Publisher Deutsches Zentrum
für Luft- und Raumfahrt e.V.
German Aerospace Center
Institut für Methodik der Fernerkundung
Remote Sensing Technology Institute

Address Oberpfaffenhofen
82234 Weßling

Editorial Team Dr. Peter Haschberger

Printed by M & E Druckhaus, Belm

Published Oberpfaffenhofen, July 2018
Reproduction (in whole or in part) or other
use is subject to prior permission from the
German Aerospace Center (DLR)
www.DLR.de/EOC

Cover TanDEM-X elevation model of Kamchatka Peninsula,
Plosky Tolbachik Volcano (3058 m)
Remote Sensing Technology Institute
Institut für Methodik der Fernerkundung

Status Report 2013 – 2018
Content

Foreword:

Introduction:

Earth Observation at DLR ... 2
DLR's Earth Observation Center ... 3
Remote Sensing Technology Institute .. 5
Structure of this Report ... 7

Missions and Sensors

IMF's Role in EO Missions ... 12
SAR .. 12
Optical Imaging ... 13
Spectroscopic Sounding of the Atmosphere 13

National Missions ... 15
TerraSAR-X ... 15
TanDEM-X ... 16
Tandem-L ... 17
HRWS ... 18
DEISIS .. 18
EnMAP .. 18
MERLIN ... 20

ESA, EUMETSAT and Copernicus Missions 22
ERS-1 and ERS-2 .. 22
ENVISAT .. 22
MetOp ... 23
Aeolus ... 24
Sentinel-1 ... 25
SAOCOM-CS .. 25
Sentinel-2 ... 25
Sentinel-5 Precursor ... 26
Sentinel-4 and Sentinel-5 ... 27
CarbonSat ... 28
Other International Missions

- PAZ .. 29
- Radarsat .. 29
- ALOS and ALOS-2 .. 29
- NISAR .. 29
- ikonos-2 and WorldView-1/2/3/4 ... 30
- Pleiades ... 30
- IRS-P5 (Cartosat) .. 30
- Ziyuan-3 ... 30
- DSCOVR .. 31
- SCISAT-1 ... 31

Balloon-/Air-/UAV-borne Sensors

- TELIS .. 31
- 3K, 4k, Real-Time Camera Systems and Processors 32
- Hyperspectral Airborne Camera HySpex ... 33
- UAV-borne Systems ... 34

Generic Processing Systems

SAR Data

- SAR-Lab/GENESIS ... 36
- SAINT ... 36

Optical Data

- CATENA .. 38

Atmospheric Data

- GCAPS – Level 0-1 ... 39
- UPAS and UPAS2 – Level 1-2 ... 40

Laboratory Infrastructure and User Services

Spectroscopic Reference Lab

- Underwater Simulator .. 42
- Calibration Home Base .. 43
- Airborne Remote Sensing ... 45
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR Focusing</td>
<td>48</td>
</tr>
<tr>
<td>SAR Geodesy Algorithms</td>
<td>51</td>
</tr>
<tr>
<td>New Algorithms for TanDEM-X</td>
<td>51</td>
</tr>
<tr>
<td>Imaging Geodesy</td>
<td>53</td>
</tr>
<tr>
<td>Ground Control Points from Geodetic SAR Data</td>
<td>54</td>
</tr>
<tr>
<td>Application of SAR Data for Glaciology</td>
<td>55</td>
</tr>
<tr>
<td>SAR Interferometry</td>
<td>56</td>
</tr>
<tr>
<td>Advancements in Interferometric Techniques</td>
<td>56</td>
</tr>
<tr>
<td>Tropospheric Corrections</td>
<td>57</td>
</tr>
<tr>
<td>Ionospheric Corrections</td>
<td>57</td>
</tr>
<tr>
<td>Sequential Estimation for Distributed Scatter Interferometry (DSI)</td>
<td>58</td>
</tr>
<tr>
<td>Closure Phases and Moisture Retrieval</td>
<td>59</td>
</tr>
<tr>
<td>3D Motion Reconstruction</td>
<td>60</td>
</tr>
<tr>
<td>Large Scale Deformation Mapping Projects</td>
<td>61</td>
</tr>
<tr>
<td>SAR Tomography</td>
<td>62</td>
</tr>
<tr>
<td>Tomographic Reconstruction</td>
<td>62</td>
</tr>
<tr>
<td>Staring Spotlight TomoSAR</td>
<td>62</td>
</tr>
<tr>
<td>3D Deformation Monitoring</td>
<td>63</td>
</tr>
<tr>
<td>From TomoSAR Point Clouds to Objects</td>
<td>63</td>
</tr>
<tr>
<td>DefoSAR – TomoSAR Framework for Tandem-L</td>
<td>64</td>
</tr>
<tr>
<td>Geodetic SAR Tomography</td>
<td>64</td>
</tr>
<tr>
<td>SAR Oceanography</td>
<td>66</td>
</tr>
<tr>
<td>Sea State and Bathymetry</td>
<td>67</td>
</tr>
<tr>
<td>Vessel Detection, Feature Determination and Target Classification</td>
<td>67</td>
</tr>
<tr>
<td>Surface Film and Oil Detection</td>
<td>68</td>
</tr>
<tr>
<td>Ocean Winds and Waves</td>
<td>68</td>
</tr>
<tr>
<td>Sea Ice Information</td>
<td>68</td>
</tr>
</tbody>
</table>
Optical Imaging

Stereo and 3D Processing ... 72
- DSM Generation .. 72
- Digital Terrain Models ... 74
- Building Footprint Generation and Refinement from VHR Stereo Data 75
- Roof Type Classification .. 77
- 3D Change Detection .. 77
- 3D from UAV Data ... 79
- Application: Strong Rain Risk Estimation .. 80

Hyperspectral Data Evaluation .. 81
- Declouding within Image Time Series .. 81
- Denoising of Hyperspectral Data ... 82
- Fusion of Hyperspectral and Multispectral Data 82
- Classification using Multi-modal Data Sources 83
- Archaeological Applications .. 84
- Optical Water Remote Sensing ... 84
- Inland Waters ... 85
- Seagrass Monitoring ... 85

Atmospheric Correction ... 87
- New Generic Atmospheric Correction Processor PACO 87
- Multi-temporal Atmospheric Correction of Multi-spectral Images (MAJA).... 87
- Haze-/Cirrus Removal ... 88

Real-Time Airborne Traffic and Situation Monitoring 89
- Vehicle Detection and Tracking .. 90
- HD-Mapping for Autonomous Driving ... 90
- Benchmark, Fusion of Street View and Bird’s Eye View 91
- Crowd and Pedestrian Monitoring .. 92
- User Campaigns ... 93

Thermal Image Processing .. 94
- Infrared Scene Simulation ... 94
- Flying Infrared Wildlife Finder .. 95
Spectrometric Sounding of the Atmosphere

- **Sensor Calibration** ... 98
- **Radiative Transfer** .. 101
 - Infrared and Microwave .. 101
 - Ultraviolet and Visible .. 103
- **Inversion and Regularization** ... 103
 - Cloud Retrieval ... 104
 - Machine Learning ... 105
- **Electromagnetic Scattering** .. 106
- **Spectroscopic References** ... 107
- **Geoscientific Research** .. 108
 - Long-term Observation of Ozone .. 108
 - Sulphur Dioxide ... 109
 - Tropospheric Nitrogen Dioxide and Air Quality 111
 - Atmospheres of Exoplanets .. 112

Data Science in Earth Observation

- **Modern Model-based Signal Processing Algorithms** 116
 - Sparse Reconstruction ... 116
 - Robust Estimation ... 118
 - Nonlocal Filtering .. 119
 - Tensor Analysis .. 119
- **Artificial Intelligence for Earth Observation (AI4EO)** 120
 - Multi-modality ... 120
 - Geolocation ... 121
 - Time Series Data .. 121
 - Concepts for Large-scale Applications 122
 - Open Research Questions .. 122
- **Unconventional Geodata Sources Harvesting** 122
 - Street Level Imagery .. 122
 - Social Media Texts .. 122
- **Data Fusion** .. 124
 - Fusion of SAR and Optical Imagery ... 124
 - Fusion of SAR and Optical 3D Point Clouds 125
 - Fusion of PolSAR, Hyperspectral, Lidar and More 125
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Earth Data Analytics</td>
<td>126</td>
</tr>
<tr>
<td>Geoscientific Application – Urban Mapping</td>
<td>126</td>
</tr>
<tr>
<td>Data Mining and Knowledge Discovery</td>
<td>128</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>129</td>
</tr>
<tr>
<td>Teaching and Education</td>
<td>132</td>
</tr>
<tr>
<td>Lectures at Technical University of Munich (TUM)</td>
<td>132</td>
</tr>
<tr>
<td>Lectures at other Universities</td>
<td>134</td>
</tr>
<tr>
<td>Non University Courses and Tutorials</td>
<td>136</td>
</tr>
<tr>
<td>Internal Seminar Series</td>
<td>139</td>
</tr>
<tr>
<td>Academic Degrees</td>
<td>140</td>
</tr>
<tr>
<td>Professorship Appointments</td>
<td>140</td>
</tr>
<tr>
<td>Habilitations and Veniae Legendi</td>
<td>140</td>
</tr>
<tr>
<td>Doctoral Theses</td>
<td>141</td>
</tr>
<tr>
<td>Master/Diploma/Bachelor Theses</td>
<td>147</td>
</tr>
<tr>
<td>Scientific Exchange</td>
<td>154</td>
</tr>
<tr>
<td>Guest Scientists</td>
<td>154</td>
</tr>
<tr>
<td>Professional Leaves</td>
<td>156</td>
</tr>
<tr>
<td>Conferences</td>
<td>158</td>
</tr>
<tr>
<td>Patents</td>
<td>159</td>
</tr>
<tr>
<td>Filed Patent Applications</td>
<td>159</td>
</tr>
<tr>
<td>Granted Patents</td>
<td>160</td>
</tr>
<tr>
<td>Awards</td>
<td>161</td>
</tr>
<tr>
<td>Memberships</td>
<td>166</td>
</tr>
<tr>
<td>Memberships in Space Mission related Boards</td>
<td>166</td>
</tr>
<tr>
<td>Editorial Memberships</td>
<td>167</td>
</tr>
<tr>
<td>Publications</td>
<td>168</td>
</tr>
<tr>
<td>Publications in ISI or Scopus Journals</td>
<td>168</td>
</tr>
<tr>
<td>Other Publications with Full Paper Review</td>
<td>183</td>
</tr>
<tr>
<td>Books</td>
<td>193</td>
</tr>
<tr>
<td>Book Contributions</td>
<td>193</td>
</tr>
<tr>
<td>Other Publications</td>
<td>195</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>206</td>
</tr>
</tbody>
</table>
Foreword

The Remote Sensing Technology Institute (IMF) was founded in 2000. Together with the German Remote Sensing Data Center (DFD) it forms DLR’s Earth Observation Center (EOC), the largest German institution devoted to Earth remote sensing. This IMF status report has been written in preparation for its third evaluation. It details for the scientific and engineering achievements of the institute in the period from 2013 until mid-2018. Many of the larger mission projects described have been jointly executed by IMF and DFD employing efficient task sharing.

In the five year reporting period remote sensing has undergone an unprecedentedly dynamic development. National Earth observation missions have been and are being implemented together with industry; new mission concepts have been conceived (e.g. Tandem-L); with the Sentinel satellite fleet of the European Copernicus program Earth observation has arrived at the big data era – a real game changer; private ‘NewSpace’ companies have launched high numbers of rapidly developed satellites and are exploring novel business models; internet giants like Google and Amazon have entered Earth observation with their cloud computing power and artificial intelligence algorithms. This was the wave of chances, challenges and opportunities we have surfed over the past five years.

Our mission is the extraction of geophysical variables, geoinformation and knowledge from remote sensing data for scientific, commercial, societal and political users – but also for our own research projects. To reach this goal we develop scientific algorithms and operational processing system solutions.

IMF’s scientists and engineers have contributed to many missions at the forefront of remote sensing technology. They developed and are developing algorithms and processing systems for TerraSAR-X, TanDEM-X, Tandem-L, EnMAP, DESIS, MERLIN, MetOp/GOME-2, Aeolus, Sentinel-2, Sentinel-5P, Sentinel-4 and Cartosat, to name just the most prominent ones. Their expertise in information retrieval from radar, optical, spectrometric and lidar data as well as their dedication to professional system implementation are widely appreciated.

Today our portfolio is characterized by our involvement in almost every national and many European and international missions – an exciting perspective for the next decade.

The results presented in this report have been achieved by enthusiastic IMF scientists and engineers, supported by technical and administrative staff, to all of whom I express my sincere gratitude.

Many have contributed to the preparation of this document. I am particularly indebted to the editor-in-chief, Dr. Peter Haschberger, the core author team, Dr. Manfred Gottwald for graphics artwork, Nils Sparwasser for professional layout advice, Dr. Ramon Bricic for language check and our Controlling department.

Much of what is described in this report was achieved in close cooperation with DFD. I am very grateful to my colleague and DFD director, Prof. Dr. Stefan Dech, for his amicable and efficient cooperation.

Finally, I would like to thank all of our partners, customers and funding organizations for their collaboration and support during the past five years.

Oberpfaffenhofen, July 2018

Prof. Dr.-Ing. habil. Richard Bamler
Director
Remote Sensing Technology Institute
Earth Observation at DLR

Understanding the Earth system, its processes and changes, requires observation of geophysical and geobiochemical variables. Remote sensing from space is the only technology providing these measurements over large spatial and temporal extents on a regular and reliable basis. The obtained geoinformation responds to a wide variety of scientific, political, societal and economic demands from local to global scales.

DLR masters the entire system chain for satellite and airborne remote sensing: mission concepts, sensor technology, precursor experiments, information retrieval algorithms, satellite command and control, payload data reception with an international station network, data management and operational processing, value-added product development, project-oriented geoscientific research, and dedicated user services. Such a system capability is unique in Europe and is important to meet the challenges of international competition. It allows DLR – in cooperation with industry – to conceptualize, implement, operate and optimize novel Earth observation (EO) missions in a very flexible, cost-effective and quality-conscious way. Milestone missions like TerraSAR-X (the first one-meter-resolution, sub-meter-accuracy SAR system in space) or TanDEM-X (the first formation flying SAR interferometer) would not have been possible without this comprehensive approach. The flexible multi-mission concept likewise allows adaption to European large-scale missions, such as the Sentinels.

With its research portfolio, comprising methodological, geoscientific and application-oriented research, DLR contributes to solutions for the current challenges in meteorology, global change research, Earth system and environmental sciences, sustainable development, safety and security, mobility, resource management, civil engineering and urban planning. Besides its own research activities DLR is a partner to many scientific users of EO information. DLR contributes with its expertise to international science and operational organizations such as the Group on Earth Observation, the World Meteorological Organization and the Charter on Space and Major Disasters, just to name a few. Its EO portfolio makes DLR one of the most important players in the European flagship space program Copernicus, with both its operational and application capabilities.

Six institutes are the major contributors to DLR’s EO program topic with the following R&D foci:

- **Radar and Microwaves Institute**
 Radar sensors and missions concepts

- **Institute of Optical Systems**
 Optical sensors and systems

- **Remote Sensing Technology Institute**
 Information retrieval from remote sensing data

- **German Remote Sensing Data Center**
 Ground segment engineering and geoscientific research

- **Institute of Atmospheric Physics**
 Lidar development, atmospheric research and models

- **German Space Operation Center**
 Satellite control and orbit determination

In March 2018 DLR’s research program Space underwent an extensive evaluation on behalf of the Helmholtz association with the program topic Earth Observation receiving the highest possible grade ‘outstanding’.
Introducing DLR’s Earth Observation Center

The Remote Sensing Technology Institute (IMF), the German Remote Sensing Data Center (DFD) and a joint controlling unit form DLR’s Earth Observation Center (EOC). EOC’s mission is to establish remote sensing as an indispensable tool for obtaining geo-information relevant to global change and environmental research, planning and civil security to meet a wide range of scientific, social, economic, and national needs.

The two institutes IMF and DFD are pools of complementary expertise. Almost any larger mission or research and development project of the EOC is carried out by teams from both institutes. This has allowed a continual build-up of scientific and engineering expertise over many years that can be assembled for challenging projects in a flexible and responsive way. IMF and DFD share their responsibilities as follows:

- IMF focuses on physical and mathematical methods for algorithm and processor development to retrieve information from remote sensing data, starting from raw sensor data.
- DFD’s science departments are concerned with geoscientific research as well as service development and provision.
- DFD’s engineering and operations departments develop EO-specific information technologies; they develop and operate the payload data ground segment including data receiving stations and processing facilities.

This is, however, not a strict and universal separation of tasks. In adapting to the ever evolving challenges of missions and programs, the research fields of IMF and DFD have been mutually adjusted from time to time. This approach also accommodates the needs of our scientists and engineers whose commitment, enthusiasm, and initiative are the core of EOC’s success.
EOC is embedded in a wide range of international activities, for instance: We operate one of ESA’s Processing and Archiving Centers as part of Europe’s Copernicus program. We are partner in EUMETSAT’s Satellite Application Facilities and operate the World Data Center for Remote Sensing of the Atmosphere under the auspices of the International Council of Science. We conduct ground segment functionalities for European and international customers and deploy remote sensing-based project solutions in many countries.

Finally we are responsible for all operational duties in the frame of DLR’s membership in the International Charter of Space and Major Disasters.

EOC is led by a team of two directors, each of whom is assigned to lead one institute, for IMF Prof. Dr. Richard Bamler and for DFD Prof. Dr. Stefan Dech. A spokesman function alternates between the two directors in three-year intervals.
Remote Sensing Technology Institute

IMF’s overarching mission is the retrieval of relevant geoinformation and knowledge from remote sensing data. Research and development are devoted to the continuous improvement of the quality and the availability of this information. We focus on three remote sensing technological fields:

- synthetic aperture radar (SAR)
- optical imaging
- sounding of the atmosphere by active and passive spectrometers

and the cross-technological topic of

- data science and artificial intelligence.

Starting from basic research on the physical principles of remote sensing and from laboratory measurements, algorithms for forward modeling, inversion and interpretation are developed and implemented as operational software systems or ‘processors’. In the framework of joint projects these processors are integrated into the ground segment infrastructure of DFD or industry partners where they are operated, partially with our support. With its remote sensing expertise, the institute assists in the conceptual design of new sensors and missions. In all these algorithm and processor development lines, care is taken that the knowledge is built-up in a system-oriented and sustainable way.

Our activities are geared to current and future national and European EO missions with project periods of typically 5 – 15 years. IMF is often already involved in the first mission feasibility studies, then develops the processing systems, supports the commissioning phase, and finally provides algorithms and maintenance throughout the lifetime of the mission. Prominent examples are TerraSAR-X, TanDEM-X, Tandem-L, MetOp/GOME-2, Sentinel-5P, DESIS and EnMAP. For several of these missions IMF scientists take on the tasks of project managers. IMF complements its mission-oriented research and processor development activities with research on modern EO data analysis methods for gaining higher-level geoinformation. We see ourselves as a bridge between sensor data and users/geoscientists as well as a promoter of remote sensing in general. Therefore, we also address selected geoscientific applications for which we believe our remote sensing methods and expertise have a high impact: Geodesy, oceanography with focus on maritime safety and security, glaciology, urban mapping, traffic monitoring and autonomous driving.

Application projects are often carried out in cooperation with DFD or with external partners such as universities or Helmholtz centers.

Our research and development strategy is based on two complementary but mutually fertilizing tracks:

- The development of operational processing systems for satellite missions requires decades of expertise with a high degree of continuity of staff and evolutionary development of knowledge. The disciplines are physics, mathematics, computer science, engineering, information technology and laboratory skills.

- The invention of novel concepts and retrieval algorithms as well as the work on exploratory topics calls for an academic environment with young scientists and PhD students being given sufficient freedom of research.

IMF as a whole and each of its departments benefit from a mixture of these two cultures.
Organization of IMF (including the TUM groups, status: summer 2018). The department EO Data Science was established in April 2018 in response to the exciting opportunities offered by AI-based methods for EO.
Besides research and development, IMF provides services to EOC and the science community. We contribute to the DFD-hosted Center for Satellite Based Crisis Information (ZKI), operate EOC’s Optical Airborne Remote Sensing and Calibration Facility and support DLR’s School Lab in its task to educate and train school students and their teachers in science and engineering.

Currently IMF has 118 staff and 18 scholarship holders. It is organized into five departments of 15 – 30 employees each at the DLR campuses Oberpfaffenhofen (98), Berlin-Adlershof (8), Bremen (10) and Neustrelitz (2). Associated with IMF are two professorships at the Technical University of Munich (TUM), implemented as joint appointments: the Chair of Remote Sensing Technology and the Professorship for Signal Processing in Earth Observation. The department structure reflects the aforementioned technological fields plus a department that operates laboratories and airborne sensors.

IMF cooperates closely with several universities. Lectures, training, internships and supervision of Bachelor, Master and PhD theses are offered to students. Eleven IMF scientists are professors, honorary, guest or adjunct teaching professors or TUM Junior Fellows, i.e. they have the ‘Promotionsrecht’ (right to act as a first supervisor for doctoral candidates). 54 of our scientists and scholarship holders currently pursue a PhD under our supervision.

During the reporting period, we have strived for ever higher quality of our scientific work and output. Our cooperation with universities has made a considerable contribution to this continuous improvement process. We are proud of our high publication performance and an impressive series of awards and recognitions (see Documentation chapter).

The research and development program of IMF is subject to the program-dependent funding of the Helmholtz Association, as is the case with all DLR institutes. The majority of our activities is part of the Helmholtz program topic Earth Observation of the program Space. IMF also contributes substantially to the program Transportation and to a small extent to Aeronautics.

We finance almost half of our staff from third-party projects, the major customers and funding entities being the European Space Agency (ESA), German industry, and the Federal Ministry of Economic Affairs and Energy (BMWi).

Structure of this Report

The next chapter gives descriptions of EO missions and sensors relevant to IMF together with our roles, responsibilities and achievements therein. The Generic Processing Systems chapter summarizes our sensor-independent processor developments as central backbone elements of the data evaluation chain. This is followed by a depiction of our laboratory infrastructure and user services. The largest part of the report is dedicated to methods and applications for each of our four technological fields SAR, optical imaging, sounding of the atmosphere and data science. Sections close with a selection of relevant publications authored by IMF scientists. The last chapter Documentation concludes the report with a compilation of academic activities, awards and publications to document IMF’s scientific productivity.
Remote Sensing Technology Institute (IMF) · Status Report 2013 – 2018

IMF staff at Oberpfaffenhofen (right).

IMF team ‘SAR Oceanography’ at DLR site Bremen.

IMF staff at Oberpfaffenhofen (right).
Missions and Sensors
IMF’s Role in EO Missions

IMF participates in and contributes to a large number of national and international EO missions – in most cases in close cooperation with DFD. Our goal and claim is to be the processing system ‘factory’ for (almost) all national and for particularly challenging European missions, like the Sentinel series which heralds a new era of massive free and open EO data availability.

Our role in EO missions often starts with contributions to the first feasibility and concept studies, followed by the development of algorithms and operational processors and their integration into ground segments. We maintain and update the processing algorithms and support operations usually over the entire mission lifetime. For several missions we also take responsibility for project management for the PDGS (Payload Data Ground Segment) development. With our expertise in sensor signal processing we have continuously expanded our research into thematic data exploitation for selected topics, either in support of the development of new retrieval methods or in cooperative geoscientific research and application projects.

Processing system development for EO missions is the backbone of our strategy with a long-term perspective, partially far into the 2030s. Here we outline our responsibilities and developments for national, European and international missions. When our generic processors SAR-Lab, GENESIS, CATENA, UPAS and GCAPS are mentioned, the reader is referred to the Generic Processing Systems chapter.

Our involvement in EO missions employs three remote sensing technologies:

SAR

During the past decades Germany has maintained a strong and continuous R&D program in SAR technology and missions. Aperture synthesis techniques of SAR imaging are ever evolving and require customized and new signal processing algorithms. The coherent-wave nature of SAR allows powerful image exploitation techniques such as interferometry and tomography. IMF is strongly engaged in the conceptual definition of SAR missions, in the development of new processing methods, in operational SAR data processing in ground segments and in the exploration of new geophysical research applications. IMF’s SAR activities are driven by a series of space missions initiated by the German SAR program. This program, focusing on high resolution X-band technology, brought along sophisticated new imaging modes and many other challenges and ‘firsts’ with each new satellite generation. But this is not the end of the story: Once in orbit, data from new SAR sensors drives the development of new processing methods and applications. IMF scientists (at that time still at DFD) have already been involved in SAR data processing since the early days of SEASAT, the first SAR satellite launched by NASA in 1978. They accompanied ESA in all European SAR missions (ERS-1/2, ENVISAT, Sentinel-1) and had leading roles in all civilian German SAR missions (SIR-C/X-SAR, SRTM, TerraSAR-X and TanDEM-X). This long-term dedication led to a high concentration of expertise in SAR processing and data analysis techniques – a solid base for the planned future missions Tandem-L and HRWS.
Optical Imaging

In optical high resolution remote sensing, Germany does not follow a dedicated mission strategy as with SAR. IMF therefore concentrated on internationally available systems like the WorldView series, Pléiades, Sentinel-2 and many more to develop its processing and data analysis capabilities. The developments range over all pre-processing levels up to dedicated high level product generation and are integrated into the generic processing system CATENA. During ESA contracts IMF e.g. developed an operational processor for the ALOS AVNIR and PRISM sensors and is responsible for validation of the Sentinel-2 level 2a products. The stereo processor for generating Digital Surface Models (DSM) from, e.g., WorldView or Cartosat data is developed to a very high automation level and has been licensed to industry for production at regional and national scales. The preparation of processing systems for the hyperspectral missions DESIS and EnMAP has been a major task for IMF in the reporting period. This includes software for calibration and radiometric, spectral, geometric and atmospheric correction. After completion, the processors will be operated at DFD for generating standardized ready-to-use image products.

Spectroscopic Sounding of the Atmosphere

The basis for our involvement in atmospheric sounding missions was laid in the 1990s when Europe placed the passive GOME sensor on the ERS-2 platform. Scientists of IMF (at that time still at DFD) invested considerable effort to provide the ERS-2 PDGS with precise and fast retrieval algorithms and processors for a range of atmospheric trace gas and cloud parameter products. This was coupled with becoming familiar with the instrument calibration characteristics, a prerequisite for accomplishing the goal of processing the raw measurement data to calibrated radiances. Since then, we have increased our expertise and reputation considerably and participated in all European atmospheric sounding missions utilizing various sensors – the past SCIAMACHY, the current GOME-2 and Sentinel-5P/TROPOMI as well as the future Sentinel-4, Sentinel-5, Aeolus and MERLIN. With Aeolus and MERLIN, we have even expanded our expertise to active sensors employing lidar.

Missions and Sensors > IMF’s Role in EO Missions

<table>
<thead>
<tr>
<th>Mission/Sensor</th>
<th>Wavelength (nm)</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERLIN</td>
<td>SWIR: 1645</td>
<td>CH₂, O₂, NO₂, H₂O, BrO, SO₂, HCHO, OClO, tropospheric O₃, tropospheric NO₂, clouds</td>
</tr>
<tr>
<td>ERS-2/GOME</td>
<td>UV-VIS-NIR: 237 – 794</td>
<td>O₃, NO₂, H₂O, BrO, SO₂, HCHO, OClO, tropospheric O₃, tropospheric NO₂, clouds</td>
</tr>
<tr>
<td>ENVISAT/SCIAMACHY</td>
<td>UV-VIS-NIR: 215 – 1063</td>
<td>nadir: O₃, NO₂, BrO, H₂O, SO₂, HCHO, OClO, CHOCHO, CH₃, clouds, aerosols</td>
</tr>
<tr>
<td></td>
<td>SWIR: 1934 – 2044</td>
<td>limb: O₃, NO₂, BrO, clouds</td>
</tr>
<tr>
<td>MetOp/GOME-2</td>
<td>UV-VIS-NIR: 240 – 790</td>
<td>O₃, NO₂, H₂O, BrO, SO₂, HCHO, OClO, CHOCHO, tropospheric NO₂, tropospheric O₃, clouds</td>
</tr>
<tr>
<td>Aeolus/ALADIN</td>
<td>UV: 355</td>
<td>CH₂, O₂, NO₂, H₂O, BrO, SO₂, HCHO, OClO, CHOCHO, tropospheric NO₂, tropospheric O₃, clouds</td>
</tr>
<tr>
<td>Sentinel-5P/TROPOMI</td>
<td>UV-VIS-NIR: 270 – 775</td>
<td>O₃, SO₂, HCHO, tropospheric O₃, NO₂, tropospheric NO₂, CO, CH₃, clouds, aerosols</td>
</tr>
<tr>
<td>Sentinel-4</td>
<td>UV-VIS-NIR: 305 – 775</td>
<td>O₃, NO₂, H₂O, SO₂, HCHO, tropospheric NO₂, tropospheric O₃, CHOCHO, clouds, aerosols</td>
</tr>
<tr>
<td>Sentinel-5</td>
<td>UV-VIS-NIR: 270 – 775</td>
<td>O₃, NO₂, H₂O, BrO, SO₂, HCHO, OClO, CHOCHO, CH₃, CO, tropospheric NO₂, tropospheric O₃, clouds, aerosols</td>
</tr>
<tr>
<td></td>
<td>SWIR: 1590 – 1675</td>
<td>O₃, NO₂, H₂O, BrO, SO₂, HCHO, OClO, CHOCHO, CH₃, CO, tropospheric NO₂, tropospheric O₃, clouds, aerosols</td>
</tr>
<tr>
<td></td>
<td>SWIR: 2305 – 2385</td>
<td></td>
</tr>
</tbody>
</table>

The suite of sensors used at IMF for spectroscopic sounding of the Earth’s atmosphere. The listed target species are those to be retrieved by the particular missions. Items in bold indicate those where IMF contributed to the operational or scientific products either in processor or algorithm development. For future missions proposed parameters are provided.
Selection of important EO missions where IMF has developed the operational processors or considerably contributed to algorithm and processor development. For the other missions see text.
National Missions

TerraSAR-X

TerraSAR-X, launched in 2007, provides high resolution SAR data to scientific and commercial users. In contrast to earlier sensors, TerraSAR-X can be freely programmed for a wide variety of operational modes such as stripmap, spotlight, ScanSAR and other experimental and even dual-channel modes. The satellite’s main instrument is an advanced high resolution X-band SAR which is based on active phased array technology. This technology allows electronic beam steering and the operation of more than 10,000 possible SAR imaging modes with different resolution, polarization, incidence angle and image size. In particular, the maximum $0.25 \times 0.5 \, \text{m}^2$ resolution in staring spotlight mode and the unparalleled geolocation accuracy surpass the performance of previously available systems by an order of magnitude.

The mission was implemented in a public private partnership between DLR and the German space industry. Airbus Defence and Space (former EADS Astrium) manufactured the TerraSAR-X spacecraft and deals with commercial product service aspects. Four DLR institutes developed and operate the entire TerraSAR-X ground segment. IMF’s responsibilities comprise:

- development of the complete operational SAR processing chain and the final level-1 product palette. This includes our TerraSAR-X Multi Mode SAR processor (TMSP) which is so accurately designed and so well matched to the sensor that the products surpass previous world bests in several disciplines, e.g. radiometric and geometric accuracy
- PDGS management and system engineering of the ground segment.

As a result of the high quality of TMSP, our processor became licensed for operation in the industrial TerraSAR-X Direct Access Stations worldwide.

Even during the operational phase, TMSP is being further developed and improved. For example, competition in the international market of maritime near real-time EO services necessitated faster processing chains. We responded with highly optimized workflows for SAR data, exactly balanced algorithmic tradeoffs, and thorough analysis of hidden bottlenecks. This way the throughput of the core SAR processor could be accelerated by a factor of 1.8.

The geolocation accuracy of our standard TerraSAR-X images is on the order of 0.3 m (the requirement was 1 m). Within the Helmholtz Alliance DLR@Uni we were able to further improve this absolute accuracy to $1 - 2 \, \text{cm}$ which makes SAR a geodetic measurement tool and opens up many new applications (see SAR chapter). We coined the term Imaging Geodesy for this research line and developed a new generic SAR product add-on: the SAR Geodesy Product. This product contains all necessary correction
parameters such as atmospheric propagation and Earth dynamics and thus enables users and SAR tool developers to exploit TerraSAR-X centimeter level geometric accuracy in their applications.

The success of the TerraSAR-X mission also led to the international cooperation project PAZ, where Spain procured German radar hardware elements from industry and licensed our SAR processor as a basis for their national SAR mission.

Selected publications: [30], [33]

TanDEM-X

The TanDEM-X mission is a most innovative radar mission operating as a bistatic interferometer. It is formed by TerraSAR-X and a twin satellite launched in 2010, both flying in close formation only some hundred meters apart. One satellite transmits and both synchronously receive the radar echoes. The formation flight and the cooperation of the radar systems posed numerous technical challenges which were all successfully accomplished by newly developed signal processing algorithms and estimation techniques.

The main mission goal, the generation of a global high resolution (12 m) digital elevation model, was achieved in September 2016. We were also involved in achieving many of the secondary mission goals, e.g. ocean current velocity measurements from bistatic and multi-channel experiments.

The TanDEM-X mission is financed and operated in a public private partnership like TerraSAR-X. Concerning data products, Airbus Defence and Space has taken responsibility for commercial DEM distribution while DLR handles scientific data usage. IMF’s major responsibilities in this mission are:

- development of the Integrated TanDEM-X Processor (ITP) for the TanDEM-X PDGS to convert sensor bits to DEMs
- development of the customized TanDEM-X science product which is the input for all bistatic experiments (alternating bistatic experiments, multi-polarization, etc.)
- conceptual contributions to the DEM data acquisition plan
- support calibration, validation and operations as well as conceptual evolution of the mission
- sample exploitation of data and demonstration of new geoscientific applications
- PDGS management and system engineering of the complete ground segment.

Our ITP covers the entire InSAR workflow including screening, bistatic phase synchronization, bistatic SAR focusing, interferogram generation, phase unwrapping and geocoding to a raw DEM. It is built upon the heritage of the TMSP and GENESIS processors and is optimized for the new and specific requirements of the bistatic interferometric TanDEM-X mission.

The major algorithmic challenges were:

- consistent raw DEM calibration, i.e. compensation of all internal and external effects on relative phase shifts and differential signal delays in both instruments
- unwrapping of the ambiguous InSAR phase measurements and their conversion to absolute heights based on precise knowledge of the geometric configuration.

By 2016, at least two gapless coverages of the major land surfaces were acquired and processed to raw DEMs by ITP – up to 1,000 DEMs per day. The raw DEMs were then adjusted and mosaicked at DFD to form the final global TanDEM-X DEM – a milestone in remote sensing.
with benefits to all geo-related scientific disciplines and to commercial applications. The DEM was delivered to industry and from there to national and international authorities. A free version with reduced resolution (90 m) is currently being distributed by DLR. Further TanDEM-X acquisitions until the end of 2019 will be used to improve the global DEM and to produce a global change DEM, revealing changes on glaciers, forests, volcanoes and industrial areas.

Selected publications: [51], [623], [489], [400]

Tandem-L

Tandem-L is a proposed scientific SAR mission under the auspices of DLR for global and rapid monitoring of dynamic processes in the bio-, geo-, cryo- and hydrosphere. The parameters to be derived – among them seven essential climate variables – include biomass, tectonic and volcanic activities, soil moisture, ice extent and ice dynamics. The mission employs two fully polarimetric L-band SAR systems flying in formation and operating in either bistatic PolInSAR (for forest profiling) or in repeat-pass InSAR (for deformation measurement) modes. An innovative digital beamforming concept provides a mapping capacity two orders of magnitude better than TanDEM-X. Mapping of the entire land mass of the Earth can be achieved twice every eight days.
Remote Sensing Technology Institute (IMF) · Status Report 2013 – 2018

Pre-phase A studies have been conducted during the last years together with JPL and with JAXA. The essential technological concepts and the performance estimates have been finished in national phase A and B-1 studies. IMF has made significant contributions to the Helmholtz Alliance Remote Sensing and Earth System Dynamics in order to support algorithm development and federation of the scientific user community for Tandem-L. In this alliance we co-led the Solid Earth topic (with GFZ and LMU) and contributed to the Cryosphere (with AWI and FAU) and Hydrosphere (with GEOMAR). In this context we also developed novel correction methods for tropospheric and ionospheric signal delays, which are indispensable for meeting the high user requirements in this mission (see SAR chapter). Our studies were carried out in close cooperation with DLR’s Microwaves and Radar Institute who initiated and led the Alliance.

Once Tandem-L is approved, IMF will be in charge of the development of all products and processors, for the operation support of a payload ground segment, for performing calibration, validation and experiments and for stimulating the scientific use of the data. The major challenges – compared to former SAR missions – are the unprecedented data rate and volume as well as the unparalleled rich and diverse product tree. We will particularly develop new higher level science products specially tailored for geotectonic, volcanologic, cryospheric and oceanographic parameter retrieval. These will be accompanied with products for biomass and forests where the algorithms are to be provided by DLR’s Microwave and Radar Institute.

Selected publication: [313]

HRWS

High Resolution Wide Swath (HRWS) is a concept for a high resolution commercial X-band SAR mission based on novel concepts such as digital beamforming and elevation frequency scanning together with optional bistatic receiver satellites. Such a mission could provide both, very high resolution SAR data and regional high accuracy DEMs. IMF is investigating and contributing processing algorithms and ground segment concepts to a study currently led by Airbus Defence and Space. Our goal is to develop the HRWS processing system should the mission be implemented.

DESIS

DLR has partnered with Teledyne Brown Engineering, USA, to add the DLR Earth Sensing Imaging Spectrometer (DESIS) to Teledyne’s Multi-User System for Earth Sensing (MUSES) platform on the International Space Station (ISS). The DESIS instrument will be operational in 2018 and will provide spaceborne Visible to Near InfraRed (VNIR) hyperspectral data to support scientific, humanitarian, and commercial objectives.

