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1 Introduction 
Approximately every third journey undertaken in Germany falls into the category of commercial 
transport, that is, freight deliveries or service trips (Menge & Horn 2014), with the proportion being 
even higher in the dense city cores. According to forecasts, freight traffic on German roads will 
continue to rise in the coming years: in 2030, Germany will experience 39% more volume (in ton-
miles) compared to 2010 (BMVI 2014). There is a clear political and societal will to develop 
countermeasures to cope with the negative externalities that coincide with increasing commercial 
transport operations, such as air and noise pollution, greenhouse gases, congestion, safety hazards, and 
less urban liveliness. More than 500 European municipalities have imposed vehicle access restrictions 
(Kassyda 2016), and the first cities have imposed driving bans for diesel-driven vehicles, with 
Stuttgart (where Daimler and Porsche have their headquarters) being a prominent example (Bennhold 
2018). In May 2018, the European Commission sued Germany, the UK, France, Italy, Romania, and 
Hungary, stating that these countries had failed to meet NOx and PM limits (European Commission 
2018). Furthermore, the European Commission set the goal to “achieve essentially CO2-free city 
logistics in major urban centers by 2030” (European Commission 2011).  

To minimize the environmental burden of commercial trips, using cleaner and smaller vehicles such as 
electric cargo cycles for freight operations and service trips is seen as one promising solution (Schliwa 
et al. 2015). A substantial substitution potential for cargo cycles was found for Germany: 8-23% of 
commercial trips and 1-4% of the corresponding mileage could technically be shifted to cargo cycles 
(Gruber et al. 2016). Successful commercial use cases for cargo cycles have been found throughout 
Europe (Schliwa et al. 2015, Lenz & Riehle 2012). 

There are diverging results when it comes to assessing operative feasibility. Some authors use (micro) 
simulation approaches for concept assessments. For Porto (Portugal), a replacement potential of 10% 
of conventional vans for distances up to 2 km (1.2 miles) was found to be economically viable (Melo 
& Baptista 2017). For Berlin (Germany), results show a potential 22% reduction in emissions, and cost 
savings of 28% for parcel providers, if the use of cargo cycles is implemented (Zhang et al. 2018). On 
the other hand, a similar approach for Seattle, WA, finds that cargo cycles are hardly a cost-efficient 
solution for last-mile logistics (Butrina et al. 2018). Data from Austin, TX, was used to compare the 
costs of cargo cycles with the trucks used by the US Postal Services, and this showed the cost 
competitiveness for e-trikes, especially in CBD areas and during congested traffic conditions 
(Choubassi et al. 2016). 

While diversification and performance increases in available cargo cycle models have been noticeable 
in recent years, many businesses are still reluctant to implement the use of this type of vehicle. Fleet 
decision-makers and the customers of logistics operators show reservations about using cargo cycles 
(Melo & Baptista 2017), while the prevalent conditions and cultures of many small-sized cycle freight 
companies prevent a professionalization of the sector, as has been found in the UK (Schliwa et al. 
2015).  

Many consider the load-carrying capacity of cargo cycles to be a deterrent to their application. Though 
it is unrealistic to consider cargo cycles replacing all forms of motorized commercial transport in 
urban areas, findings show that a substantial amount of commercial trips being carried out by 
motorized vehicles can be taken over by cargo cycles in terms of load capacity, as has been shown for 
point-to-point shipments (Gruber et al. 2014).  

Another major factor affecting the successful application of cargo cycles is their travel time 
performance in comparison to cars. As was hinted in the literature (Melo & Baptista 2017, Choubassi 
et al. 2016), the travel times of cargo cycles might be one of the operative limits as they are said to 
only be suitable for short travel distances. Time is arguably the most precious asset within commercial 
transport operations; hence, we want to focus on this important issue: the (potential) increase in travel 
time when switching to a smaller and cleaner vehicle. By looking at cargo cycles’ travel time 
differences compared to cars, we would like to contribute to the assessment of the cargo cycles’ 
substitution potential within commercial transport operations.  
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The two main research questions addressed are: 

1. What are the differences in travel times between cargo cycles and cars when used for 
commercial transport operations? 

2. Which factors, including but not limited to trip distance, payload utilization, time of day, 
and vehicle type, affect these travel time differences? 

The rest of this paper is organized as follows: after a summary of the existing literature, the research 
setting and methods will be described, followed by descriptive statistics of the cargo cycle trips sample 
and the model results. Subsequently, an application of the model and a scenario analysis will be 
presented. After discussing our findings, this paper ends with a conclusion. 

2 State of the Art  
This section consists of literature findings concerning speed and travel time differences between 
bicycles or cargo cycles and cars as well as macroscopic factors affecting bicycle and car speed. 
Generally, the literature concerning cargo cycles and relating to the current research focus is limited; 
hence, literature findings from both commercial and passenger transport were considered.  

One contribution presents an in-depth analysis of two cycle freight operators in New York City using 
human-powered vehicles (Conway et al. 2017). It was shown that cargo cycles can be competitive in 
terms of speed compared to conventional vehicles in congested situations. Results from Porto (Melo & 
Baptista 2017) indicate that the implementation of cargo cycles can lead to better traffic performance 
(with lesser delay times being one indicator), yet only up to a replacement rate of 10% of conventional 
vehicles.  

