Euclidean
distance between the two transmitters divided by the speed of light c0.

in Section IV. Section V concludes the paper.

II. MULTIPATH ASSISTED POSITIONING

A. Virtual Transmitters

Fig. 1 illustrates the idea of virtual transmitters. The phys-

ical transmitter Tx transmits a signal. This signal is reflected

at the wall and received by the user as a MPC. However,

this signal can be interpreted by the user as a signal in a

pure LoS condition from the virtual transmitter vTx1. This

virtual transmitter is located at the location of the physical

transmitter mirrored at the wall. The location of vTx1 is

therefore static and independent from the position of the user.

Since the propagation distances of a signal from the physical

transmitter to the user and from the virtual transmitter to the

user are exactly the same, the two transmitters are inherently

time synchronized.

At the same time, the signal from the physical transmitter

is scattered at a point scatterer and received by the user as

a MPC. Again, this received signal is regarded as a signal

in a LoS condition from the virtual transmitter vTx2. In

the case of scattering, the location of the virtual transmitter

coincides with the point scatterer’s location. The location of

the virtual transmitter is therefore again static. However, the

virtual transmitter has a time delay τ0 towards the physical

transmitter. This time delay is the Euclidean distance between

the physical and the virtual transmitter divided by the speed

of light c0. The time delay can be interpreted as a clock offset

between the two transmitters.

It is straightforward to extend this model of virtual trans-

mitters to the case where a signal is reflected and/or scattered

multiple times [5].

B. Channel-SLAM

We model the propagation channel between the physical

transmitter and a mobile user as a linear multipath channel.

The transmit signal arrives at the user via different propagation

paths as a superposition of different signal components. Each

signal component has a delay di(t) and a complex amplitude

αi(t) at time t. The channel impulse response (CIR) h(τ, t)
at time t with delay τ is therefore

h(τ, t) =
∑

i

αi(t)δ (τ − di(t)) , (1)

where δ (·) denotes the Dirac delta distribution.

Channel-SLAM works in two stages. In the first stage, after

sampling the received signal, a channel estimator estimates

the parameters of the signal components. Within the scope

of this paper, we use the time of arrival (ToA) and angle of

arrival (AoA) estimates assuming an antenna array at the re-

ceiver. We use the channel estimator named Kalman enhanced

super resolution tracking (KEST) [10]. KEST uses snapshot-

based signal parameter estimates obtained from the Space-

Alternating Generalized Expectation-Maximization (SAGE)

[11] algorithm and tracks these parameters over time with

Kalman filters [12]. In addition, it keeps track of the number

of detected signal components NTX at the receiver. At time

instant k, the ToA estimates

dk = [d1,k . . . dNTX,k]
T

(2)

and the AoA estimates

θk = [θ1,k . . . θNTX,k]
T

(3)

are stacked in the measurement vector

zk =
[

dT
k θT

k

]T
. (4)

In the second stage of Channel-SLAM, the estimates from

KEST in the first stage are used to localize the user and

estimate the states of the physical and virtual transmitters

with SLAM. Channel-SLAM does not differentiate between

physical and virtual transmitters. Each arriving signal compo-

nent, no matter if LoS component or MPC, corresponds to one

transmitter. Thus, there is no differentiation between physical

and virtual transmitters, and the term transmitter will generally

denote either of them in the following.

Since physical and virtual transmitters are static in our

model as in Subsection II-A, each transmitter is described by

its location in two dimensions and a clock offset. Hence, we

have for the state vector of the jth transmitter at time instant

k

x
<j>
TX,k =

[

x<j>
TX,k y<j>

TX,k τ<j>
0,k

]T

, (5)

where x<j>
TX,k and y<j>

TX,k specify the location and τ<j>
0,k the clock

offset of the transmitter. The user state comprises the location

and velocity in two dimensions, i.e., the user state vector at

time instant k is denoted by

xu,k = [xk yk vx,k vy,k]
T
. (6)

Finally, the state vector xk at time instant k consists of the

user state xu,k and the transmitters’ state xTX,k, i.e.,

xk =
[

xu,k
T xTX,k

T
]T

=
[

xu,k
T x<1>

TX,k

T
. . . x<NTX>

TX,k

T
]T

. (7)



Note that the number NTX of signal components, or transmit-

ters, may change over time. For notational brevity, though, we

omit the time index k in NTX.