The DESIS instrument has been built by DLR’s Institute of Optical Sensor Systems. It features 235 bands with 2.55 nm spectral resolution, covering a range

Tandem-L, a proposal for a highly innovative satellite mission for the global observation of dynamic processes on the Earth’s surface with hitherto unknown quality and resolution. Thanks to the novel imaging techniques and the vast recording capacity, Tandem-L will provide urgently needed global scientific information about the bio-, geo-, cryo- and hydrosphere.
from 400 nm to 1,000 nm with 30 m spatial resolution. The pointing unit of DESIS allows a 15° forward and backward along-track view in continuous and BRDF (Bidirectional Reflectance Distribution Function) modes.

IMF’s responsibilities comprise:

- project management and system engineering for the payload ground segment
- development of the processor system to generate products up to level 2a (georeferenced reflectance cubes)
- in-flight radiometric and geometric calibration on a regular basis
- scientific coordination (shared with DFD).

IMF has developed the operational processing chain to derive different types of DESIS products from tiled data takes of size 1,024 × 1,024 pixels (≈ 30 × 30 km²). An identical processing chain is licensed by IMF to Teledyne Brown Engineering running in the Amazon Cloud for commercial product generation.

DESIS level 1a products (Earth image scenes, on-board calibration measurements, dark current measurements and experimental products) will be long-term archived together with the corresponding metadata, while level 1b products (systematically and radiometrically corrected data), level 1c products (geometrically corrected data employing global references) and level 2a products (atmospherically compensated data) will be processed on demand before being delivered to the user for further value-added product generation.

DESIS will undergo extensive characterization and calibration measurements before launch and will be re-calibrated after launch by updating the calibration tables. IMF performs regular inflight calibration employing measurements of internal light sources (bank of white and colored LED lamps) and globally distributed reference sites for assessing the radiometric, spectro-radiometric and geometric characteristics of the DESIS hyperspectral instrument in orbit.

DESIS has several special acquisition modes. The off-nadir along-track capability and the forward motion compensation (continuous scanning of the same target on ground for a specific time period) allow geophysical parameters to be derived from BRDF signatures of specific targets and to validate and improve atmospheric compensation methods. We also aim to develop novel super-resolution techniques employing the rolling shutter acquisition mode. Once data are available, we will further expand our competence in the field of data fusion, in particular in connection with future instruments hosted by MUSES, and improve machine learning methods for information retrieval. Furthermore, DESIS can be regarded as a precursor to the German EnMAP mission especially since both ground segments have similar functionalities.
EnMAP

The Environmental Mapping and Analysis Program (EnMAP) establishes the first German high-resolution hyperspectral remote sensing satellite mission. It is a scientific pathfinder mission based on the long heritage and expertise in airborne imaging spectroscopy in Germany. The launch is scheduled for 2020.

EnMAP is driven by the need to quantify the status and processes of Earth’s environments in the context of growing anthropogenic impacts. It will cover the spectral range from 420 – 2,450 nm with a spectral sampling distance varying between 5 nm and 12 nm and a spatial resolution of 30 m. Only airborne sensors such as IMF’s HySpex are capable of delivering products of similar spectral performance. With its 30° tilting capability and mapping capacity of 30 x 5,000 km² per day in a sun-synchronous repeat orbit, EnMAP allows for frequent and global acquisitions.

The EnMAP mission is managed by DLR’s Space Administration. They assigned IMF responsibility for the complete ground segment in a collaborative effort with DFD and GSOC. IMF’s role comprises:

- project management of the ground segment for all mission phases
- development of the on-ground image processing chain and integration into DFD’s multi-mission Data and Information Management System
- support for instrument pre-flight characterization based on IMF’s Calibration Home Base (CHB)
- spectral, radiometric and geometric instrument in-flight calibration.

Our fully automatic processing chain for EnMAP includes three major components. It consists of:

- systematic and radiometric processor which corrects the raw hyperspectral image data for systematic effects and converts them to physical at-sensor radiance values based on regularly updated calibration tables
- orthorectification processor which generates map-conformal products by removing geometric distortions caused by sensor-internal geometry, thermal-influenced mounting angles, satellite motion and terrain-related influences. An improved sensor model is achieved using ground control points, which are extracted automatically from global reference images from Sentinel-2
- atmospheric correction processor which converts top-of-atmosphere radiance to ground surface reflectances.

In preparation of EnMAP we have significantly invested in building up expertise in hyperspectral data analysis.
MERLIN

The Franco-German collaborative Methane Remote Sensing Lidar Mission (MERLIN) will measure atmospheric CH$_4$ with unprecedented accuracy to locate anthropogenic sources. It will carry an active SWIR instrument which exploits the differential-absorption lidar technique as a novel sensor approach.

France will provide an extension of their Myriade platform together with its operations while Germany will develop the lidar instrument and all aspects of the payload. MERLIN has successfully passed the preliminary definition (phase B) and is now in its preliminary design and development (phase C). It is planned to launch the satellite in 2023 with mission duration of at least three years.

We contribute considerably to processor development and instrument performance related tasks. Our responsibilities include:

- development of the operational level 0-1b processor which delivers differential absorption optical depths from calibrated measurement data
- development of long-term monitoring (LTM), including dedicated payload command and control facilities
- implementation of a level 2 processor with algorithms developed at DLR’s Institute of Atmospheric Physics (IPA).

In the past year we completed the first design for the level 0-1b processor based on our generic GCAPS system and completed the level 1b keypoint review, a major milestone in processor development. We also programmed a mock-up to estimate the computational resources needed. The amount of data for the processing was calculated from a nominal mission orbit. The result was that with three processor instances all timeliness requirements can be met.

Another milestone was reached in 2015 with the successful completion of the PDR review. There we outlined our strategies for how to perform the LTM task including an example model on how to track the laser pulse properties. Additional effort is being invested into the development of the user interface and actual instrument operation in collaboration with IPA and industry.
ESA, EUMETSAT and Copernicus Missions

ERS-1 and ERS-2

ESA’s first EO mission ERS-1 was operational from 1991 – 2000 followed by its successor ERS-2 from 1995 – 2011. The payload of both ERS platforms included a C-band SAR. Originally designed for maritime applications, they acquired a global 20 year time series of medium resolution images that is so unique in its consistency, that it is still used as a reference for glaciology, polar research and interferometric deformation measurements over land. We used this data set to establish and validate the first European land motion consortium Terrafirma under ESA contracts. During the reporting period we generated a first ERS-1/2 ground deformation map of Germany both as a reference and in preparation for a larger national contract based on Sentinel-1 data.

ERS-2 hosted the GOME spectrometer that for the first time conducted atmospheric measurements from a European space-borne platform. During its in-orbit lifetime, IMF, in collaboration with partner institutes, developed the algorithms and processors for generation of operational near-real time, offline and reprocessed GOME level 1 and level 2 products. This work had established our expertise in spaceborne spectroscopic sounding of the atmosphere which allowed us to contribute to and win contracts for past, present and future atmospheric missions.

In GOME’s post-mission phase, we have further analyzed the GOME calibration data, improved the level 1 processing algorithms and reprocessed the whole mission level 1 data on behalf of ESA. The older proprietary level 1 format was replaced with a modern design using netCDF4, and was aligned with the data structure of contemporary atmospheric sounding missions.

The data from GOME continues to be used as the reference for generating climate data records. In this context, together with Max Planck Institute for Chemistry, we developed and processed a level 2 product for a climatological water vapor record from the sensors GOME, SCIAMACHY, and GOME-2. A climatological ozone record was also derived from these sensors in the framework of the ESA Climate Change Initiative.

Selected publications: [381], [359], [31], [279], [6]

ENVISAT

ENVISAT, ESA’s Earth Observation flagship mission in the first decade of the 21st century, operated successfully between 2002 and 2012. It carried, among other instruments, the spectrometer SCIAMACHY, jointly provided by Germany and the Netherlands. A large share of instrument operations and data processing tasks had been assigned to IMF in the development and in-orbit phase.

After the platform stopped functioning in April 2012, ESA and DLR initiated a phase F where measurement data was prepared for long-term preservation. This ensured full exploitation of SCIAMACHY’s unique capabilities by achieving the utmost instrument calibration accuracy and even extracting new products which had not existed in the portfolio of trace gases at the beginning of the mission. We participated in tasks reflecting our more
than 15-year long involvement in the SCIAMACHY mission, particularly algorithm and processor development.

In this phase F (2012 – 2018), two new versions of the level 0-1b and level 2 processors were implemented by IMF. The level 0-1b processor was ported to our generic GCAPS framework. The product palette of the level 2 processor was extended by five new products including CHOCHO, HCHO, CH4 together with tropospheric NO2 and tropospheric BrO, both exploiting SCIAMACHY’s unique capability of limb/nadir matching. All other retrievals could be considerably improved. In a final step we changed the format of the ENVISAT end user products from the binary, non-standard ENVISAT format to the standard, self-descriptive netCDF4 format, which is considered a prerequisite for using SCIAMACHY data products well into the future.

Selected publications: [43], [99]

MetOp

The MetOp payload includes the GOME-2 instrument, an advanced version of GOME. Its swath can reach up to 1,920 km and the spatial resolution, when the swath is reduced by a factor of two, reaches 40 x 40 km².

The Satellite Application Facility on Atmospheric Composition (AC-SAF, formerly Ozone Monitoring SAF), hosted by the Finnish Meteorological Institute, is responsible for providing operational atmospheric products from MetOp.

Atmospheric parameters operationally retrieved by IMF’s processing system in the framework of the AC-SAF.
Based on experience gained over almost two decades in algorithm development and systematic operational processing of data from atmospheric sensors we constitute a considerable part of the AC-SAF which is a decentralized facility in cooperation with a European-wide network of meteorological and research organizations.

Our responsibilities include:

- development and continuous improvement of retrieval algorithms and operational processors for GOME-2 total column products
- supporting DFD for the implementation and maintenance of operational data processing and subsequent data dissemination.

In past years we developed new (tropospheric O$_3$, OCIO, CHOCHO) and improved (O$_3$, NO$_2$, SO$_2$, BrO, HCHO, H$_2$O) trace gas and cloud parameter (fraction, albedo and height) algorithms for the two GOME-2 sensors in orbit. The operational retrieval of these products uses our well-established processor. AC-SAF services provided at EOC occur in near real-time, offline and reprocessing modes. In February 2017, a new continuous development and operations phase (CDOP-3) of the AC-SAF started. It will run until 2022. During this phase we will develop products for the third GOME-2 instrument on MetOp-C and respond to the increasing operational needs of the Copernicus Atmospheric Monitoring Service for tropospheric trace gas products from GOME-2.

Selected publications: [209], [211], [296], [261]

Aeolus

ESA’s Earth Explorer mission Aeolus will provide global wind profile estimates with the goal of improving numerical weather forecasting and climate modeling. Its instrument ALADIN is based on a direct detection Doppler lidar operating in continuous mode in the UV. It is a novel design and provides an enormous challenge not only for its development but also for operating the sensor during the in-orbit phase. The instrument measures the backscattered Doppler shifted signal emitted by the laser for retrieving profiles of the line-of-sight wind velocity in the troposphere and parts of the stratosphere. The launch of the mission is planned for 2018.

IMF’s responsibilities for Aeolus include development and implementation tasks:

- the Aeolus end-to-end simulator (E2S)
- operational level 0-1b and level 1b-2a processors.

This work involved participation in instrument characterization tests, comparisons with the ALADIN Airborne Demonstrator, and E2S-level 1b processor simulations. All new E2S and processor versions have been successfully tested and delivered to ESA, together with recommendations for further algorithm refinement and quality control measures.

Aeolus data will be visualized and accessed via VirES, the Virtual workspace for Earth Observation scientists, a new web-based service of ESA. We are part of the VirES development team and contribute our extensive technical and scientific Aeolus mission expertise.

All our tasks in support of the Aeolus mission occur in close collaboration with DLR’s Institute of Atmospheric Physics.
Sentinel-1

Sentinel-1a (2014) and -1b (2016) ensure continuity of C-band SAR data from the ERS-1/2 and ENVISAT missions. The SAR on Sentinel-1, operating in four modes, has higher capabilities than its predecessor instruments on ENVISAT and ERS. Both of the Sentinel-1 satellites provide frequent global coverage. For some areas near a local ground station, products can be delivered within one hour of data acquisition.

DFD was selected to host a PAC for Sentinel-1. The data are also received at DFD data acquisition stations and via the European Data Relay Satellite System, primarily for use in the national maritime security project.

IMF is involved in ESA’s SAR instrument and product calibration teams and in future will contribute to improvements of the SAR products. In a national assignment by the Federal Institute for Geosciences and Natural Resources (BGR), IMF is producing a national ground deformation map from interferometric Sentinel-1 data to be distributed to national authorities and later to the public. A first version has been delivered to BGR in 2017 and is currently being evaluated. A future European-wide Ground Motion Service is currently under discussion and IMF is seeking to contribute with its know-how.

Selected publications: [254], [116], [171]

SAOCOM-CS

SAOCOM 1A/B is a planned Argentinian L-band SAR system consisting of two satellites with launch dates in the 2018/2019 timeframe. In 2014 ESA considered augmenting the satellites with a passive companion satellite (CS) shortly after their placement into orbit. This would have allowed generation of DEMs and bi-static imagery. The following year IMF was contracted for a corresponding study into a complete ground system including algorithm design and operational processing concepts. ESA has however abandoned its CS plans after insufficient support from ESA member states.

Sentinel-2

Sentinel-2a (2015) and -2b (2017) routinely deliver high resolution optical information over all of Earth’s land-masses. They complement other systems such as the Landsat series. The two satellites provide a systematic global coverage every five days and a shorter revisit time of 2 – 3 days at mid-latitudes.

The main instrument of Sentinel-2a and -2b is the optical payload MSI (Multispectral Imager) for the VNIR and SWIR spectral ranges with 13 bands providing a maximum spatial resolution of 10 m. Particularly important is its radiometric stability, together with the agreement of both MSI-A and MSI-B with MODIS and Landsat’s Operational Land Imager within 1 – 2 %. The products from Sentinel-2 are used for land cover mapping, agriculture, forestry, vegetation and ecologic change monitoring and also for monitoring of water bodies.

IMF is involved in the Sentinel-2 Mission Performance Center by leading the level 2a validation. Together with DFD, we process and use Sentinel-2 data as part of the national collaborative
Copernicus ground segment and the CODE-DE project. Within the ESA project MAJA (MACCS-ATCOR Joined Atmospheric Correction) IMF and CNES joined forces to develop a new best-of-atmospheric correction processor for Sentinel-2. The prototype has been finished and is operated at IMF and CNES using also time series to improve the results. Data are distributed freely for public use.

Sentinel-5 Precursor

The Sentinel-5 Precursor (Sentinel-5P) spacecraft, launched in 2017, delivers a key set of atmospheric composition, cloud and aerosol data products for air quality and climate applications. Sentinel-5P was developed under the overall responsibility of ESA while the sensing instrument TROPOMI, a UV-VIS-NIR-SWIR imaging spectrometer, is a joint undertaking of the Netherlands and ESA.

TROPOMI combines daily global coverage with a high spatial resolution of 3.5 x 7 km² and delivers 23 million measurements every day. Compared to GOME-2 this is a data volume increase by a factor of ≈100, one of the major challenges for processor development. The current Sentinel-5P product portfolio comprises operational level 2 products for O₃, NO₂, SO₂, HCHO, CO and CH₄, as well as cloud and aerosol properties. The work on these products is funded by ESA together with national contributions from the Netherlands, Germany, Belgium, and Finland.

In the ground segment domain IMF has been assigned major tasks in the key areas of algorithm and processor development, while DFD hosts the operational functions of processing, archiving and data dissemination. In particular our responsibility includes:

- algorithm development for a subset of level 2 products, namely O₃ (total and tropospheric), SO₂, and cloud properties fraction, top pressure and optical thickness. They are produced by UPAS2, our generic processor, which has been integrated into the Sentinel-5P PDGS developed and operated by DFD
- co-leadership, together with KNMI, of the Sentinel-5P level 2 working group. This expert group coordinated the scientific work for developing and validating the retrieval algorithms, and the engineering work for developing the operational processors and integrating them into the PDGS during the commissioning phase of Sentinel-5P
- coordination of the level 2 Expert Support Laboratories responsible for monitoring the quality of the level 2 products, further development of the retrieval algorithms and updates of the operational processors. This occurs in the framework of the Sentinel-5P Mission Performance Center (MPC) under the auspices of ESA-ESRIN and coordinated by KNMI. The MPC is the responsible entity for algorithm and processor work during the entire routine in-orbit phase.

The first level 2 products, presented at EOC on December 1, 2017, shortly after the instrument was switched-on, already highlighted the enormous improvement in space-borne spectrometric sounding. The full suite of trace gases under our responsibility could be presented fulfilling all the challenging requirements, including timely delivery, specified spatial resolution and retrieval accuracy. It became immediately obvious that due to the high spatial resolution together with low background fine detail is clearly visible in the level 2 products¹.

¹ available at https://atmos.eoc.dlr.de/tropomi
Sentinel-5P continues our strong heritage for atmospheric missions starting with GOME, SCIAMACHY and GOME-2. The work on Sentinel-5P will, in addition, prepare us for involvement in the Sentinel-4 and Sentinel-5 missions.

Selected publications: [54], [162], [54], [36]

Sentinel-4 and Sentinel-5

Both Sentinel-4 and -5 focus on the state of Earth’s atmosphere and its chemical composition. Their payloads will be implemented on operational EUMETSAT missions.

Sentinel-4, onboard the Meteosat Third Generation Sounder (MTG-S) platform, establishes a UV-VIS-NIR spectrometer in geostationary orbit with a field-of-view focused on central Europe. It will be launched in 2023 with the second spacecraft following in 2031. Sentinel-4 is particularly interesting because its position in geostationary orbit provides for hourly measurements of the air quality over Europe with a high spatial resolution of 8 x 8 km². This will permit the study of the diurnal variation of important atmospheric constituents in great detail.

IMF leads the Sentinel-4 level 2 project for developing the operational products for a suite of trace gases which currently comprises O₃, SO₂, NO₂, HCHO, CHOCHO, together with properties of clouds, aerosols and surfaces. The Sentinel-4 level 2 consortium consists of renowned experts in the fields of algorithm development, independent verification and processor development for UV-VIS-NIR sensors from several European countries.

Sentinel-5 will operate on the MetOp Second Generation platform in polar orbit.

The payload complement includes, among others, a UV-VIS-NIR-SWIR spectrometer. The first Sentinel-5 launch is targeted for 2022 with a design life of seven years, followed by two identical missions in 2027 and 2032. Sentinel-5 will provide atmospheric composition data with global coverage on a daily basis for air quality and climate monitoring as well as information on stratospheric ozone and solar radiation.

SO₂ plumes from the Mt. Agung (marked by red triangle) volcanic eruption in Indonesia retrieved from GOME-2 (top) and TROPOMI/Sentinel-5P data (bottom). With the new generation of atmospheric sensors employed on the Sentinel platforms an enormous increase in spatial resolution can be achieved.
For Sentinel-5, EUMETSAT selected the consortia from IMF and Science & Technology Corporation/NL for the development of the operational processors. The products under DLR responsibility will be \(\text{O}_3 \) (total, profiles and tropospheric), \(\text{NO}_2 \) (total and tropospheric), \(\text{SO}_2 \), \(\text{HCHO} \), \(\text{CHOCHO} \) as well as cloud properties and aerosol index and aerosol optical depth.

The hourly trace gas maps over Europe from Sentinel-4, together with the daily global coverage from Sentinel-5P and Sentinel-5, will initiate a ‘golden age’ for atmospheric remote sensing for the next decades. Adding data from GOME, SCIAMACHY and GOME-2 will create a unique climate data record of 50 years.

CarbonSat
CarbonSat was a proposed mission in the framework of the ESA Earth Explorer program with the goal of measuring global concentrations of carbon dioxide and methane, the two most important greenhouse gases of partially anthropogenic origin. In 2015 it was abandoned in favor of a competing EO explorer mission. During the early study phase IMF contributed to the definition of the level 0-1 processors, including the algorithms, and key aspects of instrument calibration.
Other International Missions

PAZ
The Spanish X-band dual-use SAR satellite PAZ, launched February 22, 2018, is strongly based on the TerraSAR-X design. The satellite is flown in the TerraSAR-X orbit and the products are highly compatible. IMF developed the PAZ operational SAR processor, licensed it to the Spanish ground segment and provides maintenance during the operational phase. After the PAZ commissioning phase both commercial and scientific users should profit from the enhanced image acquisition capacity of both missions.

Radarsat
Radarsat-1, non-operational since early 2013, and Radarsat-2 are SAR spacecraft owned and operated by the Canadian Space Agency and Radarsat International. Since 1995 they deliver C-Band SAR coverage for a wide range of applications such as the monitoring and mapping of ice, marine and land surfaces or resource management in Canada and on a global scale. In 2018 Radarsat-2 will be supplemented by the Radarsat Constellation Mission (RCM) consisting of three satellites.

Radarsat data can also be directly received and used by other nations. In order to contribute to maritime security applications over European waters, EOC receives Radarsat-2 data in Neustrelitz. Preparations for acquiring data from RCM at Neustrelitz are ongoing. In order to exploit the data of the Radarsat missions, IMF’s maritime processor suite SAINT (see Generic Processing Systems chapter) is being extended.

ALOS and ALOS-2
The Advanced Land Observing Satellites ALOS (2006 – 2011) and ALOS-2 (2014) are owned and operated by the Japanese Space Agency JAXA.

Both ALOS and ALOS-2 carry an advanced L-band SAR. IMF extensively used the data in preparatory studies for Tandem-L and within the Helmholtz Alliance Remote Sensing and Earth System Dynamics.

ALOS carried two additional optical instruments, AVNIR and PRISM. As an ESA contractor, IMF has developed operational processors for both optical sensors and implemented them at ESA facilities. The main reason for this contract was the substantially higher geometric accuracy of IMF products than the standard ones. The complex processing chain includes data quality improvements through deconvolution, matching with global reference databases to improve the geolocation accuracy for consistent product families and for orthorectification. More than 500,000 scenes have been reprocessed at ESA premises to date.

Selected publications: [630], [735]

NISAR
NISAR is a joint 3-year SAR mission of NASA and ISRO to be launched in late 2021. It will carry both, an L-Band and an S-Band radar to measure land surface changes of ecosystems, ice sheets and natural hazards including earthquakes, volcanoes and landslides. Many of the NISAR science goals are in good agreement with those of DLR’s Tandem-L. Therefore IMF keeps close contact with NASA/JPL to harmonize science requirements and the development of new algorithms. NISAR data may be a valuable source to develop and test Tandem-L algorithms before launch and Tandem-L may provide data continuity to NASA after NISAR.
Ikons-2 and WorldView-1/2/3/4

The Ikons-2 spacecraft, launched in 1999, provided civilian access on a commercial basis to optical very high resolution satellite data (1 m panchromatic and 4 m multispectral) for the first time. Even higher resolution became available with the WorldView series of satellites which were launched 2007 – 2016. DLR established a partnership with European Space Imaging EUSI, Munich, for exploiting all platforms. While EUSI covers all commercial aspects, DLR contributes its DFD ground segment facilities and engineering know-how. In exchange, some acquired data may be used for research purposes and in the framework of the Center for Satellite Based Crisis Information. We use this data for developing automatic object detection algorithms (e.g. ships, buildings, bridges). We use our CATENA processor for DSM generation and for developing methods for 3D change detection. A corresponding license has been granted to GAF AG.

Pleiades

The French Pleiades constellation, with Pleiades-1A (2011) and Pleiades-1B (2012), is a pair of optical imagers providing a very high multispectral resolution of 2 m and a panchromatic resolution of 0.5 m. It allows coverage of the Earth’s surface with a repeat cycle of 26 days. Through its high agility it offers a daily revisit capability for any terrestrial location. In addition, the Pleiades constellation offers along-track triplet stereo imaging which allows the derivation of high quality DSM using our CATENA system. The same methodology development and license partnership with GAF AG applies as mentioned in the previous paragraph.

IRS-P5 (Cartosat)

In 2005, IRS-P5 of the Indian Space Research Organization ISRO, alternatively termed Cartosat, was lifted into low-Earth orbit. Its payload comprises two panchromatic cameras that were especially designed for in-flight stereo viewing in support of, e.g. cartography and terrain modeling applications. Since the mid 90’s, a long-standing collaboration between DLR and ISRO ensures access to data from the IRS program. It permits acquiring raw data from IRS spacecraft at DFD and for harvesting an IRS science data pool by DLR staff. Data reception occurs in support of the remote sensing company GAF AG on the basis of a mutual cooperation agreement. This addresses the exchange of data products and software such as the IMF-developed processor for the generation of DSMs from Cartosat data (5 m GSD). We have licensed our processor to GAF AG. Up to now, large areas such as Europe and the Middle East have been processed by GAF using our software and have been commercially exploited to a large extent.

Ziyuan-3

The Chinese satellites Ziyuan ZY-3/01 and ZY-3/02 were launched in 2012 and 2016 respectively. They carry three panchromatic cameras each, one forward looking, one backward looking (each 4 m GSD) and one nadir looking (2.5 m GSD). In addition, a multispectral camera with four channels (RGB and NIR, 6 m GSD) complements the payload. The high quality data are used by IMF to produce DSMs with 5 m spacing and also serve for filling holes in DSMs derived from Cartosat DSMs. Currently we negotiate with Chinese authorities for receiving data over Germany on a regular basis, free of charge, for scientific use.
DSCOVR

The Deep Space Climate Observatory (DSCOVR) is a NOAA mission in orbit since 2015 at the Lagrangian Point L1 between Earth and the Sun at a distance of 1.5 million km. Its primary objective is to provide early warning in case of strong solar activity and, in addition, collect data for climate and atmospheric studies. Amongst the suite of payload sensors is EPIC, NASA’s Enhanced Polychromatic Imaging Camera, UV-Visible imager. At IMF we use its data, covering the UV-Visible wavelength range, to retrieve cloud information over Earth’s sunlit hemisphere.

SCISAT-1

Canada’s SCISAT-1 has observed the Earth’s atmosphere since 2003. Its mission objective is the study of trace gases in limb viewing geometry by using solar occultation. The data, collected over more than 10 years, comprise a unique repository for spectrometric sounding of the terrestrial atmosphere. We use it for investigating certain aspects of spectral analyses of the atmospheres of exoplanets.

Balloon-/Air-/UAV-borne Sensors

TELIS

TELIS, the terahertz and submillimeter limb sounder was a helium-cooled three-channel heterodyne spectrometer for trace gas measurements in the stratosphere, developed and operated by IMF with major support from SRON. The detectors consisted of a far-infrared (FIR) channel (1,790 – 1,870 GHz) and a submillimeter channel (450 – 650 GHz provided by SRON).

TELIS was part of the stratospheric balloon gondola provided by the Institute for Meteorology and Climate Research, KIT, together with the Fourier spectrometer MIPAS-B2. This TELIS/MIPAS-B2 platform was a unique chemistry mission allowing a complete coverage of all species relevant to stratospheric ozone. TELIS focused on short lived species such as OH, ClO, BrO, HCl, O₃, HOCl and HO₂.

View from ‘near space’ as seen by the terahertz limb sounder TELIS on its 2014 flight from an altitude of 36 km.
The last TELIS campaign, *Probing the Composition above Canada between 5 km and 35 km*, was conducted in Timmins/Canada in 2014. The main target was the bromine budget and partitioning. While MIPAS-B measured BrONO$_2$, TELIS concentrated on BrO. Preliminary results show that BrO during the daytime and BrONO$_2$ during night, between 24 and 28 km, were somewhat larger than predicted by the numerical global atmosphere-chemistry model EMAC.

The raw data from both TELIS channels was processed by us to yield radiometrically calibrated radiances together with the required auxiliary data. Our TELIS characterization efforts greatly profited from IMF’s FT spectrometer BRUKER IFS 125HR.

For the retrieval of geophysical parameters, i.e. molecular concentrations, we use the PILS code developed at IMF. It is based on the GARLIC forward model and DRACULA regularization modules and is applicable for microwave to mid-IR limb emission spectra.

Due to budget restrictions we took TELIS out of operation in 2014.

Selected publications: [82], [332], [426], [785]

3K, 4K, Real-Time Camera Systems and Processors

IMF has developed several real-time camera systems and an on-board processing system for airborne monitoring of traffic and disasters since 2007. The main reason for the development was the programmatic goal to use remote sensing data for specific traffic-related mass events and to effectively monitor disaster situations in real-time from flexible airborne platforms. Several DLR-projects like the current VABENE++ project (traffic management in case of mass events and disasters) rely strongly on this system. In this project, maps of the whole dynamic situation of vehicle and pedestrian traffic as well as detailed information about the infrastructure are derived and distributed to end users.

The IMF developed the ‘3K’ and ‘4K’ optical sensor systems (based on COTS Canon cameras) which are fully certified on different airplanes and helicopters. A real-time image data processing chain and data distribution network to end users has been built and demonstrated. Aerial images at resolutions from 5 – 20 cm, acquired with a frequency of 2 – 5 Hz, are immediately georeferenced onboard and orthorectified on GPUs using the GPS-IMU data. For a 1,000 m flight altitude the acquisition of an area of 2.5 x 10 km2 is possible within 2 minutes. Our recent developments were aimed at miniaturization and certification of these sensor systems on helicopters which are available to security-related authorities. In this
context, the 4k camera, the camera system originally developed and certified for the Eurocopter BO-105, has been further improved and certified for Airbus H 135 (formerly EC 135) and H 145 helicopters. Helicopters of these types are the backbone of security authorities and organizations worldwide. Equipped with an air-to-ground C-band data link, the sensor system is capable of rapid mapping and real-time road traffic monitoring by distributing the results directly to security forces.

In recent years, we have further improved the real-time processing software and developed new real-time thematic mapping processors, e.g. a new real-time 3D processor computes high resolution DSMs within seconds directly in the aircraft and sends it to the ground station. This is relevant in cases of environmental disasters when immediate evaluation of the actual status of buildings, streets and bridges is required. Such data is also valuable for monitoring traffic in detail in urban scenarios or for generating flood maps. On the ground, orthorectified aerial image mosaics and traffic data are transferred to a DLR traffic internet portal of the Institute of Transportation Systems and the ZKI portal of DFD. After fusion with data from other sources, detailed situation and traffic monitoring can be performed by authorized users. Furthermore, human crowds can be monitored using single pedestrian tracking or crowd density estimation.

Selected publications: [368], [779]

Hyperspectral Airborne Camera HySpex

In 2012, DLR procured a HySpex sensor system from the Norwegian company Norsk Elektro Optikk. The system consists of two airborne imaging spectrometers: a VNIR-1600 for the visible and near infrared and a SWIR-320m-e covering the short wave infrared spectral domain. In combination the system continuously covers the spectral range from 0.4 – 2.5 µm with 416 channels. The spatial resolution depends on flight altitude and is thus configurable between 0.3 and 3 m.

The HySpex system serves us as:

- EnMAP and DESIS simulator for the pre-launch acquisition of test scenes before mission launch
- generator for benchmark datasets supporting our development and validation of novel multi/hyperspectral data analysis algorithms
- platform for the development and test of advanced calibration methods for the mitigation of typical sensor artifacts such as stray light or non-linearity.

The HySpex system is intended for reference and validation measurements. It has been extensively characterized in our Calibration Home Base (CHB). In combination with the currently developed level 1 processor L0ne (see Laboratory Infrastructure and User Services chapter) we expect to deliver at-sensor radiance with unprecedented accuracy and traceable uncertainties.

Selected publication: [307]
UAV-borne Systems

Unmanned aerial vehicles (UAVs) provide a cheap and versatile platform for optical remote sensing. Cameras and scanners of various spectral ranges are readily available in sizes that fit on low cost COTS UAV systems.

IMF operates a DJI S900 UAV platform, specified for a total weight of 10 kg, which is able to carry payloads of up to 2 kg for about 20 min per battery charge. It is equipped with a universal mounting system that allows for quick replacement of the sensor payload in the field for flying multi-sensor missions. The platform can be operated manually or autonomously, following a predefined flight path.

The pool of available sensors comprises multiple cameras suitable for a variety of remote sensing applications. Each sensor is mounted on a stabilizing gimbal to compensate for movement of the UAV. Compact RGB cameras are used for traffic monitoring, infrastructure inspection or 3D visualization of buildings. Thermal cameras are used for finding fawns in meadows or the generation of 3D visualizations of the energy loss of buildings. A Cubert UHD 185 VIS/NIR hyperspectral imager is used to discriminate cars by the hyperspectral features of their paint in the domain of traffic monitoring, to detect roof or façade materials as a parameter in the context of energy efficiency studies or to assess plant health from above the canopy. Non-imaging spectrometers with high spectral resolution are flown for reflectance measurements in inland water remote sensing applications or the validation of hyperspectral satellite sensors, e.g. EnMAP.
Generic Processing Systems
IMF is involved in so many missions that processor development must be streamlined and made time- and cost-efficient. For our three key technology areas, we have therefore established generic system development lines in order to safeguard the essential expertise beyond the lifetime of single projects. This approach enables us to maintain generic solutions, advance their functionality, and at the same time increase their level of maturity. Common standards and operational stability can be achieved and enhanced in this way. Step by step, the pool of well tested, configuration-controlled and quality-assured building blocks is enlarged, which gives upcoming projects a favorable starting point. It ensures that extensive investments can not only be used by single missions but inherited by a multitude of sensors.

SAR Data

SAR-Lab/GENESIS

Complementary to the SAR sensors built by industry, IMF develops SAR and InSAR processing systems which reflect the technological evolution of national and international missions. The crucial requirement on these processing systems is to achieve SAR product quality at the theoretical limit. Furthermore, typical multi-year space projects have additional requirements such as high software documentation standards, strict version control, ECSS conformity, multi-level test procedures, high data throughput and scalability.

Our current workhorses, the TerraSAR-X Multi Mode SAR Processor (TMSP), the Integrated TanDEM-X Processor (ITP) and the Integrated Wide Area Processor (IWAP) for Persistent Scatter Interferometry (PSI) still use some algorithmic modules of the experimental SIR-XSAR mission in 1994 and later SRTM in 2000. Since that time, one common library has been the base for all further developments such as SAR-Lab (for SAR processors) and GENESIS (for interferometric SAR processors). It is maintained by a team of IMF engineers and an external contractor and provides a powerful industry standard development environment. Its most important features are:

- parallelized code, scalable from desktop to multi-CPU computers
- thematic libraries for a wide range of tasks such as signal processing, time and orbit handling and linear algebra
- mechanisms for version control
- mechanisms for automatic documentation and library browse functions
- portability, supporting different compilers and hardware platforms in parallel.

Currently we are intensively investigating software concepts and processor deployment technologies that utilize cloud computing in preparation for future missions like Tandem-L.

SAINT

Our modular software suite SAINT bundles algorithms for maritime information retrieval from SAR data. It is used for research and development in IMF’s Bremen research lab but also as the basis for operational deployments at DFD’s Neustrelitz ground station. Parameters such as sea state, wind fields, oil spills, ships, icebergs and sea ice classes are currently extracted automatically and in near real-time.
The algorithms were initially designed for TerraSAR-X data, but have been continuously adapted to support other sensors and platforms such as Sentinel-1, Radarsat-2 and COSMO-Skymed.

More recent developments are methods for estimating underwater topography from variations in ocean wave patterns, the use of time series to derive bathymetry maps in tidal flats like the Wadden Sea and for calculating ice drift vector fields from combinations of SAR images from different sensors. These algorithms were implemented into experimental prototype processors and will be integrated into the operational data processing chain of DFD’s ground station network sites after validation.

TerraSAR-X staring spotlight image of Munich, June 8th, 2018. The resolution of 0.25 \(\times \) 0.5 m\(^2\) reveals not only urban structures but even individual objects like lamp posts or trees. Near the TUM (upper center) we arranged 26 corner reflectors to form a TUM logo on the occasion of the university’s 150th anniversary.
Optical Data

CATENA

In optical remote sensing IMF develops operational software processors for fully automatic and robust pre-processing (level 0, 1a, 1b) and higher level processing like atmospheric correction or DSM generation. The challenge is to turn scientific algorithms – e.g. from PhD works – into robust processors, capable of digesting thousands of images automatically in a short time. This is also a prerequisite for generating higher level products.

To be as independent as possible from individual optical sensor properties we have developed and continuously improved our generic processing chain framework CATENA. CATENA is a multi-sensor, multi-purpose processing system for data from many different optical remote sensing systems. It is mostly based on IMF-developed software modules (the XDibias system and libraries) but any other processor running under a Linux environment can be included. It is certified under ISO 9001:2015 describing all processes for developing software for CATENA and operating the system. It represents a framework of modules which can be combined into processing chains for generic project needs or general processing like automatic orthorectification, employing worldwide reference data bases of orthoimages and DEMs, or atmospheric correction of satellite imagery. Tailored software packages from CATENA have been used by IMF for developing the ground processing systems of the DESIS and EnMAP missions.
The general processing scheme is embedded in a sophisticated distributed grid computing framework, managing the automatic execution of the requested jobs on any set of workstations. Since it is generic by design, only new import modules have to be written for new sensors. CATENA can ingest more than 40 high and very high resolution sensor data, e.g. from Landsat, SPOT4/5, IRS-P6-LISS III/AWIFS, ALOS-AVNIR/PRISM, Sentinel-2, RapidEye, Cartosat-1, ZY-3, Ikonos, GeoEye, WorldView and Pléiades as well as NewSpace data, e.g. from Planet.

In the past years various higher level processing chains have been implemented in CATENA. These include a stereo DSM processor that automatically generates DSMs for large amounts of stereo data including geometric bundle adjustment in a short time. This is also valid for large scale airborne data acquisitions. Support for recent satellite missions, as well as spaceborne video evaluation from Planet and UAV/MAV images has recently been added.