Concerning passenger transport, speed ranges of electric bicycles and cars show some overlap, as 
shown for Europe (BMVIT 2016) and the United States (Tranter 2012), which can be seen as an 
indicator of the potential for competition between these modes, even in commercial transport 
operations. One analysis compares hailing a taxi to taking a rental bike in New York City for trip 
distances of up to 6 km (3.7 miles) (Faghih-Imani et al. 2017). While this study doesn’t address freight 
movement, some findings might be comparable. The results show that, on average, taxi trips were 
slightly faster than bicycle trips. However, some influencing factors can cause substantial deviations in 
the travel time differences between bicycle and taxi. In the following, spheres of influence are grouped 
into spatial context, time, vehicle, and trip conditions. 

Concerning spatial context, it was found for New York City that greater trip distance was a factor 
favoring trucks over cargo cycles without electric assist (Conway et al. 2017), as well as taxi travel 
times compared to bicycles for private mobility (Faghih-Imani et al. 2017), i.e., one can expect higher 
travel time difference between cycles and cars as the trip distance increases. Comparing trip distances 
between identical origin-destination relations for bicycles and cars, bicycles have the option of taking 
shortcuts, e.g. through parks or along one-way streets that are bidirectional for bicycles, which renders 
travel time savings (Tranter 2012); hence, cycles can achieve reduced travel time compared to cars. 
Different elevation levels of origin and destination have an effect on bicycle speed, the speed declining 
with increasing road grade due to grade resistance (Tengattini & Bigazzi 2017). On a disaggregate 
level, a positive influence on cycling speed was found within Montreal’s road network due to the 
availability of good/dedicated bicycle infrastructure (Strauss & Miranda-Moreno 2017). 

Furthermore, temporal aspects play a role: bicycles have an advantage in terms of speed during times 
of greater congestion such as morning rush hour periods, as was found for freight (Conway et al. 
2017) and passenger transport (Strauss & Miranda-Moreno 2017). On the other hand, empty network 
conditions that would more likely happen on weekends or during the night would favor increased car 
speeds (Laflamme & Ossenbruggen 2017). 

When it comes to type of vehicle, the presence and type of electric assist plays a role. The speed gains 
of electrically assisted bicycles (predominantly used for private mobility) in Germany are 2-9 km/h 
(1.2-5.6 mph), due to the lower level of effort required to achieve a higher speed (Schleinitz et al. 
2017). When it comes to cargo cycles, two-wheelers are generally seen as faster than three-wheelers 
because of the extra effort required to ride three-wheelers. This effect is strengthened by the fact that 
the usual payloads are higher for three-wheelers (Tab. 1). 
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Finally, specific trip conditions could change travel speeds. Several studies look at the influences of 
weather variables on cycling behavior such as modal share, frequencies, and use duration per day 
(Böcker & Thorsson 2014). However, results concerning influences on cycling speed and travel time 
have not been found. For combustion engine vehicles, analyses found significant speed reductions 
caused by precipitation and inclement weather (Akin et al. 2011). 

Literature findings concerning speed and travel time differences between bicycles and cars show that 
cycles are promising in terms of speed and travel time. However, it should be noted that an analysis 
consisting of users from different sectors of commercial transport is still missing and the current study 
has been designed to fill this gap. Though an in-depth analysis on cargo cycle speed is conducted in 
(Conway et al. 2017), it should be noted that the findings were generated based solely on freight 
operators in Manhattan and one distinct cargo cycle model. Given the diverse needs of different 
organizations, results based on CBD delivery operators and a single cycle model might not be 
sufficient, and large-scale research comprising different types of cargo cycles and a wide variety of 
users and contexts is warranted.  

Major factors that should be explored during this research include trip distance, shortcuts available for 
cycles, road grade, network load (peak and off-peak hours), cargo cycle type (number of wheels and 
presence of electric assist), and weather conditions (temperature and precipitation). Although, to the 
best of the authors’ knowledge, there is no existing literature on this, the authors would like to explore 
the effect of payload utilization and car ownership per capita in the cities where the trips were carried 
out. One would assume that increased payload utilization would result in decreased cycle speed. The 
authors believe that this decrease might not be substantial until a certain threshold (e.g. ¾ of 
maximum) of payload utilization has been reached and would like to analyze this in this research. 
Regarding car ownership per capita, it can be assumed that higher car densities would increase the 
probability of congestion and hence lead to an increase in travel time for cars. 

3 Research Setting  

3.1 Project Background: “Ich entlaste Städte” – The German Cargo Cycle Testing 
Scheme for Commercial and Public Users  

Despite their great potential, to date cargo cycles have rarely been used in commercial operations. The 
project “Ich entlaste Städte” (“Taking the load off cities”), managed by the Institute of Transport 
Research within the German Aerospace Center (DLR), aims to decrease barriers built on uncertainty 
or a lack of knowledge about the operative feasibility of cargo cycles. Therefore, private companies 
and public organizations across Germany are being given the opportunity to test a cargo cycle for three 
months at a very low cost (roughly US$ 30 monthly). The project is specifically targeted at companies 
without cargo cycle experience, irrespective of business sector, size, or location. Participating 
organizations can choose between 18 different cargo cycle models, of several construction types, in 
order to cope with heterogeneous demand and use patterns. 