We seek to estimate the posterior distribution

p (x0:k|z1:k,u1:k), with x0:k denoting the state vector from

time instants zero to k and z1:k denoting the measurements

from time instants one to k. The control input u1:k can be

obtained from an inertial measurement unit (IMU) carried

by the user, for example. The posterior distribution can be

factorized as

p (x0:k|z1:k,u1:k) = p (xTX,0:k,xu,0:k|z1:k,u1:k)

= p (xu,0:k|z1:k,u1:k)

× p (xTX,0:k|z1:k,xu,0:k) (8)

= p (xu,0:k|z1:k,u1:k)

×

NTX
∏

j=1

p
(

x
<j>
TX,0:k|xu,0:k, z1:k

)

,

assuming that the measurements for single transmitters, i.e.,

the estimates from the channel estimator for different signal

components, are independent from each other. The first factor

in the last line of Eq. (8) is the posterior of the user state, and

the second factor is the product of all transmitter posteriors

conditioned on the state of the user. The assumption of

independent measurements allows for estimating the state of

each transmitter independently from the other transmitters’

states.

We apply Bayesian recursive estimation [12] to obtain

the posterior distribution. In the prediction step of the user,

different movement models and additional sensor data, for

example from an IMU, can be incorporated as measurements

or control input u. Since the transmitters are static in our

model, the transition prior for the transmitters is expressed

with the identity function. In the update step, we assume white

Gaussian noise (WGN) in the ToA estimates and the noise in

the AoA estimates following a von Mises distribution.

To cope with the non-linear measurement model and non-

Gaussian noise, we use a Rao-Blackwellized particle filter [13]

to estimate the state vector xk. The user state vector xu,k with

posterior distribution p (xu,0:k|z1:k) is estimated by a particle

filter, which we call user particle filter. For each user particle,

the transmitters’ state vector xTX,k is estimated independently

from the other user particles. Assuming independence among

measurements for different transmitters, each of the user

particles estimates the state of each transmitter independently

from the other transmitters by a particle filter.

Thus, the user posterior distribution p (xu,k|z1:k) is repre-

sented by a sum of Np particles, where the ith particle x<i>
u,k

has a weight w<i>
k associated to it,

p (xu,k|z1:k,u1:k) =

Np
∑

i=1

w<i>
k δ

(

xu,k − x<i>
u,k

)

. (9)

Likewise, the posterior distribution, or state probability

density function (PDF), of the jth transmitter of the ith user

Position

Estimation

Parameter

Estimation

Received

Signal

IMU
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Fig. 2. Overview of the Channel-SLAM algorithm. The parameters of the
signal components from the channel estimator, a prior transmitter map and
data from additional sensors, such as an IMU, are fused in the particle filter
performing the position estimation.

particle is represented by a sum of Np,Tx particles, where the

lth particle x
<i,j,l>
TX,k has a weight w<i,j,l>

k associated to it,

p
(

x
<i,j>
TX,k |x<i>

u,k , z1:k

)

=

Np,Tx
∑

l=1

w<i,j,l>
k δ

(

x
<i,j>
TX,k − x

<i,j,l>
TX,k

)

.

(10)

The number of transmitter particles may vary for different

transmitters, user particles and time instants. Nevertheless, we

omit the corresponding indizes in Np,Tx for notational brevity.

A full derivation of the Channel-SLAM algorithm including

the derivation of the weight updates can be found in [5].

Fig. 2 summarizes the two stages of Channel-SLAM. Based

on the received signal, the channel estimator estimates the

parameters of signal components and tracks them over time.

These estimates are fused in the position estimation step with

additional sensor data in a particle filter.

III. MAP MATCHING WITH RANSAC

In certain scenarios such as in malls, museums, or public

buildings, multiple users travel through the same scenario on

different trajectories. As each user creates a map in Channel-

SLAM, these maps can be shared among users to increase the

positioning performance and decrease the convergence time

in SLAM. However, Channel-SLAM is a relative positioning

approach in the sense that each user creates their own local

coordinate system. When transmitter maps are exchanged,

their coordinate systems are related by an unknown rotation

parameter β and unknown translation parameters x̄ and ȳ.

In addition, it is in general unknown which transmitters in

one map correspond to which transmitters in the other map.

We refer to estimating the rotation and translation parameters

and the set of corresponding transmitters in two maps as map

matching.

In the following, we call a map of transmitters with states

estimated by the user a user map. A set of transmitter state

estimates that the user has obtained from a different user as

prior information is denoted by the term prior map.

A. Finding a Map Match

In [6], we have proposed a first scheme to perform map

matching between a user map and a prior map, which will be

briefly reviewed in the following.

In a first step, the correspondences among transmitters in

the two map must be found. While a user has no information



on the absolute locations of the transmitters in the prior map,

the information on the relative locations of the transmitters

within each map can be exploited. In particular, the relative

distances among transmitters within each map are regarded.