Atmospheric correction is now supported using either the DLR PACO or the joint CNES/DRF-developed MAJA processors. Additional thematic processing chains include risk assessment for strong rain as well as the DriveMark processor for providing highly accurate georeferenced data for autonomous driving.

CATENA supports multiple grid or cloud computing platforms, including its own lightweight cluster system, as well as DFD’s Data and Information Management System DIMS. The CATENA platform was further developed to support multiple modern computing platforms by allowing processors to run as Docker containers. This was tested in various environments such as Apache MESOS, Hadoop/Calvalus and Amazon Web Services.

Atmospheric Data

GCAPS – Level 0-1

The processing of raw instrument data (level 0) to calibrated data (level 1), usually radiances, is the first step in the workflow for deriving geophysical parameters of the atmosphere. In the past two decades IMF had developed level 0-1 processors for GOME and SCIAMACHY. Both relied on instrument specific approaches. However, with several new atmospheric composition missions becoming operational, another concept was required to be able to accommodate the needs of advanced instrument designs. This led to the development of GCAPS, the Generic Calibration Processing System, featuring:

- instrument independency
- configurability of calibration chains
- independency from data formats
- usage of standard libraries
- multithreading capability.

The generic processor was realized as a configurable framework, to which calibration as well as input/output plugins can be added. GCAPS provides a lean structure with all the basic functionality needed for level 0-1 processing. Instrument-specific processors are built by coding the relevant plug-ins and defining calibration chains in a configuration file. GCAPS was adopted as the operational processor for the reprocessing of SCIAMACHY data. In this reporting period we added a generic database interface for calibration data and new output plugins for the netCDF4 data format. The flexibility of GCAPS is demonstrated by the fact that we will also use it without modifications for the operational level 0-1b processing of MERLIN data, even though the calibration procedures for the MERLIN lidar mission are very different from those for passive spectrometers.

Atmospheric parameters operationally retrieved by IMF’s processing system UPAS2 in the framework of the Sentinel-5P payload data ground segment.
UPAS and UPAS2 – Level 1-2

In spectrometric sounding, operational level 2 processing systems translate the theoretical basics of radiative transfer, inversion and scattering into software tools applicable for retrieving geophysical quantities from calibrated level 1 data. Their structures require flexibility because ongoing research produces new algorithms which have to be incorporated to maintain state-of-the-art performance. In the past, IMF decided to develop UPAS, the Universal Processor for Atmospheric UV-VIS-NIR Sensors as a generic multi-mission system for the retrieval of trace gases and cloud properties. Since its operational readiness back in 2004, UPAS has been continuously improved and forms the backbone level 2 atmospheric retrieval system at IMF.

In order to cope with the hundredfold increase in data volume produced by the Copernicus missions and the requirements on near real-time processing for air quality applications, a second generation of UPAS, termed UPAS2, was developed. It consists of a C++ framework with basic modules including level 1 product ingestion, level 2 algorithms and level 2 product output. All these modules use generic interfaces to assure high reusability through modularity. Considerable investment went into the requirement analysis of the design to make sure it can be used for all past, current and known future UVN spectrometer missions. The framework contains the scientific level 2 trace gas retrieval algorithms which evolve over time. The mission-specific operational processors, i.e. our deliverables, can be generated out of this generic code base. This allows the scientific community to obtain datasets from different sensors processed with an identical implementation of the level 2 algorithm. This is an important prerequisite for obtaining meaningful multi-sensor datasets over several decades as needed for climate studies.

One big challenge in the design of UPAS2 was to cope with the increased throughput rates the new missions require (GOME: \(2.8 \times 10^4\) measurements per day and GOME-2: \(2.1 \times 10^5\) measurements per day in contrast to Sentinel-5P: \(2.3 \times 10^7\) measurements per day), with each measurement containing more than 4000 spectral points. This challenge was met by fully exploiting multiprocessor parallelization using OpenMP, considering performance in the design phase and investing in the performance analysis and optimization of complex retrieval modules and interfaces with the usually time consuming radiative transfer models. Furthermore, a user-friendly configuration concept was implemented to allow for easy configurability of processing parameters and the level 2 format. Also, support tools for converting, modifying and visualizing all kinds of data involved became part of the code base.

The excellent performance of UPAS2 was demonstrated shortly after the first Sentinel-5P/TROPOMI level 1b data became available. ESA presented the first images of Sentinel-5P during an event that took place at EOC on December 1, 2017, only a few weeks after the satellite launch. UPAS2 has been integrated into the Sentinel-5P Payload Data Ground Segment at DFD where it operationally generates products even more performant than required while providing the stability needed for any operational 24/7 system. We also plan to use the new UPAS2 for processing data from GOME-2 in the AC-SAF project, from Sentinel-4 and Sentinel-5 missions, and for reprocessing of the already completed GOME mission which provides a dataset of trace gases like \(O_3\), \(NO_2\), \(H_2O\) as well as cloud and aerosol properties dating back to 1995.
Laboratory Infrastructure and User Services
IMF operates several optics laboratories, introduced in the following, to support remote sensing methods development and validation.

For dedicated topics we offer our expertise and infrastructure to external users. Besides the IMF user service OpAiRS for airborne remote sensing, we contribute to the services WDC-RSAT (World Data Center for Remote Sensing of the Atmosphere) and ZKI (Center for Satellite-based Crisis Information) managed by DFD.

Spectroscopic Reference Lab

IMF operates a spectroscopic laboratory for contributing parameters with defined uncertainties to spectroscopic databases for atmospheric constituents. The facility utilizes a commercial high resolution Fourier transform spectrometer (Bruker IFS 125HR). We are the only group worldwide capable of measuring spectroscopy from the FIR to the UV spectral region.

One of the key topics of our laboratory work concerns the quality of the data. Numerous sources contribute to it. Their characterization requires expertise in many fields such as instrumentation, preparation of gaseous samples and data analysis procedures. Our laboratory belongs to the few world-wide capable of providing spectroscopic data with well-defined error bars. Our team is part of the HITRAN scientific advisory committee.

For laboratory work of the highest quality, particular attention must be paid to the absorption cells. In our laboratory four cells are available, all designed at IMF. They cover a temperature range from 190 to 1,000 K and absorption path lengths from 0.16 m to 200 m. One cell is equipped with two window pairs for measuring different spectral regions such as UV/MIR or MIR/FIR for the same gas sample. A flow system and a gas handling system allow synthesis of all relevant atmospheric constituents. An 800 liter mixing chamber and calibrated pressure and temperature sensors permit generation of defined gas/air mixtures.

Software for data processing has been developed for:

- correction of instrument errors including detector nonlinearity, channeling and sample/instrument thermal emission
- line fitting
- calculation of line positions, line strengths, pressure broadening and line shifting from line fit results of multiple spectra.

The resulting certified data can be stored in an extended HITRAN database format.
Underwater Simulator

We operate an underwater environment simulator (ENVILAB) for growing phytoplankton under well-defined light, temperature and nutrient conditions. Its custom-built light source enables creation of light with well-defined spectral composition similar to natural aquatic environments. The setup opens the door for systematic studies on phytoplankton physiology and optical properties which are highly variable and cannot be represented well by single spectra from a database. Results from these measurements are fed to models that simulate the variety of reflectance spectra occurring in nature as basis for quantitative optical remote sensing.

ENVILAB is currently used for studies on the absorption and fluorescence of cyanobacteria.

Selected publication: [118]

Calibration Home Base

Since 2007 IMF has operated the Calibration Home Base (CHB), an optics laboratory built under ESA contract for the characterization of airborne hyperspectral sensors and field spectrometers in the spectral range from 350 to 2,500 nm. With its normed and traceable sources, its vicinity to the airport Oberpfaffenhofen and accessibility for large and heavy instruments, this laboratory offers a unique service in Europe for the remote sensing community. The CHB allows radiometric, spectral and geometric sensor characterization. Equipment and calibration methods are continuously upgraded and refined in cooperation with the Physikalisch-Technische Bundesanstalt (German national metrology institute). On a regular basis we perform characterization campaigns for the Swiss-Belgian airborne APEX instrument and our own sensor suite.

Absorption cell developed by IMF for the Bruker IFS 125HR sample compartment: absorption path 22 cm, temperature range 190 – 350 K. The cell body is a double-jacketed glass tube. Windows are mounted on stainless steel flanges coated with PFA. The window openings with baffles can be seen.

Left: ENVILAB setup: A tunable sun simulator emulates any underwater light spectrum with respect to intensity and spectral composition.
Right: Desired (black solid line) and realized (grey circles) downwelling irradiance spectra at 1 m water depth. Colored lines reflect contributions of individual LED spectra.
The CHB is a well-suited environment for developing and testing new cal/val methods for the level 0 to level 1b data processing step. For handling and evaluation of hyperspectral sensor data generated in the CHB we developed two complementary software packages:

- **ImSpeC**, written in Python, is a toolbox for the evaluation of laboratory imaging and non-imaging spectrometer data. Providing algorithms to extract relevant information in datasets of several hundred Gigabytes, ImSpeC is used for analyzing geometric, spectral and radiometric laboratory measurement data. Individual properties for each instrument pixel are retrieved and presented as 2D data maps. Due to its generic concept, we were able to license ImSpeC to industry.

- **L0ne** is a level 1 processor, which utilizes the evaluation data provided by ImSpeC. Its modular design allows it to be used with a wide range of sensors. Single processing modules, like non-linearity or radiometric response correction, can be switched off or interchanged leading to lower efforts in operation.

One focus of our work covers stray light characterization and correction. For an example application we have shown that stray light calibration can lead to a 19% reduction of systematic errors in the level 2 data product (bathymetry). To measure ghost images and stray light effects we developed a dedicated radiance source (narrow spectral bandwidth, small divergence angle) which allows stray light characterization with a dynamic range of up to 10^8. In the subsequent calibration step ghost images are individually mapped out, corresponding signals are relocated to their origin and diffuse in-band stray light is corrected.

Besides operating the CHB for airborne imaging spectrometers it is utilized for the laboratory characterization of the satellite mission EnMAP. We support the manufacturer OHB System in characterization of spectral, geometric, radiometric and stray light instrument properties as well as traceability.

Selected publications: [881], [307], [306]
Airborne Remote Sensing

The IMF-operated user service *Optical Airborne Remote Sensing and Calibration Home Base* (OpAiRS) allows users to draw on the accumulated IMF expertise in hyperspectral remote sensing, including:

- planning and execution of airborne surveys in close cooperation with DLR’s research flight facility, which operates the largest airborne research fleet in Europe
- access to a suite of field and airborne sensors (HySpex) based on measurements in our Calibration Home Base
- processing of the acquired data (system corrections, orthorectification, atmospheric correction) using state-of-the-art algorithms of CATENA
- long-term data archiving in the German Satellite Data Archive of DFD.

The ISO 9001:2015 certified user service conducted 66 survey flights with a total of 182 flight hours over 42 areas of interest in the review period.

OpAiRS is actively engaged in knowledge transfer with its peers in the European Facility for Airborne Research (EUFAR).

In addition to this service we operate two high resolution optical camera systems onboard of DLR planes (3K system) and helicopters (4k system), mainly to develop and test real-time situation awareness procedures for traffic or crowd monitoring, and disaster management applications (see Optical Imaging chapter).

Selected publication: [907]

Areas of interest covered by IMF’s airborne remote sensing activities during the review period.

- blue: hyperspectral data acquisition within user service OpAiRS (sensor system HySpex)
- green: test sites for situation awareness campaigns (sensor systems 3K and 4k, resp.)
Synthetic Aperture Radar
Synthetic Aperture Radar

Our research and development activities cover the entire SAR data chain from sensor bits to geoinformation products. Developments for operational missions such as the processors for TerraSAR-X and TanDEM-X are described in the chapter Missions and Sensors. In the following we summarize our major achievements in developing algorithms for SAR focusing, DEMs, glaciology and imaging geodesy, SAR oceanography, SAR interferometry, and geodetic tomographic SAR.

While our focal point is on methods and algorithms related to SAR signal processing, we foster interaction with geoscientists and other end-users to utilize our methods for science and new applications. Additionally, our research also encompasses selected geoscientific fields where an in-depth knowledge of SAR is required, e.g. SAR oceanography, volcanic and tectonic mapping, glaciology and precision mapping.

The technological readiness level of our algorithms for these activities spans the entire range from basic research to operations.

SAR Focusing

SAR processing, or focusing, means generating high-resolution images from raw data acquired by a SAR sensor: the challenge is to synthesize a large aperture along the flight track by coherent summation of the echoes received by the comparatively small antenna. It is the most crucial step in the SAR data chain because it is mathematically complex, computationally expensive and it ultimately determines the quality and accuracy of the image and all higher level products in the information extraction chain. The front-end of a SAR processor must be exactly made-to-measure for a specific SAR sensor in order to account for all its peculiarities and potential aging over the years – only then can optimal image quality be guaranteed over the lifetime of a mission. The developmental challenge is to ensure that the algorithms for focusing, multi-looking and geocoding are formulated sensor-independent. Efficient implementation in software, tailored to the hardware architecture, is also crucial. A processing time of hours for a single image may be acceptable in a research environment, but not in operational missions like TerraSAR-X and TanDEM-X, where more than 1,000 precision SAR images are focused daily during peak periods.

Over the last few decades the imaging capabilities of spaceborne SAR sensors have evolved from simple medium resolution stripmap systems with rather fixed settings (e.g. ERS-1/2) to high resolution phased-array multi-mode/multi-channel sensors such as TerraSAR-X and its possible successors. In line with these developments our SAR focusing algorithms have had to be substantially revised. Starting with a range-Doppler algorithm for the SIR-C/XSAR mission in the early nineties, IFM introduced an interpolation-free chirp scaling algorithm for SRTM in 2000. Later, this processor was extended by SPECAN (spectral analysis) elements for burst modes like ScanSAR, TOPSAR and sliding spotlight processing and, most importantly, merged into one hybrid TerraSAR-X Multi-mode SAR processor (TMSP) for the TerraSAR-X mission.

Recent algorithm developments at IMF target decimeter resolution SAR for next-generation X-band SAR systems with very long synthetic apertures and bandwidths exceeding 1 GHz.

Large scale deformation mapping project: Ground subsidence (red) and uplift (blue) map of Germany, derived from ERS-1 data. A series of similar products is currently produced from Sentinel-1 data for the German Federal Institute for Geosciences and Natural Resources (BGR).
Such a new VHR algorithm has been successfully tested in a prototype SAR processor and proven to achieve a resolution better than 25 cm in both range and azimuth. Key technologies of this algorithm were then incorporated into the operational TMSP, enabling focusing at an azimuth resolution of 22 cm for TerraSAR-X’s new staring spotlight mode.

Experiments with such VHR SAR focusing in combination with a geometrically calibrated autofocus have led to a new technique: 3D height determination of isolated points from a single 2D SAR image. This apparent miracle exploits the curvature of satellite orbits in combination with the very long (> 40 km) aperture of staring spotlight mode. Indeed we could demonstrate that the elevation of bright points such as concave corners on a building façade can be determined to an accuracy of approximately 10 meters from space – using a single TerraSAR-X staring spotlight image.

Aside from national missions we support European SAR missions (notably Sentinel-1) and projects in the fields of SAR systems, algorithm development and geometric calibration as well as the design of entire payload data ground segments (PDGS). In that context we assisted in commissioning the Sentinel-1A and -1B SAR satellites in 2014 and 2016. In 2015 we led an ESA Phase A study for the definition of a PDGS including key processing algorithms for the bistatic SAR mission SAOCOM-CS. For this mission ESA intended to launch a receive-only SAR satellite as a bistatic companion to the Argentinian SAOCOM L-band satellite. Our activities also included the definition of a PDGS to be operated as an ESA third party mission. Even though ESA decided not to implement the mission, our design and research activities continue in the context of the Tandem-L studies. Key elements are efficient SAR data workflows and systematic interferometric and tomographic processing.

After the successful launch of the Spanish PAZ satellite in February 2018, the first SAR image was successfully processed by IMF’s PAZ SAR processor which had been licensed to the PAZ project in 2010. Our support for the mission has been reactivated after four years of launch delay and further developments are planned to equip direct access stations with our processor and for the synergetic use of the TerraSAR-X and PAZ systems.

Another activity, started in 2018, aims to transfer SAR processing and ship detection algorithms from the ground to space. Together with five European partners in the framework of the EC Horizon 2020 project EO-ALERT, IMF is developing an end-to-end processor running on a breadboard space hardware with the goal of delivering ship positions and weather information to users even faster than today.

Selected publications: [702], [290], [128]
SAR Geodesy Algorithms

The SAR image geometry and phase of the image pixels depend on the satellite’s orbit and signal travel time, both of which can be determined very precisely. The resulting geometric range and azimuth measurement accuracy, on the order of centimeters for pixels and even millimeters for the phase, is a most powerful capability of SAR. In this chapter we report on our developments of interferometric methods for TanDEM-X terrain reconstruction and on radargrammetric methods using pixel coordinates for point positioning. We have in fact established a new discipline called Imaging Geodesy that combines geodetic methods from the disciplines of GNSS and SAR imaging. Furthermore we report on selected applications of our methods and data in the fields of glaciology and geodesy. Interferometric methods for time series analysis are reported in a separate chapter.

New Algorithms for TanDEM-X

In the reporting period, our operational Integrated TanDEM-X Processor (ITP) was extended with newly developed algorithms to solve the phase ambiguity problem in phase-to-height conversion by combining data from at least two global coverages acquired with different baselines. This major improvement was necessary for two reasons. First, to process some especially difficult large baseline data sets from the early mission phase. Second, to significantly increase the reliability of the Global DEM product completed in 2016.

After finalization of the main mission product, the Global DEM, the ITP phase unwrapping algorithms were further upgraded to generate experimental high-resolution local DEMs (HDEMs) with finer posting (6 m) and relative height errors of 0.8 m for specific areas, well below the 2 m requirement of the nominal product.

The generation of HDEMs requires new data acquisitions in specific large-baseline satellite formations requiring orbital changes that cost satellite fuel and time. We therefore developed an alternative solution based on standard mission data. Using sophisticated – unfortunately still quite time-consuming – non-local interferometric filtering approaches, we generated a number of high resolution DEM demonstration products with unprecedented detail and height accuracy (see Data Science chapter).
Since September 2017, TanDEM-X has been acquiring an additional global bistatic data set for the generation of a global elevation change layer, the Change DEM. Based on our refined algorithms for HDEM generation and using the existing global DEM as a reference, ITP is now able to produce a new global DEM from only one additional global coverage (compared to two and more coverages for the first version) and to analyze significant temporal height changes ‘on-the-fly’ in an operational way.

Prominent elevation changes observed in TanDEM-X DEMs are mostly caused by deforestation, mining, volcanic activity and glacier dynamics. An example for the latter two cases combined is shown in our study of the Bardarbunga volcano 2014/2015 in Iceland. Sub-glacial eruptions caused a glacial surface subsidence above the collapsed caldera and a comparable volume gain in the nearby lava flow connected by a sub-glacial graben.

Even much smaller height changes are visible in TanDEM-X DEM time series. A spectacular example is monitoring of the growth phases of paddy rice plants, resulting in height changes of about 1.4 m within one growing season. Such unexpected signals motivate the global approach chosen for Change DEM generation in contrast to local approaches applied in areas where changes are expected such as glaciers.

Selected publications: [320], [753], [153], [37], [233], [30]
Imaging Geodesy

This technique turns a high resolution imaging radar like TerraSAR-X into a geodetic measurement device. A few radar images can capture motion fields over large areas of the Earth’s surface, effectively substituting thousands of GNSS receivers.

Absolute radargrammetric Earth surface displacement measurement from space using SAR imagery is a powerful alternative to the established InSAR technique. The advantages are that true 2D information can be retrieved (InSAR provides only 1D) and absolute displacements determined (InSAR requires a reference point) without ambiguities (no phase unwrapping is necessary). The accuracy of radargrammetric methods is limited by the pixel resolution, object contrast, orbit accuracy, wave propagation distortion, SAR processor inaccuracies and geodetic effects. All these influences are the focus of this research topic. The basic concept was developed in the Helmholtz Alliance DLR@Uni project Munich Aerospace: Hochauflösende geodätische Erdbeobachtung, Korrekturverfahren und Validierung. Here, together with partners from TUM and DLR GSOC, we developed methods to achieve absolute radar positioning accuracy on the centimeter level.

We installed corner reflectors at the geodetic observatories Wettzell (Germany), O’Higgins (Antarctica) and Metsähovi (Finland) and developed compensation methods for reducing the overall error of absolute range measurements from decimeters to one centimeter and below. The methods include correction of dry and wet atmospheric delays using measurement data and numerical weather models, ionospheric delay, solid Earth tides, continental drift, atmospheric pressure loading and ocean tidal loading.

Today we look back on time series of more than six years for each site. Our results clearly show that we can localize an object in two-dimensional image space with 10 – 20 mm accuracy and in absolute three-dimensional space with about 5 cm accuracy.

We coined the term Imaging Geodesy for this research field and are now exploiting many new applications such as:
– absolute geodynamic motion estimation
– localizing 3D ground control points for image orthorectification and precision maps
– generation of consistent reference heights for TanDEM-X elevation models.

We extended our techniques to Sentinel-1 and its new TOPS acquisition mode under an ESA contract. The results of our work have been incorporated into the calibration of these sensors and their SAR processors, leading to a geometric accuracy improvement of at least one order of magnitude.

During recent years our imaging geodesy methods have matured from experimental applications to operational use not only in our product chains but also in tailored geodesy processors for operational use with TerraSAR-X, PAZ (Spain) and Sentinel-1 (ESA).

This SAR geodesy processor generates a new type of SAR product, the SAR Geodesy Product. It is designed as a correction layer to conventional SAR products containing ready-to-use information layers for tropospheric and ionospheric propagation delays, for Earth dynamics and, if required, system corrections for sensor and processor. With the help of the SAR Geodesy Product, users can conveniently exploit 2D centimeter accuracy in standard TerraSAR-X image products and in principle also in products from other sensors such as Sentinel-1.

Concepts for the use of our techniques in industrial mapping are described in the following paragraph and in the chapter on Geodetic TomoSAR.

Selected publications: [114], [258], [262], [30], [557], [60]
Application of SAR Data for Glaciology

The cryosphere and its dynamics play an important role in understanding global climate change and indeed with SAR we can contribute to the characterization of several Essential Climate Variables (ECVs) and to the determination of parameters for glaciers and ice sheets (area, surface elevation, ice velocity, ice mass change, calving front and grounding line).

A major application of glacier surface elevation change measurements is the determination of the total net mass balance and, hence, the induced sea level rise. Due to the relatively slow changes of glacier surface elevation, reference heights are often derived using older archived data from other missions (e.g. SRTM or ICESat).

The penetration of radar signals of different wavelengths into the dry snow is significant for the determination of the dynamics and mass balances of glaciers and ice caps, and it changes drastically with the condition of their snow covered surface. These effects have been investigated and taken into account for our extensive study of the mass losses of the North and South Patagonian Icefields. The total mass change rate of the combined area (16,984 km²) is found to be 17.7 Gt/year, leading to a sea level rise contribution of 49 μm/year. The methods refined in this research are now applied to larger areas like the Antarctic Peninsula.

The change in elevation described above gives only bulk information about the mass balance. Other SAR-based measurements help to estimate the individual components of the mass balance and glacier dynamics, e.g. the surface velocity or the behavior of the calving front:

\[
\dot{B} = \dot{B}_{ac} + \dot{B}_{ab} + \dot{B}_{cv}
\]

\(\dot{B}\) represents the net mass balance, \(\dot{B}_{ac}\) the accumulation change, \(\dot{B}_{ab}\) the ablation change, and \(\dot{B}_{cv}\) the calving flux.
where \dot{B} is the total net mass balance, $\dot{B}_{ac} + \dot{B}_{ab}$ the surface mass balance from accumulation and ablation and \dot{B}_{cf} the calving flux.

While accumulation and ablation cannot be determined from space, the ice velocity or calving flux can be derived from SAR and InSAR data. For this we developed highly accurate methods for velocity estimation from TerraSAR-X data using feature and speckle tracking.

Another parameter of the ice sheet ECV is the grounding line, the location of the transition where the ice resting on bedrock detaches and becomes a floating ice shelf. Its position is determined by differential InSAR processing of Sentinel-1 and TerraSAR-X data. This method has been automated and extensively applied to large glacial systems including coastal East Greenland and the main Antarctic outlet glaciers in the framework of two ESA and DFG projects. Larger marine-terminating glaciers of the Northeast Greenland ice stream are of particular interest, because they drain 16% of the whole ice sheet into the ocean.

Calving front locations, ice surface velocity and surface elevation change derived from time series of SAR data were analyzed and indicated very different behavior of even closely neighboring glaciers. Our expertise in this field is a valuable contribution to international collaborations in the context of the ESA Climate Change Initiative.

Selected publications: [384], [608], [148], [168], [127], [16], [67]

SAR Interferometry

Advancements in Interferometric Techniques

SAR interferometry allows to measure ground deformation with sub-wavelength precision. Historically the techniques have progressed from single interferograms to algorithms based on stacks of images providing time series of deformation, like Persistent Scatterer Interferometry (PSI). More recently, Distributed Scatterer Interferometry (DSI) techniques have bridged the world of interferograms and the world of time series. These developments have been followed also in our institute from the very beginning. However, all these algorithms suffer from distortions caused by e.g. atmospheric propagation delays. Therefore, we investigated correction techniques that significantly increase the precision of the deformation products and reduce the number of acquisitions required in the stack. Some of these advancements are already in use operationally such as for the German ground deformation service. Others have been demonstrated and are an essential part of the processing concept for the future Tandem-L mission. Many of these developments were performed in the frame of the Helmholtz Alliance Remote Sensing and Earth System Dynamics, together with national and international scientists. Besides this strong focus on error reduction, we have supported the development of the Tandem-L mission concept with product definitions, processing concepts, and performance analyses for future products such as 3D deformation vectors or strain maps.
Tropospheric Corrections

Even though SAR imagery is mostly weather independent, propagation through the spatially varying troposphere leaves a mark in the range delays measured by SAR and the error patterns are clearly visible in SAR interferometry. While such delays constitute an interesting signal for meteorological applications, for ground deformation measurement they constitute a nuisance and corrections are highly desirable.

The starting point for our tropospheric corrections are weather models. In particular we apply ready-to-use ECMWF ERA Interim model data while also optimizing local high resolution weather models (e.g. WRF) for our purposes. The SAR signal path delays are calculated by ray-tracing and integration through a 3D atmospheric refractivity map which is calculated from pressure, temperature and humidity provided by the weather model. The derived geometric and phase corrections are helpful in several stages of SAR and InSAR processing, e.g. for very high resolution SAR focusing and for interferometric coregistration. Phase corrections in deformation mapping are particularly significant at large distances (> 100 km), where the power of the tropospheric disturbance is often 10 times larger than the desired deformation signal. Fortunately, ECMWF models are accurate enough to reduce the error variance by a factor of 4. At smaller spatial scales (< 10 km) improvements are significant if topographic variations in the scene cause a height-dependent stratification even for a spatially homogeneous troposphere.

Our extensive experience with the correction of SAR interferograms using weather models and GNSS observations has put us in a leading position in error reduction and predicting the performance of deformation products.

Ionospheric Corrections

Not only the troposphere (< 18 km above the Earth surface) but also the ionosphere (80 – 1000 km) produces unwanted delays that must be compensated for to obtain accurate ground deformation maps. Unlike tropospheric delays, these delays are dispersive or wavelength-dependent (~λ²), with longer wavelengths (e.g. ALOS, ALOS-2, SAOCOM, Tandem-L) being much more affected than shorter ones (e.g. TerraSAR-X). Available ionospheric space weather models are not sufficient for our purposes because their resolution is limited by the density of ground- and space-based GNSS receivers.
Fortunately it is possible to estimate the total electron content from the SAR images themselves, exploiting the dispersive character of the ionosphere – similarly to dual-frequency GNSS. Over the course of the past few years, we have convincingly demonstrated the feasibility of the split-spectrum technique. In addition we have studied algorithms tailored to fast spatial variations of the ionosphere, apt to deal with more difficult and rare cases.

Originally the SAR community understood the importance of ionospheric corrections only for rather long wavelength L- and P-band SARs. However, during our research we clearly demonstrated the need to apply the split-spectrum technique even to Sentinel-1 C-band data. In consequence we developed algorithms for the peculiar influence of the ionosphere on TOPS mode data of Sentinel-1. Future developments will address the integration of ionospheric corrections in time series and multi-baseline workflows.

Selected publications: [207], [607], [116], [115]

Sequential Estimation for Distributed Scatterer Interferometry (DSI)

To enhance the spatial coverage of deformation products, it is necessary to include Distributed Scatters in the estimation. These are generally natural areas (e.g. bare or vegetated surfaces) with coherence properties less than ideal. They are typically not exploited at full resolution but after adaptive or even non-local spatial averaging of the interferograms (e.g. the SqueeSAR algorithm). DSI processing performance relies on using a large number of interferograms, ideally all possible combinations from all acquisitions over a certain area. Therefore DSI processing is currently performed once all data are available and the computational effort grows roughly quadratically with the number of acquisitions involved.

Exploiting the full covariance matrix with all possible interferograms achieves 8 dB phase noise reduction compared to a single long time interferogram. Our new sequential estimator achieves the same performance using only a fraction of the full covariance matrix – saving significant computing resources.
The ambitious goals of the Tandem-L proposal foresee the continuous acquisition and processing of all global areas subject to tectonic strain for an entire decade. Obviously available DSI techniques are impracticable for such streaming-type processing. We have therefore developed a new method to process the data sequentially during the mission, without compromising the phase estimation quality. Ordinary DSI phase estimation is performed over subsets of acquisitions, for example yearly, and successively a temporal phase connection is established between these subsets. First demonstrations have been conducted with Sentinel-1 data and they confirm the validity and performance of our method. Operationalization and verification activities are ongoing.

Selected publications: [92], [2], [750]

Closure Phases and Moisture Retrieval

Closure phases are a recent discovery in SAR interferometry: they are observed as circular phase inconsistencies in triplets of interferograms generated from three SAR images. The best understood physical mechanism able to generate significant closure phase is the variation of moisture in semi-transparent scatterers, e.g. soil. We are among the first to investigate this effect systematically. Since the effect is expected to be more significant for longer wavelengths we have started investigating the inversion of moisture levels from closure phases using ALOS-2 L-band data. Nonetheless, we have also shown the presence of closure phase inconsistencies in C- and X-band.

The evolution of soil moisture over six months estimated over Kumamoto region (Japan) from ALOS-2 closure phases. The area is 60 × 80 km² in size.
Further studies are necessary to understand the behavior of closure phases over different land covers. Surprisingly, the inversion seems to work best over forested areas, and is more difficult for agricultural surfaces. The topic is also relevant for the interferometric processing of distributed scatterers, since the presence of phase inconsistencies calls current phase history retrieval algorithms into question.

Selected publications: [350], [283]

3D Motion Reconstruction

Single line-of-sight deformation products, both single interferograms and time series, provide the projection of the ground motion onto a fixed direction and relative to a reference point. Many users and applications require full 3D motion reconstruction and higher order mechanical parameters, e.g. the retrieval of tectonic strain. In the context of Tandem-L studies we have developed first concepts for simultaneous mosaicking and 3D motion reconstruction from multiple lines of sight. From the 3D motion vectors it is possible to estimate the rotation and strain components of the deformation without ambiguity.

Strain (here: shear component) retrieval of Darwin glacier, Antarctica, reconstructed from TerraSAR-X interferograms with three different line-of-sight directions.
Unfortunately, current SAR missions do not routinely provide a sufficient geometrical diversity for 3D motion inversion. However, a dedicated experiment with TerraSAR-X left-looking acquisitions (in addition to ascending and descending right-looking regular geometries) has provided the opportunity to reconstruct 3D motion over a deforming glacier. The experiment also provides the opportunity of testing assumptions (such as glacier flow downslope) that are normally necessary to retrieve the 3D motion when the geometric diversity is insufficient. The research results are incorporated into the Tandem-L observation and processing concepts.

Selected publications: [181], [20]

Large Scale Deformation Mapping Projects
Since the days of ERS-1, IMF’s GENESIS InSAR library has been under continuous development as new sensors has been launched (TerraSAR-X, Sentinel-1, ALOS-2), sometimes with new acquisition modes (e.g. spotlight, TOPS). The development and operationalization of the Interferometric Wide Area Processor (IWAP) culminated in the generation of the nationwide PSI map of Germany for the Federal Institute for Geosciences and Natural Resources (BGR), derived from Sentinel-1 data. This project started in 2016 and will continue until 2019 with a series of updates of the deformation products (velocity and time series). For this project we applied for the first time operationally tropospheric phase correction based on ECMWF data and developed new mosaicking and GNSS-based calibration strategies to deliver a seamless product.

In mid-2016 a customised version of our processor was installed on the cloud based Geohazards Exploitation Platform (GEP) of ESA for the generation of InSAR products from Sentinel-1 acquisitions. The purpose of GEP is to demonstrate fully automated InSAR processing in order to support thematic experts monitoring earthquakes, volcanoes and floods. Since mid 2017, when a peak performance of 100 interferograms/day was reached, the service has been monitoring 40% of all seismically active areas or 15% of the Earth’s land surface. The products, publically viewable in the GEP GeoBrowser, allow quick assessment of surface changes, most importantly any movement that occurred in the time between acquisitions – and this with centimeter precision.
SAR Tomography

Tomographic Reconstruction

Tomographic SAR inversion (TomoSAR), is the general process of reconstructing a 3D reflectivity cube of an imaged scene from multiple 2D SAR images acquired with different incidence angles, determined by the baseline distribution. Compared to medical CT, the 3D reconstruction in TomoSAR requires more complex algorithms because of the irregular and sparse sampling in the angular coordinate. TomoSAR is essentially a spectral estimation problem where for every range-azimuth pixel the reflectivity profile (and possibly its temporal variation) in the third dimension, elevation, must be found.

Typical applications of TomoSAR are 3D profiling of semi-transparent layers such as forest, ice or snow, as well as opaque and discrete 3D objects such as buildings and rock surfaces on mountains. During the recent years, we have been concentrating on the latter case, with particular focus on urban areas, where TomoSAR is equivalent to layover separation.

When using multi-temporal data stacks, we can not only determine the 3D position and reflectivity of objects, but also their deformation in the line of sight (sometimes called differential TomoSAR).

The elevation resolution and location accuracy of the tomographically reconstructed 3D objects is limited by the span and the distribution of the baselines. The narrow orbital tube of TerraSAR-X, e.g., limits the elevation resolution to about 40 m, which is much less than the 2D sub-meter resolution in the other two dimensions, range and azimuth. Therefore, one major challenge in our research was the separation of objects within this resolution limit. As a result, in the last reporting period, we developed a super-resolution technique named SL1MMER to distinguish two or more objects even if they are very closely located in one resolution cell. Even after several years after its invention, our SL1MMER algorithm is still state of the art in tomographic reconstruction.

SL1MMER is a compressive sensing-based algorithm. The price to pay for its high quality 3D reconstruction is the computational effort. Therefore, in this review period, together with UCLA, we developed a fast and accurate complex-valued basis pursuit denoising algorithm for super-resolving tomographic SAR. So far, we are the only group that is able to carry out compressive sensing-based tomographic reconstruction of an entire urban area from TerraSAR-X image stacks. In addition, we developed several extensions of the SL1MMER algorithm for reducing the number of images required for TomoSAR reconstruction while retaining the high accuracy. They are presented in the Data Science chapter.

Selected publications: [24], [337]

Staring Spotlight TomoSAR

Staring spotlight, a new mode introduced in TerraSAR in the reporting period, is characterized by an increased azimuth resolution compared to the conventional sliding spotlight. We first demonstrated the potential of this mode for TomoSAR by means of an interferometric stack with an azimuth resolution of 0.24 m. To this end, we tailored our interferometric and tomographic processors for the distinctive features of the staring spotlight mode. As a result of a first comparison between sliding and staring spotlight TomoSAR, the following was observed: The density of the staring spotlight point cloud is about five times higher and the relative height accuracy of the staring spotlight point cloud is approximately seven times higher due to the higher signal-to-clutter ratio and the lower pointwise layover probability.
SAR tomography, similar to its conventional counterparts, such as InSAR and PSI, is only capable to capture 1D deformation along the satellite’s line-of-sight. We developed a method based on L1-norm minimization within local spatial cubes, to reconstruct 3D displacement vectors from TomoSAR point clouds available from, at least, three different viewing geometries. The method differs from the ones known for standard InSAR or PSI in that it benefits from the extremely high point density of TomoSAR and that it is more robust with respect to outliers due to its L1-norm minimization.

Selected publication: [223]

From TomoSAR Point Clouds to Objects

The scatterer density obtained from VHR TomoSAR is in the order of 0.6 – 1 million/km². The retrieved rich scatterer information from multiple incidence angles allows for the first time to generate 3D point clouds from spaceborne radar with a point density comparable to lidar. In the review period we developed a series of robust algorithms to reconstruct building façades and building roofs that can automatically run on a large scale. Very recently, we also carried out the first demonstration of 3D prismatic building model reconstruction using these spaceborne TomoSAR point clouds.

Selected publications: [399], [326], [239]
DefoSAR – TomoSAR Framework for Tandem-L

As mentioned in the Sensors and Missions chapter, Tandem-L is an exciting German space mission concept comprised of two satellites carrying L-band SARs. It can map the Earth surface in both high resolution and wide swath with an unprecedented accuracy. To prepare for Tandem-L, we developed the framework DefoSAR that is tailored for SAR tomography in urban areas using a minimum number of bistatic Tandem-L data. This novel generic framework exploits the property of data stacks, which consist of bistatic pairs (containing the undisturbed topography information) taken at different times (allowing for motion estimation).

