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Abstract

A challenging issue in the field of robotics is the lost robot problem, in which
a robot has to relocalize itself in a previously mapped environment based on
current sensor readings. We propose a method for addressing this problem by
extending the mapping of an environment with semantically labelled points.
These semantic landmarks are processed in an algorithm that registers two la-
belled point sets in order to obtain the rigid transformation that relates the
robot’s current frame with the global coordinate system.

The relocalization system was tested on a dataset created for 3D scene analysis,
and on self-made scans of several environments with different types of visual
interferences, including obstructions to the field of view and severe lighting
changes. These tests revealed that the proposed method performs well with
realistic levels of noise in the input data. It even outperforms a state-of-the-art
visual mapping and relocalization system both in robustness and in accuracy,
producing linear and angular errors of less than 10 cm and 1° respectively in
successful relocalization attempts.
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Kurzfassung

Eine grofle Herausforderung im Bereich der Robotik ist das Problem des ver-
lorenen Roboters, in dem ein Roboter sich in einer zuvor kartieren Umgebung,
basierend auf aktuellen Sensorwerten, lokalisieren soll. Im Rahmen dieser Ar-
beit wird eine Methode fiir die Losung dieses Problems durch das Erweitern der
Kartierung einer Umgebung mit semantisch markierten Punkten vorgestellt.
Diese semantischen Orientierungspunkte werden in einem Algorithmus benutzt,
der zwei solche Punktsétze registriert, um die starre Transformation zu erhalten,
die die aktuelle Perspektive des Roboters mit dem globalen Koordinatensystem
in Beziehung setzt.

Das Relokalisierungssystem wurde an einem Datensatz getestet, der fir die
Analyse von 3D Szenen erstellt wurde. Anschlielend wurden Experimente in
selbstaufgenommenen Umgebungen mit verschiedenen Arten von visuellen Stérun-
gen (darunter Hindernisse im Sichtfeld und starke Beleuchtungséinderungen)
durchgefiihrt. Diese Tests haben gezeigt, dass das vorgeschlagene Verfahren bei
realistisch verrauschten Eingangsdaten gute Ergebnisse liefert. Es tibertrifft sog-
ar ein visuelles Mapping- und Relokalisierungssystem auf dem neusten Stand der
Technik, sowohl in Bezug auf Robustheit als auch Genauigkeit. Typischerweise
werden bei Erfolgreichen Relokalisierungsversuchen Linear- und Winkelfehler
von weniger als 10 cm bzw. 1° erzielt.
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Chapter 1

Introduction

Imagine a simple thought experiment in which a blindfolded person is brought
into a randomly selected room of a building. After the blindfold is removed,
this person is tasked to locate him- or herself in a map of the building, based
on purely visual information. For a human this task is rather trivial. Simply by
looking at the surrounding scene and noteworthy objects it contains, one can
easily put a dot of his or her location on a model of the room, given that this
model is detailed enough. By extension, if the person is familiar with a more
general map, they can also determine their location in the whole building. This
is largely enabled by the ability of humans to effectively interpret the seman-
tics — or the meaning — of particular elements in the environment, giving more
uniqueness to every scene.

This master’s thesis explores such a semantics-oriented way of localization in
the context of robotics and computer vision. The aim is to create a system that
enables a robot to autonomously relocalize itself in a known map after losing
track of its surroundings, a circumstance also referred to as the lost robot prob-
lem. This goal is achieved by extending a robot’s visual map generation routine
with a general purpose object detector that would assist in the creation of visual
landmarks in the three dimensional reconstruction of the environment.

1.1 Motivation

While traditional (re-)localization approaches exist, these are often over-confident
in their estimates, and could be aided by the added robustness offered by deep
learning-based semantic segmentation. Adding semantics to the mapping ca-
pabilities of robots creates advantages in reliable relocalization. An example
showcasing the challenges a robot may have in a dynamic environments is the
EU-funded project SPENCER [30]. The purpose of this project was to develop
a mobile robotic platform for airport passenger guidance and assistance. An



1. Introduction

example use-case is showed in Figure 1.1. This robot has to operate in crowded
and visually changing environments where its sensors are often occluded. This
poses a great challenge for localization. The method developed in this the-
sis attempts to permit robots to relocalize themselves based on a set of static
landmarks in a scene that may also contain moving features. This would be
advantageous for home service robots and any other robot that operates in an
environment that contains some stationary and reliably detectable objects that
can be used as localization landmarks.

Figure 1.1: Robotic platform developed in the SPENCER project (visible near the
centre of the image) operating in a very crowded environment [2, 11], taken from the
SPENCER YouTube channel.

There are numerous methods that attempt to solve the lost robot problem
using different kinds of sensors, including RGB and depth cameras. Common
challenges that have to be dealt with are changes in the local view of the scene
as compared to the initial mapping. During relocalization, the sensor may be
obstructed, the brightness may have changed substantially or the robot may
reanimate in a place where it has not yet physically been. This thesis will show
that the proposed semantic method is capable of handling even such extreme
cases where other visual localization routines may fail.

1.2 Problem Description

A situation in which a robot is placed in a new location, where it has to localize
itself in a pre-existing map, is called the kidnapped (or lost) robot problem.
For the semantic relocalization method, we are working with a representation of
the environment as a 3D point cloud, created with a simultaneous localization



and mapping (SLAM) routine. The sensor used for the point maps and their
semantic extensions is a camera with RGB and depth vision. The semantic
landmarks are created by placing labelled points in the locations where objects
have been detected by using a general purpose object detector. Relocalization
is achieved by computing the rigid transformation that registers the labelled
point set of a global map with the points detected in a local map. This process
is further explained in Chapter 4. The goals of this thesis are the following:

e Develop a system generating semantic landmarks.
e Develop a registration algorithm for semantically labelled point sets.

e Evaluate the performance of the developed systems.

Some limitations of this method can be inferred on a theoretical level. For one,
the semantic localization system is highly dependent on the used object detec-
tor’s accuracy and the presence of objects in the environment it is used in. If a
robot is lost in a room which doesn’t contain any objects that can be recognized
by the chosen detector, the system is sure to fail. In fact, it is highly desirable
for objects not only to be present, but to be well distributed inside the room,
or else the registration attempt may only be accurate in a small area of the
map. Thus the advantages of traditional and deep learning approaches may be
combined in order to complement their respective shortcomings.

With these limitations in mind, the developed system is evaluated in Chapters
5 and 6.






Chapter 2

Related Work

This thesis proposes a method that uses semantics in robot localization. To
provide some context on the work that has been done in related topics, this
chapter contains an overview of contributions made by other researchers in the
fields of robot localization and semantic scene analysis.

2.1 Lost Robot Problem

Common sensors employed to help solve the lost robot problem are laser rangefind-
ers (LRF) and cameras. This section describes some noteworthy methods that
solve this problem in various environments.

At the time of writing, an example of notable recent work is ORB-SLAM by
Mur-Artal et al. [16, 18], a visual keyframe-based method for simultaneous lo-
calization and mapping, working with monocular, stereo and RGB-D cameras.
It has an integrated relocalization module which uses ORB feature matching
[22] and a visual bag of words (BoW) [8] approach to find the best candidate
for the robot’s global pose. This thesis makes use of the pose estimation com-
puted by ORB-SLAM2. Su et al. [28] propose a method in which relocalization
is enabled by a composite map with LRF data and visual keyframes. In their
work, the top scoring Gist [19] descriptors are found using ORB and RANSAC
to produce a relocalization pose estimate. The optimal keyframe candidate is
found by applying a cost function that also uses the LRF map data.