3.2 Data Collection  

3.2.1 Cycle Trip Details  

During cargo cycle testing, the participating organizations are required to use a smartphone app which 
was developed for the purpose of obtaining data. Users manually start and stop GPS track recording 
and answer trip-related questions, such as trip purpose, payload capacity utilization, or substituted type 
of vehicle. Trips with inconsistencies (e.g. ‘jumps’ due to insufficient GPS coverage) and round trips 
were removed. The sample contains 1,421 cargo cycle trips. 

3.2.2 Car Trip Details  

Equivalent data for the mode ‘car’ was obtained from Google Maps using the latitude and longitude 
values for the origins and destinations of the cargo cycle trips, day, and starting time (Melo & Zarruk 
2016). The potential of Google Maps’ API for travel time estimation has been shown in Wang & Xu 
(2011) and Dumbliauskas et al. (2017). Two estimates of travel times were obtained, namely ‘best 
guess’ and ‘pessimistic’. Best guess is the best estimate (most likely value) for travel time and 
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pessimistic value is a value longer than the actual travel time on most days (a value representing the 
upper end of the travel time distribution, representative of the congested scenario for cars). While ‘best 
guess’ values were used for model estimation, pessimistic travel times were used for scenario analysis 
in order to evaluate the effect of congestion. 

3.2.3 Other Variables and Data  

Further data was collected concerning city size (BBSR 2015), car ownership (Kraftfahrt-Bundesamt 
2018), altitude of the trip origins and destinations (Cooley 2017), air temperature and precipitation for 
all involved locations on an hourly basis (DWD n.d.), and perceived bicycle infrastructure quality 
(ADFC 2016). 

Furthermore, data from the most recent national travel survey focusing on commercial transport 
(KiD2010) was used (BMVBS 2012) to create a subsample of trips that are feasible for cargo cycles. 
Filter criteria: Vehicle type: motorcycles, cars, or light commercial vehicles with up to 3.5 metric tons 
(3.2 T) of payload, trip length ≤ 20 km (12.4 miles), trip payload ≤ 50 kg (110.2 lbs.), trip purpose: 
commercial transport or service trips. Within these criteria, a total of 2.37 billion commercial trips are 
carried out each year in Germany. 

3.3 Sample Descriptive Statistics  

3.3.1 Geographic Background  

This analysis sample contains 1,421 cargo cycle trips. These trips were carried out by 84 users located 
in 44 German municipalities in 14 out of the 16 German states. Naturally, large cities proved to be a 
favorable setting for alternative vehicle concepts, with 11 users from Berlin and seven users in 
Munich. While three out of four participating organizations are located in cities with 100,000 or more 
inhabitants, medium-sized cities and rural areas were also involved.  

3.3.2 Organizational Background  

Almost half of the users are self-employed or work as freelancers, underlining that low-cost cargo 
cycle testing is highly attractive for this professional group. Participation in the project is not limited 
to companies; consequently, approximately every fourth user was a public institution, an association, 
or another type of organization. The sample contains a very diverse collection of business areas, 
including: café, carpenter, chimney sweep, construction firm, copy shop, courier logistics, facility 
management, flower delivery, gardener, movie production, municipal agency, pharmacy delivery, and 
photographer. Concerning turnover, 88% of the organizations are considered micro enterprises 
(turnover < € 2 million), while the remainder is quite evenly distributed among small (€ 2-10 million), 
medium-sized (€ 10-50 million), and large enterprises (> € 50 million). More than four out of five 
organizations hadn’t had any cargo cycle experience prior to the test.  

3.3.3 User Characteristics  

It was not possible to collect socio-economic data for all the users due to data privacy concerns. Only 
38 users registered their socio-economic data (less than half the number of users in the sample). 
Exploring the data of the 38 users shows that their ages range from 26 to 61. Among the 38 users, 34 
are male and four are female. Nine users earned a net income of below € 1,750, 10 above € 3,000 and 
the rest in between. Only two of the 38 users had experience with cargo cycles before this project.  

In summary, looking at geographic background, organizational background, and characteristics of the 
users, it is certain that the sample includes a broad variety of users. 

3.3.4 Vehicle Characteristics  

Participating organizations were offered a selection of 18 different vehicles, which can be grouped into 
five construction types (Tab. 1). Parts of the fleet are two-wheelers and targeted towards more time-
critical operations, while tricycles have higher payload capacity and therefore rather lower speed 
profiles. Most of the models had electric assist up to 25 km/h (15.5 mph), known as ‘Pedelec-25,’ as 
these vehicles are classified as non-motorized bicycles by EU law. Two models had no electric assist, 
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and one model had electric assist up to 45 km/h (28.0 mph), known as ‘Pedelec-45’. All models were 
able to carry a minimum payload of 50 kg (110.2 lbs.). 

3.3.5 Trip Characteristics  

Fig. 1 shows the sample’s trip distance distribution compared to the KiD2010 survey, which is 
representative for commercial transport in Germany (see ‘Data Collection’). While for trip distances 
between 9 and 20 km (5.6-12.4 miles), the sample contains substantial smaller shares of the total 
amount of trips, it is still the case that, both in the sample and in KiD2010, the vast majority of 
commercial trips are below 10 km (6.2 miles): 89% of the sample trips and 76% of the KiD2010 trips, 
respectively.  

 

Fig. 1:  Distribution of trip distances in sample (n=1,421) and KiD2010 (n=2.37 billion). 

Tab. 1 presents in-depth descriptive statistics of the analyzed sample. From the table, one can ascertain 
that the dataset consists of a good representation of trips throughout the day (intra-day variation) and 
also for each day of the week (inter-day variation). 