First, the bistatic interferograms, together with geometric priors, are used for highly precise elevation estimation, requiring only a few images. These high-quality elevation estimates are then used as a deterministic prior in estimating deformation coefficients. In addition, deformation model order selection is introduced for avoiding overfitting.

As practical demonstrations, we tested our framework with TanDEM-X pursuit monostatic data. A high quality 4D TomoSAR point cloud of individual building façades can be reconstructed from only six interferograms, which shows the great potential of the proposed framework for bistatic SAR tomography with Tandem-L or other prospective bistatic or multistatic missions.

Geodetic SAR Tomography

The abovementioned 3D building reconstruction using TomoSAR or large-scale deformation using PSI provide relative measures, with respect to some reference point chosen during processing. Although these relative measures are highly accurate, absolute positioning is often required in many geodetic applications. Therefore, with geodetic SAR tomography we combined the strengths of both TomoSAR and SAR Imaging Geodesy. For the first time, rather than retrieving only a sparse set of points, it has been possible to obtain detailed multi-dimensional maps with large coverage characterized by absolute geo-localization accuracy in the decimeter level and deformation estimation accuracy in the order of mm/a.

The ingredients of geodetic TomoSAR are Imaging Geodesy, stereo-radargrammetry and TomoSAR. In a first step, a set of common ground control points (GCPS) is extracted from geodetically corrected SAR images. Their absolute positions are then calculated by means of stereo triangulation.

![The DefoSAR framework: Topography (left) and amplitudes of seasonal motion (right) of a building façade estimated using only six TanDEM-X high resolution spotlight acquisitions.](image-url)
Obviously, the best absolute positioning accuracy can be achieved with images acquired from cross-heading orbits (ascending and descending). However, common GCPs are difficult to identify in such configuration, because the SAR sensor sees opposite sides of an object.

To address this challenge, we developed a framework which first carries out the PSI/TomoSAR reconstruction of individual stacks from different viewing angles, and then identifies the reflection correspondences of certain objects in 3D space, finally projects these points back to the radar images. With this method and using meter resolution TerraSAR-X data, it is possible to identify thousands of such GCPs in a city. Once the GCPs are identified, the best candidates among them will be chosen to form the reference network for PSI/TomoSAR processing. After the TomoSAR inversion, the absolute height offset of the GCPs to the reference DEM is added to the heights of the relative 4D TomoSAR point cloud during the final geocoding phase, which results in absolute coordinates of the TomoSAR point cloud.

Due to the high accuracy of these geodetic TomoSAR measurements, they can be easily used to fuse TomoSAR point clouds acquired from different imaging geometries to an unprecedented accuracy or also to absolutely geocode imagery from different sensors. In particular, optical satellite images have notoriously high geolocation errors, and will benefit from the new methods. It also enhances the understanding and interpretation of the observed area/object and its motion due to ground subsidence or thermal dilation.

Selected publications: [258], [557], [60]
SAR Oceanography

Oceans cover more than 70% of the Earth's surface and are of paramount importance for global processes in many domains. They are a source of nutrition, energy and other resources and a key element in global logistics and the transportation of goods. The character of the maritime domain is changing in response to societal, economic, ecological and technological development. Likewise, coastal population, ecosystems and technology have to adapt worldwide to changes in the oceans.

The dimensions and remoteness of the oceans, including sea ice regions at polar latitudes, are best observed by SAR satellite-based Earth observation. In this context, satellite data are favorable for both the generation of long-term time series to detect and monitor regional or global trends in the oceans, and the provision of near real-time (NRT) information to enhance maritime situational awareness for safety and security.

Responding to these challenges, DLR founded the Maritime Safety and Security Labs in Bremen and Neustrelitz in 2013. Our IMF team in Bremen develops methods to automatically derive information about the ocean from spaceborne SAR data, while the DFD team in Neustrelitz is responsible for the integration of our software into the operational data processing chain at DFD's ground station Neustrelitz and to adapt the user interfaces, if required. Due to our joint efforts we can provide the maritime community with up-to-date high-quality information almost instantaneously after the reception of the SAR data – often within 15 minutes.

A real challenge during development is achieving high accuracy and numerical robustness in a very short time to meet the NRT requirements of many safety and security related information services. That is why all of our methods are implemented in a single modular software suite called SAINT. This enables us to combine different product types during processing, increasing the quality of the results and reducing errors. SAINT is currently comprised of modules for wind and sea state parameter determination, surface film detection (e.g. oil), vessel detection and classification, coastline extraction, bathymetry estimation, sea ice classification, sea ice motion tracking, iceberg detection, and the discrimination of icebergs from ships.

Retrieved bathymetry from a Sentinel-1 scene of West Africa. The depths shown outside the scene are from the GEBCO dataset.
Sea State and Bathymetry

Numerous ships are lost at sea each year in severe weather and heavy seas. Better forecasts and on-the-fly model validation with NRT satellite data could help to reduce the dangers to maritime traffic. Therefore sea state information derived from SAR data, particularly in combination with wind data, are most valuable tools for the validation and improvement of meteorology and physical oceanography models.

Established SAR-based sea state extraction methods fail for short waves or for high sea state due to limitations in the image resolution and nonlinear effects of wave motions such as velocity bunching and wave breaking effects that result in blurred signatures in the image. Therefore, we developed a new empirical algorithm that combines spectral with textural information to overcome this problem. The resulting high resolution sea state map is capable of resolving small-scale features like wave groups that were hitherto barely studied with regular observations over large areas.

With high resolution wave information, local variations of the lengths of visible long swell waves can also be interpreted to deduce the underwater topography between depths of 10 – 100 m, depending on the sea state conditions. Given that for large parts of the world’s seas only coarse bathymetry information is available, a high resolution SAR-based information product can fill data gaps in many places. The method has been successfully validated and demonstrated in the EU supported H2020 project ‘BASE-platform’.

Vessel Detection, Feature Determination and Target Classification

In order to detect illegal or harmful conduct (e.g. pollution, illegal fishing, piracy, smuggling and human trafficking) and to increase maritime safety in emergencies, monitoring of vessel activities is imperative. While a ship’s automatic identification system (AIS) sends relevant information over up to 100 km, the device can be turned off, manipulated or may be beyond the range of coastal receivers. Hence, independent information derived from satellite SAR is needed to validate or complement AIS information. We have developed automatic algorithms to detect maritime...
targets, apply artificial intelligence to distinguish between different vessel types such as cargo or tankers, and methods to estimate vessel parameters such as length, width, course and speed from the radar signature. Similar algorithms are applied for iceberg detection and to differentiate between ships and icebergs – a capability required by national ice services, because traditional airborne iceberg sighting regularly suffers from low visibility conditions. Satellite-based iceberg detection is a valuable, complementary and cost-efficient approach.

Surface Film and Oil Detection

Oil is present on the seas in large quantities. It propels ships, is transported by tankers and produced on offshore oil rigs. However, if released into the open seas intentionally or by accident, it creates a surface film and becomes a severe threat to the marine and coastal ecosystem.

Such surface films change the surface tension and smooth capillary waves. They are hence easily detectable as dark areas in SAR imagery. However, natural films like algae occur alongside oil and distinguishing between both types in an automated process is challenging and not entirely reliable. We developed new approaches exploiting the most significant polarimetric features with neural networks to improve automatic surface film classification from 82% to 90%. Furthermore, we combined information from different microwave bands where available to further increase classification accuracy.

Ocean Winds and Waves

Wind retrieval from SAR data exploits the influence of wind-induced sea surface roughness on the observed radar backscatter. It has been used for many years for the generation of global wind and wave fields.

Our new high resolution wind information product based on TerraSAR-X data reveals small features never before seen. For example, it shows the shadowing effects of offshore wind turbine arrays on adjacent wind parks, and can be used to quantify and predict the electric power reduction caused by these effects. Cross-validation with ground based lidar systems has shown that the wind information and particularly the lateral wind variations induced by obstacles such as wind turbines at greater heights can indeed be inferred from wind speeds at sea level.

Sea Ice Information

The Arctic is receiving increased attention as during the summer months the Northwest and Northeast passages become accessible for commercial shipping and oil and gas exploration. However, navigation in ice-infested waters is challenging. Especially at high latitudes, where the infrastructure for rescue operations and counter measures after environmental disasters is extremely sparse, the safety of ships and maritime infrastructure is of great importance. This has also been acknowledged by the International Maritime Organization in the latest International Code for Ships Operating in Polar Waters (Polar Code), where the need for up-to-date and precise sea ice and meteorological information is identified as the core element for safe navigation in ice-infested waters.

To provide the maritime community with detailed information on the current sea ice condition we developed methods exploiting textural and polarimetric features for X-, C- and L-band SAR to distinguish between different ice types. In addition, a new algorithm has been developed that calculates high resolution ice drift fields on the basis of consecutive SAR acquisitions by the same or different SAR sensors. The algorithm estimates drift vectors in sub-pixel space by applying pattern matching techniques.
A comparison with drift buoy data confirms that resulting drift vectors have an accuracy 2 – 4 times better than the resolution of the input image data. The information gained is extremely useful for ship routing at high latitudes. First, divergence and convergence zones can be identified based on the drift vector field, revealing the position of emerging open leads and compressed ice ridges and representing areas of lowest and highest ice resistivity, respectively. Second, the measured drift data forms the basis of short-term predictions on ice drift, which enables crews to anticipate dangerous situations in advance and take appropriate actions, or avoid unnecessary detours. Finally, the fusion of drift and ice type information can help to identify key factors which determine ice motion and to improve model-based forecasts of ice dynamics. The developed methods have been implemented in software prototypes in DFD’s receiving stations NRT environment and are tested by supporting diverse polar expeditions such as the German research vessel Polarstern campaigns led by the Alfred Wegener Institute with EO-based ice information in exchange for valuable and rare in-situ data.

Selected publications: [198], [317], [240], [241], [333], [227], [329], [249], [535]
Optical Imaging
Within the reporting period optical imaging by spaceborne and airborne sensors has been a dynamic field of research and development. Three trends have boosted its application potential: the growing availability of data through more and higher-quality missions (including the Copernicus program and new satellite constellations), rapid developments in machine learning and increased computer power. This chapter presents highlights of our methodological and application-oriented developments for automatic geoinformation extraction from optical or fused data sets in the following topics:

- stereo and 3D processing
- hyperspectral data analysis
- atmospheric correction
- real-time methods for imagery from airborne sensors
- thermal image processing.

In contrast to SAR and atmospheric sounding, there was neither a German nor a European long-term optical remote sensing mission line for which we could have been commissioned to develop the operational processors. Therefore, our research focus had always been on data analysis algorithms applicable for a broad variety of sensors. This situation changed with DESIS and EnMAP, where we lead the ground processing system development, and with Sentinel-2 which is becoming the multi-spectral data source of the future.

Stereo and 3D Processing

The generation of Digital Surface Models (DSMs) from optical stereo data has a long heritage at IMF. Starting from the first space mission using a digital stereo camera (MOMS) in the early 90s, continuous improvements in stereo image matching have been the focus of our research. Our strategy is to not only generate the best possible DSMs using the latest computer vision methods, but also to derive higher-level information such as 3D changes, DTMs, building footprints and full 3D models, e.g. for urban planning or disaster management.

DSM Generation

Several methods and improvements for the generation of DSMs from airborne and spaceborne optical stereo data have been developed at IMF. The DSM generation process starts with image orientation using bundle adjustment with or without reference data such as reference images, reference DSM or ground control points. The oriented imagery is then further processed by pairwise dense matching using regularization through energy minimization of a cost function. This includes a pixel similarity data term, such as Census, Mutual Information or CNN-based cost functions, as well as an edge preserving smoothness term, which allows robust and detailed reconstruction of the surface presented by flat areas, buildings, vegetation etc. For operational processing, we developed a novel variant of the well-known Semi-Global Matching (SGM) algorithm. Our modifications to standard SGM include a robust hierarchical search strategy that dynamically reduces the search range for flat areas and results in faster computation and denser DSMs, as well as a combined data term employing several cost functions.

3D stereo imaging from space: The generation of digital surface models from VHR spaceborne satellite data (here WorldView-3 with 30 cm pixel size) allows unseen highly detailed realistic representations of city models from space. In this case (suburb of Muscat, Oman) oblique views with approx. 45° viewing direction have been acquired and used for texturing the building façades (image was generated in collaboration with GAF AG, based on data from DigitalGlobe © 2014).
These algorithms can be applied to data from almost all satellites capable of capturing stereo data, as well as aerial and UAV-based data. Our processor supports single stereo pairs and triplets as well as modalities where thousands of images need to be processed. It is used in many projects at DLR, providing important 3D information on both coarser resolutions for topographic purposes or high resolution models of difficult areas from the Earth’s highest mountains to very dense city centers. For example, the stunning virtual images in the Book ‘m² Mountains’, authored by DFD together with Reinhold Messner, have been generated by our processor using VHR triple stereo DSMs.

Our software is licensed to GAF AG, Munich, who very successfully applies it to produce satellite-based stereo DSMs for commercial applications, including continent-wide 5 m resolution DSMs from Cartosat-1 stereo imagery. Elevation models from VHR satellites with a resolution of up to 30 cm are especially successful in the commercial market.

Selected publications: [129], [163], [281], [228], [397]

Digital Terrain Models

The generation of DSMs is just the first step in extracting geoinformation from stereo imagery. Further steps are deriving digital terrain models (DTMs) from DSMs, extracting building outlines and roof shapes, reconstructing forest and plant shapes and using 3D information for improved automatic change detection.

For many applications a DTM, representing the ground without objects like buildings or trees, is needed rather than a DSM. The derivation of a high-quality DTM from an existing DSM and optionally ortho-imagery is still a challenging task. In recent years many existing approaches such as hierarchical filtering or extended morphological filtering were improved and new methods such as height step detection have been implemented. However, these traditional model-based algorithms have been difficult to apply in a generic sense as they require scene specific parameter tuning, especially when using DSMs generated from satellite stereo data, which contain higher noise and no last-pulse information present in lidar point...
clouds. Thus, they cannot be applied as part of an automatic processing chain when performing large scale processing. Recent approaches based on Deep Learning, especially Conditional Adversarial Networks (see Data Science chapter), together with the increasing availability of lidar reference data for training allow robust and high performance filtering of DSMs. We developed a new methodology based on extensively trained nets which leads to robust DTM generation and even outperforms DTMs from official authorities. A further advantage is the very high level of automation which requires only a low level of manual improvements in final editing.

Selected publications: [62], [550], [328], [445]

Building Footprint Generation and Refinement from VHR Stereo Data

Although the DSM matching algorithms are highly developed a full reconstruction of 3D building models from, e.g. WorldView-2, satellite imagery is still challenging. This is due to the limited resolution that leads to blurred building edges in the DSM. Using additional multi-spectral and panchromatic images is therefore recommended to remedy the deficiencies of DSMs and to achieve real 3D models of buildings. After masks are generated by simple thresholding of the DSM, an effective first step is to use machine learning for improving the footprints. Based on the advantages of fully convolutional networks (FCNs, see Data Science), we developed a hybrid FCN which effectively combines spectral and height information from the different data sources and automatically generates a full resolution binary building mask. Our architecture consists of three parallel networks merged at a late stage,
which helps propagating fine detailed information from earlier layers to higher levels, in order to produce an output with more accurate building outlines.

After a refinement step a rough building linear outline extraction is performed followed by line simplification. The results show that mask refinement with FCN can increase the precision of the extracted building outlines by up to 25%, proved by comparing it with the Polygons and Line Segments metric to state-of-the-art methods. After line segment regularization and connection steps, the precision even increases up to 35%. These results have been achieved for different city areas in Europe.

A method for improving all DSM properties (not only footprints) from satellite data is to use higher level DSMs, e.g. from airborne lidar data, to learn the shape of buildings by Generative Adversarial Networks (GANs, see Data Science chapter). As the lidar DSM was generated from last pulse data there is nearly no vegetation within the scene in comparison to the stereo DSM. The results demonstrate that the geometric structures of buildings from stereo DSMs are better preserved in the generated samples and their appearance is closer to that in the lidar DSM. Besides, the network has learned about the non-existing vegetation from these data, leading to its elimination in the improved stereo DSM. By investigating the profiles of selected buildings, we can confirm that the GAN successfully learned and refined the 3D building representation close to that of a lidar data representation.
Roof Type Classification

For classifying a roof as one of the main roof types (e.g., flat, gable, half-hip, hip, mansard, and pyramid), we developed an image-based classification using two pre-trained deep networks, VGGNet and ResNet. The junction points of the footprint mask are projected onto the pan-sharpened satellite images. The results are promising with an accuracy higher than 80% for most roof types. To reconstruct even complex roof shapes, a decomposition of the building outline splits it into simpler rectangular shapes. The roofs are finally modeled by using an optimized selection of the overlaying rectangles.

Selected publications: [595], [144]

3D Change Detection

Automatic change detection using DSMs for urban and forest applications is a long-term focus of our research. Information on change can play an important role in different applications such as disaster assessment (e.g., after earthquakes) and urban construction or destruction monitoring. Change detection methods using only optical imagery rely on changes related to the reflectance values and/or local textural changes, which are often insufficient when dealing with changes in the vertical direction. On the other hand, the limited quality of DSMs generated from spaceborne stereo imagery hinder reliable change detection using only DSMs from different acquisition times. Therefore, depending on the DSM quality, multispectral channel availability and change detection requirements we have developed several approaches for automatic change detection for urban and forest areas by fusing changes from DSMs and optical images.

As one of the highlights, the belief functions including Dempster-Shafer theory and Dezert-Smarandache theory have been adopted and further developed for 3D building change detection. In the proposed fusion model, change indicators are automatically extracted from the images and the DSMs, and projected to a sigmoid distribution to provide the initial basic belief assignments as indications of changes.

We have studied the possibility of using high temporal resolution stereo VHR images to enhance remote sensing image interpretation in the context of building change detection. A spatiotemporal inference filter has been developed by IMF considering the spectral, spatial and...
Temporal aspects to enhance the building probability maps. The aim is to homogenize the building probability values, while being robust to the silhouette of the objects and geometric discrepancies of the multitemporal data. Subsequently, the improved time-series building probability maps are analyzed to identify the type of changes. The method proposed has been successfully evaluated by performing an experiment on six stereo pairs of the same region over a time period of five years.

Another important DSM and 3D change application is to monitor forest vertical structures over large areas. For quantitative analysis of forest 3D properties we used various spaceborne and airborne sensors: WorldView-2, Cartosat-1, PRISM, RapidEye, aerial stereo and lidar data. In addition to a statistical comparison, their performance in monitoring forest changes has been assessed. In particular, DSMs from WorldView-2 and aerial data have been analyzed by adopting them for forest 3D structure monitoring to perform canopy gap detection, single tree segmentation and tree species classification. We found that large area 3D forest change can be assessed with nearly the same accuracy when using lower resolution data like Cartosat-1 in comparison to aerial or WorldView-2 data. The reason is the structure of crown surfaces which are displayed similarly in DSM with 5 m and with 1 m spacing for forest canopies.

Forest canopy gaps are an important parameter in forest management: automatic gap analysis is based on DSM, multispectral aerial camera and WorldView-2 data.
In a recent project we also study close-range 3D analysis of trees: If very high resolution aerial or close-range stereo/multi-view imagery is available, we can model or even reconstruct 3D plant architecture. This is useful for assessing tree health condition (e.g. drought stress) through characterizing the different orientation behavior of leaf or branch structures.

Selected publications: [163], [229], [393], [446], [445]

3D from UAV Data

Image data acquired by UAVs can provide richer details and additional views to complement DSMs from airborne or satellite data. However, the application of UAV images is limited by their low geo-referencing accuracy. Therefore we developed a robust methodology to co-register UAV images with high-accuracy to airborne images. In face of their large differences in view, scale and appearance, traditional matching methods fail to detect reliable matches. The novel matching approach includes a dense feature detection scheme, a one-to-many matching strategy and a global geometric verification scheme which is able to detect thousands of reliable matches.

These matches are used to geo-register UAV image blocks to the airborne images within 10 – 20 cm ground sampling distance.

After co-registration, the UAV images not only exhibit high local accuracy but also present rich information on the building façades. We developed algorithms and a framework to leverage the semantic information of UAV images to optimize the footprints in OpenStreetMap (OSM), as one application.

Comparison of automatically derived DSMs, result using only the aerial DSM (top) and fused DSM using Aerial and UAV data (bottom). On the right side of the latter the strong improvements in details of the roofs can be seen.
First, we obtain semantic information from UAV images via deep learning-based segmentation. Afterwards, we extract the boundaries of building segments as contour evidence. In parallel, a 3D building sketch is initialized from the OSM footprint and a DSM. Under the constraint that the image projection of the 3D building sketch fits the contour evidence, the OSM footprint and building height are optimized. Furthermore, the building facades are generated from the oblique looking UAV images.

Selected publications: [83], [176], [620]

Application: Strong Rain Risk Estimation

In a project with a German insurance company funded by DLR Technology Marketing, the influence of terrain on strong rain events has been investigated. The methodology developed was calibrated and verified using damage information from the insurance company. It reveals a very good correlation of both probability and damage cost caused by strong rain far from rivers. The method uses the so-called terrain positioning index on 25 m SRTM-DSMs. The resulting classes (ridge, high/middle/low slope, sink, and flat) show an over three times higher probability in class ‘sink’ to be affected by damage due to strong rain than class ‘ridge’. Damage cost are more than seven times higher. Using our methodology and processing a strong rain vulnerability map of Germany, Austria, and Switzerland was licensed to a company providing real estate information to finance companies for risk assessment.
Hyperspectral Data Evaluation

In preparation of the space missions DESIS and EnMAP we have considerably intensified our research in hyperspectral data analysis, in particular in spectral unmixing, data fusion for image sharpening and denoising. In the period under review we were awarded two hyperspectral experts as Humboldt fellows, highlighting our attractiveness as a center for methodological hyperspectral data research.

The richness of the fine structured spectral information of hyperspectral data comes at the cost of a moderate spatial resolution (typically 30 m from satellites) and requires new algorithmic approaches. On the one hand, a single resolution cell often contains several materials, making their identification and quantification a paramount preprocessing step for most hyperspectral application. This concept is known as spectral unmixing, and can be improved by embedding in the process sparse priors, derived from compressive sensing theory.

On the other hand, future years will witness the availability of spaceborne sensors acquiring simultaneously hyperspectral, multispectral and panchromatic images at different spectral and spatial resolution on the same focal plane. We are ready to meet the foreseen demand for products combining the detailed spectral information of hyperspectral sensors with the higher spatial details observable in multispectral sensors. This can be achieved by developing state-of-the-art data fusion algorithms, along with innovative image enhancement methods such as denoising, also based on sparse representation and regularization of such complex signals. Data fusion can also be carried out at feature or decision level.

we yearly test the efficiency of our algorithms in the annual IEEE GRSS Data Fusion Contests where, since 2013, we won twice, came second twice and came third once, in spite of the steadily growing number of competitors.

Selected publications: [151], [84], [150], [11], [273]

Declouding within Image Time Series

The analysis of Satellite Image Time Series (SITS) is often hindered by the presence of clouds within a multitemporal stack, which makes it difficult to observe the evolution of a given ground cover in time. Exploiting the inherent high dimensionality of multispectral SITS, it becomes possible to use algorithms originally defined for hyperspectral data processing to solve this problem. We propose the use of sparse spectral unmixing, which

Cloud removal in satellite image time series: Sample result of cloud removal based on sparse reconstruction from random measurements using spectral/temporal object signatures. Top row: Sample basis vectors for the synthesis of pixels covered by clouds, represented in radiance as a function of five spectral bands (blue, green, red, red edge, and near infrared) and acquisition date (nine scenes with dates shown in the top graphic). Bottom row: true color RGB composite of cloudy image (left) and result of the proposed cloud removal algorithm.
decomposes hyperspectral image elements into a fractional abundance of reference spectra related to the materials present in a given scene, to perform inpainting of cloud-obscured areas in SITS. In our case, a spectrum in hyperspectral analysis becomes a spectr-temporal pattern, conveying information on the spectral evolution of an image element on the ground. Areas obscured by clouds are represented as linear combinations of a large set of pixels randomly selected from the image in cloud-free areas. The method exploits the full spectral and temporal information of each image element along with their spatial correlation, leading to convincing reconstructions of areas affected by both real and simulated clouds. The transition between cloud-free pixels and reconstructed regions is seamless. Analysis shows the higher reconstruction compared to state-of-the-art methods.

Selected publications: [186], [277], [345]

Denoising of Hyperspectral Data

Spectral unmixing is also exploited by our development called Unmixing-based Denoising to recover noisy spectral bands in a hyperspectral dataset. The use of sparse reconstruction algorithms allows employing largest dictionaries in the process, yielding a more accurate reconstruction of the spectra. For denoising of low-SNR spectral bands (mostly in the UV regime), the spectrally unmixed abundance vectors are used to reconstruct the noisy band(s) in the hyperspectral dataset. These denoised bands can improve the data usability considerably for different applications, especially for water remote sensing.

Selected publications: [647], [345]

Fusion of Hyperspectral and Multispectral Data

Fusion and synergy of hyperspectral and multispectral data are important opportunities to enhance the capability of future optical satellites, like EnMAP, in a wide range of applications. To extract change information at subpixel scale from a set of multi-sensor time series data, we propose a new data fusion and unmixing framework, called multi-sensor coupled spectral unmixing. This technology allows the transfer of knowledge obtained from hyperspectral data to multispectral images, while increasing the temporal resolution of the analysis. We achieved promising results in the monitoring of the aftereffects of natural disasters using an image time series composed of EO-1/Hyperion and Landsat-8 data.

Sharpening of individual multi- or hyperspectral images by fusion with higher resolution imagery is performed by our algorithms J-SparseFin and J-SparseFin-HM, respectively (see Data Science in Earth Observation chapter). These sparsity-based methods proved to be superior to the state-of-the-art, in particular when it comes to spectral purity, e.g. in the vicinity of transitions of different materials, and for the sharpening of out-of-band spectral channels. Both properties are essential if the images need to be used for object classification.

Selected publications: [150], [123], [110], [172], [273]
Classification using Multi-modal Data Sources

Novel methods and method aggregations for supervised classification have been developed using traditional machine learning methods such as Support Vector Machines (SVM) and new deep learning concepts such as the CNN architectures.

The IEEE GRSS Data Fusion Contest 2018 provided as input hyperspectral data (48 bands in the spectral range between 380 – 1050 nm, 1 m ground resolution), RGB data (5 cm ground resolution), a lidar-derived digital elevation model, and a multispectral lidar intensity image with 50 cm ground resolution. The required task was the classification of 20 target species in a complex urban environment. In this frame, we developed novel methods and method aggregations for supervised classification combining traditional machine learning algorithms such as Support Vector Machines (SVM) with recent deep learning concepts such as the new CNN architectures. After preprocessing and feature extraction (e.g. band selection, denoising, bag-of-topics model feature extraction), a 100-dimensional feature stack was used as input for an ensemble of classifiers and ad hoc detectors (e.g. Deep Convolutional Neural Network, Random Forest, Spectral Angle Mapper). A final decision-based model merged the different levels of classification. Our result ranked second among 1,300 submissions from all over the world with an overall accuracy of 80.74 %, just 0.04 % below the first-ranked classification.

Selected publications: [139], [405]
Archaeological Applications

Remote sensing allows non-invasive large-scale analysis and monitoring of archaeological sites. Within the EU project ATHENA we cooperate with Cyprus University of Technology and the Greek Foundation for Research & Technology to find buried structures with remote sensing. Hyperspectral images can highlight crop marks in vegetated areas which may indicate the presence of such structures. For the first time we objectively estimated the suitability of maps derived from spectral features for the detection of archaeological structures in vegetated areas by computing the statistical dependence between the extracted features and a digital map indicating the presence of buried structures, using information theoretical notions. Based on the obtained scores on known targets, the features can be ranked and the most suitable ones chosen to aid in the discovery of previously undetected crop marks in the area under similar conditions. For a low score the buried relics are expected to be hardly visible in the image, while they stand out clearly as the score increases.

Selected publications: [34], [815], [132]

Optical Water Remote Sensing

Water remote sensing is one of the most challenging applications of hyperspectral remote sensing. IMF has a long legacy in retrieval algorithms for complex waters. Assessment and control of the aquatic environment are important for responding to the challenges created by climatic and ecological changes. The main challenge of optical water remote sensing is to determine the complex relationship between the water body, its constituents and the incident light spectrum. This has been achieved by developing a special inversion method that takes into account the complex make-up of coastal and inland waters. For validation and verification of the remote sensing results, reliable underwater spectrometers were also developed at IMF.

Due to the high complexity of inland and shallow waters, processing of spectral measurements from such water types cannot be considered operational so far. Major challenges are atmospheric correction, reflections at the water surface, complex composition, variability of optical properties and spectral ambiguities of the measurements. Most satellite and airborne data are not processed with such optimized algorithms. The usually applied generic algorithms can introduce large and unknown errors. Better results could be obtained if users had the possibility to include regional expert knowledge in data processing, but user-friendly and publicly available software is lacking. Such software, the Water Color Simulator WASI, has been developed at IMF. Originally designed for processing of field measurements, it has been extended recently to atmospherically corrected multi- and hyperspectral image

In 2017 IMF staff participated in a field campaign of the German research vessel Polarstern to collect spectral data from melting ice and to develop an optical model for parameterizing the spectral properties of ice and melt ponds. The impact of climate change on air temperature is most pronounced in Arctic regions. One of the effects that is not covered adequately by the models is the change of ice albedo during the melting season. Wet snow and – even more – melt ponds reduce albedo significantly, increasing the absorbed energy and intensifying the melting process (photo: G. Birnbaum, AWI).
data (WASI-2D). It includes algorithms for all the above-mentioned challenges and can be adapted easily by the user to different environments and sensors. The software is available for free and has been used by many researchers worldwide.

Selected publications: [122], [121], [809], [357]

Inland Waters

Inland water ecosystems play an essential role for all human life. Although it may appear obvious to use satellites to obtain a synoptic view, routine monitoring of inland waters is still based on traditional water sampling and seldom makes use of remote sensing. Major reasons are the lack of satellite sensors with suitable spectral, radiometric, geometric resolution and timely acquisitions. The complex optics of inland waters coupled with the problems is a significant challenge. We have been developing algorithms and software for quantitative data analysis of inland and coastal waters to prepare the recent and upcoming generation of multi- and hyperspectral satellite sensors (e.g. Sentinel-2, DESIS, EnMAP) with pixel sizes of 10 to 30 m. In order to enable validation of remote sensing products at different processing levels (e.g. radiance, reflectance, absorption coefficient, concentrations of water constituents, water depth), algorithms and software have been developed to process spectral in-situ measurements (under water and above surface). The focus of the last years was on the following topics:

- shallow waters (bathymetry, bottom classification)
- correction of surface reflections (sun glint, sky glint)
- all weather monitoring
- ecological indices for water bodies.

Methodological developments as well as field and airborne campaigns have been carried out for all of these topics. Additionally, we participated in a CEOS feasibility study for an aquatic ecosystem Earth observation system.

As an example the sun/sky glint corrections may be mentioned here. The light reflected at the water surface is frequently as intense as or even much brighter than the water leaving radiance. Accurate correction of these reflections is thus essential for the analysis of above-water measurements. Conventional methods cannot cope with the statistical reflections induced by individual waves. These statistical effects smooth out only for pixel sizes above 100 × 100 m², typical for ocean color sensors. We developed a new correction algorithm able to correct reflections even from individual waves. It has been applied to multi- and hyperspectral airborne and satellite sensors (HySpex, Sentinel-2) and to field measurements.

Selected publications: [565], [118], [122], [193]

Seagrass Monitoring

Seagrasses are vital due to the numerous ecosystem services they provide including carbon sequestration, coastal erosion and nutrient cycling. Optical systems and methodologies now allow high spatio-temporal, large-scale seagrass monitoring, and therefore better management and conservation practices. We have developed seagrass monitoring techniques, exploiting the new wealth of data derived from Sentinel-2, PlanetScope, RapidEye and similar optical satellite sensors. Our new
A methodological workflow combines atmospheric, water-surface, sun glint, and water column corrections with satellite-derived bathymetry and machine learning classifiers. It has been employed to map Mediterranean seagrasses both in single-date (Sentinel-2) and multi-temporal (RapidEye, PlanetScope) approaches.

The results of these quantitative assessments in the Thermaikos Gulf (eastern Mediterranean) reveal that seagrass habitats are found up to a depth of 16.5 m and that their area has increased by 6.8% between 2011 and 2016.

Selected publications: [75], [76], [27]
Atmospheric Correction

Atmospheric correction of multispectral/hyperspectral satellite imagery is inherently an under-determined inversion problem. The recorded top-of-atmosphere (TOA) radiance \(L \) depends not only on the surface reflectance \(\rho \) but on many atmospheric parameters, some of which are known while others must be estimated. The objective is to convert the TOA radiance image cube into surface reflectance.

In the spectral region of 400 – 2,500 nm the most important parameters to be retrieved are aerosol type, optical thickness and atmospheric water vapor column. If the necessary spectral channels are available, these parameters can be calculated from the scene based on radiative transfer calculations. This is the basis for the subsequent surface reflectance retrieval. Information from other sources are also needed, e.g. the ozone content and a DSM. However, this approach only works for clear atmospheric conditions, in other cases preprocessing steps are needed as described below.

New Generic Atmospheric Correction Processor PACO

The heritage of EOC’s developments of atmospheric correction algorithms and software (ATCOR) for a large variety of optical spaceborne and airborne sensors dates back to the 1990s. Motivated by several new methodological developments and ATCOR’s licenses requirements for IDL and MODTRAN, IMF decided in 2013 to build up a completely new generic atmospheric correction processor PACO (Python Atmospheric Correction) with strict modular design, based on Python, an in-house developed radiative transfer model and rigorous software engineering standards.

The processor is able to work with data from many satellite and airborne sensors that provide images in the VNIR to TIR spectral range. It uses our own radiation transport model code based on LibRadTran. Further processor evolutions are ongoing, such as extending the atmospheric correction to water surfaces, improved masking, providing independent quality layers for masks and bottom-of-atmosphere reflectance and correction of BRDF effects. PACO is designed to work as an operational processor without user interaction. Beta versions are already used for processing Sentinel-2 and Landsat-8 data. It is integrated in CATENA. Specific derivates of PACO are implemented in the ground prototype (level 2a) – and later operational – processor for the DESIS and EnMAP missions. PACO participated successfully in the Atmospheric Correction Exercise turning out to be one of the two best tools for Landsat-8 data.

Selected publications: [69], [133], [268], [322], [382]

Multi-temporal Atmospheric Correction of Multi-spectral Images (MAJA)

The MACCS-ATCOR Joint Algorithm processor, named MAJA, was devised in cooperation with CNES and IMF during an ESA project for developing a prototype atmospheric correction processor for Sentinel-2 data using image time series. MAJA detects clouds and cloud shadows and corrects for atmospheric effects providing a level 2a product for Sentinel-2. Pixels in this level 2a image data represent ground reflectance. MAJA merges the strengths of the two most renowned processors in Europe: MACCS (Multi sensor Atmospheric correction and Cloud Screening) from CNES, e.g., multi-temporal methods for cloud detection and aerosol estimation, and PACO from IMF, e.g., cirrus-correction and cloud detection for mono-temporal cases. As a key feature, MAJA exploits the fact that
surface reflectance changes slowly over time which eases the detection of temporally varying clouds in image stacks. MAJA runs at CNES and DLR as a basis for joint data processing. In this context, the focus is on sensors like Sentinel-2 and Landsat, where time series of level 1c data are available.

Selected publication: [624]

Haze-/Cirrus Removal

Optical satellite imagery is frequently contaminated by low-altitude haze and high-altitude cirrus clouds. We have developed a novel combined haze/cirrus removal algorithm as a very effective preprocessing step for atmospheric correction. It starts with calculating a haze thickness map (HTM) based on a local search of dark objects. The haze-free signal is restored by subtracting the HTM from the hazy image assuming an additive model of the haze influence. The HTM method is substantially improved by employing the 1.38 \(\mu \)m cirrus band. The top-of-atmosphere reflectance cirrus band is used as an additional source of information. The method masks haze and cirrus areas, calculates the spectrally variable haze thickness map for channels in the 400 - 2,500 nm range and removes theses effects seamlessly. Thereby it restores the information in highly inhomogeneous surfaces attenuated by a low-altitude haze and high-altitude cirrus, improving the semantic interpretation of the scene content while preserving the shape of the spectral signatures. The new enhanced HTM/cirrus method has been successfully applied to many Landsat-8 and Sentinel-2 real and simulated scenes and is now being integrated into PACO and MAJA.

Selected publications: [216], [374]
Real-Time Airborne Traffic and Situation Monitoring

In 2007 IMF acquired funding from DLR’s program Transport for the project ARGOS to use airborne remote sensing for estimating traffic parameters. The project was carried out in close cooperation with the DLR Institute for Transportation Systems. It soon became evident that only a real-time system, which delivers relevant parameters directly to the ground, could fulfill the requirements of traffic and situation monitoring. In the subsequent projects VABENE and VABENE++ an innovative system has been built up at IMF. Since then real-time acquisition of traffic parameters, monitoring of mass events, disasters and large accidents with airborne optical sensors is an active topic of research and development at IMF. These data are highly welcomed by security-related organizations, like police and rescue forces, since they allow rapid mapping of affected regions, detailed monitoring of vehicle and pedestrian traffic flow, and the detection of hazardous situations.

In the frame of these projects we have developed our 3K (operated on fixed wing aircrafts) and 4k (operated on helicopters) airborne camera systems. Onboard orthorectification, radiometric homogenization and mosaicking allow rapid mapping. Since single images are acquired with high frequency (up to 5 Hz) or as video stream, a high overlap between subsequent frames is available. This is used for detecting and tracking moving objects as well as for the generation of high resolution DSMs from the multiple-stereo views. New developments in software/hardware efficiency at IMF have recently led to real-time onboard DSM generation and distribution.