Another broadly applied method that works well with LRF is Monte Carlo Lo-
calization (MCL) [6], in which the position and orientation of a robot is modelled
with particles. If no initial guess is available the particles are initialised ran-
domly, after which they are iteratively resampled until convergence, based on
the robot’s motion model and sensor measurements. MCL provides an accurate
estimate of the robot’s pose, but it generally fails to efficiently solve kidnapped
robot situations, because the new location in which the robot finds itself is very
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unlikely to be covered by the converged particles. Seow et al. [26] attempt to
solve this problem by making use of Wifi. In their method, if the robot’s po-
sition is estimated simultaneously with LRF and a Wifi signal strength sensor.
If the mismatch between both estimates is too large, the MCL particles are
resampled around the location of the strongest Wifi signal. This leads to faster
convergence, since the particles don’t have to be resampled randomly. While
this method does detect and solve the lost robot problem, it requires a long time
to do so according to the authors. The requirement of a Wifi infrastructure and
sensors can also be limiting. Still, due to the nature of the problem, it is very
difficult to design a solution that is well suited for all environments.

2.2 Semantic Exploration

An idea of a framework for unifying probabilistic and heterogeneous information
into a multi modal map is presented by Pronobis et al. [20]. The concept is
to combine spatial, topological and semantic information into a unified map to
provide robots with a more complete view of the world, as illustrated in Figure
2.1. This is done via abstraction of spatial information into set categories like
place, path and room, and by integrating relations between objects and scenes
to allow the robot to infer knowledge through observations.

Distribution over
room categories
and beliefs about
property values

7
Large, elongated
corridor

~
\ Place 4 /
Topological graph

/"' 7 . Large, square

,';,\double office

Figure 2.1: Robot platform and semantic map [20], ©2012 IEEE.

Semantics can be introduced in robotic systems in a variety of ways. Brucker
et al. [4] developed a system that assigns semantic labels to 3D RGB repre-
sentations of rooms. It does so by analysing a given room as a complete scene
and as a set of objects. The room is first labelled by a neural network trained
on a dataset containing a large number of different scenes. In order to add
more robustness to the method, the scenes are also fed into an object detector,
as shown in Figure 2.2. This provides more information that can be used to
correctly label a room.
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Figure 2.2: Detected objects in a sample scene [4], ©2018 IEEE.

Hernéndez et al. [9] work on detecting and locating objects in unaltered envi-
ronments. The method uses support vector machines to segment and classify
images received from an RGB-D sensor to obtain the position of objects relative
to the robot, similar to the example in Figure 2.3.

distance from camera_2: 2.45 m
Angle 2: -16.125°

Figure 2.3: Detected and localized object [9], ©2016 IEEE.

The extent to which a robot can interact with humans and the environment
is largely dependent on its ability to identify its surroundings in a meaningful
way. These methods and models are examples of work towards a more complete
understanding of an observed scene, which is also one of the aims of this thesis.






Chapter 3

Fundamentals

The robot localization system described in this thesis makes use of a range of
tools and concepts stemming from various fields of computer vision. The theory
relating to these concepts is outlined in this chapter.

3.1 Point Set Registration

Point set registration has a number of uses in cooperative mapping and naviga-
tion among many other applications. One of the tasks of this thesis is to find
the robot’s pose in an existing three dimensional reconstruction of the environ-
ment by using its current view, which can easily be interpreted as a 3D point
set registration problem. This section looks at methods designed to align point
sets and the mathematics they are based on.

3.1.1 SVD for Rigid Transformations

Singular value decomposition (SVD) can be applied to compute rigid transfor-
mations that produce a best-fitting alignment of two equally sized point sets
P = {p1,Py, - Pn} and Q = {q;,qs,...,q,,} in RY [25, 27]. The transforma-
tion may be expressed by a rotation matrix R and a translation vector t such
that

n
(R,t) =  argmin sz I(Rp; +t) — ;.
ReSO(d), teR® ;1

The weights w; may be set to 1 if they are not applicable in the given setting,
resulting in a regular weighted least squares optimization problem. The trans-
lation component is obtained by calculating the weighted centroids of the point
sets, given by
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p= 2?21 w;iP;
Z?:1 w;

which gives us the optimal translation:

2?21 w;q;
Z?:l wy ’

and q=
t =p - Rq.
This allows a reformulation of the problem to
n
R = argmin Zm [Rx; —y;]%,

ReSO(d) i

where x; := p; —p and y; := q; —q. For the rotation component we require
the covariance matrix which is defined as

H= ui(p—p)(a;— @)
=1

With singular value decomposition we obtain H = UZ V’. The covariance ma-
trix can be used in its decomposed form to calculate the rotation that minimizes
the squared distance between corresponding points:

R=VUT.

This form of the matrix does not exclude reflections. If the solution has to be
limited to rotations, we have to adjust the equation as follows:

1
R=V _ u”.
det(VUT)

A more detailed description of SVD for rigid transformations may be found in
[27] and related literature. The principle is applied in Section 4.3 of the thesis.

3.1.2 TIterative Closest Point Algorithm

The iterative closest point algorithm by Paul Besl and Neil D. McKay [3] is a
significant paradigm in dense point cloud registration. In its core, the algorithm
assumes given source and target clouds which have to be aligned, and minimizes
the least squares error between corresponding (closest) points of the two inputs.
An initial guess of the registration may be computed via principal component
analysis (PCA) or by applying any other prior knowledge relating the point
clouds. Then, the following steps are repeated until a termination criterion is
reached:

10



1. For each source point, find the closest target point.

2. Calculate the registration (for example, by applying SVD or a quaternion-
based transformation).

3. Apply the registration.

The algorithm may interrupt after reaching a user defined number of iterations.
According to [3] a number between 30 and 50 is generally sufficient. An alter-
native termination criterion could be defined by the rate of improvement of the
registration. If the next iteration does not improve the cost function by a suf-
ficiently large amount, defined by a threshold, the algorithm may stop. While
the convergence of ICP can be mathematically proven, it is prone to local min-
ima, especially if the initial guess is too distant from the true solution and when
the overlap between source and target clouds is too small. These issues were
addressed in research more than a decade after the inception of ICP to make
it more robust with only partially overlapping clouds and to increase its con-
vergence basin [5, 12, 23]. Despite these improvements, ICP generally performs
best in local point cloud alignment problems.

An open-source implementation of ICP and its numerous variations can be found
in the Point Cloud Library! (PCL) [24]. The algorithm is used in this thesis to
compute a refined pose after it has been estimated with the proposed semantic
method.

3.1.3 RANSAC

Random sampling consensus (RANSAC) by Martin A. Fischler and Robert C.
Bolles [7] is a model parameter estimation algorithm working exceptionally well
with noisy input data. It does so by processing a subset of the given data in
every iteration step, unlike least squares, which generally uses all the inputs.
Figure 3.1 shows a typical case where least squares would fail due to the pres-
ence of outliers.