As can be seen in Fig. 2, the travel times by cargo cycles and cars overlap, especially for lower 
distance trips. As trip distances increase, cars become more advantageous in terms of speed. However 
it should be noted that, even for longer trips, there are some cases where cargo cycles are faster.  

Tab. 1:  Fleet and Trip Characteristics 

Cargo Cycle Fleet Used 

No. of 
wheels 

Construction type 
Side view 
of typical 

model 

No. of 
models 

Models with 
electric assist 

No. of 
vehicles 

Mean 
cargo box 

volume 
(L) 

Share of 
trips 

(n=1,421) 

2 

Pizza delivery bike 
 

1 1x without 8 131 6.1% 

Long John bike 
 

9 
1x without 

7x Pedelec-25 
1x Pedelec-45 

56 187 67.8% 

Longtail bike 
 

2 
1x without 

1x Pedelec-25 
4 

no cargo 
box 

11.7% 

3 

Tricycle, front load 
 

5 5x Pedelec-25 15 304 13.7% 

Heavy-load tricycle 

 

1 1x Pedelec-25 1 1300 0.8% 
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Trip Characteristics (n=1,421) 
Cycle trip distance 
(km) 

Min 0.3 Car trip distance 
(km) 

Min 0.3 
Mean 5.8 Mean 5.9 
Median 5.3 Median 5 
Max 18.6 Max 21.5 

Cycle trip travel time 
(min) 

Min 1.3 Car trip travel time  
(min) 

Min 1.2 
Mean 21.5 Mean 12.8 
Median 19.7 Median 12.2 
Max 69.9 Max 39.4 

Cycle trip speed 
(km/h) 

Min 7.9 Car trip speed (km/h) Min 10.6 
Mean 15.9 Mean 26.9 
Median 15.7 Median 24.7 
Max 32.7 Max 67.1 

Elevation difference 
between destination 
and origin (m) 

Min -132.8    
Mean 1.1   
Median 0.2   
Max 137.8   

Temperature (°C) Min -9.5 Precipitation (mm/hour) Min 0 
Mean 9.5  Mean 0.1 
Median 8.8  Median 0 
Max 27.4  Max 5.2 

Intra-day variation  
(share of trips) 

12-6 a.m. 1.2% Inter-day variation  
(share of trips) 
  

Mon 15.1% 
6-7 a.m. 1.0% Tue 17.7% 
7-8 a.m. 5.5% Wed 20.6% 
8-9 a.m. 6.0% Thu 16.9% 
9-10 a.m. 6.6% Fri 16.6% 
10-11 a.m. 7.7% Sat 8.3% 
11 a.m.-12 p.m. 7.4% Sun 4.8% 
12-1 p.m. 6.2% Utilization of available 

loading capacity   
(share of trips) 

Almost empty 21.2% 
1-2 p.m. 6.2% One quarter 30.1% 
2-3 p.m. 6.9% Half 19.5% 
3-4 p.m. 6.1% Three quarter 10.2% 
4-5 p.m. 5.6% Full 18.2% 
5-6 p.m. 7.5% Overloaded 0.7% 
6-7 p.m. 8.8% Trip purpose return trip  

(share of trips) 
Yes 29.5% 

7-8 p.m. 6.9% 
8-9 p.m. 3.8% Three-wheeled cargo 

cycle (share of trips) 
Yes 14.4% 

9-10 p.m. 2.8% 
10-11 p.m. 2.5% Electric assist  

(share of trips) 
Yes 81.3% 

11 p.m.-12 a.m. 1.3% 
NOTE: 1 L = 0.0353 ft³; 1 km = 0.621 miles; 1 m = 1.094 yd;  Fahrenheit temperature F = 1.8*C + 32 
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Fig. 2.  Travel times of cargo cycles and cars versus trip distance. 

4 Model Estimation  
As mentioned earlier, the travel time for the mode ‘cargo cycle’ was taken from the trip details 
recorded through the official smartphone app while, for the mode ‘car’, the data was obtained from 
Google Maps. A regression model will be estimated since the factors are easily interpretable and the 
model is readily usable. The difference between the travel times of the modes ‘cargo cycle’ and ‘car’ 
(in min) was considered as the dependent variable for the model.  

Regression models based on an ordinary least squares (OLS) approach were tried out initially. 
Attributes for the model were selected based on the literature. The decision to keep an independent 
variable was based on the p-value (significance level 0.10) of the corresponding variable and the 
adjusted R2 value of the model obtained upon adding the new variable.  

Since the route options available to the mode ‘car’ could increase for longer trips and hence there 
could be a wider distribution of travel time difference, it was expected that the variance of the 
residuals would increase as the trip length increases, i.e. the residuals were expected to be 
heteroskedastic. To account for the heteroskedasticity, it was decided to apply weights to the residual 
variance based on the trip length (υ; variance covariate), as shown in Equation 1 (Pinheiro & Bates 
2000). To implement this, a generalized least squares approach (GLS) was implemented with the same 
model specification as that of the final OLS model. GLS is efficient over OLS in the presence of 
heteroskedasticity (Greene 2012). ANOVA test was used to ascertain the significance of the GLS 
model.  