Recently we switched from classical machine learning algorithms to deep learning and are improving the performance of onboard object extraction and tracking. The application focus is also changing from traffic monitoring to the generation of High Definition (HD) road maps for autonomous driving and for monitoring the static and dynamic environment of autonomously driving cars.

Automatic and fast multi-class vehicle segmentation (left) and 15 class semantic segmentation (right) in aerial images using deep learning.
Vehicle Detection and Tracking

We have developed a fully automatic processing system for onboard real-time vehicle detection and tracking in aerial images. This is an important capability for a variety of applications such as traffic monitoring and parking lot utilization. Airborne imagery allows collection of traffic-relevant data over large areas in a short period of time. The microscopic acquisition of each vehicle in large areas by terrestrial imagery would require a large number of sensors. We recently developed new methods for the separation of parking vehicles and standing traffic (e.g. in front of a red traffic light). With this, it is possible to improve real-time traffic data quality in urban scenes and to identify parking spaces along the roads.

Recent developments in deep learning frameworks have been adapted to further improve vehicle detection and also differentiate between vehicle types. Vehicles can be categorized in five classes using Region-based Convolutional Neural Networks (RCNNs). Vehicles in remote sensing applications usually appear as small image patches and often with complex backgrounds which makes the detection challenging. Their classification into different types is even more difficult. By a specific modification of RCNNs, we have achieved a major improvement over the formerly applied methods. In airborne imagery, vehicles near to each others can in spite of their small size still be separated using non-maximum suppression (NMS). We have developed an NMS process which results in better performance compared with traditional NMS operation.

Selected publications: [368], [779], [447]

HD-Mapping for Autonomous Driving

A new field of research at IMF is using airborne high resolution data for the support of autonomous driving through detailed and accurate mapping using SAR data from space and by detecting traffic relevant objects in optical airborne data, e.g. lane markings or other objects at road level.

The available georeferenced maps for autonomous driving often suffer from low absolute geometric accuracies. In the Helmholtz Validation Fund Project DriveMark® (co-funded by DLR Technology Marketing) highly accurate geodetic SAR points from TerraSAR-X were used for absolute geometric correction of airborne images from the 3K camera system (see SAR, Geodetic SAR Applications). The SAR points are typically bright responses from the cylindrical poles of streetlights or traffic signs which form dihedral reflectors in combination with the road, each with a phase center at the base-point of the pole. The DriveMark® processor implemented in CATENA detects these pole base-points in airborne optical imagery and assigns them to the corresponding points detected in the SAR image. Using these SAR-optical point pairs the absolute geometric position of the airborne images is improved from about one or two meters to better than 10 cm.

One of the most important classes in the creation of HD maps for autonomous driving are lane markings including their absolute position on the road. Area-wide maps of lane markings can be used by autonomous vehicles for self-localization. While humans can locate themselves on a road by easily learned rules, an autonomous vehicle needs to be taught to localize itself absolutely in its environment. Therefore, an accurate and reliable lane marking segmentation in the imagery of roads and highways is needed. We have developed a Symmetric Fully Convolutional Neural Network
enhanced by Wavelet Transform in order to automatically carry out lane marking segmentation and classification in aerial imagery. Due to the heavily unbalanced problem in terms of low number of lane marking pixels compared with many background pixels, we use a customized loss function:

$$L(W) = -\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\text{lane}}(x_n) y_n \log \hat{y}(x_n, W) + \sum_{n=1}^{N} \mathbb{1}_{\text{background}}(x_n) (1 - y_n) \log(1 - \hat{y}(x_n, W))$$

where x_n and y_n represent input and actual label data. \hat{y} represents output data. W is the weight matrix and λ_{lane} is the parameter to compensate the unbalanced dataset. We achieve a very high accuracy of 86% in pixel-wise localization of lane markings without using any existing GIS information.

HD maps for autonomous driving must also contain detailed semantic information on the relevant road classes and surfaces. The differentiation between road area, lane structure on the roads, pedestrian, bicycle and parking zones is of crucial importance in autonomous driving. We started developing methodologies to automatically detect these semantic classes and are currently comparing and optimizing these methodologies. To bring this methodology into use we closely cooperate with the DLR Institute for Transportation Systems and discuss with industry regarding the detailed properties of these maps. Furthermore we are building a benchmark data set called Skyscapes which will be publicly available for comparing methods of semantic segmentation and classification in this context.

Selected publication: [533]
This vehicle was driving on urban, suburban and rural roads in and around the city of Braunschweig, Germany. Airborne images were acquired with IMF’s 4k sensor system on board a helicopter. The DLR reference car FASCarE is equipped with the latest car sensor technology like front/rear radar, ultrasound and lidar sensors, GNSS/IMU, optical single and stereo cameras. Additionally, stationary terrestrial sensors like optical mono and stereo cameras, radar and laser scanners monitor defined sections of the path. The stationary sensors are installed on gantries at main crossings and on pylons.

Crowd and Pedestrian Monitoring

IMF’s real-time sensor systems are also used to monitor pedestrian movements and large crowds. The automated real-time analysis of human crowds in aerial imagery can help authorities improve public safety at large public gatherings such as sporting events, open-air festivals and demonstrations, ward off catastrophes such as panic-driven stampedes, and for the planning of large-scale events.

Top: Orthorectified aerial view of the *Bauma 2016* construction trade fair in Munich, Germany, with collected annotations (marked in red). Bottom: For a given image patch (yellow frame) of a crowd we show the ground truth density map with person locations (center) as well as the predicted density map (right) with estimated person detections (marked by red dots). The predictions were obtained with a novel convolutional deep regression network trained to jointly solve crowd counting and person localization. 105 people were annotated in the original image patch, and the predicted count of 110 persons comes close.
In order to address different needs, we tackled several tasks in crowd analysis, from density estimation and counting of high-density crowds, to the localization and tracking of individuals in medium-density crowd scenarios. For crowd density estimation, local texture features in a Bag of Words classification pipeline as well as Bayesian regression algorithms were initially developed at IMF. Results were then further improved with a novel deep regression network trained to jointly solve crowd counting and person localization. For person tracking, person locations, provided by a Haar filter-based Adaboost detector or – more recently – by the aforementioned deep person detector, are grouped to trajectories using multiple hypothesis tracking. Deep learning methods require large amounts of annotated data for training; therefore, significant effort was invested into collecting person annotations on a large scale by developing an easy to use annotation tool. The developed methods were successfully tested onboard a helicopter during several campaigns, including the ‘Bauma’ construction trade fair and the Wacken Open Air music festival in 2016.

Selected publications: [526], [222], [299]

User Campaigns

One of the most exciting moments in engineering research is when scientific developments can be applied in practice. In regular campaigns, IMF has cooperated with national, regional and local users from authorities and organizations with security roles. Especially in crisis situations, those responsible for disaster management depend on the most recent situational knowledge possible in order to make decisions on traffic control or the allocation of emergency services and aids. Through our system we provide up-to-date situation maps as well as additional information on traffic situation and passenger flows, which are made directly available to users on site. Several disaster management exercises and large-scale events have been accompanied by our real-time airborne monitoring systems in order to test new developments, to demonstrate existing procedures and to collect valuable data for validation. In this way, the results of image acquisition and data processing have made a valuable contribution to disaster management and, at the same time, user campaigns have offered us the opportunity to collect direct feedback from practitioners to drive future developments in this direction and meet their requirements.

Some examples of campaigns under real conditions are the flood event in Germany in 2013, the national exercise of the Medical Task Force in 2014, the G7 summit in 2015, the Wacken Open Air music festival in 2014 and 2016 and the German Protestant Church Assembly in 2017 (see Laboratory Infrastructure and User Services chapter).
Thermal Image Processing

Infrared Scene Simulation
IMF has improved and extended its infrared signature modeling capabilities by developing the new IR signature model MIRA (Model for infrared scene analysis). The current version is predominantly useful in predicting IR signatures of air vehicles (aircraft, missiles, rockets). MIRA is based on a ray tracer and Monte Carlo integration. This permits handling of multiple reflections in cavity-like components like an aircraft’s inlet or exhaust duct. For the design of stealth aircraft, correct modeling of these cavities is especially important as they contain hot parts of the propulsion system. These may cause important contributions to the total IR emission. In addition, MIRA is able to determine the IR radiation emitted by a vehicle’s exhaust gas which may form an arbitrary volume. Constraints imposed by former models (axisymmetric shape and properties) have hence been overcome. The latest feature that was implemented is a first version of a terrain model. Based on a digital elevation model and corresponding ground classification, MIRA can generate a structured background which greatly enhances the realism of the simulation.
Flying Infrared Wildlife Finder

Every year many wild animals, especially roe deer fawns, are killed during pasture mowing. Under reasonable effort until now no measure succeeded to reduce the amount of mowing victims to a tolerable level. At IMF we developed a specialized system for fawn detection and rescue, the Flying Infrared Wildlife Finder. The UAV-based system detects roe deer fawns by means of a thermal camera: From the bird’s eye a warm animal like a roe deer fawn is much easier to detect than with traditional methods.

The IR camera and the dedicated software tools for mission planning, flight control, image data evaluation, fawn detection and georeferencing (both latter in near real-time) are optimized for fast usability, high detection reliability even under challenging environmental conditions (high ambient temperature, direct solar radiation) and high area performance during the search. The key data of our system demonstrator are:

- area output per battery charge: approx. 7 ha in 12 minutes (flight altitude: 80 m)
- fully automatic detection and location of the fawns in the IR images at dusk or under cloudy conditions
- semi-automated detection and geolocation for sunlit meadows (temperature > 30 °C in the shade)
- overlooked fawns: 0 % at dawn or in cloudy weather, < 10 % during sunshine
- all process steps, i.e. system setup, flight planning, flight, image evaluation, georeferencing, briefing of search personnel) can be accommodated at intervals of approx. 30 minutes.

The Flying Infrared Wildlife Finder thus surpasses all other fawn search systems in both, area performance and detection rate by far. Amongst others, it was awarded the Innovationspreis 2013 der Gesellschaft von Freunden des DLR.

Selected publications: [546], [996], [1171]

Fawn positions (red dots) in the meadows (green) searched by the Flying Infrared Wildlife Finder during the 2015 campaign. An area of 170 ha was scanned within a total flight time of 8.5 h, 43 fawns were detected and rescued, two were overlooked. About 50 % of the area observed is shown (aerial photo: Bayerische Vermessungsverwaltung).
Spectrometric Sounding of the Atmosphere
In its third technology line IMF carries out research on methods for deriving atmospheric state variables from spectrometric remote sensing data. Our expertise ranges from basic research on electromagnetic scattering, radiative transfer, inverse problems, spectroscopic laboratory measurements and sensor calibration to professional software implementation, mission support and geoscientific research (in selected topics). We strive for highest precision in determining atmospheric state variables and for retrieval of new parameters from remote sensing data.

Our mission-specific developments for GOME, SCIAMACHY, GOME-2, Sentinel-5P, -4 and -5, MERLIN and Aeolus – mostly under ESA, EUMETSAT or industry contracts – have already been described in the Missions and Sensors chapter. Here our scientific activities are presented following a workflow logic from raw data processing to geoscientific research:

- sensor calibration
- radiative transfer
- inversion and regularization
- electromagnetic scattering
- spectroscopic references
- geoscientific research.

Our geoscientific research concentrates on topics where we greatly benefit from our long-lasting involvement in spaceborne spectrometric sounding missions. It includes long-term observations of climate relevant quantities like total O\textsubscript{3} and H\textsubscript{2}O, air quality indicators such as tropospheric NO\textsubscript{2} or O\textsubscript{3} and hazard monitoring with volcanic SO\textsubscript{2}. Beyond Earth, sounding the atmospheres of exoplanets belongs to our portfolio.

Sensor Calibration

Deriving atmospheric characteristics from electromagnetic spectra requires input data of the highest possible quality. Therefore, we develop calibration algorithms for the entire suite of atmospheric sensors exploited at IMF. The first step in the derivation of geophysical parameters from remote sensing data is the generation of level 1 data by applying the full arsenal of calibration steps to the instrument raw data. By the end of this procedure, the raw measurements have been converted to physical quantities. IMF is actively pursuing:

- development and continuous improvement of calibration algorithms
- conceptual design and development of operational level 1 processors.

As a subcontractor for industry, IMF has provided level 1b processing design and algorithm descriptions in the phase A/B studies for Sentinel-5 and CarbonSat (meanwhile abandoned in favor of another proposed CO\textsubscript{2} monitoring mission). Furthermore IMF has significantly contributed to the processor design and algorithm descriptions for the level 1b prototype processor for Sentinel-4. In the framework of these projects, extensive studies were carried out for several calibration algorithms. Since the accuracy requirements for the new generation of instruments are significantly higher than those for past or existing ones, we had to refine or devise new calibration concepts.

For spectral calibration, a non-linear model for fitting solar and/or atmospheric lines was developed. This included, for several instruments and wavelength ranges, the derivation of optimal micro-windows.
A fast computational procedure could be implemented. We also performed studies on how to retrieve the instrument’s spectral response function (ISRF), which is one of the key components of reliable spectral calibration and level 1b and level 2 data generation. The ISRF is measured on-ground, using a homogeneous illumination of the instrument. However, depending on the blur of the telescope system in front of the spectrometer, this may not always be representative for the in-flight situation. As a result, the ISRF may be narrower due to incomplete illumination of the slit and may be spectrally shifted. This can have significant consequences for trace gas retrieval. Our studies, first performed for Sentinel-5 and then expanded to Sentinel-4, help to mitigate the effects of ISRF deformation. If uncorrected, the error of the trace gas retrieval could be as high as several 10%, depending on the species.

Stray light can considerably hamper accurate sensor calibration. In collaboration with industry, which provided simulations of the instrument, IMF has carried out a study to correct the expected stray light from Sentinel-4 to a level within tight requirements. Since on-ground stray light measurements are very time consuming, the calibration approach had to be optimized. To this end we simulated stray light measurement based on the industry-provided instrument model and calculated the resulting calibration data. They were in turn used in our correction algorithm. The findings were then compared to the instrument requirements. This was done for several scenarios under the boundary conditions of limited time for on-ground calibration and limited level 1b processing time. The final result was an optimized stray light correction algorithm and on-ground measurement scheme.

For the instruments where IMF has a long history of level 1b processing and maintenance (GOME and SCIAMACHY) further calibration studies have been performed. For SCIAMACHY this occurred in the framework of its phase F tasks. One important topic was to investigate how changes in level 1b algorithms affected the level 2 retrieval (‘level 1b-2 feedback’) of the CO column based on weak lines in the SWIR channel.
As a result, spectral calibration and dark signal calibration in the SWIR range could be improved. SCIAMACHY's ISRF could also be re-calculated.

As a result of our work in the post in-orbit phase, both for SCIAMACHY and GOME, level 1 algorithms and processor updates could be achieved. This allowed generating improved level 1b products for the full missions. Utmost level 1b quality is a prerequisite for achieving accuracies on the order of 1% in the retrievals of certain climate-relevant trace gases, a value comparable to ground-based measurements.

Selected publications: [43], [46]

Radiative Transfer

Data analysis methods and mathematical modeling of the spectra are the main components of atmospheric processors. They reflect our understanding of atmospheric physics and serve to convert the measured spectral radiances (level 1 data) to the retrieved geophysical parameters (level 2 data). Mathematical modeling is based on solving the integral-differential radiative transfer (RT) equation. In the ultraviolet and visible ranges multiple scattering of solar radiation plays an important role in the radiative budget, while in the infrared spectral region thermal radiation from the surface and atmosphere dominates. In general, the radiative transfer equation cannot be solved analytically. Special numerical algorithms, referred to as radiative transfer solvers, are designed.

To make a treatment more efficient, RT solvers are usually developed separately for UV-VIS and IR regions. Our asset is expertise covering the very wide range of wavelengths from UV-VIS to IR and microwave.

Infrared and Microwave

Infrared and microwave line-by-line (LbL) models are mandatory for the analysis of high resolution observations and for generation and verification of fast parameterized models. Furthermore they are essential for exoplanet spectroscopic studies where parameterizations usually developed for Earth are not applicable. LbL models are challenging because thousands to billions of lines have to be computed on thousands to millions of frequency grid points. Moreover, the number of spectra to be processed in operational Earth observation has increased dramatically in the past decades. At the core of every LbL code is the Voigt function, the convolution of a Lorentzian and Gaussian that is notoriously difficult to compute accurately and efficiently. The increasing quality of spectroscopic observations has indicated the limitations of the Voigt profile and physical processes beyond pressure and Doppler broadening have to be considered. The speed-dependent Voigt (SDV) profile can be readily computed as the difference of two Voigt functions.

Brightness temperatures differences obtained from modeled IR spectra using three independent model inputs (GARLIC, ARTS and KOPRA). Line types denote different atmospheric configurations. Whereas models’ accuracies are comparable IMF’s GARLIC code provides superior speed and is therefore our model of choice for operational processors.
We have examined various implementations of the SDV function and suggested a new algorithm based on a combination of two rational approximations.

The quality of remote sensing products critically depends on the accuracy of the radiative transfer used as the forward model in the inversion, with verification and validation being crucial. An inter-comparison of IR spectra modeled by three independent LBL codes including our Generic Atmospheric Radiation Lbl Infrared Code (GARLIC) was performed for a nadir viewing instrument.

It indicates brightness temperature differences mostly only in the sub-Kelvin range. This proved that GARLIC, the fastest code, is indeed a suitable choice for operational processor software where timeliness is pivotal.

Jacobians, i.e. matrices of partial derivatives of the spectrum with respect to the atmospheric state parameters, are important for the iterative solution of nonlinear inverse problems. Finite difference Jacobians are easy to implement but computationally expensive and of dubious quality. GARLIC utilizes algorithmic differentiation techniques to implement derivatives w.r.t. temperature and molecular concentrations. An in-depth assessment of finite differences clearly demonstrated the superior speed and accuracy of ‘exact’ algorithmic differentiation Jacobians.

Lbl models are usually ‘black boxes’, given inputs such as line data and geometry they return radiance or transmission spectra. Py4CATS (Python for Computational Atmospheric Spectroscopy), our partial re-implementation of GARLIC, allows radiative transfer modelling ‘step-by-step’ The individual steps of an IR/microwave radiative transfer computation are implemented in separate functions. Until recently the tools provided in Py4CATS could only be used as commands from the Unix/Linux shell. Now the functions can also be called within the Python interpreter, allowing easy visualization of intermediate quantities.

Py4CATS is available at https://atmos.eoc.dlr.de/tools/Py4CATS.

1 Py4CATS is available at https://atmos.eoc.dlr.de/tools/Py4CATS.
Ultraviolet and Visible

In the UV-VIS spectral range, multiple scattering has to be taken into account in RT modeling. Nowadays the Discrete Ordinate method for solving the RT equation is one of the most popular techniques in radiative transfer as it is stable for arbitrary optical thicknesses in a multi-layer stratified medium. An important parameter controlling the computational time and accuracy is the number of streams in the polar hemisphere N_{do}. RT models are called ‘multi-stream’ if $N_{do} \geq 2$, and ‘two-stream’, i.e. one stream per hemisphere, if $N_{do} = 1$. The accuracy is enhanced when N_{do} increases. However the computational time required for solving the RT equation also increases approximately as $(N_{do})^2$.

The atmospheric composition Sentinel missions generate two orders of magnitude more data than current missions and the operational processing of such big data is a challenge. Trace gas retrieval from remote sensing data usually requires high-performance RT model simulations. This is where usually the bottleneck for operational processing of the satellite data occurs. In this regard, acceleration techniques play an important role in the development chain.

Therefore, we developed techniques specifically designed for efficient computation of data with high spatial and spectral resolution. We pursued two ways. One was by developing suitable algorithm/code optimization methods based on dimensionality reduction techniques and correlation analysis of the hyperspectral data. The performance of this approach is remarkable: The Huggins band is reproduced with an accuracy of 0.1%, while achieving an order of magnitude improvement in speed.

More hardware oriented, we have exploited multi-CPU and GPU parallelization techniques to achieve maximum performance. Our radiative transfer solvers have been parallelized by using an OpenMP interface, parallel libraries of matrix computing (Intel MKL) and the CUDA (Compute Unified Device Architecture) framework. For the latter, a crucial issue regarding performance is memory management. Our UV-VIS solver for simulating the level 1 spectra in the Huggins band has been implemented on a GPU platform. It takes into account memory limitations with additional GPU-specific implementation features including dynamic parallelism, CPU/GPU overlapping and asynchronous data CPU/GPU data transfer. With such acceleration techniques we finally achieved a total performance enhancement of an impressive factor 300.

Selected publications: [324], [70], [238], [157], [158], [72], [355], [354], [356], [351], [23], [352], [385], [784]

Inversion and Regularization

In atmospheric remote sensing we are confronted with discrete ill-posed problems which are unstable under data perturbations. These problems are solved by numerical regularization where the solution is stabilized by taking additional information into account. The regularization tool DRACULA (aDvanced Retrieval of the Atmosphere with Constrained and Unconstrained Least squares Algorithms), developed at IMF, is devoted to the retrieval of atmospheric state parameters from a variety of atmospheric sounding instruments.

DRACULA includes direct and iterative regularization methods based on different principles. From the class of direct methods we mention the Tikhonov regularization with a priori, a posteriori and error-free regularization parameter choice methods, the regularized total least squares method, mollifier methods in which the generalized inverse is
constructed by means of a priori information, and the maximum entropy regularization which uses the relative or cross entropy as a non-quadratic penalty term. The iterative approaches included in DRACULA are the nonlinear Landweber iteration, the iteratively regularized Gauss-Newton method, the regularizing Levenberg-Marquardt method, the Newton-CG method and asymptotic regularization methods. They are insensitive to overestimation of the regularization parameter, do not depend on a priori information and can be applied to large scale problems.

DRACULA modules have been used in data processing for SCIAMACHY, MIPAS, GOME, and more recently, for GOME-2 and Sentinel-5P where they became part of UPAS2 (see Generic Processing Systems chapter). DRACULA also served for the analysis of observations from the balloon-borne FIR limb sounder TELIS and the airborne microwave radiometer MTP where a comparison between various regularization schemes was performed, to achieve an optimal retrieval setting.

For trace gas retrievals where the spectral signal was strong, the direct methods turned out to be favorable while under noisy conditions, e.g. retrieval of aerosol and cloud parameters, iterative methods yielded reliable results. In addition, we applied DRACULA successfully in the SWIR spectral range for the retrieval of CO and CH₄ column densities from SWIR nadir observations allowing an intercomparison with NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing Network) ground-based measurements.

Selected publications: [286], [351], [352], [415], [416], [418], [419], [253]

Cloud Retrieval

Clouds play a crucial role in the global radiation budget and are therefore of particular interest for climate studies and long-term monitoring. However, they are also an important factor in the retrieval of atmospheric constituents because their presence significantly affects the calculation of the trace gas vertical columns. Knowledge of main cloud properties including cloud fraction, cloud height and cloud optical thickness in the
UV-VIS-NIR spectral region, where most of the trace gases such as O₃, NO₂, SO₂ and HCHO are retrieved, is therefore a necessity. Furthermore, cloud information from the UV-VIS spectral range is complementary to the information extracted from imagers operating in the VIS, NIR, SWIR and thermal IR region. We have developed two algorithms to retrieve cloud properties: OCRA, the Optical Cloud Recognition Algorithm for cloud fraction and ROCINN, the Retrieval of Cloud Information using Neural Networks for cloud height, cloud optical thickness and cloud albedo. The latter allows treating clouds either as Lambertian reflecting boundaries (CRB model) or, more realistically, as layers of scattering water droplets (CAL model). OCRA uses broadband reflectance information obtained in the UVN spectral range while ROCINN exploits information contained in the oxygen A-band in the near infrared. Both algorithms have been successfully applied in operational processing for GOME, SCIAMACHY, GOME-2 and recently TROPOMI on Sentinel-5P. They are constantly being improved and further developed to cope with the increasing demands and requirements posed by the next generation of atmospheric sounding instruments.

Selected publications: [215], [54]

Machine Learning

One of our prospective long-term studies is related to the development of machine learning techniques for atmospheric retrieval. We use machine learning to create a nonlinear mapping between the satellite measured radiances and the geophysical parameters of interest. We developed a special kind of algorithms specifically designed to construct an inverse operator. This type of algorithms is referred to as a ‘full-physics inverse learning machine’ (FP-ILM). The FP-ILM consists, as any machine learning algorithm, of a training and a subsequent operational phase.

The smart sampling technique as developed at IMF allows a reduction in the number of training samples required to fully cover the multi-dimensional function to be approximated by at least one order of magnitude. The main advantage of FP-ILM over conventional inversion algorithms is that the time-consuming training phase involving complex RT modeling is performed offline; the inverse operator itself is computationally efficient. FP-ILM has been successfully applied to SO₂ plume height retrieval from GOME-2 and Sentinel-SPTROPOMI, and ozone profile shape estimation from GOME-2. The retrieval results have shown that FP-ILM enables accurate prediction of atmospheric parameters and agrees very well with conventional methods. Furthermore, the FP-ILM produces a significant speed-up of two orders of magnitude compared to traditional
retrieval algorithms without degrading the retrieval quality. The FP-ILM algorithms are being integrated into UPAS and UPAS2 where they are paving the way for an efficient exploitation of the Big Data from the Copernicus satellite measurements.

Selected publications: [103], [170], [214]

Electromagnetic Scattering

Electromagnetic wave scattering is a basic physical process which has to be considered in a wide variety of different remote sensing techniques. Our expertise covers many of its aspects – from light scattering at non-spherical particles to sound scattering on bispheres. In particular, we have recently developed different scattering data bases for various applications. One of these data bases has been established in cooperation with TU Berlin and DLR’s Institute of Planetary Research for studying the scattering greenhouse effect of CO₂ ice clouds in the atmospheres of exoplanets. Another scattering data base was implemented in cooperation with the Institute of Materials Research at DLR. It is designed and applied to estimate multiple scattering effects in THz extinction spectroscopy on dense particle clusters.

Beside the application of the scattering models and software developed so far, we refined our theoretical basis for modeling single scattering on nonspherical particles. This theoretical progress was published by Springer in the second edition of the textbook ‘Electromagnetic Wave Scattering on Nonspherical Particles’. Moreover, a monograph ‘Green’s Functions in Classical Physics’ was recently published in the Springer series ‘Lecture Notes in Physics’. We demonstrated that the theoretical basis of light scattering used in our models can also be applied with benefit to other areas of physics.

In a theoretical study we dealt with the Einstein-Podolsky-Rosen paradox and Bell’s inequality for a certain class of probability experiments. As proven in the past, this inequality must hold for any classical probability experiment but may be violated in quantum mechanics. Later the so-called CHSH-inequality – an inequality that better fits correlation measurements than Bell’s inequality – was proposed by Clauser, Horne, Shimony and Holt as alternative. The impossibility of violating it in any classical experiment remains a controversial aspect being discussed in physics. Based on our experience in light scattering we were able to propose an alternative classical optics experiment which results in a violation of the CHSH-inequality if formulated in terms of intensities. In our experiment the correlation measurements are highly sensitive and can be applied in a similar manner as known from scattering experiments. Furthermore we demonstrated that a T-matrix and a Green’s function both relate to the mentioned experiment. The T-matrix is determined in a similar way known from light scattering. It represents the decisive element of the interaction part of the Green’s function. Even though our approach to combine classical light scattering with correlation experiments may seem rather theoretical, it may open new doors for the development of diagnostic methods in modern optics.

Selected publications: [802], [234], [799]
Spectroscopic References

The retrieval of atmospheric parameters from remote sensing data requires quantitative knowledge of molecular absorption features for radiative transfer calculations. Therefore, a number of data bases, e.g. HITRAN, GEISA exist to provide the necessary information such as line parameters or absorption cross-sections. These data bases must be continually updated, either to improve their completeness and accuracy or because new missions have additional needs.

Our spectroscopic reference lab (see Laboratory Infrastructure and User Services chapter) belongs to the few world-wide capable of providing spectroscopic data with well-defined error bars. Of the many results obtained in recent years, those particularly worth mentioning are:

- New absorption cross sections for bromine nitrate, BrONO₂, a reservoir for bromine, previously only known to 20% accuracy, were generated with 2% accuracy. Improved spectroscopic data help to quantify the inorganic bromine budget in the atmosphere which is important for mid-latitude ozone chemistry.

- Within a DFG-funded project the mid infrared spectroscopic data base of water was updated, dedicated to ground-based high resolution solar occultation spectroscopy as employed by the TCCON and NDACC networks. For the first time, parameters of the enhanced partially correlated quadratic speed dependence hard collision line shape model, the so-called Hartmann-Tran profile, have been determined for water in an extended spectral range.

- Within the ESA-funded spectroscopy project SEOM-IAS the spectroscopy of CH₄, H₂O, and CO in the 2.3 µm region has been updated for Sentinel-SP/TROPOMI measurements. The new spectroscopy was validated by ground-based high resolution solar occultation measurements where the spectra could be modelled down to the noise level, a feat never before achieved. Furthermore, the new spectroscopy allowed meaningful retrieval of methane profiles for the first time. Within the same project a new UV spectroscopic data base for ozone was generated. A new mid-infrared line intensity data base is now under way.
Remote Sensing Technology Institute (IMF) · Status Report 2013 – 2018

Water line intensities from different projects at DLR were compared to purely ab initio calculations. For a large number of transitions the agreement was within 1%, validating theory and experiment. However, large differences up to 13% were also identified which could be traced back to problems in the ab initio calculation. Our experimental findings have meanwhile triggered efforts to improve those calculation.

Selected publications: [98], [117], [130], [131]

Geoscientific Research

Long-term Observation of Ozone

The Global Climate Observing System (GCOS) identified a number of Essential Climate Variables (ECVs) from the atmospheric, oceanic and terrestrial domains which are required to characterize the Earth’s climate system and its changes, and to support the climate research community addressing climate-relevant concerns. In the framework of ESA’s Climate Change Initiative and the EU Copernicus Climate Change Service ozone projects IMF was assigned the task of development and quasi-operational production of the satellite-based total ozone ECV.

We used data from GOME, SCIAMACHY, GOME-2 and OMI to create homogenized global GOME-type total ozone (GTO) ECV which currently covers the 22-year period 1995 – 2017. New multi-satellite merging algorithms were developed using traditional and machine learning techniques. Geophysical validation by independent ground-based observations has shown that the accuracy and long-term stability of this data record are at the percent level, thereby convincingly meeting the official user requirements defined by GCOS.

Hence the GTO-ECV data record is valuable for a variety of climate-relevant applications such as long-term monitoring of the past evolution of the ozone layer, decadal trend analysis on global and regional scales, and the evaluation of chemistry-climate model simulations. The data record enables us to disentangle different aspects of ozone variability and its drivers using multivariate linear regression. The main contributors are the quasi-biennial oscillation, the 11-year solar cycle, the El Niño – Southern Oscillation and the Brewer-Dobson circulation. Of particular interest is the search for signs of recovery of the stratospheric ozone layer as a consequence of the 1987 Montreal Protocol and its subsequent amendments. Various total ozone observational data records indicate that for most regions the trends since the mid-1990s are mostly not significantly different from zero because they are still considerably masked by large dynamically induced inter-annual variability. However, for some latitudes and seasons there are signs that stratospheric ozone is starting to emerge into the expected recovery phase. The results clearly indicate a need for continuous monitoring of ozone and an extension of the current data records using future missions. Since 2010 our GTO-ECV data record contributes to the quadrennial WMO/UNEP Scientific Assessment of Ozone Depletion as well as the yearly State of the Climate bulletin from the American Meteorological Society.

Selected publications: [347], [348], [279], [40], [212], [369], [79], [813]
Sulphur Dioxide

Sulphur dioxide (SO$_2$) is a natural trace gas in the Earth’s atmosphere. The largest source is the burning of fossil fuels by power plants and other facilities while industrial processes such as extracting metal from ore produce less SO$_2$ pollution. These anthropogenic emissions are mostly confined to the lower troposphere where SO$_2$ is subject to wet and dry deposition within a few days. Natural SO$_2$ sources are volcanic degassing events and eruptions. They inject SO$_2$ into the atmosphere, ranging from the lower troposphere in the case of passive degassing up to the stratosphere for explosive eruptions. Especially in the latter case, the lifetime of SO$_2$ in the atmosphere may reach up to a month. Chemical reactions then form sulfate-aerosols and acid rain.

The timely retrieval of SO$_2$ is important for monitoring volcanic eruptions which are a major natural hazard, not only to the local environment and local population but also to aviation. When entering the aircraft SO$_2$ can cause breath disease for passengers or sulphidation of the engines. An even more severe danger are volcanic ash emissions which, in the worst case, can lead to the loss of the aircraft. Since detection of volcanic ash is not straightforward, our SO$_2$ retrievals derived within two hours after sensing, serve as a fast means to locate remote volcano eruptions that may pose a potential hazard to aviation.

Current and near-future spaceborne atmospheric sensors are capable of detecting global anthropogenic emissions and volcanic eruptions on a daily basis, even in remote regions, where ground-based monitoring is impossible. Our retrieval of the total column density of SO$_2$ uses solar backscatter measurements in the UV wavelength region, around 320 nm. In the framework of EUMETSATs Atmospheric Composition Satellite Application Facility (AC-SAF), we retrieve total SO$_2$ columns in near-real time, i.e. within 2.5 h after measurements, from GOME-2 continuously since 2007. Once MetOp-C is launched in 2018, data will be available up to at least 2025. This is important for studying atmospheric variations or long-term trends in

Weak anthropogenic SO$_2$ emissions in the Middle East (offshore flaring and refineries) and India (coal-fired power plants) detected by Sentinel-5P. The image was created by averaging daily measurements from November 8, 2017 to April 15, 2018.
anthropogenic emissions. With Sentinel-5P in orbit, our SO\textsubscript{2} work has reached a new quality. UV spectral measurements can now be made with an unprecedented spatial resolution of 3.5 × 7 km2. Together with the high spectral resolution and low noise level, Sentinel-5P allows for the detection of weak emission sources within a single day where GOME-2 required an appreciably larger timespan. This opens up new prospects for future spaceborne SO\textsubscript{2} monitoring.

Furthermore, we have developed a volcanic activity detection algorithm which provides crucial information for activity monitoring and SO\textsubscript{2} plume forecast calculations. The derived volcanic SO\textsubscript{2} flag is used, e.g. by ECMWF which assimilates the data to forecast the movement of the SO\textsubscript{2} cloud. Precise knowledge of the location and height of the volcanic SO\textsubscript{2} plume, parameters which are mostly unknown at the time of measurement, is essential for accurate determination of SO\textsubscript{2} emitted by volcanic eruptions. We avoided the very time-consuming, and thus for near real-time applications unsuitable approaches of current UV-based SO\textsubscript{2} plume height retrieval algorithms by applying our novel method for extremely fast and accurate retrieval based on machine learning techniques. Very promising results have been obtained for the GOME-2 data from the Eyjafjallajökull/Iceland eruption in May 2010 and Kasatochi/Aleutian in August 2008, as well as for the TROPOMI data from Mt. Agung/Indonesia in November 2017 and Sabancaya/Peru in March 2018.

The SO\textsubscript{2} products provided by IMF are used by:

- Aviation Control Service (ESA-SACS), which assists the Volcanic Ash Advisory Centers in providing expertise to civil aviation authorities in case of significant volcanic eruptions
- Copernicus Atmosphere Monitoring Service (ECMWF-CAMS) which assimilates the data to forecast the movement of volcanic SO\textsubscript{2} clouds
- European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) whose main objective is closing the gap in European-wide data and information availability during airborne hazards by developing and deploying a data platform that provides all necessary information to decision makers in real-time in case of an airborne hazard.

Selected publications: [103], [389], [344], [826], [422], [162]
Tropospheric Nitrogen Dioxide and Air Quality

Satellite remote sensing of air quality on urban, regional and global scales is of great importance since air pollutants are responsible for strong environmental and health impacts, and also play an important role in global climate change.

Measurements from GOME-2, OMI and recently TROPOMI on Sentinel-5P, make it possible to study the large-scale temporal and spatial variability of tropospheric NO₂, permit the detection of anthropogenic SO₂ emissions over polluted regions and provide access to the tropospheric O₃ columns. We have developed a tropospheric ozone retrieval for the (sub)-tropical region based on the convective cloud differential method. Using total ozone and cloud property data from GOME, SCIAMACHY, OMI and GOME-2, a 20-year time series (1995 – 2015) of tropospheric column ozone was generated. In the tropics, a positive trend in tropospheric ozone of 0.7 DU per decade was found.

In the last three decades, air pollution has become a major environmental issue in metropolitan areas of China as a consequence of fast industrialization and urbanization. The world’s largest area with high NO₂ pollution is found over east China. Apart from the economic recession period 2008/2009, a clear increase of tropospheric NO₂ over northeast China is found from 2007 – 2013, followed by a strong decrease continuing through to 2018. Our GOME-2 NO₂ measurements indicate that recent control strategies and economic transformations in China were effective in reducing emissions. To estimate ground-level NO₂ concentrations over Eastern China, tropospheric NO₂ columns from the Ozone Monitoring Instrument (OMI) together with ambient monitoring station measurements and meteorological data have been used in a geographically and temporally weighted regression model.

IMF’s expertise in satellite observations of important trace gases has also been used to monitor air quality changes over China caused by the East Asian monsoon circulation within the framework of the ESA-MOST Dragon project. The East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution over China. The Infrared Atmospheric Sounding Interferometer (IASI) detected a decrease in tropospheric ozone during...
the monsoon period over the East Asian cities. Seasonal cycling of tropospheric NO\textsubscript{2} as measured by GOME-2 shows consistent higher values during winter due to the higher anthropogenic sources and longer lifetime.

One of the key topics in today’s discussion about air pollution is the impact of traffic and transport, particularly from motor vehicles. The spatial resolution of past spectrometric sensors was too low to unambiguously permit detection of the effects of their emissions. With Sentinel-5P, the situation has changed. Due to its high resolution, these data, in conjunction with chemistry transport models, will allow transport-induced emission patterns to be inferred. Together with partners we have started initial work to prepare our algorithms and processors for NO\textsubscript{2} measurements from Sentinel-5P and to combine these with vehicle inventories and suitable transport models.