Assuming we wish to estimate a model that requires n data points and a point set
consisting of n, points where n, > n, the model parameters may be estimated
via repetition of the following steps:

1. Pick n points at random from the dataset and produce a model.

2. Compute the number of points that are within a chosen error threshold of
the current model (inliers).

3. If the current model has more inliers than the previous best one, set it as
the new best candidate.

Ipointclouds.org/
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Figure 3.1: An illustration of a problem that cannot be solved by a naive least
squares parameter estimation, taken from the original publication [7]. This example
features an ideal model line and the result of a version of iterative least squares, which
deletes outliers of every previous step.

These steps are repeated a set number of times until it is very likely that a
sufficiently good model is produced or the algorithm ends in failure. The fi-
nal best result may be further refined based on the inliers (for example, with
least squares). The required number of iterations may be determined proba-
bilistically. Suppose we wish the algorithm to produce an accurate model after
N steps with a probability P. We obtain the desired number of iterations as
follows:

1= = (1-P)
log(1— P)
log(1—pn)’

where p is the probability of a random point being an inlier. This principle is
used for the proposed method in this thesis alongside SVD for an estimate of
the robot’s pose, described in Section 4.3.1.

3.2 Object Detection

Since the work by Krizhevsky et al. [13], object detection in RGB images
has been predominantly achieved with convolutional neural networks (CNNs).
These are types of artificial neural networks that contain specialized layers which
greatly reduce the number of parameters required for training. This makes them
well suited for applications that work with large numbers of inputs, like image
processing. The first CNNs were mainly trained to identify the most likely ob-
ject visible in a given image, producing a class label and a probability score as
outputs. Typical architectures of CNNs consist of several convolutional layers

12



that break the input image into increasingly abstract visual features until it is
fed into a set of fully connected layers. These networks are trained and tested
on large collections of labelled images, like the Common Objects in Context
(COCO) dataset [14]. For added robustness, the training data may be aug-
mented via translations, reflections and by altering the RGB channels of the
images.

Later work shifted towards multiple object detections that combine region pro-
posals and object detection in order to produce an output vector that contains
the coordinates of identified regions, their class label and probability score. An
example of a region proposal network is Faster R-CNN by Ren et al. [21]. A
compact visualization of a Faster R-CNN network in object detection is shown
in Figure 3.2.

. classifier

Rol pooling

A PN
15
Region Proposal Network
feature maps
0
cony layers /
4

Figure 3.2: Region proposal with Faster R-CNN network [21], (©2017 IEEE.

This thesis makes use of an object detection implementation that combines
Faster R-CNN with the Inception V2 [29] object detection architecture. The
used model can be found in the Tensorflow? object detection API Github repos-
itory®, dating January 15, 2018.

2https://www.tensorflow.org/
Shttps://github.com/tensorflow/models/tree/master/research/object_detection
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Chapter 4

Semantic Localization

Localizing oneself in an environment by interpreting the semantics, or meaning,
of the surroundings along with its geometry is a primarily human way of per-
ception. This chapter describes how the proposed method attempts to transfer
this way of identifying the world in a robotic system.

4.1 Overview

The robot localization system developed in this thesis consists of two main parts:
the semantic map generator (SMG), and the semantic point matcher (SPM),
both mainly developed in the C++ programming language. The SMG extends
a 3D representation of the environment generated by SLAM with a sparse se-
mantically labelled point set. This thesis uses a keyframe-based SLAM system
which is described in more detail in Section 4.2.1. The semantic map contains
information on the 3D coordinates and class labels of detected objects in the
room, along with other information which is covered in Section 4.2.2. A chart
of the semantic map generation pipeline is shown in Figures 4.1 and 4.2. The
current implementation of the pipeline has an offline and an online setting. In
the offline mode, SLAM is run before the labelling step. This allows loop closure
to be performed for a globally consistent state of the keyframe poses before they
are saved for further use. In the online mode, RGB-D data from the sensor is
synchronously processed by the used object detection and SLAM routines. Cur-
rently the position of semantic points is not affected by loop closure, meaning
that the online mode is not suited for larger maps. It is, however, practical for
relocalization.

In order to find itself in the global map, the robot would perform a scan of
its current location to generate a local semantic map. The SPM registers the
local and global maps created by the SMG and finds the relative transformation
between them in a process visualised in Figure 4.3. This registration algorithm

15



4. Semantic Localization

makes use of information stored in the semantic maps, including the scene ge-
ometry, object labels and positional uncertainties. The lost robot can generally
be relocalized if enough matching objects are found in the local and global se-
mantic map. The algorithm itself is covered in depth in Section 4.3.

Object

A RGB keyframes Detection data—>

Offline Y detector Seman
SLAM SMG emantic __

int
data Depth keyframes point map

Y VY

Keyframe poses

Figure 4.1: The offline map generating pipeline obtains RGB-D keyframes with
corresponding poses from files. The RGB keyframes are first processed by the object
detector. The detection data is then fed into the SGM along with depth and pose data
to create a semantic point map.

4 RGB i — i
RGB-D Object Detection data—>| TG Semantic
camera Depth— detector < point map
SLAM [—Pose
A
»

Figure 4.2: The online map generating pipeline receives RGB and depth data from an
RGB-D sensor. Those are initially processed by SLAM and object detecting systems.
Their outputs and the corresponding depth frame are fed into the SMG, which in turn
produces a semantic point map.

4.2 Semantic Point Cloud Generation

This Section focuses on the implementation and theory behind the generation of
semantic point clouds, as well as the inputs, outputs and individual components
of the system.

4.2.1 Scene Geometry

The semantic point cloud generator uses a slightly adapted version of an open-
source implementation of SLAM called ORB-SLAM2 [18]: a keyframe-based
SLAM system that uses ORB keypoint detection for patch-tracking and map-
ping [22], and visual bags of words [8] for loop closure and relocalization. The
adaptations of our system include a function to save point maps in various for-
mats and keyframes (RGB and depth) with their corresponding poses. It can

16
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—Dense local map

—Semantic global map Initial Adjusted
SMG nitial pose ICP juste

. matrix pose matrix
— Semantic local map

Figure 4.3: The inputs for the semantic point matching system are a pair of labelled
point maps: the global map in which we wish to localize the robot and the local
map resulting from a relocalization scan (see Section 4.2.3). A RANSAC-based algo-
rithm computes an initial estimate for the registration. The dense local point cloud is
transformed based on this estimate and fed into an ICP routine along with the global
map. Ideally, this results in an improved relative transformation between the local
and global coordinate frame.

also publish various outputs over Links and Nodes (LN), an inter-process com-
munication framework developed at the DLR.

The 3D geometry of the scene is reconstructed by ORB-SLAM2 and saved in a
sparse map along with a set of keyframes (depth and RGB) and their correspond-
ing poses. The pose information is essential for the SMG during the creation
of the labelled point map. In a post-processing step, a dense reconstruction is
computed from the stored keyframes, and it is used in a pose refinement step
involving ICP. The outputs of SLAM are processed differently in the offline and
online settings. In the offline mode, the RGB-D keyframes are stored as sepa-
rate PNG files, ideally after loop closure. The pose matrices corresponding to
each frame are stored in a single data file containing a frame number coupled
with each matrix. The online implementation uses LN to transfer data: once a
new pose has been computed it is published along with a frame counter.

4.2.2 Object Detection

One of the goals of this thesis is to make a localization system that obtains use-
ful information from general purpose detectors, instead of using a specialized
architecture. The semantic labelling system was tested with the COCO trained
Faster R-CNN [21] with Inception V2 [29]. This model was chosen due to its
reasonable balance between frame rate and detection accuracy.