���(�) = 	���          (1) 

Given that there are multiple observations from individual users, observations would be correlated. 
The estimated standard errors are biased if this fact is ignored (Dupont & Martensen 2007, Moulton 
1986), especially when the model does not contain user-specific attributes. Hence, a random intercept 
model was used to capture the influences of the user on the dependent variable. The suitability of a 
random intercept model for a dataset containing correlated observations is made obvious in (Dupont & 
Martensen 2007), which shows the application of mixed models in the field of traffic safety. 
Following the estimation of a random intercept model, the intraclass correlation (ICC) was computed 
based on Equation 2 (Dupont & Martensen 2007, Moulton 1986) to substantiate the necessity for a 
random intercept model.   
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Further, 5-fold cross-validation (James et al. 2013) was carried out to compare the predictive 
performance of the three model types: OLS, GLS, and the random intercept model. The validation 
process involves dividing the sample set into five groups of equal size. Estimation is done using four 
groups while the remaining set is used as a validation set. The estimation is repeated four more times, 
and each time a different group is considered as the validation set. The process results in five Mean 
Squared Error (MSE) values, with the final MSE being calculated by averaging the five values. MSE 
values for each model are computed and compared to assess the predictive performance of the models. 

5 Model Results  
The estimation results from the OLS models show that all the independent variables tested have the 
expected sign. The OLS model with the variable ‘cycleTripDistance’ had an adjusted R2 value of 
0.648, proving that this variable is the most significant one. The second most significant variable was 
‘distanceDifferenceCarAndCargoCycle,’ which improved the adjusted R2 value from 0.648 to 0.697. 
Followed by this, log(carOwnership) improved the adjusted R2 value to 0.727. Adding the rest of the 
significant variables resulted in a minor improvement of the adjusted R2 value, reaching 0.755 in the 
final OLS model.  

As expected, the residuals from the OLS model were heteroskedastic (Fig. 3A). A visual inspection of 
the fitted vs residuals plot of the GLS model (Fig. 3B) showed that the heteroskedasticity issue has 
been nullified. The change in significance level of some of the variables in the GLS model reflects the 
correction applied to heteroskedasticity. In the initial estimation of the random intercept model, the 
variable ‘isTemperatureAbove5’ was insignificant (t-value: -1.405 and p-value: 0.160), and hence this 
variable was removed. As mentioned in the methodology section, a model without random intercept 
could result in inflation or deflation of the t-values, and the significance of the temperature dummy 
variable in models without random intercept is an example of this. The intraclass correlation value 
obtained for the current dataset is 0.33, with a value of 0.20 and above being considered a large value 
(Kreft & de Leeuw 1998). Hence, it is certain that the clustering effect of the users cannot be 
disregarded, and a random intercept model must be used. Fig. 3C shows the fitted vs residuals plots of 
the random intercept model and Fig. 3D shows the cumulative distribution of travel time difference in 
the sample and the fitted values from the model.  

 

Fig. 3.  Residual distribution from OLS (A), GLS (B), and random intercept Model (C); Cumulative 
distribution of original and fitted values of dependent variable (D). 
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Comparing the values of the goodness of fit indicators between the GLS model and the final random 
intercept model clearly showed that the random intercept model is statistically superior. Hence, this 
model will be used for further analysis. Variables that were insignificant in the OLS model remained 
insignificant in the random intercept model. The random effect, which represents the variation 
between the users, is normally distributed with a mean of 0. Though there is no substantial difference 
in the mean squared error value obtained for the three models through 5-fold cross-validation, the 
random intercept model performs slightly better than the other two.  

In Tab. 2, below, the estimates are presented from the final OLS model, the GLS model, and the 
random intercept model along with the result of the cross-validation and goodness of fit indicators.  

 

Tab. 2:  Estimation Result 

Coeff.  
OLS Model GLS Model Random Intercept Model 

Estimate 
Std. 
err. 

t. Statistic Estimate 
Std. 
err. 

t. Statistic Estimate 
Std. 
err. 

t. Statistic 

βCON 3.160 0.593 5.332 (***) 1.760 0.424 4.339 (***) 2.318 0.596 3.889 (***) 
βTD 1.846 0.033 55.699 (***) 1.747 0.030 57.129 (***) 1.696 0.032 53.279 (***) 
βED-M 0.132 0.027 4.856 (***) 0.131 0.027 4.843 (***) 0.129 0.026 5.017 (***) 
βED-E 0.025 0.005 4.845 (***) 0.022 0.005 4.763 (***) 0.020 0.004 4.513 (***) 
βDD -1.657 0.104 -15.927 (***) -1.784 0.103 -17.110 (***) -1.665 0.109 -15.308 (***) 
βCO -0.609 0.071 -8.575 (***) -0.342 0.052 -7.956 (***) -0.512 0.106 -4.848 (***) 
β6-10 -2.008 0.447 -4.492 (***) -1.824 0.360 -4.637 (***) -1.318 0.357 -3.692 (***) 
β10-19 -1.128 0.375 -3.007 (**) -1.217 0.300 -3.987 (***) -0.993 0.296 -3.352 (***) 
β3W 1.779 0.360 4.946 (***) 2.025 0.273 7.872 (***) 2.066 0.504 4.100 (***) 
βP45 -2.359 0.342 -6.889 (***) -0.930 0.245 -3.800 (***) -1.292 0.632 -2.044 (*) 
βT>5 -0.865 0.258 -3.358 (***) -0.290 0.172 -1.686 (.) - 
σCON - - 1.126 
5-fold 
Cross-
validation 