Selected publications: [394], [210], [271], [146], [439], [456], [235]

Atmospheres of Exoplanets

Today, 23 years after the discovery of the first extra-solar planet orbiting a main-sequence star, more than 3,700 exoplanets have been detected, including a few dozen super-Earths and Earth-like planets. In the last decade the characterization of these remote worlds has increasingly gained attention. The question of the spectral appearance of terrestrial exoplanets and the possibility to identify signatures of life have been the focus of a series of modeling studies, whereas the quantitative characterization by atmospheric retrieval techniques is so far mainly confined to larger objects such as hot Jupiters and Neptune-sized planets. Clearly the analysis of smaller objects such as super-Earths and Earth-like exoplanets is more challenging.

Together with TU Berlin we addressed this particular exoplanet regime in the DFG project **Characterization and retrieval of atmospheric parameters of terrestrial extrasolar planets around cool host stars**.

For an assessment of exoplanet atmospheric remote sensing, Earth seen from space is an ideal test case; in fact it is the only planet that can be used for validation of retrieval codes. However, data from spaceborne EO missions have rarely been used to demonstrate the capabilities of exoplanet atmospheric studies. The Canadian Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) observes the Earth’s limb in solar occultation. Hundreds of spectra recorded in the 2004 – 2008 timeframe have been averaged to compile five infrared spectral atlases for various seasons and latitude bands. We used these atlases to generate effective height spectra of the Earth and to compare these with spectra modeled with GARLIC to assess the visibility and detectability of atmospheric gases in transit spectra. Our analysis has demonstrated that 10 gases substantially contribute to Earth’s transit spectrum: CO\textsubscript{2}, O\textsubscript{3}, H\textsubscript{2}O, CH\textsubscript{4}, N\textsubscript{2}O, N\textsubscript{2},
HNO₃, O₂ and the CFCs CCl₃F and CCl₂F₂. Some remaining discrepancies can be attributed to small contributions of CO, NO, NO₂, OCS, CF₄, ClONO₂ and N₂O₅. However, the importance of these 17 gases for modeling does not necessarily imply their detectability in noisy low resolution spectra.

For the quantitative estimation of atmospheric state parameters by spectroscopy, inversion by numerical optimization techniques is well established for planets of the solar system and has also been applied successfully to large extrasolar objects such as hot Jupiters. In general, the lack of any a priori knowledge presents a considerable challenge with remote sensing of the atmospheres of Earth-like or terrestrial exoplanets being even more demanding because of the few known objects and the even fainter signals. We have coupled a nonlinear least squares solver to GARLIC to investigate the feasibility of column density retrievals from Earth transit spectra using a set of Earth climatological profiles. The results obtained so far show that it is indeed possible to retrieve the molecular abundances of an atmosphere with the right pressure-temperature profile. GARLIC continues to be an important tool for us and our partners in spectroscopic studies concerning the atmospheres of exoplanets.

Selected publications: [71, [451], [22], [452], [455], [424]
Data Science in Earth Observation
Data Science in Earth Observation

Besides the IMF’s pool of expertise in sensor technologies for SAR, optical imaging and atmospheric spectrometry, algorithms fusing these technologies have been gaining importance for years. Furthermore, EO has irreversibly arrived in the Big Data era with the Sentinel satellites (and in the future with Tandem-L). This requires not only new technological approaches to manage large amounts of data (as pursued by DFD), but also new analytical methods. Here, the methods of data science and artificial intelligence (AI), such as machine learning, become indispensable. Deep learning in particular has led to a revolution in AI in recent years, but its potential for EO has only recently been discovered. Motivated by these facts, IMF has placed one of its research foci on EO Data Science. These are our research goals:

- explorative model-based signal processing algorithms to improve information retrieval from remote sensing data of current and next generation EO missions
- exploration of AI for EO
- sophisticated algorithms for discovering novel applications fusing sensor technologies
- Big Earth Data analytics – from knowledge discovery, HPC to geoscientific applications
- harvesting unconventional geodata sources, such as social media and NewSpace satellites.

This section summarizes our research highlights in this reporting period, with respect to the aforementioned goals.

Modern Model-based Signal Processing Algorithms

Sparse Reconstruction
Sparse signals are common in remote sensing. By exploiting signal sparsity, e.g. by using the Compressive Sensing theory, we can either achieve higher resolution compared to the Nyquist sampling theory or reduce the required number of measurements for achieving a given resolution request. IMF explores this idea for tomographic SAR inversion, SAR imaging, hyperspectral unmixing and data fusion for multi- and hyperspectral resolution enhancement.

One highlight is tomographic SAR (TomoSAR, see also Synthetic Aperture Radar chapter). It uses stacks of acquisitions to reconstruct the reflectivity of scattering objects along the elevation coordinate for every azimuth-range pixel, and hence allows SAR imaging in 3D or 4D considering the time dimension (long-term motion). For many imaging geometries, e.g. in urban environment, the signal is sparse in elevation. We were the first to use Compressive Sensing and sparse reconstruction for tomographic SAR inversion. In the previous reporting period we showed that in the range direction for SAR, we could achieve a super-resolution factor between 1.5 and 25. Since then we have worked on finding the lower limit for the required number of images for TomoSAR. By introducing geometric priors by means of group sparsity or structured sparsity, we are now able to reduce the minimum required number of images from typically 20 to only six.
Another highlight is the fusion of multi-resolution imagery. Optical remote sensing technology has rapidly advanced in terms of spatial, spectral and temporal resolutions over the last decade; however, there remain trade-offs between spatial and spectral resolution, signal-to-noise ratio and swath width. These limitations call for sophisticated data fusion techniques which are capable of merging images from complementary sensors to generate data that features both high spatial and high spectral resolution at a high signal-to-noise ratio. We have developed a series of sparse image fusion methods, including SparseFI, J-SparseFI and J-SparseFI-HM that are capable of super-resolving multi-, super- and hyperspectral remote sensing imagery at quantitatively better image quality than what is obtainable with other state-of-the-art methods.

Robust Estimation
TomoSAR research conducted by SAR experts is mostly limited to reconstructing point clouds. We went a step further and developed the first approaches for reconstructing building models and even individual trees from these tomographic point clouds. This is a challenge, since due to multiple scattering and limited resolution the quality of TomoSAR clouds is by no means comparable to lidar measurements. Outlier points strongly influence the reconstruction results when using classical estimation methods. Robust estimators such as RANSAC, robust PCA, \(L_1 \)-norm minimization and M-estimators are employed in the proposed approaches. In this regard, we were the first to present façade and building roof reconstruction based on spaceborne TomoSAR point clouds, which even further extended the framework to robustly work on city scales. We also presented a full processing pipeline for single-tree reconstruction from airborne SAR observations. We were able to successfully reconstruct about 74% of all trees in a study subset, for which core tree parameters such as height, crown radius and spatial location could be reconstructed with sub-meter accuracy.

Robust covariance matrix estimation is a key for multi-baseline InSAR – one of the most popular techniques to access long-term deformation over large areas. Algorithms like SqueeSAR involve the estimate of the covariance matrix and its inversion. Typically, the optimal estimators are derived on the assumption of ergodic complex Gaussian-distributed...
observations which does not always hold for SAR data. As the spatial resolution improves in modern SAR systems, the statistics and deformation history of SAR image pixels become more heterogeneous. We developed a solution named robust InSAR optimization (RIO) for robustly estimating InSAR covariance matrices, as well as the phase history parameters, e.g. deformation rate, under the existence of nonergodic non-Gaussian samples and unmodeled interferometric phase. Simulations show that in the typical setting of TerraSAR-X data stacks RIO can improve the accuracy of the deformation rate estimates by 2 – 6 times when the data is contaminated by an outlier rate of up to 40 %, while preserving 90 % of the relative estimation efficiency under the ideal ergodic complex Gaussian distribution.

Selected publications: [239], [326], [323], [674], [676], [675], [399], [755], [787], [788], [252], [580], [945], [640], [684], [750]

Nonlocal Filtering

Noise reduction is a standard step in EO data processing. Often classical local filters are used, e.g. multilook-processing for SAR and InSAR data, which always reduce the spatial resolution. This calls for nonlocal approaches that take advantage of the high degree of redundancy in natural images. We explored nonlocal concepts for filtering TanDEM-X interferometric data, as mentioned in the SAR chapter. By introducing tailored nonlocal InSAR filtering, we demonstrated the possibility of achieving a resolution of 6 m and a relative height error below 0.8 m, i.e. an increase in quality by a factor of 2 x 2 in resolution and a factor of 2 m/0.8 m = 2.5 in height accuracy – all in all one order of magnitude.

Selected publications: [524], [587], [753]

Tensor Analysis

Thanks to the increasing availability of EO data, time series analysis is becoming standard and opens up opportunities for new applications. Time series data can be considered as tensors allowing all the advances in tensor analysis to be exploited. We developed tensor-based algorithms for the retrieval of geophysical parameters, such as topography, deformation and cloud coverage from SAR and optical time series data.

Previous research on multi-baseline InSAR, i.e. InSAR time series analysis, was mostly focused on the retrieval of geophysical parameters on the basis of a single pixel or a pixel cluster. They require a fairly large stack of images (usually more than 20) for reliable estimation. For areas with a limited number of images, these methods are not directly applicable. To tackle such a challenge, we proposed a framework of object-based (instead of pixel-based) algorithms,
named Robust Multi-pass InSAR technique via Object-based low-rank tensor decomposition (RoMIO) that fuses geometric information with traditional multi-baseline InSAR via tensor analysis techniques. RoMIO reaches comparable filtering performance to state-of-the-art filtering algorithms, i.e. nonlocal means filtering. However, it outperforms nonlocal means filtering by a factor of two in the interferometric phase variance when the interferogram is corrupted by 50 % outliers. This extreme robustness in turn improves the parameter estimation in multi-baseline InSAR algorithms.

One of the major nuisances of working with Sentinel-2, Landsat, WorldView and other optical EO data is the presence of clouds, which, on average, cover 35 % of the Earth’s surface. Many methods have been developed to reconstruct ground information that is missing due to the presence of clouds. Established techniques primarily use spatial information from non-occluded pixels, spectral information from other channels or temporal information from cloud-free images acquired at different times. We have developed a hybrid data reconstruction algorithm to make full use of spatial, spectral and temporal information. The Non-Local Low-Rank Tensor Completion (NL-LRTC) method concatenates multi-temporal remote sensing imagery, reshapes it to 4D tensors and reconstructs cloudy parts and other irregularities in the data by minimizing the tensors’ ranks. The quality of the N–LRTC products was assessed to be consistently comparable or better than those obtained with state-of-the-art methods. In tests with real cloudy images, for which no ground truth is available, NL-LRTC gives reconstructions visually most natural and similar to cloud-free acquisitions taken at similar times.

Selected publications: [50], [126], [548], [499], [471], [49]

Artificial Intelligence for Earth Observation (AI4EO)

Artificial intelligence is currently penetrating many technological areas. Even though the term is in inflationary use today, it often refers to machine learning, usually with deep neural networks (Deep Learning). Internet giants such as Google, Facebook and Microsoft with their almost unlimited computing capacities achieved spectacular results in image classification, text translation and in the Go game. We consider ourselves one of the pioneers in using Deep Learning in remote sensing and are enthusiastic about its possibilities. Going beyond quick-wins by fine-tuning existing architectures for the usual classification and detection tasks, we take particular care of the fact that EO data and problems are in many aspects different from standard imagery found on the internet.

Multi-modality

Remote sensing data are often multi-modal, e.g. from optical (multi- and hyperspectral) and SAR sensors, where both the imaging geometries and the scattering properties are completely different. Data and information fusion uses these complementary data sources in a synergistic way. To this end, we have developed different multiple-stream convolutional neural networks (CNNs) for the fusion of hyperspectral data with PolSAR, lidar and multispectral data.

Prior to joint information extraction, a crucial step is to develop novel architectures for the matching of images taken from different perspectives and even different imaging modalities, preferably without requiring an existing
3D model. Here, we developed tailored CNN-based architectures for SAR/optical image coregistration. Also, besides conventional decision fusion, an alternative is to investigate the transferability of trained networks to other imaging modalities. To address this, we designed generative adversarial network (GAN)-based deep architectures for SAR-optical and optical-SAR translation with the applications of change detection and colorizing SAR images with optical textures.

Selected publications: [57], [137], [497], [110], [150]

Geolocation
Remote sensing data are geolocated, which facilitates the fusion of information with other sources of data, such as GIS, geo-tagged images from social media, or simply other sensors (as above). This fact allows data fusion to be tackled with non-traditional data modalities. For example, we have combined GIS data with the globally available TanDEM-X SAR amplitude images to estimate building height on a large scale. In addition, street-view images are fused with optical satellite imagery to detect building changes, and to classify building functions.

Selected publication: [516]

Time Series Data
As mentioned before we observe a shift from individual image analysis to time-series processing. Novel network architectures must be developed for optimally exploiting temporal information jointly with spatial and spectral information. We proposed an end-to-end trainable network that combines a convolutional subnetwork which is very suitable for high level spatial and spectral feature extraction with a recurrent subnetwork, be it a standard recurrent neural network or a Long Short-Term Memory version, which can model the sequential property of the data. This framework is generic – it can be applied to bi-temporal remote sensing images or to long time series data for binary or multi-class change detection.

Transfer learning for land cover classification: Deep learning requires large amounts of labelled training data which are not readily available in remote sensing. To classify land cover over 30 years (1984 – 2014) for four different cities (Munich, Beijing, New York and Melbourne) from Landsat data we used transfer learning based on labeled data from only one city and one year (Beijing, 1990) and achieved an overall accuracy of better than 95 %. This example illustrates how Munich airport has been built.

Combining CNN and RNN in an end-to-end trainable fashion can provide better change detection results than state-of-the-art methods. Site: Taizhou, China.
Concepts for Large-scale Applications

In the Copernicus era, we are dealing with very large and ever-growing data rates and volumes. Since 2014, Sentinel satellites have already acquired about 25 Petabytes of data. The Copernicus concept allows for global applications, i.e., algorithms must be fast enough and sufficiently transferrable to be applied to the whole Earth’s surface. We have developed transfer learning-based architectures for urban applications, including building footprint generation, semantic mapping, as well as for crop type classification that can work with available, usually small or geographically restricted, training data sets. In some cases, however, large training data sets might be generated (semi-)automatically. We have used massive quality-controlled historical DSMs and DTMs to train a deep neural network that converts DSMs to DTMs with the highest possible quality to date (see the Optical Imaging chapter). Similar developments are the translations of image to height, image to building footprint, traffic lane extraction and ship detection from SAR and optical images.

Open Research Questions

The field of AI4EO is still young and we see a great need for research in the future: aside from current developments, important questions, including theoretical ones, will have to be dealt with. For example, in many cases remote sensing aims at retrieving geophysical or bio-chemical quantities rather than detecting or classifying objects. Often process models and expert knowledge exists that is traditionally used as priors for the estimates. This particularity suggests that the dogma of expert-free fully automated end-to-end learning should be questioned for remote sensing and physical models should be reintroduced into the concept. Other problems we will address in the future are e.g. small and erroneous training data sets and networks for complex SAR data.

Unconventional Geodata Sources Harvesting

Street Level Imagery

Street level images from open platforms, such as geotagged social media images (e.g. from Flickr, Facebook and Instagram) and street-view images (e.g. Google Street View and Mapillary), can serve as complementary data sources to EO satellite data for geoinformation harvesting at a ground level. For example, land-use classes can be extracted from social media images via computer vision techniques. Also, millions of high-resolution panoramic street view photos freely available on the internet can better furnish the view of cities around the world, compared to top view satellite imagery. Based on street view images, we developed a novel deep learning-based framework for fine-grained land-use classification at building instance level, reaching a prediction accuracy of around 80%. We also introduced change detection techniques based on panoramic street view images, which can be exploited for city-scale dynamic monitoring. Beyond this, we conducted the first research of fusing social media and SAR images for urban mapping. We demonstrated that one can obtain a new kind of 3D city model that includes the optical texture from close-range social media imagery for better scene understanding and the precise deformation retrieved from SAR interferometry.

Social Media Texts

A valuable source of information for analyzing urban areas encoded in social media is text. In contrast to other social media information, text messages are widely available. For example, Twitter provides access to geo-located tweets through the free streaming API as well as
through the commercial Firehose API. Second, as Twitter is a mainly text-based social medium, the text information actually transports the meaning or purpose of the posting in many cases. This is different for multi-media social networks such as Instagram in which the available text information cannot be analyzed outside the context of the image. For tweets, we analyzed both the spatio-temporal distribution and the textual content. Using the spatio-temporal distribution, macroscopic as well as microscopic structures of cities can be observed: the density reveals the shape of cities on a macroscopic scale, but even structures like streets on a finer scale. We are working towards extracting useful spatial data sets from text messages including spatial sentiment, block-level functions, and the functions of individual buildings such as residential, commercial, or industrial. It is worth noting that the density of social media is highly imbalanced with respect to building function and that these building functions are, in turn, highly imbalanced in a spatial sense. Therefore, the fusion of social media with additional data sources, especially from remote sensing and volunteered geographic information is a prerequisite for scalable and reliable urban mapping. For the city of Los Angeles OpenStreetMap contains roughly 340,000 building instances with assigned classes commercial or residential. In half a year, we observed roughly 600,000 geo-located tweets in this area from about 25,000 buildings.

Applying the well-known skipgram model with vector space embeddings learned from Wikipedia, we are able to detect indicators for residential and commercial buildings with a high accuracy of about 85 % and a respectable recall of at least 70 %. Aggregating these tweets to buildings assigns a class to more than 21,000 buildings.

Social media data for urban settlement type classification: Histograms of twitter messages in Munich as a function of day-of-the-week (radial) and hour-of-the-day (azimuthal) exhibit distinct patterns for different settlement types. Social media data are an important source of geo-information and can complement EO data for urban mapping.

Building type classification by fusion of opportunistic street level images and satellite data: Convolutional neural networks have been trained to classify settlement types based on top-view satellite images and the façade structures available from street view images. For training this network we built up a labelled benchmark dataset (top) with eight classes consisting of 19,658 street view images of buildings. Sites: Vancouver (bottom, left), Munich (bottom, right).
Data Fusion

Fusion of multi-modal data has been a classic and crucial task, yet boosted by big Earth data, it has gained growing attention in the community during this reporting period. Intelligent use of the complementary peculiarities of the ever-increasing number of diverse remote sensing sensors and other geodata sources has become the natural choice for many applications. For example, to derive building information models that characterize both physical and functional properties, leads inevitably to fuse multimodal data fusion.

Fusion of SAR and Optical Imagery

One of our particular strengths in data fusion lies in the fusion of SAR and optical imagery which is one of the most important examples for the exploitation of complementary information. In the last reporting period, SAR-optical data fusion has gained new drive, mainly caused by two major developments: The first was the growing availability of imagery with very high spatial resolution that was meant to enable a precise mapping of the Earth’s surface, especially in urban areas.

The second development was the implementation of international space programs, such as Copernicus, which incorporate various sensor technologies by design. In the Copernicus context, there is much potential for a joint exploitation of SAR data provided by the Sentinel-1 satellites and multi-spectral data provided by the Sentinel-2 mission.

One example is SAR/optical image co-registration. Any data fusion undertaking requires the individual input data sources to be aligned to each other and to the object of interest. For multi-sensor remote sensing imagery, this is usually achieved by either object matching or image co-registration. Both approaches are still non-trivial tasks due to the aforementioned peculiarities of SAR and optical images, which lead to severe differences both in radiometry and geometry, especially when very-high-resolution data of urban areas are concerned. In order to solve the problem of SAR-optical image matching, we have developed different CNN approaches. While one class aims at learning to predict patch correspondences directly using (pseudo-)siamese deep matching architectures, another class exploits conditional GANs to generate artificial images of one data source based on an input image of the other data source. Afterwards, a real image of one data source can easily be matched to its artificial counterpart using standard similarity measures.

Another application of the prediction of artificial optical images from SAR images is cloud-removal in multi-spectral Sentinel-2 data. Again, a conditional GAN can be used to predict cloud-free Sentinel-2 bands from cloud-affected Sentinel-2 input bands and an auxiliary Sentinel-1 image. A similar task is the colorization of SAR images using information provided by corresponding optical imagery acquired at more or less the same time. While this has been used operationally for decades using engineering approaches, we are currently...
working on deep generative models that are able to predict optical-like colorizations for input SAR images without the availability of corresponding optical information. Our approach is based on learning conditional color distributions from large numbers of existing examples. At production time, these learned distributions can then be used to create plausible colorizations for previously unseen images.

Selected publications: [236], [48], [93], [562], [564], [561], [522], [572]

Fusion of SAR and Optical 3D Point Clouds

Fusing very high resolution SAR and optical images in dense urban areas is impossible in 2D because of the non-injective imaging geometry of SAR. A novel approach has been devised for fusion of 3D SAR tomographic point clouds and 3D stereo-optical DSM. The proposed approach provides the first ‘SARptical’ point cloud of an urban area, which is the TomoSAR point cloud textured with attributes from aerial stereo-optical images. This opens up a new perspective for understanding InSAR-derived deformation estimates. Furthermore, thanks to this effort, by re-projecting the SAR-optical correspondence in 3D back to the original image space, we are able to provide the first benchmark data set to the community which consists of over 10,000 matched pairs of very high resolution SAR and optical image patches over dense urban areas.

Selected publications: [579], [251], [683], [484]

Fusion of PolSAR, Hyperspectral, Lidar and More

Besides our focus on SAR-optical data fusion, we are also investigating the potential of fusion for other remote sensing and geodata sources. Still relying on SAR data, whose analysis is our core expertise, examples of our multi-sensor data fusion endeavors include the estimation of building height from single SAR images by fusing building footprints extracted from OpenStreetMap data, and the fusion of polarimetric SAR measurements and hyperspectral imagery for land use classification. Beyond SAR, we also work on multi-sensor spectral unmixing, which aims at understanding dynamic changes of observed surfaces at a subpixel scale by jointly exploiting multi-spectral and hyperspectral image time series. In addition, we developed a framework based on so-called extinction profiles and deep convolutional neural networks in order to fuse hyperspectral and lidar data for classification purposes.

Our data fusion research has received high international recognition which is illustrated, e.g. by two first prizes in the renowned IEEE GRSS Data Fusion Contests in 2016 and 2017 and a second prize in 2018.

Selected publications: [544], [614], [575], [150], [101], [537], [110], [149]
Big Earth Data Analytics

Geoscientific Application – Urban Mapping

Many of the above mentioned methods from data science are used across disciplines and have found their way into geoscientific applications at IMF. Within an ERC-funded project, a strong focus of IMF has been on global urban mapping. Our methodological research line is complemented by a cooperating group specialized in urban geography at DFD.

By 2050, around three quarters of the world’s population will live in cities. The ongoing new dimension of global migration into the cities poses fundamental challenges to our societies across the globe. Despite increasing efforts, global urban mapping approaches still drag behind the geometric, thematic and temporal resolutions of geoinformation needed to address these challenges with resilient spatial data. For example, DFD’s Global Urban Footprint (GUF) and GUF+, binary masks of urban vs. non-urban and its temporal updates are still among the most prominent examples capturing the complex settlement patterns at unprecedented resolutions at global scale. Going far beyond GUF, we aim at 3D/4D urban modelling, infrastructure occupancy classification, and very high resolution population density mapping on a global scale for revolutionizing urban geographic research.

Global 3D Tomographic Urban Modeling

Global 3D/4D urban models play a fundamental role for stakeholders in understanding rapid urbanization. Yet our knowledge of global urban morphology so far is restricted to a 2D binary classification map. The TanDEM-X
mission delivers a global digital elevation model of high quality (12 m posting), which is optimized for nonurban areas. When it comes to urban areas, however, a full tomographic inversion on the TanDEM-X data stack is required for reliable 3D reconstruction. This calls for novel tomographic inversion algorithms for TanDEM-X stacks with very few interferograms, because global TanDEM-X data coverage over urban areas is usually only 4 – 7 images. We are taking the lead in developing such an algorithm aiming at generating and providing the world’s first global 3D urban model using primarily TanDEM-X data. A prototype version is already available. Using just five TanDEM-X interferograms, the height accuracy is better than 2 m compared to lidar point clouds. Furthermore, by fusing this with building footprints extracted from globally available PlanetScope data, followed by robust building height estimation, it is even possible to generate LOD1-type building models. Currently, we are processing the first 1,700 cities with a population greater than 300,000, and expect to make the global 3D urban model available to the community in 2020.

Global Local Climate Zone Classification

Local Climate Zones (LCZs) comprise a classification scheme for urban areas that has gained great importance across various disciplines in the last years. Originally developed by urban climatologists to describe and characterize the physical nature of cities in a way that is transferable across cultural and geographical regions, the LCZ classification scheme has found its way into EO as well. The 17 LCZ classes are based on climate-relevant surface properties mainly related to 3D surface structure (height and density of buildings and trees) as well as surface cover (pervious or impervious). Due to the scheme’s interdisciplinary and transferable nature, researchers have started to use the LCZ classes as standard to describe the internal structure of urban areas. We are currently working on generalizing and scalable classifiers that allow us to carry out LCZ mapping on a global scale, with a particular focus on urban areas. Besides the development and application of machine learning methods, this comprises the manual generation of ground truth labels by human remote sensing experts for which we created ground truth labels for 42 representative cities selected across the globe. The result of our concerted labeling efforts is called the LCZ42 data set, which is used to train and evaluate our algorithms. We aim at generating the first ever global LCZ map in the near future.

Selected publications: [549], [516], [24], [582], [475], [469]
Data Mining and Knowledge Discovery

Throughout the years various EO satellites have gathered huge quantities of data. This in turn made the data archives grow in size, variety and complexity. In order to extract the latent information residing in these repositories, new methodologies and tools are required. The users require support in the process in order to find and retrieve specific collections from these huge volumes of data. They also require fast methods and algorithms in order to extract knowledge from this data. We have a long history of development in Image Information Mining (I²M), i.e. the retrieval of relevant information from large remote sensing data archives. Within I²M a framework of methods has been developed for the creation of large semantically annotated reference data bases, semantic catalogues and image epitomes. The goal is automatic knowledge discovery about image content which is very effectively usable for Big EO Data applications. One highlight example is the ESA project EOLib (Earth Observation Image Librarian) which resulted in a prototype implementation of the EOLib query system within the DLR ground segment. It is a modular system which offers Data Mining and Knowledge and Data Discovery capabilities for TerraSAR-X data and EO data in general. EOLib is a paradigm shift from data to information and knowledge distribution. Its main goal is to fill the gap between the PDGS and the end-user which desires specific information. EOLib’s modules offer functionalities such as ingestion and feature extraction from SAR data, metadata extraction, semantic definition of the image content through machine learning and data mining methods, advanced querying of the image archives based on content, meta-data and semantic categories, as well as 3D visualization of the processed image archives. EOLib is a Big Data solution bringing the algorithms close to the data. It is integrated in the Multi-Mission Payload Ground Segment of DLR. Among its achievements, EOLib enabled the generation of a semantic catalogue with 1,300 categories for TerraSAR-X spotlight images of 300 cities. It was also applied to quantitatively assess from TerraSAR-X time series the effects of the 2010 Tsunami in Japan and their recovery.

The AI components of EOLib have been integrated in a light open-source tool EOMiner which is dedicated to Copernicus and third party data users. It can be applied to any multispectral or SAR data with resolutions from tens of cm to 100 m. EOMiner was used to solve environmental and costal problems in the frame of Horizon 2020 and ESA projects. It was also used to generate large EO image benchmark data sets from TerraSAR-X, Sentinel-1 and Sentinel-2 images.

Selected publications: [343], [421], [194]
High Performance Computing

Analysis of Big Earth Data involves a significant amount of resources, both in terms of computational power provided by CPU and GPU clusters, as well as in terms of storage capacities and data transfer capabilities. We have been working closely with the Leibniz Supercomputing Centre (LRZ) and the Jülich Supercomputing Centre since 2012 and 2017, respectively. A project led by IMF scientists has been selected as a pilot project for shaping LRZ’s Next Generation system. Social impact of our EO projects has been acknowledged by the European HPC society, e.g. by awarding an IMF scientist the PRACE Ada Lovelace Award for HPC 2018.

Selected publications: [257], [656], [8], [516], [251], [753], [677], [579], [484]
This Documentation chapter covers scientific activities of IMF and TUM-LMF-/SiPEO staff in the time period between January 2013 and mid 2018.

Teaching and Education

Lectures at Technical University of Munich (TUM)

University courses conducted by IMF/LMF/SiPEO staff from 2013 until 2018 (lecturers of TUM-LMF/SiPEO in italic typeface). Winter semester courses are listed in the year of beginning.

<table>
<thead>
<tr>
<th>University</th>
<th>Title</th>
<th>Lecturers</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUM</td>
<td>Photogrammetrie und Fernerkundung IV (Vorlesung + Übung)</td>
<td>Körner, M. Auer, S. Schmitt, M. Frey, D. Avbelj, J. Eineder, M.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Satellitenfernerkundung (Vorlesung + Übung)</td>
<td>Körner, M. Auer, S. Schmitt, M. Frey, D. Eineder, M. Avbelj, J.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Systems Theory and Signal Processing (Lecture + Tutorial)</td>
<td>Bamler, R. Zhu, X.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Systemtheorie u. Signalverarbeitung (Vorlesung + Übung)</td>
<td>Bamler, R. Zhu, X.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Introduction into Microwave and SAR Remote Sensing</td>
<td>Eineder, M.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Estimation Theory (Lecture + Tutorial)</td>
<td>Bamler, R. Avbelj, J. Kurz, F. Shahzad, M. Szottka, I. Zhu, X.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>TUM</td>
<td>Schätztheorie (Vorlesung + Übung)</td>
<td>Bamler, R. Avbelj, J. Kurz, F. Shahzad, M. Zhu, X.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>University</td>
<td>Title</td>
<td>Lecturers</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>TUM</td>
<td>Seminar Remote Sensing</td>
<td>Zhu, X.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TUM</td>
<td>Bildverstehen Grundlagen – Übung</td>
<td>Koch, T. Burkert, F.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TUM</td>
<td>Bildverstehen – Aktuelle Ansätze des Maschinellen Lernens</td>
<td>Körner, M.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TUM</td>
<td>Electrodynamics</td>
<td>Doicu, A. Trautmann, T. Efremenko, D.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TUM</td>
<td>Nonlinear Optimisation</td>
<td>Doicu, A.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TUM</td>
<td>Multisensor-Datenfusion</td>
<td>Schmitt, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lectures at other Universities

University courses conducted by IMF staff from 2013 until 2018. Winter semester courses are listed in the year of beginning.

<table>
<thead>
<tr>
<th>University</th>
<th>Title</th>
<th>Lecturers</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jena</td>
<td>SAR-Signalverarbeitung (SAR-EDU)</td>
<td>Auer, S. Bricic, R. Eineder, M. Lehner, S. Parizzi, A. Pleskachevsky, A.</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Beijing, CN (Institute of Electronics)</td>
<td>SAR Signal Processing</td>
<td>Bamler, R. Zhu, X.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcala, SP</td>
<td>Hyperspectral Remote Sensing</td>
<td>Cerra, D.</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Limassol, CY (Cyprus Univ. of Technology)</td>
<td>Hyperspectral Image Processing</td>
<td>Cerra, D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osnabrück</td>
<td>Methoden der Bildverarbeitung II</td>
<td>Cerra, D.</td>
<td>■</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calabria, IT</td>
<td>Introduction to Digital Image Processing in Remote Sensing</td>
<td>Cerra, D.</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tehran, IR</td>
<td>Hyperspectral Remote Sensing</td>
<td>Cerra, D.</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing, CN (Institute of Technology)</td>
<td>Perspectives of SAR Imaging</td>
<td>Datcu, M.</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bukarest, RO (Politechnica)</td>
<td>Theory of Information Transmission</td>
<td>Datcu, M.</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bukarest, RO (Politechnica)</td>
<td>Decision and Estimation/Data Mining</td>
<td>Datcu, M.</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>3</td>
</tr>
<tr>
<td>Bukarest, RO (Politechnica)</td>
<td>Remote sensing and Space Communication</td>
<td>Datcu, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Campinas, BR</td>
<td>Principles, Analysis and Applications of SAR Images</td>
<td>Datcu, M.</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Maryland, USA</td>
<td>Big Data from Earth Observation: Analytics, Mining, Semantics</td>
<td>Datcu, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bern, CH</td>
<td>SAR–Concepts & Geodetic Measurements</td>
<td>Eineder, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augsburg</td>
<td>Applied Remote Sensing</td>
<td>Fischer, P. Langheinrich, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>Title</td>
<td>Lecturers</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>München (HS)</td>
<td>PC-gestütztes Messen</td>
<td>Haschberger, P.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>München (HS)</td>
<td>Messtechnik II</td>
<td>Haschberger, P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Hannover</td>
<td>Radar Oceanographie</td>
<td>Lehner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami, USA (Nova Southeastern University)</td>
<td>Maritime Remote Sensing</td>
<td>Lehner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Everglades, USA (Nova Southeastern University)</td>
<td>SAR-Tutorial</td>
<td>Lehner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremen (Sino-German Summer School)</td>
<td>Radar Oceanography</td>
<td>Lehner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Victoria, CA</td>
<td>Radar Oceanography</td>
<td>Lehner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thessaloniki, GR</td>
<td>Satellite Remote Sensing</td>
<td>Loyola, D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osnabrück</td>
<td>Fernerkundungliche Umweltanalyse</td>
<td>Reinartz, P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hannover</td>
<td>Operationelle Fernerkundung</td>
<td>Reinartz, P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storch, T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leipzig</td>
<td>Strahlungstransferlabor</td>
<td>Trautmann, T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hannover</td>
<td>Big Geospatial Data</td>
<td>Werner, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA: Canada
GR: Greece
HS: Hochschule
LMU: Ludwig-Maximilians-Universität
Non University Courses and Tutorials

Non university courses and tutorials conducted by IMF staff between 2013 and 2018 (Courses of the LMF/SiPOE in italic typeface)

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Location</th>
<th>Subject</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamler, R.</td>
<td>EUSAR</td>
<td>SAR Interferometry and Tomography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamler, R.</td>
<td>CAST</td>
<td>Introduction to SAR Interferometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamler, R.</td>
<td>Hongkong, CN</td>
<td>SAR Interferometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamler, R.</td>
<td>CCG</td>
<td>SAR Interferometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerra, D.</td>
<td>CCG</td>
<td>Processing of Remotely Sensed Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerra, D.</td>
<td>Tehran, IR</td>
<td>Imaging Spaceborne Systems, Processing of Remotely Sensed Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerra, D.</td>
<td>CCG/ESA</td>
<td>Hyperspectral Remote Sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Beijing, CN</td>
<td>Lecture on SAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Beijing, CN</td>
<td>Big Data Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Beijing, CN</td>
<td>SAR Image Understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>IET Intern. Radar Conference</td>
<td>Methods and Algorithms for Understanding of High Resolution SAR Images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Hangzhou, CN</td>
<td>SAR Information Extraction in the Era of Big Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Campinas, BR</td>
<td>SAR Principles and Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Joao Pessoa, BR</td>
<td>Information Mining for Satellite Image Time Series: Methods and Perspectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>IGARSS</td>
<td>Earth Observation Data Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>IGARSS</td>
<td>Big Data from Earth Observation: Analytics, Mining, Semantics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Wuhan, CN</td>
<td>Big Data Mining and Analytics: Methods and Algorithms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Beijing, CN</td>
<td>Advancing EO Data Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>CCG</td>
<td>Active Microwave Sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>CCG</td>
<td>SAR Interferometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>TUM Int.</td>
<td>SAR Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Location</td>
<td>Subject</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>CCG</td>
<td>SAR Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>CCG/ESA</td>
<td>Microwave Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hamidouche, M.</td>
<td>CCG</td>
<td>Infrared Astronomy: Unveiling the Hidden Universe</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Haschberger, P.</td>
<td>CCG</td>
<td>Spektrometer und Kalibrierung</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Körner, M.</td>
<td>ISPRS</td>
<td>ISPRS 3S Student Summer School</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Krauß, T.</td>
<td>CCG</td>
<td>Fernerkundung aus dem Weltraum mit multispektralen, hyperspektralen und Stereoaufnahmen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kuschk, G.</td>
<td>SMPR</td>
<td>3D Reconstruction Chain – from Images to 3D City Model</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>EUSAR</td>
<td>Ship and Oil Detection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>EUSAR</td>
<td>Maritime Security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>EUSAR</td>
<td>Operational Remote Sensing by Exploiting Space-Based SAR Data</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>CCG</td>
<td>SAR Oceanography</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lichtenberg, G.</td>
<td>CCG/ESA</td>
<td>Atmospheric Remote Sensing, Radiative Transfer, Neutral Atmosphere</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>NASA GSFC, USA</td>
<td>Computational Intelligence Techniques in Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pleskachevsky, A.</td>
<td>Oldenburg</td>
<td>SAR Oceanographie</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reinartz, P.</td>
<td>CCG</td>
<td>Fernerkundung aus dem Weltraum mit multispektralen, hyperspektralen und Stereoaufnahmen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Schreier, F.</td>
<td>CCG</td>
<td>Atmosphärische Fernerkundung – Strahlungstransportmodelle und Inversionsverfahren</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Schmitt, M.</td>
<td>CAST</td>
<td>Remote Sensing Data Fusion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>CCG</td>
<td>Physical Principles of Spaceborne Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>CAST</td>
<td>Atmospheric Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>CCG/ESA</td>
<td>Atmospheric Remote Sensing, Radiative Transfer, Neutral Atmosphere</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Location</td>
<td>Subject</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>TUM</td>
<td>Summer School: Signal Processing in Earth Observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>CCG</td>
<td>Intelligente Sensorik II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>CAST</td>
<td>Signal Processing and Data Science in Earth Observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>CAST</td>
<td>Very High Resolution Multi-Dimensional SAR Imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>EUSAR</td>
<td>Deep Learning in Remote Sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>WHISPERS</td>
<td>Deep Learning in Remote Sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAST: China Academy of Space Technology
CCG: Carl-Cranz-Gesellschaft
ESA: European Space Agency
EUSAR: European Conference on Synthetic Aperture Radar
IGARSS: International Geoscience and Remote Sensing Symposium
ISPRS: International Society for Photogrammetry and Remote Sensing
NASA GSFC: National Aeronautics and Space Administration, Goddard Space Flight Center
SMPR: Sensors and Models in Photogrammetry and Remote Sensing
WHISPERS: Workshop on Hyperspectral Image and Signal Processing
Internal Seminar Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMF Seminar</td>
<td>10 – 15 presentations per year, IMF and guest scientists</td>
</tr>
<tr>
<td>Seminars of IMF sections</td>
<td>seminars of IMF-ATP: 15 – 20 and IMF-SAR: 5 – 10 presentations per year, IMF and guest scientists</td>
</tr>
<tr>
<td>IMF Doktorandentage</td>
<td>annual event, 15 – 20 PhD status presentations</td>
</tr>
<tr>
<td>Doktorandenseminar TUM (LMF, SiPEO)</td>
<td>approx. 15 presentations per year, PhD presentations and reading sessions</td>
</tr>
<tr>
<td>TUM/DLR Summer School</td>
<td>annual 3 days event, 50 PhD and scientists, guest lecturers</td>
</tr>
<tr>
<td>Various Summer Schools</td>
<td>HGF Alliances, Munich Aerospace, SAR Education Initiative</td>
</tr>
</tbody>
</table>
Academic Degrees