Based on these relative distances, the correspondences among

transmitters are found by a least squares solution.

The shape of a transmitter state PDF depends on the

user trajectory and the corresponding geometrical delusion

of precision (GDoP). Thus, the shapes of the state PDFs of

one transmitter estimated by two different users may differ

considerably, and a divergence such as the Kullback–Leibler

divergence between the two transmitter estimates may be

misleading. Thus, we use only transmitters whose variances

of the state PDFs are below a threshold δσ for map matching,

and the distance between two transmitters is defined as the

Euclidean distance between the means of their state PDFs.

Let µu
j =

[

xu
j yuj τuj

]T
be the mean of the state PDF of the

jth transmitter in the user map. Likewise, µ
p
j =

[

xp
j ypj τpj

]T

denotes the mean of the corresponding transmitter’s state PDF

in the prior map. We stack up the means of NT transmitters’

state PDFs from the user map in the matrix

Mu =
[

µu
1

. . . µu
NT

]T

(11)

and accordingly the means of the NT transmitters’ state PDFs

from the prior map in

Mp =
[

µ
p
1

. . . µ
p
NT

]T

. (12)

The rotation matrix Rβ is defined as

Rβ =







cosβ sinβ 0

− sinβ cosβ 0

0 0 1






. (13)

With γ =
[

x̄ ȳ 0
]

and J =
[

1 . . . 1
]T

, which is of

dimensions NT ×1, the relation between the user map and the

prior map can be expressed as

Mu = MpRβ + Jγ +E, (14)

where E is a residual matrix. The unknown rotation parameter

β and the translation parameters x̄ and ȳ can be obtained

by minimizing the match error, which is the trace of the

matrix ETC−1E, in a least square sense. The matrix C is

a diagonal matrix containing the one-dimensional variances

of the corresponding transmitters. With C, the transmitters

are weighted for map matching: the reliability of transmitters

with small variance is higher than the reliability of transmitters

with a high variance.

The above method for finding a map match requires the

number NT of transmitters in Mu and Mp to be the same, and

that for each transmitter in the user map, there is a correspon-

dence in the prior map. Both conditions are usually not met in

practice, as some transmitters observed by one user may not

be observed by another user and vice versa, depending on the

corresponding user trajectories. Thus, in [6], map matching

is performed for all subsets of NT transmitters in the user

map and in the prior map, resulting in a huge computational

complexity if many transmitters have been observed. The

parameters for which the match error Tr(ETC−1E) is the

smallest are chosen.

B. RANSAC in Channel-SLAM

We propose to use a variant of the RANSAC [7] algorithm

for map matching. The fundamental goal of RANSAC is

to estimate the parameters of a mathematical model based

on a set of data points corrupted by outliers. Outliers are

data points that do not fit the model. The generic algorithm

works as follows. Subsets of the data set are randomly chosen

assuming that these data contain only inliers, i.e., data being

consistent with the underlying mathematical model. Based on

the subsets, the parameters for the mathematical model are

estimated and evaluated with the entire data set. The set of

data points that fit the model is defined as the consensus set.

The above procedure is repeated multiple times, and the model

parameters calculated with the in some sense best consensus

set are returned. The algorithm is summarized in Algorithm 1.

Algorithm 1: The general RANSAC algorithm

Input: a data set and a mathematical model

Output: parameters of the mathematical model

for a certain number of times do
choose a random set of data points from the data

set;

calculate the model parameters for the data points;

define the consensus set as the data points that

support the model parameters;

if size of the consensus set is larger than a

threshold then

add this consensus set to the set Ω;

find the ’best’ consensus set from Ω and return the

corresponding model parameters;

The ability to determine inliers and outliers makes

RANSAC a very powerful tool for map matching. For map

matching, inliers are transmitters that can be found in both

the user and the prior map, whereas outliers are transmitters

that are in one of the two maps only. The mathematical model

is given by Eq. (14), and the parameters of interest are the

rotation β and translation γ. The numbers of transmitters in

the user and in the prior map are denoted by NU and NP,

respectively. The data set is the set of means of the transmitter

state PDFs in the user and the prior map. The set

D = {U,P} (15)

is the combination of the set U of transmitter indices from the

user map and the set P of transmitter indices from the prior

map, i.e.,

U = {u1, . . . , uNU
}

P = {p1, . . . , pNP
}.

(16)
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Fig. 3. In (a), the means of transmitters 1 to 4 from the user map and the
means of transmitters A to D from the prior map are drawn in red rectangles
and green circles, respectively. A map match with NC = 3 is shown in (b), a
map match with NC = 2 is shown in (c). The dashed red circles represent the
threshold δd. Filled red circles indicate transmitters from the user and prior
map in the consensus set.

