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INTRODUCTION

Flows of fluid mixtures pose challenges to simulations due

to the heterogeneous transport properties throughout the flow

domain. For single-phase mixtures, the Boussinesq approxi-

mation, as routinely applied to model thermal buoyancy ef-

fects, can be adapted to provide a framework in which the

fluid mixture can be described in a perturbative sense by cal-

culating the density changes throughout the domain in terms

of the local mixing ratio [1]. Here, Direct Numerical Simula-

tions (DNS) are used to investigate this approach in turbulent

channel flow with temperature differences, concentration dif-

ferences, and a combination thereof to compare and contrast

the resulting changes in the flow observables. Particular focus

is placed on the mixture of water vapor and dry air, which has

a wide range of applicability in both technical and naturally

occurring systems, and is of interest regarding future inves-

tigation considering phase change phenomena in addition to

the buoyant forces induced by the fluid heterogeneity.

NUMERICAL METHODS

The flow is described by the Navier-Stokes equations in the

Boussinesq approximation for incompressible fluids,
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with density ρ, kinematic viscosity ν, and buoyancy term fi
depending on the scalar fields ξ representing temperature T or

concentration c with the corresponding diffusivities φξ = κ, D,

respectively. In the Boussinesq approximation, the buoyant

force term is given by

fi,ξ = −αξ(ξ − ξref)gi, (4)
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in a linear approximation of the density dependence on the

scalar ξ around a reference value. The validity range for this

leading order expansion depends on the properties of the fluids

in question and has to be evaluated to ensure valid results [2].

For the simulation of turbulent channel flow, the compu-

tational domain with x ∈ [0, 5πδ], y ∈ [−δ, δ], z ∈ [−πδ, πδ],

where δ is the channel half width, was represented in a mesh

with 394×180×316 hexahedral cells. For flows with Reynolds

number Re = 2280 with corresponding friction Reynolds num-

ber Reτ = 150, the resulting mesh resolution for a uniform cell

distribution is ∆x+ = 6 in streamwise and ∆z+ = 3 in span-

wise direction, expressed in terms of wall units. Estimating

the dissipation rate ε ' u3b/δ with the bulk velocity ub yields
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for the Kolmogorov microscale. To resolve the large gradients

in close proximity to the walls while minimizing computational

effort, a hyperbolic tangens distribution is employed for the

cell spacing in the wall-normal direction, resulting in ∆y+min =

0.2 directly at the walls and ∆y+max = 3.7 in the bulk flow. The

presence of the scalar fields ξ gives rise to the Batchelor scale,

which is related to the Kolmogorov scale by λB = η
√
φξ/ν.

By choosing the Prandtl number Pr = ν/κ < 1 and Schmidt

number Sc = ν/D < 1, λB > η and the diffusive scales are

automatically resolved as well.

In streamwise and spanwise direction cyclic boundaries are

applied, while no-slip and impermeability boundary conditions

are imposed on the velocity field at the channel walls. For the

pressure equation, von-Neumann conditions are used, while

the scalar fields are bounded by Dirichlet boundaries.

The flow equations are solved using a finite volume ap-

proach implemented in OpenFOAM [3]. To achieve the high-

est possible accuracy, fourth order discretization is employed

for all spatial derivatives and interpolations, and an explicit

second order Euler-Leapfrog integration scheme is used to ad-

vance the momentum equation in time. This imposes a strict

upper bound for the time step ∆t to guarantee numerical

stability [4]. The pressure is obtained by coupling pressure

and velocity fields via the projection method, which ensures

that the continuity equation is fulfilled. The resulting Poisson

equation for the pressure is solved iteratively using a conjugate

gradient method.

The accuracy of this implementation was verified by com-

paring results for the first and second statistical moments of

both velocity and temperature with results from spectral DNS

[5]. Figure 1 shows exemplary the comparison for the mean

streamwise velocity and fluctuations, averaged over the homo-

geneous spatial directions. Agreement is exact for the velocity

profiles and the fluctuations close to the walls, with visible un-

derestimation of the fluctuations in the bulk region.
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Figure 1: Results for the mean streamwise velocity (top) and

fluctuations (bottom) compared to profiles from spectral DNS

[5] for a differentially heated channel at the cold wall (left

panels) and the hot wall (right).

FLUID MIXTURE RESULTS

Simulations for a mixture of two fluids were performed

using the approach outlined above. The scalar transport is

characterized by Pr = 0.71 and Sc = 0.48 corresponding to

water vapor in a carrier fluid of dry air. The limits of the

Boussinesq approximation are calculated to be ∆T < 27 K

and ∆c = 0.15 for the temperature and concentration field,

respectively, and Grashof numbers

Gr =
gδ3

ν2

∑
ξ=T,c

φξ∆ξ (7)

are chosen according to values within the range of applica-

bility, Gr = (1.20, 1.51, 2.44) · 105, by setting fixed value

boundary conditions for the scalar fields at the opposing

channel walls. The thermal gradient is constant across

all simulated cases, such that the increase in the Grashof

number is caused by an increased concentration difference

only. The density gradients caused by both scalar fields align,

causing the buoyant forces to add linearly. Figure 2 shows

the results of the three different systems in comparison to

turbulent channel flow without additional buoyant forces.

The acceleration/deceleration of the mean flow is clearly

visible in the velocity profiles, showing that for a mixture

of water vapor and dry air, the effects caused by the

concentration difference are of the same order of magnitude

as those with thermal origin for differences within the validity

range of the Boussinesq approximation. Fluctuations in the

streamwise velocity are increased over a channel cross section

growing with Gr and extending far across the center plane. A

decrease is visible only in close proximity to the wall where

the buoyancy aids the flow, where two local minima exist for

the lower values of Gr, changing into one minimum as the

increase of the bulk fluctuations moves towards the aiding

wall at the highest value.
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Figure 2: Differences in mean streamwise velocity (top) and

fluctuations (bottom) of buoyant flow compared to isothermal

and single-component flow, for increasing values of Gr.

CONCLUSIONS

A finite volume DNS was used to simulate turbulent chan-

nel flow of a differentially heated channel containing a mixture

of two fluids. To this end, a perturbative approach to the

simulation of the fluid mixture with different densities was

demonstrated and compared to the well-established treatment

of thermal differentials within a single fluid species. The re-

sults for a mixture of water vapor and dry air show that the

additional buoyancy stemming from concentration differences

leads to non-negligible effects in the flow observables. The in-

fluence an increasing concentration difference follows the same

behavior expected from larger temperature differences, as is

expected from the analogous formulation of both the transport

equation as well as the buoyancy contribution to the momen-

tum equation.

Using the highly resolved temperature and concentration

information available throughout the channel, it is possible

to identify regions of oversaturation where a phase transition

may occur. An investigation of the influence of the added heat

flow from condensation is then possible without the added

computational cost of a full multiphase simulation.
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