Professorship Appointments

Professorship appointments of IMF or TUM-LMF/SiPEO (in *italic* typeface) staff between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Name</th>
<th>Professorship</th>
<th>University</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerra, D.</td>
<td>Deputy Professor</td>
<td>Osnabrück</td>
<td>2018</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>Visiting Professor</td>
<td>Thessaloniki/Greece (Aristotle University)</td>
<td>2018</td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Chaire Blaise Pascal</td>
<td>Paris/France (l’Ecole Normale Supérieure)</td>
<td>2017</td>
</tr>
<tr>
<td>Shahzad, M.</td>
<td>Assistant Professorship</td>
<td>Islamabad/Pakistan (National University of Sciences and Technology)</td>
<td>2016</td>
</tr>
<tr>
<td>Fraundorfer, F.</td>
<td>Assistant Professorship</td>
<td>Graz/Austria</td>
<td>2015</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>Honorary Professorship</td>
<td>München (TU)</td>
<td>2013</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>Affiliate Faculty Member</td>
<td>Miami/USA (Nova Southeastern University)</td>
<td>2013</td>
</tr>
</tbody>
</table>

Habilitations and Veniae Legendi

Habilitations awarded, supervised or completed by IMF or TUM-LMF/SiPEO (in *italic* typeface) staff between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Name</th>
<th>Subject</th>
<th>University</th>
<th>Year</th>
<th>Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körner, M.</td>
<td>Machine Learning and Computer Vision (working title)</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Prof. Bamler</td>
</tr>
<tr>
<td>Schmitt, M.</td>
<td>Data Fusion in Remote Sensing (working title)</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Prof. Zhu</td>
</tr>
<tr>
<td>Efremenko, D.</td>
<td>Technology of Fast Interpretation of Optoelectronic Systems’ Signals for Determining the Atmospheric Parameters and Solid-State Samples Parameters</td>
<td>Moscow Power Engineering Institute</td>
<td>2017</td>
<td>Prof. Belov</td>
</tr>
</tbody>
</table>
Doctoral Theses

Doctoral Theses completed or supervised by IMF or TUM-LMF/SiPEO (in italic typeface) staff between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>University</th>
<th>Year</th>
<th>Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam, F.</td>
<td>Urban Classification Using Machine Learning and Deep Learning</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P. Esch, T. Datcu, M.</td>
</tr>
<tr>
<td>Aigner, S.</td>
<td>Video Generation for Traffic Prediction using Deep Learning Methods</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R.</td>
</tr>
<tr>
<td>Ansari, H.</td>
<td>Development of Differential Shift Based Stacking Techniques and Fusion with the InSAR Approaches</td>
<td>München (TU)</td>
<td>submitted</td>
<td>Bamler, R. Eineder, M. Hanssen, R.</td>
</tr>
<tr>
<td>Ao, D.</td>
<td>Advanced Methods for SAR Image Understanding</td>
<td>Beijing (Institute of Technology)</td>
<td>ongoing</td>
<td>Cheng, Hu Zeng, Tao Datcu, M.</td>
</tr>
<tr>
<td>Azimi, M.</td>
<td>Development of Deep Learning methods for airborne traffic and infrastructure monitoring</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R.</td>
</tr>
<tr>
<td>Bagheri, H.</td>
<td>Fusion of TanDEM-X data and optical imagery for 3D reconstruction of urban areas</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Baumgartner, A.</td>
<td>Modelling and Calibration of Imaging Spectrometer Data</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td>Bentes da Silva, C.</td>
<td>Automatische Schiffsdetektion in Radarbildern</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Eineder, M. Zhu, X. ...</td>
</tr>
<tr>
<td>Bittner, K.</td>
<td>Building Extraction from Digital Surface Models by Deep Learning Techniques</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P. Ehlers, M.</td>
</tr>
<tr>
<td>Cagatay, N.</td>
<td>Feature Extraction for Bistatic SAR Images</td>
<td>Siegen</td>
<td>ongoing</td>
<td>Loffeld, O. Datcu, M.</td>
</tr>
<tr>
<td>Cosmin, D.</td>
<td>4 D measurements of urban structures based on SAR</td>
<td>Bucharest</td>
<td>ongoing</td>
<td>Fornaro, Gianfranco Datcu, M.</td>
</tr>
<tr>
<td>Ge, N.</td>
<td>Advanced Tomographic Techniques for EHR Systems</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X. Bamler, R.</td>
</tr>
<tr>
<td>Gisinger, Ch.</td>
<td>Joint processing of SAR, GNSS and gravimetry for geophysical signals</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Pail, R. Eineder, M.</td>
</tr>
<tr>
<td>Görtitz, A.</td>
<td>From laboratory spectroscopy to remote sensing: Methods for the retrieval of water constituents in optically complex waters</td>
<td>München (TU)</td>
<td>submitted</td>
<td>Bamler, R. Bracher, A. Damm, A.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>University</td>
<td>Year</td>
<td>Reviewers</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Grivei, A.</td>
<td>Machine Learning for Satellite Image Time Series</td>
<td>Bucharest</td>
<td>ongoing</td>
<td>Datcu, M.</td>
</tr>
<tr>
<td>Häberle, M.</td>
<td>Fusion of social media and remote sensing data using deep learning and natural language processing</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Henry, C.</td>
<td>Airborne Traffic Data for validation of vehicle data</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Vig, E.</td>
</tr>
<tr>
<td>Heublein, M.</td>
<td>Atmospheric Tomography using GNSS and InSAR Measurements</td>
<td>Karlsruhe</td>
<td>ongoing</td>
<td>Hinz, S. Zhu, X.</td>
</tr>
<tr>
<td>Hochstaffl, P.</td>
<td>Trace gas concentration retrieval from near infrared nadir sounding spaceborne spectrometers</td>
<td>München (LMU)</td>
<td>ongoing</td>
<td>Wenig, M.</td>
</tr>
<tr>
<td>Hong, D.</td>
<td>Hyperspectral Data Analysis: data compression and unmixing</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Hu, J.</td>
<td>Settlement Type Classification of urban area using PolSAR and hyperspectral image</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Hughes, L.</td>
<td>Machine-learning-based matching of optical and SAR data</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Johnson, E.</td>
<td>Mass balance and dynamics of calving glaciers from high resolution SAR data.</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Eineder, M.</td>
</tr>
<tr>
<td>Kang, J.</td>
<td>Intelligent Synthetic Aperture Radar Interferometry Techniques for Deformation Monitoring</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Koch, T.</td>
<td>Automatic visual reconstruction system for building interior and exterior using Mavs</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R. Fraundorfer, F.</td>
</tr>
<tr>
<td>Krieger, L.</td>
<td>Retrieval of glaciolocical parameters from SAR data and mass balance modelling of glaciers in Northeast Greenland</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Eineder, M.</td>
</tr>
<tr>
<td>Kuschk, G.</td>
<td>Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Cremers, D.</td>
</tr>
<tr>
<td>Liebel, L.</td>
<td>Prädiktion von Bildfolgen aus FAS-Videosequenzen durch implizite Modellierung von Aktivitätsmustern</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R.</td>
</tr>
<tr>
<td>Liu, S.</td>
<td>Satellite measurements of total and tropospheric NO2</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Doicu, A.</td>
</tr>
<tr>
<td>Marmanis, D.</td>
<td>Deep Learning for VHR EO image understanding</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Stilla, U. Datcu, M. Zhu, X.</td>
</tr>
<tr>
<td>Meynberg, O.</td>
<td>Real-Time Crowd Density Estimation in Aerial Images</td>
<td>Karlsruhe</td>
<td>ongoing</td>
<td>Hinz, S. Reinartz, P.</td>
</tr>
<tr>
<td>Molina, V.</td>
<td>Satellite measurements of cloud properties</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Doicu, A.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>University</td>
<td>Year</td>
<td>Reviewers</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Montazeri, S.</td>
<td>Absolute three-dimensional positioning of InSAR point clouds by automatic point correspondence detection in multiple viewing angles data stacks</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eineder, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hanssen, R.</td>
</tr>
<tr>
<td>Mou, L.</td>
<td>Deep learning in remote sensing video analysis</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Murillo, A.</td>
<td>Acceptance of technology based conceptual artifacts in knowledge communities: applications to EO Image Information Mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partovi, T.</td>
<td>Levels of Generalization on Automatic Building Reconstruction from Digital Surface Models</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fraundorfer, F.</td>
</tr>
<tr>
<td>Qui, C.</td>
<td>Local climate zone classification from Sentinel-2 data</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Riedel, S.</td>
<td>Entwicklung einer Atmosphärenkorrektur für Flugzeug- und Satellitendaten</td>
<td>Kiel</td>
<td>ongoing</td>
<td>Oppelt, N.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gege, P.</td>
</tr>
<tr>
<td>Rodríguez González, F.</td>
<td>Absolute 3D Rekonstruktionsverfahren aus Satelliten-SAR-Daten</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Eineder, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bamler, R.</td>
</tr>
<tr>
<td>Röske, C.</td>
<td>Verbesserung der spektroskopischen Datenbank und des theoretischen Verständnisses von Infrarot-Kontinua</td>
<td>Karlsruhe</td>
<td>ongoing</td>
<td>Orphal, J.</td>
</tr>
<tr>
<td>Shi, Y.</td>
<td>3D urban mapping with SAR interferometry</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R.</td>
</tr>
<tr>
<td>Städt, S.</td>
<td>Retrieval of atmospheric parameters of terrestrial extrasolar planets around cool host stars</td>
<td>Berlin (TU)</td>
<td>ongoing</td>
<td>Breitschwerdt, D.</td>
</tr>
<tr>
<td>Stark, T.</td>
<td>Machine-learning-based detection of informal settlements</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Sun, Y.</td>
<td>3D / 4D global urban footprint reconstruction using multi-sensory data</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Zhu, X.</td>
</tr>
<tr>
<td>Tings, B.</td>
<td>Erkennung von Bug- und Heckwellen von Schiffen auf Satelliten-SAR</td>
<td>Hamburg (HSU)</td>
<td>ongoing</td>
<td>Rothe, H.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soloviev, A.</td>
</tr>
<tr>
<td>Traganos, D.</td>
<td>Multispectral remote sensing for mapping and monitoring of Mediterranean seagrass habitats</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ehlers, M.</td>
</tr>
<tr>
<td>Tudose, M.</td>
<td>Advanced GB SAR for precise infrastructure monitoring</td>
<td>Bucharest</td>
<td>ongoing</td>
<td>Datcu, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anghel, A.</td>
</tr>
<tr>
<td>Wang, Z.</td>
<td>MAX-DOAS measurements of trace gases and aerosol in the atmosphere</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Doicu, A.</td>
</tr>
<tr>
<td>Wiercioch, M.</td>
<td>Entwicklung von Algorithmen zur Analyse der Meereisentwicklung aus echtzeitnahen SAR Satellitendaten unterschiedlicher Missionen</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Eineder, M.</td>
</tr>
<tr>
<td>Xia, Y.</td>
<td>3D tree architecture modelling from close range photogrammetry</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>University</td>
<td>Year</td>
<td>Reviewers</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Yuan, X.</td>
<td>Building change detection in very high resolution image time series</td>
<td>Osnabrück</td>
<td>ongoing</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td>Zhuo, X.</td>
<td>Fusion of UAV and Airborne Optical Imagery</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>Bamler, R. Reinartz, P.</td>
</tr>
<tr>
<td>Alonso-Gonzalez, K.</td>
<td>Heterogeneous Data Mining for EO Applications: an Information Theoretical Approach</td>
<td>München (TU)</td>
<td>2017</td>
<td>Rigoll, G. Datcu, M.</td>
</tr>
<tr>
<td>Loos, J.</td>
<td>Verbesserung der spektroskopischen Datenbasis von H₂O für die Anwendung in bodengebundener Fernerkundung der Atmosphäre</td>
<td>Karlsruhe</td>
<td>2017</td>
<td>Orphal, J. Höpfner, M.</td>
</tr>
<tr>
<td>Yao, W.</td>
<td>Semi-Supervised Classification and Segmentation of Multi-Modal Satellite Images</td>
<td>Siegen</td>
<td>2017</td>
<td>Loffeld, O. Datcu, M.</td>
</tr>
<tr>
<td>Bahmanyar, G.</td>
<td>Conception and Assessment of Semantic Feature Descriptors for Earth Observation Images</td>
<td>München (TU)</td>
<td>2016</td>
<td>Rigoll, G. Cremers, D. Datcu, M.</td>
</tr>
<tr>
<td>Mattyus, G.</td>
<td>Joint Information Augmentation of Road Maps, Aerial Images and Ground Images</td>
<td>München (TU)</td>
<td>2016</td>
<td>Bamler, R. Fraundorfer, F. Urtasun, R.</td>
</tr>
<tr>
<td>Shahzad, M.</td>
<td>From TomoSAR Point Clouds to Objects</td>
<td>München (TU)</td>
<td>2016</td>
<td>Bamler, R. Zhu, X.</td>
</tr>
<tr>
<td>Velotto, D.</td>
<td>Oil Spill and Ship Detection Using High Resolution X-Band SAR Data</td>
<td>München (TU)</td>
<td>2016</td>
<td>Bamler, R. Eineder, M. Migliaccio, M.</td>
</tr>
<tr>
<td>Bieniarz, J.</td>
<td>Sparse Methods for Hyperspectral Unmixing and Image Fusion</td>
<td>Osnabrück</td>
<td>2015</td>
<td>Reinartz, P. Ehlers, M.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>University</td>
<td>Year</td>
<td>Reviewers</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Eckel, I.</td>
<td>Particle Filters for Airborne Tracking and Lane-Level Map-Matching of Vehicles</td>
<td>München (TU)</td>
<td>2015</td>
<td>Bamler, R., Burgard, W., Wunderlich, T.</td>
</tr>
<tr>
<td>Israel, M.</td>
<td>Entwicklung eines UAV-basierten Systems zur Rehkitzsuche und Methoden zur Detektion und Georeferenzierung von Rehkitzen in Thermalbildern</td>
<td>Osnabrück</td>
<td>2015</td>
<td>Reinartz, P., Tank, V.</td>
</tr>
<tr>
<td>Lenhard, K.</td>
<td>Improving the Calibration of Airborne Hyperspectral Sensors for Earth Observation</td>
<td>Zürich (Uni)</td>
<td>2015</td>
<td>Schaeppman, M., Hüni, A., Purves, R.</td>
</tr>
<tr>
<td>Rieger, S.</td>
<td>Vertical Motion Above a Subduction Zone over Different Time Scales</td>
<td>München (LMU)</td>
<td>2015</td>
<td>Friedrich, A., Bamler, R.</td>
</tr>
<tr>
<td>Tao, J.</td>
<td>Combination of LiDAR and SAR Data with Simulation Techniques for Image Interpretation and Change Detection in Complex Urban Scenarios</td>
<td>München (TU)</td>
<td>2015</td>
<td>Bamler, R., Sörgel, U., Reinartz, P.</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>Advances in Meter-resolution Multipass Synthetic Aperture Radar Interferometry</td>
<td>München (TU)</td>
<td>2015</td>
<td>Zhu, X., Bamler, R.</td>
</tr>
<tr>
<td>Xu, J.</td>
<td>Inversion for Limb Infrared Atmospheric Sounding</td>
<td>München (TU)</td>
<td>2015</td>
<td>Doicu, A., Bamler, R., Böhler, S.</td>
</tr>
<tr>
<td>Cong, X.</td>
<td>SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity</td>
<td>München (TU)</td>
<td>2014</td>
<td>Eineder, M., Bamler, R., Hinz, S.</td>
</tr>
<tr>
<td>Cui, S.</td>
<td>Spatial and Temporal SAR Image Information Mining</td>
<td>Siegen</td>
<td>2014</td>
<td>Loffeld, O., Datcu, M.</td>
</tr>
<tr>
<td>Goel, K.</td>
<td>Advanced Stacking Techniques and Applications in High Resolution SAR Interferometry</td>
<td>München (TU)</td>
<td>2014</td>
<td>Bamler, R., Sörgel, U., Hanssen, R.</td>
</tr>
<tr>
<td>Singh, J.</td>
<td>Spatial Content Understanding of Very-High-Resolution Synthetic Aperture Radar Images</td>
<td>Siegen</td>
<td>2014</td>
<td>Loffeld, O., Datcu, M., Reinartz, P.</td>
</tr>
<tr>
<td>Singha, S.</td>
<td>Offshore Oil Spill Detection Using Synthetic Aperture Radar</td>
<td>Hull</td>
<td>2014</td>
<td>Bellerby, T.</td>
</tr>
<tr>
<td>Türmer, S.</td>
<td>Car Detection in Low Frame-Rate Aerial Imagery of Dense Urban Areas</td>
<td>München (TU)</td>
<td>2014</td>
<td>Stilla, U., Reinartz, P., Reulke, R.</td>
</tr>
<tr>
<td>Zhu, K.</td>
<td>Dense Stereo Matching with Robust Cost Functions and Confidence-Based Surface Prior</td>
<td>München (TU)</td>
<td>2014</td>
<td>Bamler, R., Reinartz, P.</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>University</td>
<td>Year</td>
<td>Reviewers</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wendisch, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wirsing, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mayer, B.</td>
</tr>
<tr>
<td>Riha, S.</td>
<td>Detektion und Quantifizierung von Cyanobakterien in der Ostsee mittels Satellitenfernerkundung</td>
<td>Rostock</td>
<td>2013</td>
<td>Miegel, K.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bill, R.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td>Tian, J.</td>
<td>3D Change Detection from High and very High Resolution Satellite Stereo Imagery</td>
<td>Osnabrück</td>
<td>2013</td>
<td>Reinartz, P.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ehlers, M.</td>
</tr>
<tr>
<td>Vasquez, M.</td>
<td>Radiative Transfer in Planetary Atmospheres with Clouds</td>
<td>Berlin (TU)</td>
<td>2013</td>
<td>Rauer, H.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trautmann, T.</td>
</tr>
</tbody>
</table>

HSU: Helmut-Schmidt-Universität
LMU: Ludwig-Maximilians-Universität München
TU: Technical University
Master/Diploma/Bachelor Theses

Master (M) / Diploma (D) / Bachelor (B) theses being supervised or completed at IMF or TUM-LMF/SiPEO (in italic typeface) between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Name</th>
<th>Subject</th>
<th>University</th>
<th>Year</th>
<th>M/D/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bürgmann, T.</td>
<td>Matching of TerraSAR-X derived ground control points to optical image elements using deep learning</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>M</td>
</tr>
<tr>
<td>Fuentes Reyes, M.</td>
<td>Translating SAR to optical images using conditional Generative Adversarial Networks (cGANs)</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>M</td>
</tr>
<tr>
<td>Villamil Fajardo, S.</td>
<td>Synthetic retrievals of cloud parameters from DSCOVR/EPIC measurements</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>M</td>
</tr>
<tr>
<td>Wenzl, M.</td>
<td>Hyperspektrale Klassifizierung des Untergrunds im Flachwasser</td>
<td>München (TU)</td>
<td>ongoing</td>
<td>M</td>
</tr>
<tr>
<td>Geißendörfer, O.</td>
<td>Evaluierung von Methoden zur monokularen Tiefenschätzung aus Bildern</td>
<td>München (TU)</td>
<td>2018</td>
<td>B</td>
</tr>
<tr>
<td>Kolsch, K.-H.</td>
<td>Google Earth Engine: Globale Analysen basierend auf Fernerkundungsdaten</td>
<td>München (TU)</td>
<td>2018</td>
<td>B</td>
</tr>
<tr>
<td>Han, S.</td>
<td>Building modeling and monitoring using social media images</td>
<td>München (TU)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Knöttner, J.</td>
<td>Trennung von parkenden und am Verkehr teilnehmenden Fahrzeugen basierend auf einer automatischen Verkehrserfassung aus Luftbildern</td>
<td>Würzburg-Schweinfurt (HS)</td>
<td>2018</td>
<td>B</td>
</tr>
<tr>
<td>Kretz, M.</td>
<td>Design and construction of a light source setup for stray light measurements in array spectrometers</td>
<td>Karlsruhe (KIT)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Li, Q.</td>
<td>Building Footprint Generation Using Deep Learning Methods</td>
<td>München (TU)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Okuneva E.</td>
<td>Global Non-urban Local Climate Zones Classification with Sentinel-2 Images</td>
<td>München (TU)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Rußwurm, M.</td>
<td>Multi-temporal land cover classification with convolutional recurrent networks</td>
<td>München (TU)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Sheu, C.-Y.</td>
<td>Automatic 3D lane marking reconstruction using multi-view aerial imagery</td>
<td>Stuttgart</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>Unsupervised Domain Adaptation for Image Classification</td>
<td>München (TU)</td>
<td>2018</td>
<td>M</td>
</tr>
<tr>
<td>Albrecht, L.</td>
<td>Rekonstruktion von 3D-Oberflächen mittels Polarisationsinformationen</td>
<td>München (TU)</td>
<td>2017</td>
<td>B</td>
</tr>
<tr>
<td>Beuchel, H.</td>
<td>Analyse von Verhalten und Differenzierbarkeit von Radarreflektoren auf See</td>
<td>Bremen (HS)</td>
<td>2017</td>
<td>D</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Fitzthum, T.</td>
<td>Merkmalsdeskriptoren zur Messung der Ähnlichkeit zwischen optischen und SAR-Bildern</td>
<td>München (TU)</td>
<td>2017</td>
<td>B</td>
</tr>
<tr>
<td>Hua, Y.</td>
<td>Opening the Black Box: Deep Convolutional Neural Networks with Attention Mechanism for Aerial Scene Classification</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Huang, R.</td>
<td>Geo-information Extraction from Tweets</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Janas, J.</td>
<td>Extracting Atmospheric Parameters from Spectrometer Measurements and Comparison with Established Methods</td>
<td>Nürnberg</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Karam, S.</td>
<td>3D-Building Reconstruction with Different Height Levels from Airborne LiDAR Data</td>
<td>Stuttgart</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Liebel, L.</td>
<td>Deep Convolutional Neural Networks zur Semantischen Segmentierung von Multispektralen Sentinel-2-Bildern</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Plaß, B.</td>
<td>Ableiten von Straßenmarkierungen für das Autonome Fahren aus Digitalen Orthophotos mittels Deep Learning</td>
<td>Mainz (HS)</td>
<td>2017</td>
<td>B</td>
</tr>
<tr>
<td>Scharpf, J.</td>
<td>Development of an Independent UAV Payload Electronics for Real-Time Capable Direct Georeferencing of Camera Images Involving Gimbal Orientation Data</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Schnalzger, K.</td>
<td>Spektrale Datenbank für den Untergrund der Ostsee sowie Einfluss auf die Bestimmung der Wassertiefe</td>
<td>Augsburg</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Stolz, O.</td>
<td>Abschätzung der Möglichkeiten des Einsatzes optischer Fernerkundungsdaten bei der Bestimmung von Wassertiefen und deren Genauigkeit</td>
<td>Potsdam</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Wilzewski, J.</td>
<td>Experimental Study of Temperature-Dependence Laws of Absorption Line Shape Parameters Based on an Analysis of CO₂ v3 Transmittance Spectra</td>
<td>München (LMU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Xu, H.</td>
<td>Impact of Molecular Absorption Spectroscopy Data on Methane Retrieval from SCIAMACHY and GOSAT Shortwave Infrared Spectra</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Yokoya, N.</td>
<td>Analysis of Phase Inconsistencies in SAR Interferometry</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Zhang, G.</td>
<td>Fusion of Sentinel-2 and OpenStreetMap Data for the Classification of Local Climate Zones</td>
<td>München (TU)</td>
<td>2017</td>
<td>M</td>
</tr>
<tr>
<td>Alcaya, R.</td>
<td>Vom Bild zum Objekt – Ableitung von 3D-Gebäudemodellen aus Fernerkundungsdaten</td>
<td>München (HS)</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Ehrensporger, S.</td>
<td>Ableitung windgefährdeter Regionen unter Verwendung nichtparametrischer Regressionsanalyse</td>
<td>München (HS)</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>Fast, S.</td>
<td>Mosaikierung von Orthobildern mit Saumlinien aus Geoinformation</td>
<td>Ostwestfalen-Lippe (HS)</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>Han, L.</td>
<td>An Algorithm for the Detection of Calving Glaciers Frontal Position from TerraSAR-X and Sentinel-1 Imagery</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Hornig, I.</td>
<td>Automatisierte Interpretation von optischen Satellitenaufnahmen urbaner Gebiete anhand von Simulationsverfahren</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Hu, W.</td>
<td>Object-Based Multi-View Façade Matching in SAR Images of Dense Urban Areas</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Ilehag, R.</td>
<td>Exploitation of Digital Surface Models from Optical Satellites for the Identification of Buildings in High Resolution SAR Imagery</td>
<td>Stockholm (KTH Royal Institute of Technology)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Kerkhoff, S.</td>
<td>Anwendung und Untersuchung einer Methode zur Analyse von IT-Sicherheitsrisiken anhand eines hochwertigen Erdfernerkundungssystems</td>
<td>Hagen</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Liu, Y.</td>
<td>InSAR Surface Elevation Derived from Bistatic TanDEM-X Data over the Schirmacher Oasis Area, East Antarctica</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Städt, S.</td>
<td>Mini MAX-DOAS Measurements of Air Pollutants over China</td>
<td>Berlin (FU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Sun, Y.</td>
<td>3D Building Reconstruction from Spaceborne TomoSAR Point Cloud</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Suttner, M.</td>
<td>Analyse des Geokodierungfehlers für die gemeinsame Bearbeitung von SAR und optischen Daten</td>
<td>München (TU)</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>Szajkowski, M.</td>
<td>Development of Pre- and Post-Processing Tools for the Analysis of Microwave Temperature Profiling Observations</td>
<td>Wrocław</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Xia, Y.</td>
<td>Homogeneous Pixel Selection for Distributed Scatterers Using Multitemporal SAR Data Stacks</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Xu, X.</td>
<td>Using SBAS-InSAR for Beijing-Tianjin Intercity Railway Subsidence Monitoring</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Zeitlhöfer, J.</td>
<td>Robuste Schätzung durch Approximation von Matrizen niedrigen Ranges</td>
<td>München (TU)</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>Zeng, L.</td>
<td>Analysis on Recent Changes of Water Area in China’s Poyang Lake Region Using Sentinel-1 Data</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Zhao, J.</td>
<td>Assessment of SAR Signal Penetration Effect on TanDEM-X Elevations in Antarctica with Laser Altimetry and GNSS Measurements</td>
<td>München (TU)</td>
<td>2016</td>
<td>M</td>
</tr>
<tr>
<td>Bellos, D.</td>
<td>A Case Study at Lake Constance for Water Depth Determination from Hyperspectral Data</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Hieronimus, J.</td>
<td>Wind Speed Measurements in an Offshore Wind Farm by Remote Sensing. A Comparison of Radar Satellite TerraSAR-X and Ground-Based LiDAR Systems</td>
<td>Oldenburg</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Hochstaffl, P.</td>
<td>Validation of Carbon Monoxide Total Columns from SCIAMACHY Near Infrared Nadir Spectra with NDACC/TCCON Ground-Based Measurements</td>
<td>Innsbruck</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>von Hößlin, S.</td>
<td>Development and Validation of an Automated Photobioreactor System for Measuring Absorption and Fluorescence of Phytoplankton</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Hundhausen, F.</td>
<td>Aufbau, Charakterisierung und Ansteuerung eines Beleuchtungs-Moduls zur Simulation variabler Unterwasser-Lichtspekten unter Verwendung von Hochleistungs-Leuchtdioden</td>
<td>Esslingen (HS)</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>Ionescu, A.</td>
<td>Evaluierung bestehender Algorithmen zur 3D-Rekonstruktion statischer Objekte aus monokularen Bildserien</td>
<td>München (TU)</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>Kölling, T.</td>
<td>Characterization, Calibration and Operation of a Hyperspectral Sky Imager</td>
<td>München (LMU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Metzlaff, L.</td>
<td>Region Based Building Footprint Extraction and Change Detection for Urban Areas</td>
<td>Augsburg</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Niebisch, M.</td>
<td>Simulation des Satelliten EnMAP und Scheduling mithilfe von evolutionären Algorithmen</td>
<td>München (HS)</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>Petri, C.</td>
<td>Determination of Storm Endangered Regions Based on Digital Elevation Models</td>
<td>Augsburg</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Piñuela Garcia, F.</td>
<td>Activando búsquedas por longitud de onda en una base de datos de indices hiperespectrales</td>
<td>Alcalá</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Riegler, M.</td>
<td>A Study and Comparison of Feature Matching</td>
<td>München (HS)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Sakar, N.</td>
<td>Development of Advanced Co-Registration Methods for Sentinel-1 TOPS Mode</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Sasi, S.</td>
<td>Cloud Internal Mixing Model for Ozone Retrieval</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Schreiner, P.</td>
<td>Analyse der Penetrationsfähigkeit von Millimeterwellen-SAR am Beispiel von Baumkronen</td>
<td>München (TU)</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>Thumm, B.</td>
<td>Entwicklung und Anwendung einer robusten Atmosphärenkorrektur auf der Basis des Angstroemschätzers (MOS) für räumlich höherauflösende Fernerkundungssensoren, sowie Anwendung auf Binnengewässer zur Abschätzung der Gewässergüte</td>
<td>Berlin (FU)</td>
<td>2015</td>
<td>B</td>
</tr>
<tr>
<td>Wei, L.</td>
<td>Quantification of Low-Rank Information in Multi-Temporal SAR Datasets</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Willberg, M.</td>
<td>Geodätisches SAR zur Höhenmessung von Gezeitenpegelstationen</td>
<td>München (TU)</td>
<td>2015</td>
<td>M</td>
</tr>
<tr>
<td>Adam, F.</td>
<td>Non-Local Filtering of TanDEM-X Interferograms for Improving DEM Quality</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Beverborg, H.</td>
<td>Entwicklung einheitlicher Regelsätze in eCognition für die objektorientierte Klassifikation von verschiedenen multispektralen Datensätzen in Kombination mit Höhendaten</td>
<td>Osnabrück</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Borchardt, S.</td>
<td>Der Mehrwert des Cyanobakterienalgorithmus bei der räumlich-zeitlichen Verfolgung von Algenblüten in der Ostsee anhand einer Jahresanalyse von MERIS-Daten</td>
<td>Berlin (FU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Bräuninger, S.</td>
<td>Erfassung von Verkehrsdaten aus monetemporalen Satellitenbildaufnahmen</td>
<td>München (HS)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Brunnengräber, M.</td>
<td>Kalibrierung des UAV Kamerasystems Asctec Firefly</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Burns, T.</td>
<td>Dictionary Learning for Sparse Representation Based Image Fusion</td>
<td>Queensland</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Davydova, K.</td>
<td>Consistent Multi-View Texturing of Detailed 3D Surface Models</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Hornig, I.</td>
<td>Charakterisierung von Corner-Reflektoren mit Teilverglasung</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Koch, T.</td>
<td>Robustes Tracking mithilfe des Partikel Filters</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Lang, F.</td>
<td>Analyse digitaler Oberflächenmodelle aus multitemporalen hochauflösenden optischen Satellitendaten</td>
<td>München (HS)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Langheinrich, M.</td>
<td>On the Influence of Coregistration Errors on Satellite Image Pansharpening Methods</td>
<td>München (HS)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Liu, K.</td>
<td>Fast Multiclass Vehicle Detection in Very High Resolution Aerial Images</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Liu, S.</td>
<td>Retrieval and Validation of Aerosol and NO\textsubscript{2} Profiles over Nanjing Using Mini-MAX-DOAS Instrument</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Magin, J.</td>
<td>Erprobung kostengünstiger Ultraschallsensoren mit dem Raspberry Pi</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Matayeva, A.</td>
<td>Deriving the Distribution of Population from Nighttime Lights Data</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Mende, M.</td>
<td>Flugassistentsoftware für unbemannte Kleinfluggeräte</td>
<td>Mannheim (DHBW)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Moie, R.</td>
<td>A Detailed Survey and Efficient Implementation of the SGM Algorithm</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Montazeri, S.</td>
<td>The Fusion of SAR Tomography and Stereo-SAR for 3D Absolute Scatterer Positioning</td>
<td>Delft</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Naumann, A.</td>
<td>Detektion Regelmäßiger Gitter in Persistent Scatterer Punktwolken</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Orthuber, E.</td>
<td>3D Building Reconstruction from Airborne LiDAR Pointclouds</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Pütz, M.</td>
<td>Integration von 3D-Geoinformation in die Veränderungsanalyse aus hochauflösenden SAR-Daten</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Schmidt, D.</td>
<td>Carbon Monoxide from SCIAMACHY Near Infrared Nadir Spectra: Impact of Retrieval Settings</td>
<td>München (TU)</td>
<td>2014</td>
<td>M</td>
</tr>
<tr>
<td>Schütz, A.</td>
<td>Photogrammetrische Auswertung von Bildern der Spacelab-Metric Camera</td>
<td>München (TU)</td>
<td>2014</td>
<td>B</td>
</tr>
<tr>
<td>Name</td>
<td>Subject</td>
<td>University</td>
<td>Year</td>
<td>M/D/B</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-----------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Ansari, H.</td>
<td>Bayesian Estimation and Applications in PSI</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Alexy, M.</td>
<td>Synergetische Nutzung von solaren und thermischen Kanälen zur Fernerkundung von Zirruswolken</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Fischer, P.</td>
<td>Solving Optimization and Inverse Problems in Remote Sensing by Using Evolutionary Algorithms</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Hanrieder, B.</td>
<td>Hochwasser in Thailand- Erstellung und Validierung von Flutmasken aus HR- und VHR- Daten zur Abschätzung monetär bewertbarer ökonomischer Verluste</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Leister, W.</td>
<td>Hypothesenvalidierung von Fahrzeugdetektionen mit Hilfe von Color-Cooccurrence-Histogrammen im HSV-Farbraum</td>
<td>Chemnitz (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Meßner, M.</td>
<td>Robust and Efficient Monocular SLAM</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Reinhardt, V.</td>
<td>Methodenentwicklung für Spektrophotometer</td>
<td>München (LMU)</td>
<td>2013</td>
<td>B</td>
</tr>
<tr>
<td>Robatsch, E.</td>
<td>Adjustment and Mosaicking of Satellite Images</td>
<td>Kärnten (FH)</td>
<td>2013</td>
<td>B</td>
</tr>
<tr>
<td>Schneider, N.</td>
<td>Transfer der Kalibrierung von einem Strahldichtenormal auf Hyperspektralsensoren</td>
<td>München (LMU)</td>
<td>2013</td>
<td>B</td>
</tr>
<tr>
<td>Serr, P.</td>
<td>Vollautomatisches Mosaikieren von Satellitenbildern</td>
<td>München (LMU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Shah, M.</td>
<td>Accurate Estimation of Travel Times on the Traffic Data, Extracted from Aerial Image Time Series</td>
<td>München (TU)</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Soria Villalba, S.</td>
<td>Advanced Algorithms for Denoising of Hyperspectral Data for Bands with Low Signal-To-Noise Ratio</td>
<td>Alcala</td>
<td>2013</td>
<td>M</td>
</tr>
<tr>
<td>Vérité, M.</td>
<td>Evaluation of Satellite Based Traffic Data Using Compartments Flow Model and Particles Filtering</td>
<td>Compiègne</td>
<td>2013</td>
<td>M</td>
</tr>
</tbody>
</table>
Scientific Exchange