MSE: 20.441 MSE: 20.669 MSE: 20.114 

Goodness 
of fit 
indicators 

Adj. R2: 0.755 
AIC: 8196.194 
BIC: 8259.278 
Log likelihood: -4086.097 

 
AIC: 7711.662 
BIC: 7774.746 
Log likelihood: -3843.831 

 
AIC: 7617.105 
BIC: 7680.189 
Log likelihood: -3796.553 

NOTE: For coefficient names and description, please refer to  

Tab. 3. 
Negative coefficients indicate travel time advantages for cargo cycles. 
(.) - p<0.10  |  (*) - p<0.05  |   (**) - p<0.01  |  (***) - p<0.001 
 

In the following, we describe the magnitude of the variables. The estimates from the random intercept 
model show that with every km (0.6 miles) increase in cycling trip distance one can expect the time 
difference value to increase by 1.70 minutes. While one meter (1.1 yd) difference in elevation between 
the origin and destination can change the dependent variable value by 0.13 minutes when using a 
manual cycle, the effect is much less when using an electric cycle, ranging around 0.02 minutes per 
meter. A 1 km (0.6 miles) difference in trip distance between car and cargo cycle (trip distance of car 
being higher) can, on average, reduce the travel time difference by 1.66 minutes. This shows the 
advantage of the shortcuts available for cycles. When a trip is done during the morning peak hour, one 
can save around 1.32 minutes if a cargo cycle is used instead of a car, and the saving in travel time 
during the afternoon and the evening peak is around one minute. Using a three-wheeler instead of a 
two-wheeler cycle can delay the trip by, on average, 2 minutes. Using a ‘Pedelec 45’ electric cycle can 
reduce travel time by 1.29 minutes. 
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Besides giving more detailed information about names and types of variables, Tab. 3 below depicts the 
directions of effects along with the interpretation of the effect, both for significant and insignificant 
variables. 

 

Tab. 3: Effects of the Independent Variables 

Var. 
Group 

Variable 
Name 

Description Coeff. 
Coeff. 
Sign 

Interpretation & Comparison with 
Literature 

Significant variables (in random intercept model) 

 Intercept Model constant βCON + 
The positive sign is interpreted as 
indicative of the superiority of the car in 
general. 

Spatial 
context 

cycleTrip 
Distance  

Cargo cycle trip distance 
recorded by smartphone 
app (km) 

βTD + 
With increasing trip distance, one can 
expect cars to be advantageous. In line 
with (Gruber et al. 2014). 

elevation 
Difference 
ManualCycle  

Elevation difference 
between destination and 
origin (m) – when cargo 
cycle without electric 
assist was used 

βED-M + 

Increasing upward gradient results in 
increasing grade resistance, which in turn 
results in increasing travel time for 
cycles. In line with (Tengattini & Bigazzi 
2017). 

elevation 
Difference 
ElectricCycle  

Elevation difference 
between destination and 
origin (m) – when cargo 
cycle with electric assist 
was used 

βED-E + Similar interpretation as for βED-M. 

distance 
Difference 
CarAnd 
CargoCycle 

Difference in trip distance 
between car and cargo 
cycle  
(Distcar – Distcargo cycle; km)  

βDD – 

With car trip distance higher than the 
cycle trip distance, travel time for car 
increases and hence the travel time 
difference decreases. This shows the 
effects of shortcuts. In line with (Tranter 
2012). 

log(car 
Ownership)  

Car ownership per 1,000 
inhabitants in the city 
where the trip was done 

βCO – 
In cities with high car density, the 
probability of congestion is higher, hence 
travel time for car increases. 

Time 

is 
MorningTime 

Dummy variable: trip 
started between 6 a.m. and 
10 a.m. 

β6-10 – 

During the morning peak, the travel time 
for car is generally higher, hence travel 
time difference decreases. 
Also, cyclists travel faster during this 
time compared to night and early 
morning (Strauss & Miranda-Moreno 
2017). 

is 
DayTime  

Dummy variable: trip 
started between 10 a.m. 
and 7 p.m.  

β10-19 – 

Trips other than home-based work and 
school trips are usually done in the 
afternoon after the morning peak, and in 
the evening, all kinds of trips are seen. 
Hence, travel time for car is generally 
higher during this time because of 
congestion. 
Also, cyclists travel faster during this 
time compared to night and early 
morning (Strauss & Miranda-Moreno 
2017). 

Vehicle 

is 
ThreeWheeler 

Dummy variable: three-
wheeled cargo cycle was 
used 

β3W + 

Three wheelers are slower because of 
higher payload capacity and the extra 
effort required to ride them compared to 

two wheelers (see Tab. 1). 

is 
Pedelec45  

Dummy variable: trip was 
done using cargo cycle 
with ‘Pedelec-45’ electric 

assist (Tab. 1) 

βP45 – 
Higher speed achievable with less effort, 
hence reduction in travel time difference. 



Gruber, Narayanan (2019): Travel Time Differences between Cargo Cycles and Cars in Commercial Transport Operations. 