A consensus set C of cardinality NC is described by the set

of tuples

C = {(q1, r1) , . . . , (qNC
, rNC

)} , (17)

where qℓ ∈ U and rℓ ∈ P as well as qℓ 6= qu and rℓ 6= ru for

ℓ 6= u. Each tuple in the consensus set describes an association

between a transmitter from the user map and a transmitter from

the prior map.

An inlier is found if the distance between a transmitter in

the user map and a transmitter in the prior map is smaller than

a threshold δd after the rotation and translation. Thus, the tuple

(qℓ, rℓ) is added to the consensus set if

‖µu
qℓ

− µ̃p
rℓ
‖ < δd, (18)

where

µ̃p
rℓ
=

(

µp
rℓ

T
Rβ + γ

)T

(19)

is the mean of the rℓ
th transmitter state PDF from the prior

map transformed according to the model in Eq. (14) and ‖·‖
denotes the Euclidean norm.

The idea of RANSAC for map matching is illustrated

in Fig. 3. In Fig. 3 (a), the red rectangles represent the

transmitters 1 to 4 from the user map, and the green circles the

transmitters A to D from the prior map. After map matching, a

map match has been found in Fig. 3 (b), where the dashed red

circles have the radius δd. There are NC = 3 inliers found, for

which the dashed red circles are filled red. The consensus set is

thus described by C = {(1,A) , (2,B) , (4,D)}. Accordingly,

in Fig. 3 (c), C = {(2,A) , (4,D)} with cardinality NC = 2.

As mentioned above, RANSAC chooses the best consensus

set whose cardinality is above a threshold. Within this paper,

we choose the consensus set which minimizes the error

EC =
1

NC

NC
∑

ℓ=1

‖µu
qℓ

− µ̃p
rℓ
‖ −NCρrew, (20)

where (qℓ, rℓ) ∈ C and ρrew is a reward term. If the error

is above a threshold, we consider the solution unreliable and

assume that no map match has been found. The reward term

decreases the error for consensus sets of high cardinality, since

the reliability of a map match tends to be higher the more

transmitters are incorporated in the map match.

C. Local Optimization

The basic RANSAC algorithm assumes that a model es-

timated only with inliers is consistent with all other inliers.

However, this assumption does not hold in our case, where we

have two reasons for noisy or biased data. On the one hand,

we regard only the means of the state PDFs of transmitters.

Although only transmitters with a variance smaller than the

threshold δσ are used, the means might be biased towards

the true transmitter location. On the other hand, bad estimates

from the channel estimator KEST may bias the transmitter

mean estimates. Thus, a local optimization in RANSAC is

applied as in [14].

The optimization is performed in each iteration after the

parameters of the mathematical model are estimated. First, all

inliers from the entire data set that are consistent with the

model are found, i.e., all transmitters that have a correspon-

dence in the other map. Then, the model parameters are re-

estimated based on these inliers. In [14], further optimization

variants are proposed. One variant is to start with a multiple

of the threshold δd for obtaining the inliers and decrease it

iteratively until it reaches δd. A second variant is an inner

RANSAC algorithm sampling only from the inliers, whereas

the obtained models are evaluated based on the entire data set.

A third variant is the combination of the two above.

The advantages of the local optimization step are twofold.

On the one hand, the number of inliers found is increased,

which also leads to a faster convergence of RANSAC. In

addition, the estimate for the model parameters tends to be

more precise.

D. Using the Prior Map

When a map match has been found, the information from

the prior map can be fused in the particle filter with the

measurements zk obtained from KEST as in Fig. 2. Every time

a new signal component is detected by KEST, the question

arises if this signal component corresponds to a transmitter

that has been observed earlier by the user, to a transmitter

from the prior map, or to none of the above. In the latter

case, a new transmitter needs to be initialized based on the

first measurement from KEST. Otherwise, the new transmitter

can be initialized directly with the corresponding transmitter

in the user or prior map. The above question is referred to as

data association. In [15], we have proposed a data association

scheme for Channel-SLAM.

IV. SIMULATIONS

To evaluate the methods developed in Section III, we

performed simulations in an indoor scenario with a single

physical transmitter. A top view on the scenario is depicted
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Fig. 4. The indoor simulation scenario with five different user tracks. The ith

user walks along the ith track starting from Si finishing at Ei. There physical
transmitter in the scenario is marked by the red triangle labeled Tx.

in Fig. 4. The physical transmitter location is represented

by the red triangle labeled Tx. The transmitter continuously

broadcasts a transmit signal of 100MHz bandwidth. The thick

black lines represent walls that reflect the transmit signal.