The outputs of an object detector include bounding boxes around detected ob-
jects in each frame, their labels and a probability score for each detection. This
data is sent to the semantic labeller using LN, similarly as ORB-SLAM?2. The
bounding boxes are defined by a pair of  and y coordinates representing the
upper left and lower right corners. In the COCO dataset the label is defined by

17
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a number from 1 to 90, each referring to an object class. The detection score is
the probability of the top candidate label for a given object and is represented
by a floating point value ranging from 0 to 1. An example image with detected
objects is shown in Figure 4.4. Detector outputs are prone to various types of
noise, including false and overlapping detections as well as deviations in bound-
ing box size and placement. The latter are often due to asymmetric objects,
like chairs, and the sensor’s changing orientation relative to the scene.

Figure 4.4: Two sample images with detected objects in an office environment. The
detections differ in both images due to camera noise. Some objects like the office chair
may be detected several times. Due to the angle and distance of the camera, objects
like the keyboard are not always detected. In some cases, objects are consistently
assigned false labels (office drawers labelled as oven).

4.2.3 Point Labelling

The SMG, which creates a 3D map containing semantically classified points, is
the central part of the semantic map generating pipeline. It receives a depth
image, its pose as computed by SLAM and detected object data (bounding
boxes, labels and scores) as inputs and creates a sparse map containing (ideally)
one labelled point per detected object. The program starts by reading a depth
image (either form a camera or from files, depending on the mode) and object
detector outputs from the corresponding RGB image. Next, each bounding box
is used to obtain the region of each detection within the depth image. From
this, the x, y and z-coordinates of every detected object in the camera frame
can be obtained. They are given by

z = d(“;—m%), (4.1)
_ G v—g)

y = d 5 (4.2)

z = d, (4.3)
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where d is the representative depth of the object, given by the median depth of
the cropped region. The remaining symbols are explained below.

e u, v: horizontal and vertical pixel positions of the region’s centre
® ¢, ¢y optical centre of the Asus Xtion sensor (in pixels)

o fu, fy: focal lengths of the Asus Xtion sensor (in pixels)

Figure 4.5: Repeated detections of objects in a partial scan of a room. Every colored
blob represents a detection that was made in one of the captured frames to build this
semantically extended map.

While scanning a whole room it is highly likely (and expected) that multiple
objects are observed more than once, resulting in a cluster of points characteriz-
ing the same detected object, as can be seen in Figure 4.5. We are interested in
reducing each cluster to one point. This is achieved with Euclidean clustering
applied on every set of points with the same label, implemented in PCL. This
algorithm searches for neighbours for every point and adds them to a cluster if
they are closer than a given radius. This search radius was empirically set to
10 c¢m, which permits some noise in object positioning while preventing several
clusters from merging into one. Additionally, in order to reduce noise from spu-
riously detected objects, the minimum cluster size was set to three points. After
the clustering is complete, the program generates a list of visual landmarks, an
example of which is shown in Figure 4.6. Each of these landmarks contains the
following information:

e Mean z, y and z coordinates of each cluster

e Positional variance of each cluster, based on distance from mean
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4. Semantic Localization

e Number of points in each cluster
e Class label

e (lass probability

The class probability component is given by

N
Pclass = 1_H<1_Pi) (4'4)
i=1

where P; is the class probability of each detection instance in the cluster and
N is the number of points in the cluster. This adjusted probability score is
motivated by the idea that an object that has been consistently identified several
times with a probability higher than 0.5 is likely to be identified correctly. The
semantic landmarks are now ready to be used for relocalization. The method
accomplishing this is explained in the next section.

Figure 4.6: RGB point cloud and semantic landmarks of a partial office view. The
objects are not always detected correctly, an example being cabinet drawers that are
interpreted as an oven. This is generally not a problem: if the object is detected
falsely, but consistently, it may still be a useful landmark. Otherwise it adds to noise
which is ignored by the semantic landmark matcher.

4.3 Semantic Landmark Matching

This section covers the proposed method for relocalizing a robot with a pair of
semantically extended 3D point maps. It includes details on how this is achieved
with a combination of RANSAC, SVD and ICP. To differentiate between the
two point sets more easily, the convention of target and source map shall be
used for the initial scan and the relocalization scan respectively.
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4.3.1 Initial Approximation with RANSAC

Due to the very sparse nature of the semantic point sets (often in the order
of ten objects in a room), random sampling with an informed point selection
heuristic is a reasonable method for finding an estimate of their relative trans-
formation. The method described here is inspired by Chapter 3 of [15].

Algorithm 1 Random sampling for semantic point set matching

while I < Imax do
P = sourceTriplet()
Q = targetTriplet()
if validTriplets(P, Q) then
T = rigidTransform(P, Q)
[fitness, inliers] = fitnessScore(P, Q, T)
if fitness > bestFitness AND inliers >= bestInliers then

bestFitness = fitness
bestInliers = inliers

bestT = T
Imax = updatelterations(inliers)
I=I1+1

return bestT

First, a set of three different points P is randomly chosen from the source point
set. Next, a sample Q is searched in the target set such that both triplets have
corresponding labels, as shown in Figure 4.7. Before a transformation between
P and Q is computed, the triplets are checked for similarity. This is done by
calculating the side lengths of the triangles spanned by both triplets. If all
corresponding lengths are similar within a threshold (20 cm were chosen as a
reasonable value), the two samples are valid. If this check fails, the iteration is
skipped and the process is repeated on a new pair of samples. If the samples are
valid, the rigid transformation relating them is calculated via weighted least-
squares with singular value decomposition [25], as described in [27]. We are
looking for a rotation R and a translation t that minimize

3
2
Z w; [[(Rp; +t) — q|
i=1
where p; and q; are points in P and Q respectively, and w; is an associated
weight. For our purposes the weights are defined as follows:

o2

w = Pygsse 2,

where P.j,ss is the adjusted detection probability and o2 is the positional vari-
ance of a labelled point, both of which are calculated during the semantic point
map generation step, as described in Section 4.2.3. This definition is motivated
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4. Semantic Localization

by the idea that points should be less reliable for relocalization if they are de-
tected improperly and have a large positional uncertainty. The parameter A
adjusts the decline rate of the exponential function and was set to 10 cm, which
worked well to reduce the impact of less accurate points.

O..

Yp

rp

Figure 4.7: Two labelled point triplets with 1:1 correspondences.

To obtain the transformation itself, we first calculate the weighted centroids of
the point sets:

With the singular value decomposition H = UX VT we obtain the required
rotation and translation as follows:

Figure 4.8 visualizes a stepwise application of the transformation to the sample
points. Since the points contain positional uncertainties, it is possible that the
samples don’t match perfectly.
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8 D

Figure 4.8: The point triplet registration consists of a translation of the two point
triplets to the position where their centroids match (left) and a rotation that minimizes
the sum of squared distances between corresponding points (right).