 

Var. 
Group 

Variable 
Name 

Description Coeff. 
Coeff. 
Sign 

Interpretation & Comparison with 
Literature 

Insignificant variables (in random intercept model) 

Spatial 
context 

isCitySize 
Large /  
isCitySize 
Medium  / 
isCitySize 
Small 

Dummy variable: 
Population of the 
city/municipality where 
the trip was done 

 
– 
+ 
+ 

Due to higher possibility of congestion 
(as shown by (Chang et al. 2017) for US 
cities), cargo cycles are advantageous in 
larger cities. 

bikeInfra 
Quality 
Index 

Perceived bicycle 
infrastructure quality index 
(ADFC 2016) of the city 
where the trip was done 

 – 

Better cycling infrastructure supports 
higher cycling speed, hence reduction in 
travel time difference (Strauss & 
Miranda-Moreno 2017). 

Time isWeekEnd 
Dummy variable: trip was 
done on Saturday or 
Sunday 

 + 
Less congestion on main roads and 
therefore higher driving speed possible 
for cars. 

Vehicle isElectric 

Dummy variable: trip was 
done using cargo cycle 
with ‘Pedelec-25’ or 
‘Pedelec-45’ electric assist 

(Tab. 1) 

 – 
Same interpretation as that of isPedelec45 
applies here. 

Trip con- 
dition 

isFullyOrOver
Loaded 

Dummy variable: cargo 
cycle was fully or 
overloaded during trip 
(stated by rider within 
smartphone app) 

 + 

Loading more than three quarters of the 
available loading capacity significantly 
reduces cycling speed, hence increasing 
the travel time difference. 

isReturnTrip 

Dummy variable: trip 
purpose is return to point 
of origin (stated by rider 
within smartphone app) 

 + 
Users tend to cycle slowly for return trips 
as there is no time pressure. 

is 
Temperature 
Above5  

Dummy variable: 
temperature during the trip 
is above 5°C (41°F) 

βT>5 – 

Air becomes denser at lower 
temperatures; hence air resistance and tire 
rolling resistance increases. Therefore, as 
temperature increases, cyclists can 
achieve faster speeds and hence a 
reduction in travel time difference. 

Temperature 
Temperature during the 
trip (°C) 

 – 
Same interpretation as for 
isTemperatureAbove5 applies here. 

Precipitation 
Quantity of precipitation 
(mm/h) at departure time 

 – 

Reduction in car driving speed due to rain 
(to avoid skidding and other similar 
problems), hence reduction in travel time 
difference. 

 

6 Model Application  
The results from the random intercept model were applied to an out-of-sample prediction of 9,821 car 
trips taken from the IeeA database (Gruber et al. 2014), a database of point-to-point shipments 
collected by DLR during the current project’s predecessor “Ich ersetze ein Auto” (“I substitute a car”). 
All 9,821 trips were made by car in March 2014 by 205 individual (self-employed) messengers in 
eight German cities. Actual car delivery origins, destinations, and time stamps of the trips from the 
IeeA database were used. A comparison of the distributions of trip distances from the main sample and 
the IeeA dataset is shown in Fig. 4. 

The s-curve in Fig. 5 is constructed based on the predictions for the IeeA dataset. The figure shows 
that around 50% of the trips can be done with a maximum delay of around 10 minutes if the users use 
a two-wheeled cargo cycle with ‘Pedelec-25’ electric assist, and in the case of a three-wheeled 
‘Pedelec-25’ cargo cycle, the median value is around 12 minutes. If the user uses faster electric assist 
(‘Pedelec 45’) on a two-wheeler, 50% of the trips can be done with a maximum delay of 8 minutes. 
The maximum delay that can be expected for all the trips is less than 40 minutes. Hence, even during 
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time-critical situations, cargo cycles are viable alternatives to cars, though not in every case. This 
result shows that the range of expected travel time difference is consistent. 

Fig. 6 shows the plot between car trip distance and predicted travel time difference for a two-wheeled 
cargo cycle with ‘Pedelec-25’ electric assist and a car.  This type of cargo cycle is highlighted because 
of its common usage, both in the sample (Tab. 1) and in commercial operations in general (Gruber et 
al. 2016). The plot clearly shows that there are a few cases wherein a cargo cycle is faster in terms of 
travel time, even for trips longer than 10 km (6.2 miles). A look into those data points reveals that this 
is mainly due to the difference in distance between cycle route and car route. This serves as evidence 
that cycles are better able to compete with cars in cities where shortcuts are available for cycles. 

 

Fig. 4.  Distribution of trip distances in sample (n=1,421) and IeeA dataset (n=9,821). 

 

Fig. 5.  Cumulative probability distributions for travel time difference between cargo cycles and cars 
for the trips collected from the IeeA database. 
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Fig. 6.  Travel time difference between cargo cycle and car versus trip distance for two-wheeled cargo 
cycles with ‘Pedelec-25’ electric assist. 

7 Scenario Analysis  
Many cargo cycle trips in the sample dataset were conducted through suboptimal routes (not the 
shortest route in terms of trip distance; decided based on comparison with Google’s bicycle routing). 
In order to help practitioners get a feel of what could happen if the users take the optimal cycle route 
and the situation for cars is worse (highly congested), a scenario analysis was added.  