Likewise, the black dots model point scatterers that spread

the energy of an impinging signal uniformly to all directions.

Within the scope of this paper, we assume that the transmit

signal interacts with at most two objects, i.e., we have single

and double reflections and/or scattering.

There are five different user tracks in different colors. The

ith user walks along the ith user track whose start and end

points are labeled Si and Ei, respectively. The users walk

with a constant speed of 1m/s, and record a snapshot of the

received signal every 0.05ms. The receivers of the users are

equipped with two-dimensional antenna arrays consisting of

nine elements to obtain both ToA and AoA estimates of the

impinging signal components.

The number Np of particles in the user particle filter is

2000. The number Np,Tx of particles in the transmitter’s

particle filters is adapted dynamically to the uncertainty of

the corresponding transmitter’s state with a particle reduction

method from [16]. Thus, a transmitter’s state PDF with a

low uncertainty can be represented with a small number of

particles.

For the evaluations, track 0 serves as a reference track.

A reference user walks along the reference track with no

prior map, i.e., no previous knowledge on the location of any

transmitter in the scenario. As the reference user walks through

the scenario, they create a map of observed transmitters. This

map is handed over to the other four users, i.e. users 1 to 4.

We assume the starting locations of the users to be known, but

not their initial heading. Thus, the relative translation between

the coordinate systems of the reference user and the other

users is known as well, and the relative rotation needs to be

estimated. The users 1 to 4 walk along their respective track

two times and try to find a map match with the prior map

obtained from the reference user. The first time, map matching

is performed based on a least squares method as proposed

in [6] and described in Subsection III-A. It will be referred

to as without RANSAC. The second time, the map matching

is performed with the RANSAC algorithm as described in

Subsection III-B including the local optimization, and it is

referred to as with RANSAC. These two methods are compared

against each other in the following.

From the location of the physical transmitter and the sce-

nario in Fig. 4, the locations of the virtual transmitters can

be calculated. We calculate the ground truth locations of all

virtual transmitters up to an order of two in the scenario,

i.e., virtual transmitters that arise due to single and double

reflections and/or scattering. For the evaluations, we regard

the ground truth transmitter locations for each of the users

1 to 4 rotated by the ground truth angle β and the ground

truth transmitter locations rotated by the angle β̂, which was

estimated by the corresponding user. In Fig. 5, the distance

between any pair of these transmitters is plotted for each user

1 to 4, i.e., the distance from the transmitter location estimated

by the user to the true location. The blue curves show the

distances for map matching without RANSAC, and the red

curves with RANSAC. The distances can be regarded as an

error for the means of the estimated transmitter location state

PDFs. We regard only those transmitters that can be observed

from the track of the corresponding user. Thus, the overall

number of transmitters on the x-axes in Fig. 5 differs from

one user to another, and transmitters with the same number

from different users might not correspond. The results were

averaged over 70 independent simulations for each user.

From Fig. 5 can be observed that the errors with RANSAC

are generally significantly smaller than the errors without

RANSAC. Thus, the transmitter locations in map matching are

estimated with a significantly higher robustness and accuracy

with the method proposed in this paper. Note that the absolute

values of the errors depend on the locations of the origins of

the coordinate systems, since the maps are rotated around the

origin. In particular, transmitters of higher orders that arise

due to reflections of the transmit signal at distant walls may be

spread widely in the scenario. The errors for such transmitters

that are far away from the origin of the coordinate system tend

to be big even after a rotation by an angle with only a small

bias.

V. CONCLUSION

In multipath assisted positioning, maps of locations of phys-

ical and virtual transmitters can be exchanged among users.

The information from such maps can be fused with the obser-

vations of the users to increase the positioning performance.

Though, since each user is in their own coordinate system, the

relative rotation and translation between two maps’ coordinate

systems have to be estimated based on the transmitters in

the maps. Within this paper, we have proposed a variant

of RANSAC to estimate this rotation and translation. The

ability of RANSAC to deal with outliers, i.e., with transmitters

that are in only one of two maps, is very beneficial for

our map matching problem as it increases the robustness
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Fig. 5. For each user 1 to 4, the distances between the true and estimated
transmitter locations after map matching are plotted for all transmitters that
were observed by the corresponding user. For the blue curves, map matching
was performed with a least squares method without RANSAC, and for the
red curves with the RANSAC method proposed in the paper.

compared to our previous least squares approach. We showed

in simulations that RANSAC increases the accuracy of map

matching significantly compared to the standard least squares

method.
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