Q-

The algorithm continues by applying the resulting transformation to all the
points in the source set. Afterwards, a fitness function is applied to calculate
the number of inliers. Here, inliers are defined as points in the source set that
have corresponding points in the target set after the transformation. Correspon-
dences have the same label and are within a small radius of each other. They are
located by means of a nearest neighbour search algorithm using a kD-tree. The
search radius for correspondences was chosen to be 50 cm. The closest point
with the same label is selected within this radius and added as an inlier. This is
repeated for every point in the source set. The algorithm keeps track of points
that have been added as inliers in order to avoid 2:1 correspondences. The fit-
ness function also sums up the squared distances between matching points. This
sum is then divided by the total number of inliers. The resulting value serves as
a fitness score for a given transformation of the point set. The RANSAC search
updates its estimation of the current best transformation matrix if both of the
following conditions are met:

e The current number of inliers is greater or equal to the highest inlier count
so far.

e The corresponding fitness score is lower than the previous best value.

The second criterion allows the estimation to improve, even if the number of
inliers has not changed.

The process described in this chapter is repeated a set number of times which is
adjusted whenever the number of inliers increases. The transformation resulting
in the best overall fitness score along with the most inliers becomes the output.
The number of iterations required to reach a satisfactory transformation within
a certain degree of confidence is determined probabilistically. We intend the
algorithm to provide a good result with a probability Pjesireq close to 1. Let
N7 be the number of inliers. It can be at most equal to the number of source
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4. Semantic Localization

points Ng, assuming that the source map is a subset of the target map. Based
on an adaptation of [7], the probability of a failed match is given by

Ni ers
N T
Pfailure = 1- Nis

= 1- Pdesired-

From this relation we can obtain the number of iterations required to compute
a successful match, assuming it exists, with the desired probability of success:

log(l — Pdesired)
3N\ -
log (1 — (—]]\\g) )

Every time a better transformation candidate is found, the iterations decrease
based on Equation 4.5. Once the current iteration counter has reached the ad-
justed number of remaining iterations, the random sampling step of the match-
ing algorithm is completed.

Niters = (45)

4.3.2 Refinement with Weighted Least Squares

The estimated transformation matrix generated by RANSAC is by no means
the final solution to the relocalization problem, since it is merely based on a pair
of sample triplets. Within the context of labelled points, the globally optimal
solution has to take into account all the points that have been marked as in-
liers. This additional refinement is done via weighted least squares optimization
with SVD, similar to the way it was done in the previous section. The opti-
mal registration of the semantic landmarks requires two equally sized point sets
that contain all the correlating points from the target and source maps. This
correlation map is created from all the inlier pairs found during the previous
step. When SVD is applied to the new pair of point sets, the refinement of the
transformation is complete. A comparison of inlier positions before and after
this step can be seen in Figure 4.9.

4.3.3 Final Refinement with ICP

So far, the matching algorithm has only taken semantically labelled points into
account. Even the refined alignment may not represent the best transformation
relating the current pose of the camera to the initial frame of reference. This is
due to the fact that the semantic points are very sparse compared to a typical
3D point cloud used for reconstructing an environment. They are also prone
to positional noise caused largely the object detector. In addition, objects with
very uneven and perspective dependent features tend to add even more noise to
their final position in the semantic map.
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Figure 4.9: Correlations before (left) and after (righth) the global weighted least
squares adjustment. The most successful RANSAC iteration returns a transformation
in which a point triplet is well matched (green circles) while the remaining points are
not (red circle). The refinement step adjusts the positions of all correlation candidates
for a smaller total error. All other points are ignored in the process.

The iterative closest point algorithm [3] may be applied in this situation for a
final refinement of the point registration, if a dense representation of the scene
is available. Assuming that the initial transformation produced by the SPM is
accurate enough for ICP to converge, this final refinement step may improve
the estimation of the robot’s position while relocalizing. The variant of ICP
applied in this thesis makes use of normal estimation in point clouds [10, 23].
A simplified version of the code is given below:

Algorithm 2 ICP with normal estimation

src = getSourcePointCloud()

tgt = getTargetPointCloud()

srcNormals = normalEstimation(src)

tgtNormals = normalEstimation(tgt)

Ti = identityMatrix()

while iters < N do
Ti = ICPWithNormals(srcNormals, tgtNormals) * Ti
iters = iters + 1

return Ti

The value N was set to 30 to ensure that most input clouds register success-
fully, given that they are within the convergence radius of ICP. The effect of the
algorithm on the accuracy of relocalization attempts, along with other system
performance tests, are covered in the next chapter.
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Chapter 5

Quantitative Evaluation on
a Dataset

In order to determine the validity of the proposed method, the semantic match-
ing algorithm was put through a series of tests based on an existing dataset
designed for computer vision applications. The computing was done on an 8
core Intel Xeon E5-1630 3.70GHz processor with an Nvidia Quadro M-2000
graphics card. For most testing purposes, the algorithm itself was set to exe-
cute a minimum of 500 random sampling iterations for an increased chance to
find better matches. The exact means of testing and the results are covered in
this chapter.

5.1 About the Dataset

The "Bosch Semantic Interpretation Challenge (Indoor)" dataset [1] is a collec-
tion of 3D reconstructions of ten buildings from a varying number of viewpoints.
The individual viewpoints are a set of 36 colour and depth frames captured in a
circular motion with an offset of 10° between each view. The corresponding 3D
point clouds are also available, a sample of which is shown in Figure 5.1a. This
dataset was chosen for an initial test of the semantic localization system due
to its broad applicability. It can be used to generate simple inputs for system
sanity checks, and it can be easily modified to obtain more realistic scenarios.

The generation of semantic point map data is done similarly to the method
described in Section 4.2.3 with one key difference: the depth values are taken
directly from the point cloud instead of the depth image. This is because the
point clouds were created with a Matterport! system which fuses data from
several sensors, thus producing point clouds that contain more complete infor-
mation than a single depth frame. This method is also independent of intrinsic

Ihttps://matterport.com/
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5. Quantitative Evaluation on a Dataset

sensor parameters, which are necessary for the optical projection of the labelled
points in 3D space. An example of a semantically extended viewpoint from the
dataset can be seen in Figure 5.1b.

(a) 3D reconstruction of building 1, which ~ (b) Detected objects in viewpoint 1 of
is part of the Bosch dataset. building 1, depicted by the larger dots.

Figure 5.1: Sample 3D data from the Bosch dataset.

5.2 Error Metrics

In order to evaluate the accuracy of the rigid transformation matrix computed
by a relocalization method, we need to compare it with a ground truth. The
errors are expressed as translational and rotational deviations from this ground
truth transformation. The linear error is given by

€trans — ”tGT - t” ,

where tgr and t are the ground truth and estimated translations respectively.
The angular deviation is calculated with the trace of the rotation matrix:

Tr(R™'Rgr) — 1)
2 )

lerot| = arccos (

where R is the calculated rotation matrix and Rgr is the ground truth. These
translation and rotation errors are referred to throughout the remaining the-
sis for system performance evaluation. Useful information is also obtained by
examining the cost fitness score of the registration result, as well as other in-
formation stored in the semantic maps, including the number of labelled in
different viewpoints points and their positional variances.

5.3 Single Viewpoint Registration

In this test, every viewpoint of a sample building is made into a pair of seman-
tic maps. The first consists of the complete set of 36 frames and represents

28



the target map. The source map is created from every second frame and is
added Gaussian noise with zero mean and a standard deviation of 1 cm. The
noise renders the data slightly more realistic, since the camera is very unlikely
to observe two identical frames in a real use-case. Both maps are aligned by
default, meaning that the semantic point matcher should produce an identity
transformation matrix in an ideally successful case.