A correction factor was generated based on the formula in Equation 3. This correction factor was 
applied to the trip distance for the trips in the sample, allowing the corrected trip distance and the 
average speed of the trips from the sample to be used to generate new travel times for each trip. 
Further, one minute will be subtracted from the travel time for starting and ending the smartphone app 
at origin and destination. Google’s ‘pessimistic values’ would be considered as the travel times for 
cars as they are representative of a congested scenario for cars.  

correctionFactor = mean(Trip distanceGoogle bicycle routing) / mean(Trip distancecargo cycle) (3) 

The value of correctionFactor obtained is 0.95, meaning that the users have not chosen an optimal 
bicycle route but rather used familiar streets accepting (smaller) detours. The scenario analysis s-curve 
in Fig. 7 was constructed based on the new travel time difference, cyclists taking an optimum route 
and the cars facing above normal congestion. The other two curves represent the original travel time 
difference value used for model estimation (curve ‘Sample’) and the predicted travel time difference 
value for the IeeA dataset (curve ‘Model application’). 
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Fig. 7.  Cumulative probability distributions for travel time differences between cargo cycles and cars. 

As can be interpreted from the figure, though the trip length distribution can change the steepness of 
the s-curve, the range of values remains almost consistent. However, a change in traffic conditions 
would change both the steepness and the range of values.  

8 Discussion 
The findings from this study show that about half of the commercial transport trips switched from cars 
to cargo cycles wouldn’t be delayed more than 2-10 minutes and 90% of the trips could be switched 
with less than 20 minutes delay. It should be noted that the current study did not consider other 
possible extra trip times for cars such as time for parking or walking to the exact spot of destination, 
the inclusion of such would decrease the expected travel time gap. There are, surprisingly, quite a few 
examples of cargo cycles having travel time advantages over cars, even at longer trip distances. While 
it is unfortunate not to offer a precise value for the travel time differences between cargo cycles and 
cars, the presented results should allow most commercial transport operators to make a reliable 
individual assessment. To achieve planning security in terms of delays, a relatively high travel time 
surplus per trip must be taken into account. However, the authors believe that operators are willing to 
accept a certain level of delay in return for the positive effects of switching to a cleaner vehicle. 

As the scenario analysis shows, greater congestion on the road network could result in a different 
range of travel time delays. With cities becoming more and more congested and the government 
banning the entry of cars into certain streets, the possibility of an increase in travel time for cars is 
high, and hence it is expected that the travel time difference between cargo cycles and cars will be 
greatly reduced in future. This suggests that companies may benefit from using cargo cycles instead of 
cars.  

Our findings quantify the influences of spatial context, time, vehicle-based attributes, and specific trip 
conditions. Concerning spatial attributes, while trip distance and the elevation favor the car, higher 
numbers of cars per capita in the respective city favors cargo cycles. Both in the morning and during 
the day up to 7 p.m. showed advantages for cargo cycles, mainly due to higher road network 
occupation and congestion delays for cars. Benefitting from the large variety of cargo cycle models 
involved in the sample, it was possible to show that two-wheelers are faster than three-wheelers and, 
as expected, cargo cycles are faster with electric assist. Loading more than three quarters of the 
available loading capacity will substantially decrease the cycling speed. 

The novel aspect to our findings is that they were obtained using a large dataset of diverse real-life 
cargo cycle operations. Furthermore, the collected data is not too skewed compared to lightweight 
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commercial transport up to 20 km (12.4 miles) trip distance in general. A further strength of this study 
is that it is including greater trip distances (up to 20 km) than other studies, which stop at 2 km 
(1.2 miles) (Melo & Baptista 2017) or 6 km (3.7 miles) (Faghih-Imani et al. 2017). This broader range 
increases the practical relevance of the results, as predictions for travel time differences between cargo 
cycles and cars can be made for a larger set of commercial trips. 

This study also has its limitations. Our work is based on a comparison of real-life cargo cycle trips 
with fictitious car trips that represent not the true value but rather historic averages. However, 
Google’s routing data has been shown to be reliable in this regard. Naturally, there are more factors 
that could potentially affect travel time differences between cargo cycles and cars, two of which being 
socio-demographic attributes and attributes of the built environment such as type of bicycle 
infrastructure. The authors suggest future researchers explore such attributes. Further, a regression 
model is proposed because of the lower level of effort required to interpret and use this model. The 
model is meant to be readily used by the individual operators and business entities involved in 
commercial transport operations. However, the calibration of an existing simulation system could be 
tested in the future, which might be useful for large-scale business organizations. 

9 Conclusion  
Cargo cycles are a viable potential alternative to combustion engine vehicles for many commercial 
transport operations, supporting cities to achieve air quality and carbon emission reduction goals. 
However, it was unclear whether cargo cycles are competitive enough in terms of travel time to 
replace existing vehicles. Building on cargo cycle trip data from 84 organizations throughout 
Germany, the estimated model can be used to predict the travel time differences between cargo cycles 
and cars. It is an important tool to assess travel time competitiveness of cargo cycles and to break 
down the reservations that currently exist among many operators. Values for the variables included in 
the model can easily be obtained, and hence this model can be readily used by a company’s decision-
maker.  

The travel time differences from both the sample and IeeA dataset show that a range of values can be 
expected based on the trip context. However, it is certain that the maximum travel time difference 
expected is around 40 minutes, even for a trip distance of 20 km (12.4 miles), with encouraging 
median delay values of 2-10 minutes. An explanation was discussed as to why this can serve as 
orientation for operators determining the feasibility of switching to cargo cycles. In conclusion, though 
a range of travel time differences can be expected based on the context of a trip, the application of 
cargo cycles is still promising. 

Overall, our findings should give companies the confidence to try out cargo cycles and allow policy-
makers to support the transition to smaller vehicles in commercial transport operations, given the 
potential to reduce transport-related emissions. 
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