The resulting errors in Figure 5.2 show a possible output of the algorithm when
applied on sample scans within the first five buildings. The runtime of a single
registration is generally in the order of tens of milliseconds. Several viewpoints
were considered invalid due to an insufficient number of objects in the relocal-
ization map, resulting in 40 invalid maps out of a possible 61. Among the 21
valid scans all had linear errors of less than 20 cm, though it is not always the
case. To demonstrate this, scan 16 (corresponding to viewpoint 12 in building
3) is worth a closer look. After running the algorithm several additional times,
it occasionally resulted in very large errors, with translations in the order of 4
m and rotations around 180°. A failed and successful attempt can be seen in
Figure 5.3. The incorrect match found 5 out of 7 possible inliers with an av-
erage distance around 8 cm between corresponding points. The correct match
had 7 inliers with correspondences 11 cm apart. This shows that a better fitness
function does not necessarily hint at a better match.

S

Translation error [m]
Rotation error [deg]

1234567 8 9101112131415161718192021 1234567 8 91011121314151617 18192021
Rooms Rooms
Figure 5.2: Translation and rotation errors after running the SPM on valid scans
within the first three buildings of the Bosch dataset. From a total of 61 viewpoints in
3 buildings, 21 were valid for this test (had at least 3 detections in the source map).

In order to get a more general understanding of these errors, the algorithm
was repeated 100 times on all the valid viewpoints of building 3. The resulting
histograms are shown in Figure 5.4. For viewpoint 12, the large linear errors
of several metres occur in about 24% of the trials. These are the only outliers
with errors larger than 1 m when looking at the combined picture. Among the
600 samples, 73% have errors less than 10 cm.
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5. Quantitative Evaluation on a Dataset

Figure 5.3: A failed (left) and successful (right) registration of a sample viewpoint.
The red circles show the locations of labelled points that were successfully matched.
The left image was downsampled to make the labelled points more visible.
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Figure 5.4: Histograms of translational errors for all valid viewpoints in building 3.
Viewpoint 12 is scaled differently on both axes due to outliers.
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5.4 Combined Viewpoints with Added Noise

Complexity is added to the test in a different way by combining all the com-
plete semantic maps of the different viewpoints into a single map of the whole
building to form a new target map. The new source maps are semantically ex-
tended reconstructions of the individual viewpoints, using all 36 frames. Again,
the quality of the registration is judged by the amount of deviation between
the system output and an identity transformation. Additionally to the previous
test, the amount of noise is increased over several runs of the algorithm, with
the aim to determine to what extent unreliable data can influence the accuracy
of the SPM and its ability to relocalize in the correct room among many others.

Positional noise was added to the points of the relocalization map with zero
mean and standard deviations of 1, 5, 10, 15 and 20 cm. Figures 5.5 and 5.6
show the translation and rotation errors respectively. They are depicted as func-
tions of the added noise in 5 different buildings for single registration attempts.
Random sampling tends to produce occasional incorrect values sporadically for
some viewpoints while other registrations are still accurate. For this reason, the
aforementioned figures also feature plots of median errors. It can be observed
that the point matching results are rather robust in most cases with noise below
10 cm, with values that generally deviate by less than 50 cm. An examination of
the semantic maps of the analysed buildings reveals that the average positional
standard deviation of labelled points is in the order of 5 cm or less. Within
this range, the median errors are 20 cm and 1°. Buildings 4 and 5 show some
relatively large errors with small amounts of noise, especially in the rotation
error. This oddity can in part be explained by the fact that a total of 48 objects
contributed to the semantic map of building 4, while the other buildings had 74
to 112 objects. A lower number implies fewer registration candidates per view-
point, which can cause the SPM to yield less accurate results. The relationship
between errors and the number of objects is considered further in Figure 5.7.
The largest errors originate from the buildings 4 and 5 which also have the least
objects in the corresponding viewpoints. Among the viewpoints that have more
than 10 detections, only one case resulted in an error greater than 20 cm.

For an additional impression of the semantic matcher’s performance, Figure
5.8 demonstrates several attempts at reconstructing building 4 with increasing
noise, in comparison with the actual reconstruction. Overall, the results from
this test show a good performance of the algorithm, even with unreliable data.
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Figure 5.5: Translation errors after running the SPM once on valid viewpoints in the
first 5 buildings with increasing positional noise for the labelled points. The bottom
right plot shows median errors of each building.
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Figure 5.7: Translation and rotation errors resulting from the SPM in relation to the
number of objects in each viewpoint of the tested buildings. The errors are taken from
the combined viewpoint registration test with a noise standard deviation of 5 cm.
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(d) Noise: 15 cm (e) Noise: 20 cm

Figure 5.8: Relocalized and combined viewpoints with various amounts of noise
compared to the 3D reconstruction from the dataset.
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5.5 Effect of Clustering

So far, every registration has been the result of a match between two semantic
maps that have been compressed via clustering, as explained in Section 4.2.3.
Clustering has the advantage that outliers resulting from incorrect detections
are removed, and the final position of objects in the map is improved via av-
eraging. However, the first two tests revealed that this process also removes
a number of potentially useful detections from the semantic map, especially if
every object is observed in a limited number of frames. This problem is clar-
ified in Figure 5.9 where a bag is seen a total of three times during a scan of
20° intervals. For cameras field of view of about 60°, this can occur for many
objects. If the detector fails to perceive the object in even one of these frames,
the clustering based on a minimum of three points will also fail.

Figure 5.9: Three views on the same object with an angular offset of 20°. Images
are taken from the Bosch dataset.

The strong decline in the number of detected objects is additionally shown in
Figure 5.10. If every available frame of the dataset is fed into the SMG, a total
of 1135 objects is found in the ten buildings. If every second frame is used for the
map generation, this number drops to 430. This substantial difference suggests
that there may be advantages in ignoring the clustering step while processing
the semantic points.

This idea was tested by creating a pair of clustered and non-clustered seman-
tic maps from the buildings 6 to 10 by using all even-numbered frames for the
source map and all odd-numbered frame for the target. No noise was added this
time, since both maps were based on a disjoint set of inputs. The registration
algorithm was then applied on the clustered versions of the input maps as well
as the full maps containing all detections. The resulting translation and rota-
tion errors are compiled in Figures 5.11 and 5.12. It can immediately be seen
that the SPM did not have problems finding a registration estimate for nearly
all test cases, producing an average deviation of 29.6 ¢cm and 4.6° with two
cases having an error in the order of a few metres. Without these outliers, the
average error becomes 13.1 cm and 1.4°. The non-clustered map registration
was successful in each viewpoint of each tested building, except for viewpoints
20 and 21 of building 10, which didn’t have enough detections to make a correct
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Figure 5.10: Number of objects in the different buildings based on an angular offset
of 10° (left) and 20° (right) between each frame of the scan.

registration, even before clustering. In contrast, the clustered registration only
yielded results in 29 out of 66 cases with three instances of errors greater than
1 m. If these outliers are ignored, the mean error of clustered matching is 11.6
cm and 1.5° (otherwise it jumps to 1.13 m and 7.6°).

When comparing runtime performance, the clustered variant has an advantage
in the RANSAC search. On the used machine, the average runtime of the clus-
tered variant is 7.3 ms with a maximum value of 99.6 ms. Without clustering,
the average rose to 32.2 ms with a maximum of 244.1 ms. Since the compressed
map performs about 4 times faster than the full map on average, it can be as-
sumed that clustering has advantages when working with maps of much larger
scale. The input data in tests with the Bosch dataset consisted of 36 frames at
most, meaning that even the non-clustered maps were rather sparse. The next
section considers maps that were generated from more than a thousand frames
for the relocalization algorithm.
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Figure 5.11: Translation errors resulting from registrations based on clustered and
non-clustered sets of detections. The y-axis is set on a logarithmic scale for better
visibility of large error differences. The missing bins stem from matching attempts
that failed or did not have enough input points.
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Figure 5.12: Rotation errors resulting from registrations based on clustered and
non-clustered sets of detections, with a logarithmic y-axis.
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Chapter 6

Qualitative Tests in Real
Environments

After validating the proposed approach we performed mapping and relocaliza-
tion experiments on self-acquired data in different environments in a variety of
circumstances to compare the performance of the SPM with the relocalization
routine of ORB-SLAM2. The experiments described in this Chapter were com-
pleted in the Institute for Robotics and Mechatronics at the German Aerospace
Center in a typical office environment and in the mobile robotics laboratory.

6.1 Accuracy Test with Vicon

When moving from datasets to tests with real environments, it is highly valu-
able to have a ground truth measurement for reference. In the case of this
relocalization problem, the ground truth was provided by a Vicon motion cap-
ture sensor array in the mobile robotics laboratory (Figure 6.1). The goal of
this experiment is to determine the accuracy of the semantic point matcher in
a relatively large environment with realistic data.

6.1.1 Experiment Setup

The Xtion sensor was first equipped with a set of markers. Then it was placed
at a chosen location and ORB-SLAM?2 was started. The initial position of the
sensor was recorded from two perspectives: the Vicon coordinate system and
the local camera frame via ORB-SLAMZ2. The 3D reconstruction of the labora-
tory (from stored keyframes) is visualized in Figure 6.2. In the semantic map,
the detected objects include a number of screens, chairs and keyboards, as well
as a bottle, cup, suitcase and remote among a total of 59 detections. Since the
detector was not trained for this environment, the semantics do not necessarily
hint at a robotics laboratory. Figure 6.3 reveals that the density of detections
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6. Qualitative Tests in Real Environments

(a) Asus Xtion camera with markers. (b) Vicon sensor array.

Figure 6.1: Experiment setup for acquiring the ground truth.

is much higher in the bottom area where all the monitors are located, while the
top area failed to locate a particularly high number of objects. This tells us
that a relocalization attempt is less likely to make use of the upper area of the
lab and risks finding faulty registrations.

Figure 6.2: Semantically extended 3D point cloud of the mobile robotics laboratory.

6.1.2 Relocalization with SPM

To test the effectiveness of the semantic point registration algorithm, a set of
three relocalization scans was made in three different locations within the work-
ing volume of the Vicon sensor array. The point maps from the partial views
were then matched against the complete map.
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Figure 6.3: Top-down perspective on the semantic points of the mobile robotics
laboratory.

During the first relocalization attempt, the algorithm failed to find common
landmarks in the rocky area of the laboratory. In fact, all of the inliers con-
sisted of approximately collinear objects around the desks, including screens,
chairs and a cup. Due to this, the proposed match was only correct in that
region, as seen in Figure 6.4.

Figure 6.4: Failed registration attempt due to common landmarks being nearly
collinear in one area.

The second attempt was more successful, though the reference objects were still
exclusively in the desk area (Figure 6.5). The SPM estimation was accurate
enough to be a valid initial guess for ICP, having a translation and rotation
errors of 37.62 cm and 3.73° respectively, compared to the transformation mea-
sured by Vicon. After ICP, the deviations went down to 5.29 cm and 0.09°.
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6. Qualitative Tests in Real Environments

Figure 6.5: Registration attempt of test 2. The red lines mark corresponding areas
that have not been properly registered by SPM.

The third attempt was the most successful one, resulting in a quite close match
between the two views with deviations of 15.11 cm and 0.15°, which changed to
9.7 cm and 0.83° after applying ICP.

Figure 6.6: Registration attempt of test 3.

These experiments illustrate the initial considerations of Section 1.2: the ac-
curacy of SPM depends not only on the existence of objects, but also their
distribution around the room.

6.1.3 Comparison with ORB-SLAM?2

For this test, the camera was placed in three new locations that successfully
triggered the relocalization routine of ORB-SLAMZ2. The results are compiled
in Table 6.1, which shows translation and rotation errors that are in a similar
order of magnitude as the previously obtained results from the SPM.
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Position ‘ €trans |cm] ‘ erot [deg]

1 7.9 1.1
2 21.6 1.5
3 17.1 2.0

Table 6.1: Translation and rotation errors of the relocalization by ORB-SLAM?2.

During these relocalization attempts with ORB-SLAM?2, it was made apparent
that the keypoint tracker is unable to find matches reliably from numerous po-
sitions. The camera had to be moved around for a while until it was relocalized
successfully. A simple rotatory motion of the tripod was often insufficient for
the task. This may not be an issue with flying robots that can scan the envi-
ronment very fast, but less dynamic robots like rovers may require a lot of time
to properly relocalize themselves using ORB-SLAM2.

6.2 Relocalization in Dynamic Environments

To demonstrate the benefits of semantic maps, we compare the SPM with the
relocalization routine of ORB-SLAM?2 in different office scenarios that showcase
the robustness of object detections against visual keypoints. According to Mur-
Artal et al. [17], their method can handle keyframe scale changes between 0.36
and 2.93 and an angle difference of 59° in the optical axis. While this allows
for a rather wide range of cases where the sensor can be successfully tracked,
there are some scenarios where the visual feature matcher may fail compared to
a semantic method. This section discusses such cases.

6.2.1 Occlusions to the Sensor’s Field of View

The first example is a situation where the sensor has a heavily impaired field
of vision during the relocalization attempt. This effect was achieved by putting
bits of paper around the camera lens and doing a partial scan (about 270°) of
the room by using a tripod. The initial map was produced with a 360° scan
in the same position without any obstructions. Afterwards, the semantic point
matcher and the place recognition module of ORB-SLAM?2 were evaluated in
these conditions.

The relocalization routine of ORB-SLAM2 failed to find the obstructed sensor’s
location over a considerable range of frames, but it did succeed in visually denser
areas, as depicted in Figure 6.7. For the initial position of the camera (0,0, 0),
ORB-SLAM2 produced a positional error of 59.5 cm. It is also noteworthy that
the results were worse when attempting the same with the obstructed map in a
"clean" environment, where very few of the frames returned a match. The same
conditions were tried on SPM, which resulted in the estimated position shown
in Figure 6.8 on the left. This estimation is quite close, and it is based on 6
reference points. The pose after applying ICP can be seen on the right. Before
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ICP, the positional error was 7.0 cm and it changed to 9.0 cm after the adjust-
ment, showing that ICP may not always result in more accurate localization of
the sensor.

Figure 6.8: Overlapping 3D maps of the office after SPM (left) and ICP (right). The
larger coloured dots represent the position estimation by ORB-SLAM2 (red), SPM
(green) and the real position of the sensor (blue).

We can observe that object detection is comparatively less affected by visual
impairment than keypoint matching. Additionally, we can see that the semantic
point matcher can be accurate, even when the number of inliers is rather small.

6.2.2 Strong Lighting Changes

Another example is a situation where the relocalization environment has dra-
matically different lighting conditions than the initial map. To test this, two
revolutions of the camera were made at the same viewpoint — once with a mod-
erately high level of brightness and once in a much darker setting. For a visual
impression of the illumination differences, refer to Figure 6.9.

After the captures were made, the relocalization routine of ORB-SLAM?2 was
tested by using the darker map to locate the sensor within the bright room and
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Figure 6.9: Brightness difference in the two scans of the scene.

vice versa. ORB-SLAM2 failed to relocate the camera in both cases. SPM,
on the other hand, found a rough estimate of a transformation relating both
maps of the office, as depicted in Figure 6.10. Similarly to the previous test, the
overlap between the two maps is once again well within the convergence range
of ICP. The estimated pose matrices before and after ICP are the following:

[0.9999  0.00968 —0.00583 —0.0529
P ~|—0.0097 0.9999  0.0041  —0.0438
SPM- =1 00059 —0.0040 0.9999  —0.0599
0 0 0 1

[0.9999 0.0015 —0.0114 —0.0419
P —0.0014  0.9999  0.0088 —0.0251
ICP = 1 0.0114 —0.0088 0.9999 —0.0429
0 0 0 1

The pose estimated by SPM deviates from the unit matrix by a distance of 9.11
cm and an angle of 0.69°. After ICP the deviation changed to 6.50 cm and
0.83°. While ICP did not improve the orientation error, this experiment still
resulted in a successful relocalization in an environment where feature matching

had failed.

6.2.3 Relocalization from Different Perspectives

The third test discussed in this section involves relocalization in partially over-
lapping maps taken from two different perspectives. It serves to verify the
robustness of the algorithm in situations where a complete map is not available.
While visual feature matching is robust to scale and rotation changes, we ex-
pected this case to be too extreme for the tracking module of ORB-SLAM?2 to
handle. The semantic localization system, on the other hand, only requires to
detect a small common set of similar objects in both views to find a match. With
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6. Qualitative Tests in Real Environments

Figure 6.10: Target point cloud (light) and transformed source point cloud (dark)
overlapped and visualized as RGB point clouds. The circled pairs of coloured blobs
represent the semantic landmarks that were successfully correlated by the matching
algorithm: one cup and three screens. The blue and red dots represent the real and
estimated positions of the sensor respectively.

this thought, a pair of partial maps was generated based on the plan shown in
Figure 6.11. The 3D maps themselves are shown in Figure 6.12.

After the recordings, the camera was put in position 1 with the map of posi-
tion 2 and vice versa. The results of relocalization attempts were similar to
the previous test. ORB-SLAM?2 failed to find a match along the whole field
of view from both perspectives. SPM produced the pose estimation depicted
by the overlapping point clouds in Figure 6.13. This specific matching attempt
found 9 semantic correlation candidates. Since the exact location of the camera
from one frame to the other could not be measured, the accuracy was estimated
by comparing the transformations implicitly by computing the transformation
from one perspective and applying the inverse to project it back to the initial
pose. These two poses differed from one another by 0.79 cm and 0.17°.

Overall, after completing these experiments we can observe that the object de-
tector shows more robustness towards harsh visual changes in the environment.
As long as there are detectable objects in the camera’s field of vision, the seman-
tic point matcher can produce pose estimates that are at least in the range of
ICP and may even have linear accuracies up to a few centimetres and deviations
in the orientation of less than 1°.
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Figure 6.11: Simplified top-down plan of the office where the tests were carried out.
The two circular sectors represent the approximate viewing angles of both scans.

Figure 6.12: Top view of 3D reconstructions from both perspectives. Some elements
are marked to make the similarities clearer. The blue dot represents the position of
the camera in both frames of reference.
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6. Qualitative Tests in Real Environments

Figure 6.13: Registration of two semantically extended point clouds of the office
from two different perspectives. The blue dot represents the estimated position by
SPM and the red dot is the actual position of the sensor. The red circles mark the
visible semantic correlations that resulted in the registration result. The landmarks
include chairs, screens, a bag, a cup and a bottle among other items.
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Chapter 7

Conclusions

The semantic point matcher (SPM) developed and tested in this thesis is a
method for robust and accurate 6 DoF relocalization of lost robots in an exist-
ing 3D point map, created with the semantic point map generator (SMG). The
algorithm can reliably achieve linear and angular accuracies of less than 10 cm
and 1° respectively, as shown both by quantitative tests with the Bosch Seman-
tic Interpretation Challenge dataset, as well as experiments on self-made scans
of an office environment and the mobile robotics laboratory in the Institute for
Robotics and Mechatronics of the German Aerospace Center (DLR).

The quantitative tests showed that the proposed method can handle unreliable
point data with positional noise up to 10 cm successfully in the majority of
cases. The SMG is also capable of successful relocalization when only a very
limited number of common objects have been detected between the global and
local map. The tests demonstrated some benefits and limitations of clustering
the semantic point data before applying the SPM. In both cases the accuracy
is comparable, but skipping the clustering step permits relocalization in very
sparse maps where many detections would be otherwise filtered out. However,
compressing the semantic map does improve runtime performance and is well
suited for larger maps.

The experiments on real data revealed more favourable features of the SPM in
a test where it was compared with the relocalization routine of ORB-SLAM2.
One of the tests compared both methods in an office environment where the
original map was drastically different from the current view, either due to ob-
structions, lighting differences or perspective changes. The semantic matcher
consistently outperformed its counterpart, both in accuracy and in the rate of
successful registration attempts. The mobile robotics laboratory presented a
challenge for relocalization due to its lack of commonly detectable objects, but
the successful pose estimations deviated by less than 10 cm and 1° from the
ground truth measured by a Vicon motion capture sensor array.
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7. Conclusions

The proposed method is not devoid of limitations. An obvious weakness of
the SPM is its dependency on correctly detected objects in a room. When
working with sparse maps, the algorithm may find a solution that is supported
by a good fitness score, but does not relocalize the robot properly. Because of
this, a reasonable way to apply the algorithm is by integrating it in existing
SLAM systems. If several different relocalization routines work in cohesion, we
may increase the likelihood of a successful pose estimation. Many robots use
object detectors for various purposes, and extending them with the semantic
map generator would not add a lot of weight to the existing processes, and in
turn provide the robot with additional tools to understand its environment on
a more detailed level.
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Chapter 8

Future Outlook

Since the SMG and SPM show promise as extensions of SLAM, a reasonable
development would be to implement a purely online relocalization routine that
can make proposals and adjustments to existing methods to increase the accu-
racy of pose estimations in real time.

Other desirable improvements can focus on the runtime performance of the
SPM. A rather simple yet effective addition could be GPU acceleration for
the RANSAC step of the relocalization routine, which would allow the various
transformation candidates to be processed in parallel for considerably faster
performance. Another way of potentially improving the point matching speed
is to add a long term reliability measure to the objects in a room based on their
displacement over several relocalization attempts. If such points are favoured
during the RANSAC pose estimation step, the correct transformation may be
found in fewer iterations.

For environments that are densely populated with just one type of object, it
may be beneficial to extend the labelled points with visual feature descriptors
in a small region around them. This would add more uniqueness to each point
in the semantic map, allowing more certainty in proposed pose estimations.
Reliability may be added to the position of every object by using a detector
that also produces segmentation masks. A closely cropped region opens up new
possibilities for a more accurate mapping of every detection.
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