Guest Scientists

Visiting scientists (≥ 4 weeks) hosted by IMF between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Home Institution</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alam, K.</td>
<td>Jun – Jul 2013</td>
<td>University of Peshawar, Pakistan</td>
<td>HEC, Pakistan</td>
</tr>
<tr>
<td>Andreou, C.</td>
<td>Apr – Jun 2013</td>
<td>National Technical University of Athens, Greece</td>
<td>DAAD</td>
</tr>
<tr>
<td>Ao, D.</td>
<td>Oct – Dec 2016</td>
<td>Beijing Institute of Technology, China</td>
<td>Chinese Academy of Science</td>
</tr>
<tr>
<td>Arefi, H.</td>
<td>Jun – Aug 2015</td>
<td>University of Tehran, Iran</td>
<td>DAAD</td>
</tr>
<tr>
<td>Burns, T.</td>
<td>Apr – Sep 2014</td>
<td>University of Queensland, Australia</td>
<td>HGF</td>
</tr>
<tr>
<td>Che, M.</td>
<td>Nov – Dec 2017</td>
<td>University of Pavia</td>
<td>University of Pavia</td>
</tr>
<tr>
<td>Damian, C.</td>
<td>Aug – Oct 2015</td>
<td>Politehnica Bucharest, Romania</td>
<td>Politehnica Bucharest</td>
</tr>
<tr>
<td>Deo, R.</td>
<td>Oct 2013 – Sep 2014</td>
<td>Indian Institute of Technology</td>
<td>DAAD</td>
</tr>
<tr>
<td>Dirschler, M.</td>
<td>Feb – Jun 2018</td>
<td>University of Island</td>
<td>University of Island</td>
</tr>
<tr>
<td>Eppler, J.</td>
<td>Jun – Sep 2018</td>
<td>Simon Frazer University, Canada</td>
<td>Simon Frazer University</td>
</tr>
<tr>
<td>Eremin, Y.</td>
<td>Sep 2013</td>
<td>Moscow Lomonosov State University, Russia</td>
<td>DAAD</td>
</tr>
<tr>
<td>Focsa, A.</td>
<td>Aug – Oct 2015</td>
<td>Military Academy, Romania</td>
<td>Military Academy</td>
</tr>
<tr>
<td>Fraser, C.</td>
<td>Jun – Aug 2014</td>
<td>University of Melbourne, Australia</td>
<td>DAAD Senior Scientist</td>
</tr>
<tr>
<td>Georgescu, F.</td>
<td>Aug – Dec 2015</td>
<td>Military Academy, Romania</td>
<td>Military Academy</td>
</tr>
<tr>
<td>Ghamisi, P.</td>
<td>Oct 2015 – Sep 2017</td>
<td>University of Iceland, Reykjavik, Iceland</td>
<td>Alexander von Humboldt Research Fellowship for Postdoctoral Researchers</td>
</tr>
<tr>
<td>Giardino, G.</td>
<td>Apr – Oct 2014</td>
<td>University of Rome Tor Vergata, Italy</td>
<td>University of Rome Tor Vergata</td>
</tr>
<tr>
<td>Guo, R.</td>
<td>Nov 2012 – Nov 2014</td>
<td>Xidian University, China</td>
<td>DAAD, Postdoc</td>
</tr>
<tr>
<td>Kai, Q.</td>
<td>Feb 2016 – Feb 2017</td>
<td>China University of Mining and Technology, China</td>
<td>China Overseas Training Program for Young Teachers</td>
</tr>
<tr>
<td>Kar, A.</td>
<td>Nov 2013 – Mar 2015</td>
<td>Moscow State University, Russia</td>
<td>DAAD</td>
</tr>
<tr>
<td>Kiselev, O.</td>
<td>Mar 2013 – Mar 2015</td>
<td>Moscow State University, Russia</td>
<td>DAAD Postdoc</td>
</tr>
<tr>
<td>Maier, S.</td>
<td>Jul – Sep 2014</td>
<td>University of Darwin, Australia</td>
<td>DAAD Senior Scientist</td>
</tr>
<tr>
<td>Name</td>
<td>Period</td>
<td>Home Institution</td>
<td>Funding</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Main-Knorr, M.</td>
<td>Jan 2013 – Jan 2015</td>
<td>Technical University of Denmark</td>
<td>DAAD Postdoc</td>
</tr>
<tr>
<td>Nielsen, A.</td>
<td>May 2013</td>
<td>Technical University of Denmark</td>
<td>DAAD</td>
</tr>
<tr>
<td>Patrascu, C.</td>
<td>Oct 2012 – Feb 2013</td>
<td>Politehnica Bucharest, Romania</td>
<td>Politehnica Bucharest</td>
</tr>
<tr>
<td>Qin, R.</td>
<td>Sep – Nov 2014</td>
<td>ETH Zürich, Switzerland</td>
<td>Singapore ETH Center</td>
</tr>
<tr>
<td>Radoi, A.</td>
<td>Feb – Apr 2015</td>
<td>Politehnica Bucharest, Romania</td>
<td>Politehnica Bucharest</td>
</tr>
<tr>
<td>Rikka, S.</td>
<td>Nov 2016 – Aug 2017</td>
<td>Tallinn University of Technology, Estonia</td>
<td>Archimedes Foundation, Tallinn</td>
</tr>
<tr>
<td>Roman Gonzalez, A.</td>
<td>May – Oct 2013</td>
<td>ParisTech, France</td>
<td>DLR</td>
</tr>
<tr>
<td>Sarris, A.</td>
<td>Jan – Mar 2018</td>
<td>Foundation for Research and Technology Hellas, Greece</td>
<td>DAAD</td>
</tr>
<tr>
<td>Vaduva, C.</td>
<td>Sep – Oct 2014</td>
<td>Politehnica Bucharest, Romania</td>
<td>Politehnica Bucharest</td>
</tr>
<tr>
<td>Xie, C.</td>
<td>Apr 2014 – Mar 2015</td>
<td>Chinese Academy of Science, Beijing, China</td>
<td>Chinese Academy of Science</td>
</tr>
<tr>
<td>Yao, W.</td>
<td>Aug 2014 – Jun 2017</td>
<td>Universität Siegen</td>
<td>Universität Siegen</td>
</tr>
<tr>
<td>Yokoya, N.</td>
<td>Dec 2015 – Nov 2017</td>
<td>University of Tokyo, Japan</td>
<td>Alexander von Humboldt Research Fellowship for Postdoctoral Researchers</td>
</tr>
<tr>
<td>Zhang, C.</td>
<td>Aug – Nov 2016</td>
<td>University of Science and Technology of China, Hefei, China</td>
<td>USTC, China</td>
</tr>
<tr>
<td>Zhu, B.</td>
<td>Sep – Nov 2015</td>
<td>Fudan University, China</td>
<td>DAAD</td>
</tr>
</tbody>
</table>
Professional Leaves

Periods of stay (≥ 4 weeks) by IMF and TUM-LMF/SiPEO (italic) staff at external institutions between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Staff Member</th>
<th>Institution</th>
<th>Period</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avbelj, J.</td>
<td>Tel-Aviv University, Israel</td>
<td>Aug – Oct 2013</td>
<td>DLR, TUM</td>
</tr>
<tr>
<td>Bieniarz, J.</td>
<td>University of Massachusetts, USA</td>
<td>Sep – Oct 2013</td>
<td>DLR</td>
</tr>
<tr>
<td>Cui, S.</td>
<td>University of Toronto, Canada</td>
<td>May – Jun 2015</td>
<td>DLR</td>
</tr>
<tr>
<td>Floricioiu, D.</td>
<td>University Canterbury, New Zealand (Antarctica expedition)</td>
<td>Oct – Dec 2016</td>
<td>Antarctica New Zealand, Gateway Antarctica, DLR</td>
</tr>
<tr>
<td>Gege, P.</td>
<td>German research vessel “Polarstern”</td>
<td>May – Jul 2017</td>
<td>DLR</td>
</tr>
<tr>
<td>Hong, D.</td>
<td>Grenoble Institute of Technology, France</td>
<td>Mar – Jun 2018</td>
<td>DLR</td>
</tr>
<tr>
<td>Koch, T.</td>
<td>IPN - Computing Research Center, Mexico City, Mexico</td>
<td>Mar – Apr 2018</td>
<td>TUM</td>
</tr>
<tr>
<td>Kuschik, G.</td>
<td>TU Graz, Austria</td>
<td>May – Jun 2013</td>
<td>DLR</td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>Nova Southeastern University, Miami, USA</td>
<td>Feb – Apr 2017</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td>UVic University, Victoria, Canada</td>
<td>Sep – Oct 2017</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td>Simon Fraser University, Vancouver, Canada</td>
<td>May – Jun 2017</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feb – Apr 2018</td>
<td>DLR</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>NASA, Goddard, Greenbelt, USA</td>
<td>Aug 2016 – Jul 2017</td>
<td>DLR</td>
</tr>
<tr>
<td>Mattyus, G.</td>
<td>University of Toronto, Canada</td>
<td>May – Jun 2014</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feb – Mar 2015</td>
<td></td>
</tr>
<tr>
<td>Merkle, N.</td>
<td>University of Toronto, Canada</td>
<td>Apr – May 2016</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct – Nov 2016</td>
<td></td>
</tr>
<tr>
<td>Meynberg, O.</td>
<td>University of Otago, New Zealand</td>
<td>Nov – Dec 2016</td>
<td>DLR</td>
</tr>
<tr>
<td>Murillo, A.</td>
<td>Google, Zurich, CH</td>
<td>Oct – Dec 2016</td>
<td>Google</td>
</tr>
<tr>
<td>Partovi, T.</td>
<td>University Twente, Netherlands</td>
<td>Oct – Nov 2015</td>
<td>DLR</td>
</tr>
<tr>
<td>Raßwurm, M.</td>
<td>ESRIN Philab, Frascati, Italy</td>
<td>Jun 2018</td>
<td>TUM</td>
</tr>
<tr>
<td>Schmitt, M.</td>
<td>University of Massachusetts Amherst, USA</td>
<td>Jul – Sep 2016</td>
<td>TUM</td>
</tr>
<tr>
<td>Shahzad, M.</td>
<td>TU Graz, Austria</td>
<td>Nov 2015 – Jan 2016</td>
<td>TUM</td>
</tr>
<tr>
<td>Singha, S.</td>
<td>University of Tromsø, Norway</td>
<td>Feb – Mar 2017</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apr – May 2018</td>
<td></td>
</tr>
<tr>
<td>Traganos, D.</td>
<td>University of Queensland, Brisane, Australia</td>
<td>Apr 2018 – Jun 2018</td>
<td>DLR</td>
</tr>
<tr>
<td>Staff Member</td>
<td>Institution</td>
<td>Period</td>
<td>Funding</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>University of New South Wales, Sydney, Australia</td>
<td>Nov 2014 – Feb 2015</td>
<td>DLR</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>ETH Zürich, Switzerland</td>
<td>Jun – Jul 2014</td>
<td>TUM</td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>Fudan University, China</td>
<td>Jan – Feb 2014</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td>University of California, Los Angeles, USA</td>
<td>Mar – May 2016</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td>University of Tokyo, Japan</td>
<td>May – Jun 2016</td>
<td>DLR</td>
</tr>
<tr>
<td>Zhuo, X.</td>
<td>TU Graz, Austria</td>
<td>Oct – Nov 2017</td>
<td>DLR</td>
</tr>
</tbody>
</table>
Conferences

Major conferences, colloquia and workshops (co-)organized by IMF and TUM-LMF/SiPEO between 2013 and 2018.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 – 26 Sep 2018</td>
<td>WHISPERS 2018 (General Chair)</td>
<td>Amsterdam, NL</td>
<td>400</td>
</tr>
<tr>
<td>1 Jul 2016</td>
<td>Third Workshop on Geo-Spatial Computer Vision: Visual Analysis of Satellite to Street Imagery (in conjunction with IEEE Conference on Computer Vision and Pattern Recognition, CVPR)</td>
<td>Las Vegas, USA</td>
<td>20</td>
</tr>
<tr>
<td>5 – 7 Mar 2014</td>
<td>Image Information Mining: Geospatial Intelligence from Earth Observation Conference (ESA-EUSC-JRC 2014)</td>
<td>Bucharest, Romania</td>
<td>90</td>
</tr>
<tr>
<td>23 – 26 Sep 2013</td>
<td>SAR-EDU Summer School</td>
<td>Jena</td>
<td>20</td>
</tr>
<tr>
<td>21 – 24 May 2013</td>
<td>ISPRS Workshop High-Resolution Earth Imaging for Geospatial Information</td>
<td>Hannover</td>
<td>120</td>
</tr>
</tbody>
</table>
Filed Patent Applications

<table>
<thead>
<tr>
<th>Name</th>
<th>Patent</th>
<th>Patent No</th>
<th>Year</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klarner, R., Runge, H.</td>
<td>Fahrerassistenzsystem bzw. autonomes Fahrsystem zum Schutz von anderen Verkehrs teilnehmern durch das eigene Fahrzeug</td>
<td>DE 10 2017 106032.4</td>
<td>2017</td>
<td>DE, EP</td>
</tr>
<tr>
<td>Dreher, A., Runge, H., Klarner, R.</td>
<td>RF-QR-Code</td>
<td>DE 10 2016 101156.8</td>
<td>2016</td>
<td>DE</td>
</tr>
<tr>
<td>Klarner, R., Runge, H.</td>
<td>Fahrerassistenzsystem zur optimierten Fahrzeugsteuerung und Hindernis-Prävention mittels Umfeld-Informationen</td>
<td>DE 10 2016 101901.1</td>
<td>2016</td>
<td>DE</td>
</tr>
<tr>
<td>Runge, H., Krauß, T.</td>
<td>Bestimmung von Passpunkten in Radar-Bildern und optischen Aufnahmen</td>
<td>DE 10 2016 123286.6</td>
<td>2016</td>
<td>DE</td>
</tr>
<tr>
<td>Caron, S., Pernpeintner, S., Meyen, S., Cerra, D.</td>
<td>Zerstörungsfreies Messverfahren zur lokalen Ermittlung des spektralaufgelösten hemisphärischen Emissionsgrads und absoluten Oberflächentemperatur eines Körpers</td>
<td>DE 10 2015 219727.1</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Duque Biarge, S., Parizzi, A., De Zan, F.</td>
<td>Automatic three-dimensional geolocation of SAR targets and simultaneous estimation of tropospheric propagation delays using two long-aperture SAR images</td>
<td>DE 10 2015 220218.6</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Klarner, R., Runge, H.</td>
<td>Spurhalteassistent</td>
<td>DE 10 2015 111925.0</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Krauß, T., Fischer P.</td>
<td>Frühwarsystem vor Abflussrückstau verursacht durch Starkregen</td>
<td>DE 10 2015 109208.5</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Avbelj, J.</td>
<td>Qualitätssicherung für Geoinformationen</td>
<td>DE 10 2014 211088.2</td>
<td>2014</td>
<td>DE</td>
</tr>
<tr>
<td>Fraundorfer, F., Mattyus, G. S.</td>
<td>Georeferenzierung von Bilddaten</td>
<td>DE 10 2014 108255.9</td>
<td>2014</td>
<td>DE</td>
</tr>
<tr>
<td>Israel, M.</td>
<td>Verfahren zum Auffinden von Lebewesen aus der Luft sowie Flugobjekte zum Auffinden von Lebewesen aus der Luft</td>
<td>DE 10 2012 221580.8</td>
<td>2013</td>
<td>DE, CH, AT</td>
</tr>
</tbody>
</table>
Granted Patents

<table>
<thead>
<tr>
<th>Name</th>
<th>Patent</th>
<th>Patent No.</th>
<th>Year</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klarner, R.</td>
<td>System zur Fahrerunterstützung</td>
<td>DE 10 2014 106890.4</td>
<td>2018</td>
<td>DE</td>
</tr>
<tr>
<td>Runge, H.</td>
<td>Verfahren und System zur Ermittlung von Bewegungen</td>
<td>DE 10 2016 107065.3</td>
<td>2017</td>
<td>DE</td>
</tr>
<tr>
<td>Adam, N.</td>
<td>Verfahren und System zur Ermittlung von langzeitstabilen Radarstrümpfen auf einer Oberfläche eines Planeten mittels SAR-Interferometrie</td>
<td>DE 10 2016 107065.3</td>
<td>2017</td>
<td>DE</td>
</tr>
<tr>
<td>Leitloff, J.</td>
<td>Verfahren zur Erkennung von Tieren einschließlich Brüten in landwirtschaftlich genutzten Feldern und Wiesen sowie Vorrichtung zur Durchführung</td>
<td>CH 701643</td>
<td>2015</td>
<td>CH</td>
</tr>
<tr>
<td>Israel, M.</td>
<td>Relative radiometrische Homogenitätsmessung von Flächen und einhergehende relative radiometrische Kalibrierung von abbildenden Detektoren</td>
<td>DE 10 2013 015892.3</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Tank, V.</td>
<td>System zur Fahrerunterstützung</td>
<td>DE 10 2014 106890.4</td>
<td>2018</td>
<td>DE</td>
</tr>
<tr>
<td>Haschberger, P.</td>
<td>Verfahren und Vorrichtung zur Erfassung von Verkehrsdaten aus digitalen Luftbildsequenzen</td>
<td>DE 10 2016 107065.3</td>
<td>2017</td>
<td>DE</td>
</tr>
<tr>
<td>Runge, H.</td>
<td>Positionsbestimmung eines Fahrzeugs auf oder über einer Planetenoberfläche</td>
<td>DE 10 2013 015892.3</td>
<td>2015</td>
<td>DE</td>
</tr>
<tr>
<td>Klarner, R.</td>
<td>Verfahren zur Georeferenzierung optischer Fernerkundungsbilder</td>
<td>EP 2225533</td>
<td>2014</td>
<td>DE, FR, IT, US</td>
</tr>
<tr>
<td>Baumgartner, A.</td>
<td>Hochelastischer Verbundwerkstoff sowie Sportbogen aus einem hochelastischen Verbundwerkstoff</td>
<td>DE 10 2009 032663</td>
<td>2014</td>
<td>DE</td>
</tr>
<tr>
<td>Dequet, W.</td>
<td>Verfahren zur Messung des Wasserstands eines Gewässers</td>
<td>DE 10 2010 001440</td>
<td>2014</td>
<td>DE, CA</td>
</tr>
<tr>
<td>Tank, V.</td>
<td>Verfahren und Vorrichtung zur Suche und Erkennung von in landwirtschaftlichen Feldern und Wiesen versteckten Tieren</td>
<td>CH 701808</td>
<td>2014</td>
<td>CH</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>Verfahren zur Messung des Wasserstands eines Gewässers</td>
<td>DE 10 2010 001440</td>
<td>2014</td>
<td>DE, CA</td>
</tr>
<tr>
<td>Tank, V.</td>
<td>Vorrichtung zur Kalibrierung eines optischen Sensors</td>
<td>DE 10 2012 014263</td>
<td>2014</td>
<td>DE</td>
</tr>
<tr>
<td>Suchandt, S.</td>
<td>Vorrichtung zur Kalibrierung eines optischen Sensors</td>
<td>DE 10 2012 014263</td>
<td>2014</td>
<td>DE</td>
</tr>
<tr>
<td>Runge, H.</td>
<td>Vorrichtung zur Ermittlung von Gaskonzentrationen</td>
<td>DE 10 2012 006047</td>
<td>2013</td>
<td>DE, USA</td>
</tr>
<tr>
<td>Schwarzmaier, T.</td>
<td>Vorrichtung zur Ermittlung von Gaskonzentrationen</td>
<td>DE 10 2012 006047</td>
<td>2013</td>
<td>DE, USA</td>
</tr>
<tr>
<td>Gege, P.</td>
<td>Vorrichtung zur Ermittlung von Gaskonzentrationen</td>
<td>DE 10 2012 006047</td>
<td>2013</td>
<td>DE, USA</td>
</tr>
</tbody>
</table>

For country abbreviations see footnote to previous table of Filed Patent Applications
Awards

Awards granted to IMF and TUM-LMF/Sipeo (in italic typeface) staff between 2013 and mid 2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Award</th>
<th>Laureates (only IMF, LMF/Sipeo)</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Best Paper Award, ALLDATA 2018 (Athens/Greece)</td>
<td>Dumitru, C. Schwarz, G. Datcu, M.</td>
<td>Monitoring of Coastal Environments Using Data Mining</td>
</tr>
<tr>
<td>2018</td>
<td>2018 Richard M. Goody Award</td>
<td>Efremenko, D.</td>
<td>Atmospheric Radiation and Remote Sensing</td>
</tr>
<tr>
<td>2018</td>
<td>Best Reviewer Award 2017 (IEEE Geoscience and Remote Sensing Letters)</td>
<td>Ghamisi, P.</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1st Place Student Paper Award, EUSAR 2018 (Aachen)</td>
<td>Kang, J. Wang, Y. Zhu, X.</td>
<td>Low Rank Modeling based Multipass InSAR technique</td>
</tr>
<tr>
<td>2018</td>
<td>Ada Lovelace Award for HPC 2018 (Partnership for Advanced Computing in Europe)</td>
<td>Zhu, X.</td>
<td>Global Urban Modeling</td>
</tr>
<tr>
<td>2018</td>
<td>Leopoldina Early Career Award 2018</td>
<td>Zhu, X.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Helmut-Rott-Preis 2017</td>
<td>Abdel Jaber, W.</td>
<td>Derivation of mass balance and surface velocity of glaciers by means of high resolution synthetic aperture radar: application to the Patagonian Icefields and Antarctica (Dissertation)</td>
</tr>
<tr>
<td>2017</td>
<td>DLR Senior Scientist 2017</td>
<td>Adam, N.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>IEEE GRSS Mikio Takagi Student Prize</td>
<td>Ansari, H.</td>
<td>Sequential Estimator: Toward Efficient InSAR Time Series Analysis</td>
</tr>
<tr>
<td>Year</td>
<td>Award</td>
<td>Laureates (only IMF, LMF/SIPEO)</td>
<td>Subject</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2017</td>
<td>ASTO-Preis 2017</td>
<td>Bittner, K.</td>
<td>Building extraction using a deep learning framework</td>
</tr>
<tr>
<td>2017</td>
<td>Chaire Blaise Pascal 2017 (Fondation de l’Ecole Normale Supérieure, France)</td>
<td>Datcu, M.</td>
<td>New challenges for machine learning posed by very heterogeneous data</td>
</tr>
<tr>
<td>2017</td>
<td>DLR-Nachwuchsgruppenleitung</td>
<td>Efremenko, D.</td>
<td>Mathematical and Physical Models for Analyzing Big Data from Atmospheric Composition Sensors</td>
</tr>
<tr>
<td>2017</td>
<td>Best Presentation Award, LRZ Deep Learning Meeting (Garching)</td>
<td>Rußwurm, M., Körner, M.</td>
<td>Temporal Vegetation Modelling using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-Spectral Satellite Images</td>
</tr>
<tr>
<td>2017</td>
<td>Travel Grant, ISPRS Hannover Workshop (The ISPRS Foundation)</td>
<td>Rußwurm, M., Körner, M.</td>
<td>Multitemporal Crop Identification from Medium-Resolution Multi-Spectral Satellite Images based on Long Short-Term Memory Neural Networks</td>
</tr>
<tr>
<td>2017</td>
<td>Helmholtz Young Investigators Group</td>
<td>Vig, E.</td>
<td>ARIADNE: AerIAL Imagery Analytics by Deep Neural Networks</td>
</tr>
<tr>
<td>2017</td>
<td>1st Prize, IEEE GRSS Data Fusion Contest 2017</td>
<td>Yokoya, N., Ghamisi, P.</td>
<td>Ensemble Classifier (including Canonical Correlation Forests and Rotation Forests) over Landsat8 Images and OpenStreetMap Data</td>
</tr>
<tr>
<td>2017</td>
<td>Helmholtz-Exzellenzprofessur</td>
<td>Zhu, X.</td>
<td>Data Science in Earth Observation</td>
</tr>
<tr>
<td>Year</td>
<td>Award</td>
<td>Laureates (only IMF, LMF/SiPEO)</td>
<td>Subject</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2016</td>
<td>VDV Hochschulpreis (beste Bachelorarbeit) (Verband deutscher Vermessungsingenieure)</td>
<td>Ehrensperger, S.</td>
<td>Ableitung windgefährdeter Regionen unter Verwendung nichtparametrischer Regressionsanalyse</td>
</tr>
<tr>
<td>2016</td>
<td>Best Paper Award, VISAPP 2016 (Rom)</td>
<td>Fraundorfer, F.</td>
<td>Direct Stereo Visual Odometry based on Lines</td>
</tr>
<tr>
<td>2016</td>
<td>1st Prize, IEEE GRSS Data Fusion Contest 2016</td>
<td>Mou, L., Zhu, X.</td>
<td>Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Networks and Tracklet Analysis</td>
</tr>
<tr>
<td>2016</td>
<td>DLR Senior Scientist 2016</td>
<td>Müller, R.</td>
<td>RETRIEVE - Sentinels for Safe Transportation and Retrieval of High-value Goods</td>
</tr>
<tr>
<td>2016</td>
<td>Regional Winner Bayern Copernicus Masters Competition 2016</td>
<td>Runge, H.</td>
<td>Herausragende und innovative Nutzungsideen zur Erdbeobachtung</td>
</tr>
<tr>
<td>2016</td>
<td>Special Prize: BMVI Earth Observation Challenge for Digital Transport Applications Copernicus Masters Competition 2016</td>
<td>Runge, H.</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Best Reviewer Award 2015 (IEEE Geoscience and Remote Sensing Letters)</td>
<td>Schmitt, M.</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>IEEE Senior Member</td>
<td>Schmitt, M.</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Dimitris N. Chorafas Foundation Prize 2016</td>
<td>Wang, Y.</td>
<td>Advances in Meter-Resolution Multipass SAR Interferometry</td>
</tr>
<tr>
<td>2016</td>
<td>Mitglied “Junge Akademie” (Berlin-Brandenburgischen Akademie der Wissenschaften und der Deutschen Akademie der Naturforscher Leopoldina)</td>
<td>Zhu, X.</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Award</td>
<td>Laureates (only IMF, LMF/SiPEO)</td>
<td>Subject</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2016</td>
<td>ERC Starting Grant</td>
<td>Zhu, X.</td>
<td>So2Sat: Big Data for 4D Global Urban Mapping – 10^{14} Bytes from Social Media to EO Satellites</td>
</tr>
<tr>
<td>2016</td>
<td>DLR-Wissenschaftspreis 2016</td>
<td>Zhu, X. Montazeri, S.</td>
<td>Geodetic SAR tomography</td>
</tr>
<tr>
<td>2015</td>
<td>IEEE Fellow</td>
<td>Eineder, M.</td>
<td>Contributions to SAR image processing for geodesy</td>
</tr>
<tr>
<td>2015</td>
<td>DLR Senior Scientist 2015</td>
<td>Loyola, D.</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Outstanding PhD Thesis Award (Munich GeoCenter)</td>
<td>Schmitt, M.</td>
<td>Reconstruction of urban surface models from multi-aspect and multi-baseline interferometric SAR</td>
</tr>
<tr>
<td>2015</td>
<td>Georg-Burg-Preis der Ingenieurfakultät Bau Geo Umwelt (TU München)</td>
<td>Schmitt, M.</td>
<td>Reconstruction of urban surface models from multi-aspect and multi-baseline interferometric SAR</td>
</tr>
<tr>
<td>2015</td>
<td>Heinz Maier-Leibnitz Preis 2015 (Deutsche Forschungsgemeinschaft)</td>
<td>Zhu, X.</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>2015</td>
<td>Helene-Lange-Preis 2015 (EWE-Stiftung, Universität Oldenburg)</td>
<td>Zhu, X.</td>
<td>Jahresnachwuchs wissen schaftlerin in den MINT Disziplinen</td>
</tr>
<tr>
<td>2015</td>
<td>ASTO Förderpreis (Gesellschaft von Freunden des DLR)</td>
<td>Zhuo, X.</td>
<td>Fusion of multi-view and multi-scale aerial imagery</td>
</tr>
<tr>
<td>2014</td>
<td>Franz-Xaver-Erlicher Förderpreis (Gesellschaft von Freunden des DLR)</td>
<td>Baier, G.</td>
<td>Interferometrische Algorithmen für mittelauf lös ende SAR-Systeme mit hoher Abbildungsleistung</td>
</tr>
<tr>
<td>2014</td>
<td>IEEE Senior Member</td>
<td>Zhu, X.</td>
<td>Significant contributions to the profession</td>
</tr>
<tr>
<td>Year</td>
<td>Award</td>
<td>Laureates (only IMF, LMF/SiPEO)</td>
<td>Subject</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2014</td>
<td>Innovatoren unter 35 (MIT Technology Review, German Section)</td>
<td>Zhu, X.</td>
<td>4D City</td>
</tr>
<tr>
<td>2013</td>
<td>3rd Prize, IEEE GRSS Data Fusion Contest 2013</td>
<td>Avbelj, J. Bieniarz, J. Cerra, D. Makara, A. Müller, R.</td>
<td>Hyperspectral and lidar fusion</td>
</tr>
<tr>
<td>2013</td>
<td>IEEE Fellow</td>
<td>Datcu, M.</td>
<td>Contributions to information mining of high resolution SAR and optical earth observation images</td>
</tr>
<tr>
<td>2013</td>
<td>3rd Prize, Student Paper Contest, JURSE 2013 (Sao Paulo)</td>
<td>Goel, K. Adam, N.</td>
<td>Advanced Stacking of TerraSAR-X and TanDEM-X Data in Complex Urban Areas</td>
</tr>
<tr>
<td>2013</td>
<td>BMW Connected Drive Challenge Winner, Copernicus Masters Competition 2013</td>
<td>Runge, H.</td>
<td>Radarlösungen für hochautonomes Fahren</td>
</tr>
<tr>
<td>2013</td>
<td>Overall Winner, Copernicus Masters Competition 2013</td>
<td>Runge, H.</td>
<td>Landmark navigation using high precision fix points from radar-satellite imagery</td>
</tr>
</tbody>
</table>
Memberships

Memberships in Space Mission related Boards

<table>
<thead>
<tr>
<th>Member</th>
<th>Agency</th>
<th>Board</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birk, M.</td>
<td>ESA</td>
<td>MIPAS Quality Working Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>HGF</td>
<td>Remote Sensing and Earth System Dynamics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>DLR/JAXA</td>
<td>Tandem-L/ALOS-Next Science Team</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Floricioiu, D.</td>
<td>WMO</td>
<td>Polar Space Task Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gottwald, M.</td>
<td>DLR</td>
<td>SCIAMACHY Science Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gottwald, M.</td>
<td>WMO</td>
<td>Polar Space Task Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Lichtenberg, G.</td>
<td>DLR</td>
<td>SCIAMACHY Science Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Lichtenberg, G.</td>
<td>ESA</td>
<td>CarbonSat Mission Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>CEOS</td>
<td>Atmospheric Composition Constellation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>ESA</td>
<td>Sentinel 4 Mission Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>ESA</td>
<td>Sentinel 5 Mission Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>ESA</td>
<td>Sentinel 5 Precursor Quality Working Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>ESA</td>
<td>Data Record Generation Working Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Schättler, B.</td>
<td>CEOS</td>
<td>WGCV SAR Subgroup</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Slijkhuis, S.</td>
<td>ESA/ EUMETSAT</td>
<td>GOME/GOME-2 Science Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>ESA</td>
<td>Sentinel 5 Precursor Mission Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Trautmann, T.</td>
<td>DLR</td>
<td>METimage Science Advisory Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Wagner, G.</td>
<td>ESA</td>
<td>MIPAS Quality Working Group</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

CEOS: Committee on Earth Observation Satellites
ESA: European Space Agency
EUMETSAT: European Organisation for the Exploitation of Meteorological Satellites
HGF: Helmholtz-Gemeinschaft Deutscher Forschungszentren
JAXA: Japan Aerospace Exploration Agency
WMO: World Meteorological Organization
Editorial Memberships

<table>
<thead>
<tr>
<th>Member</th>
<th>Journal / Book / Series</th>
<th>Publisher</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamler, R.</td>
<td>Remote Sensing Special Issue, Guest Editor</td>
<td>MDPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>International Journal of Image and Data Fusion</td>
<td>Taylor & Francis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datcu, M.</td>
<td>Transactions on Big Data</td>
<td>IEEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eineder, M.</td>
<td>Remote Sensing Special Issue, Guest Editor</td>
<td>MDPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehner, S.</td>
<td>Remote Sensing Special Issue, Guest Editor</td>
<td>MDPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loyola, D.</td>
<td>Atmospheric Measurement Techniques</td>
<td>EGU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinartz, P.</td>
<td>International Journal of Image and Data Fusion</td>
<td>Taylor & Francis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinartz, P.</td>
<td>Remote Sensing</td>
<td>MDPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmitt, M.</td>
<td>Journal of Photogrammetry, Remote Sensing and Geoinformation Science</td>
<td>DGPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slijkhuis, S.</td>
<td>Atmospheric Measurement Techniques</td>
<td>EGU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>Transactions on Geoscience and Remote Sensing</td>
<td>IEEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>Remote Sensing Special Issue, Guest Editor</td>
<td>MDPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>International Journal of Geoinformatics</td>
<td>AgIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, X.</td>
<td>Computer Vision and Image Understanding</td>
<td>Elsevier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AgIT: Association for Geoinformation Technology
DGPF: Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation
EGU: European Geosciences Union
IEEE: Institute of Electrical and Electronics Engineers
MDPI: Multidisciplinary Digital Publishing Institute
SPIE: International Society for Optics and Photonic
Publications

This chapter lists in reverse chronological order for the time period between January 2013 and June 2018

- publications in ISI and SCOPUS journals
- other publications with full paper review
- books and book contributions
- other publications.

Internal reports as well as doctoral, diploma, Master and Bachelor theses are not listed.

IMF authors appear in bold typeface, employees of the TUM-LMF/SiPEO are in bold and italic typeface.

Publications in ISI or Scopus Journals

2018 under review

Stilla, U.: Different Continents by Applying a Deep Information Learning Method to

P.

glacier

InSAR via robust low

completion for multitemporal remotely sensed images inpainting

CNN

Corresponding Patches in SAR and Optical Images with a Pseudo

imagery over t

Observations with NDACC/TCCON Ground

Validation of Carbon Monoxide Total Column Retrievals from SCIAMACHY

GNSS and InSAR observations

Compressive sensing reconstruction of 3D wet refractivity based on

[214] Loyola, D., Pedergnana, M., Gimenov Garcia, S.: Smart sampling and incremental function learning for very large high dimensional data, Neural Networks, 78, pp. 75-87, 2016.

— 176 —

web version - reduced graphics quality

2015

Remote Sensing Technology Institute (IMF) - Status Report 2013 – 2018

2014

2013

Other Publications with Full Paper Review
2018 under review¹

¹ Since 2017 the IGARSS conference requests full paper submissions. Therefore IGARSS papers of 2017 and 2018 are listed in this category.

2018

2017

2016

2015

2014

Realistic 3D City Models

Sensor Data

X Data in Complex Urban Areas

wave focusing

in Proc. MultiTemp 2013, pp. 1

Analysis of Floods and Tsunami

on Compression Methods

International Symposium on Radiative Transfer

acceleration techniques for linearized radiative transfer codes

Conference Proceedings, 1531, pp. 55

of the Discrete Ordinate Method for Nadir Viewing

Bucharest metropolitan area

2013, pp. 1

unmixing with endmember

2013, pp. 1

Homogeneity with an Uncalibrated Imaging Spectrometer

Communication Channel Model

International Cross Domain Conference and Workshop (CD

and Height Models Using Edge Probability

2013, pp. 1

Remote Sensing Technology Institute (IMF)

2013

Espinoza

Cerra, D.

Baumgartner, A.

Avbelj, J.

Arefi, H.

Müller, R.

Reinartz, P.

Datcu, M.

Webbam, M.

Rigoll, G.

2015

2014

2013

Other Publications

2018

2017

2016

2015

2014

Acronyms and Abbreviations

3K System of three Canon EOS1Ds Mark II digital cameras developed by IMF
AC-SAF Satellite Application Facility on Atmospheric Composition
ADM-Aeolus Atmospheric Dynamics Mission (ESA)
Aeolus Atmospheric Dynamics Mission (ESA)
AI Artificial Intelligence
AI4EO Artificial Intelligence for Earth Observation
ALADIN Doppler Lidar instrument (onboard ADM-Aeolus)
ALOS Advanced Land Observing Satellite (Japan)
APEX Airborne Prism Experiment (imaging spectrometer, ESA)
AWI Alfred-Wegener-Institut für Polar- und Meeresforschung (Alfred Wegener Institute for Polar and Marine Research)
BGR Bundesamt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources)
BMBF Bundesministerium für Bildung und Forschung (German Ministry for Education and Research)
BRDF Bidirectional Reflectance Distribution Function
CATENA Automatic processing system (developed at IMF)
CDOP Continuous Development and Operations Phase
CFC Chlorofluorocarbon
CHB Calibration Home Base (established by IMF under ESA contract)
CNES Centre National d’Etudes Spatiales (French Space Agency)
CNN Convolutional neural network
CODE-DE Copernicus Data and Exploitation Platform – Deutschland
Copernicus European (ESA, EU) Program for Global Monitoring for Environment and Security, former GMES
COTS Commercial off-the-shelf
DEM Digital Elevation Model

DEISIS DLR Earth Sensing Imaging Spectrometer (on ISS)
DFD Deutsches Fernerkundungsdatenzentrum (German Remote Sensing Data Center)
DFG Deutsche Forschungsgemeinschaft (German Research Foundation)
DIMS Data and Information Management System of DFD
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Center)
DOM Discrete Ordinate Method
DRACULA aDvanced Retrieval of the Atmosphere with Constrained and Unconstrained Least squares Algorithms (develop at IMF)
DSI Distributed Scatterer Interferometry
DSM Digital Surface Model
DTM Digital Terrain Model
E2S end-to-end simulator
EADS Astrium European Aeronautic Defence and Space company
ECMWF European Centre for Medium-Range Weather Forecasts
ECSS European Cooperation for Space Standardization
ECV Essential Climate Variables
EnMAP Environmental Mapping and Analysis Program (German hyperspectral satellite)
ENVISAT Environmental Satellite (ESA)
EO Earth Observation
EOC Earth Observation Center
EOlib Earth Observation Image Librarian (ESA project)
ERS European Remote Sensing Satellite (ESA)
ESA European Space Agency
ESRIN European Space Research Institute (ESA)
EU European Union
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FAU Fully convolutional networks
FCN Full-Physics Inverse Learning Machine
GAF AG geo-spatial service provider (Munich)
GAN generative adversarial network
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARLIC</td>
<td>Generic Atmospheric Radiation Line-by-Line Infrared Code (developed at IMF)</td>
</tr>
<tr>
<td>GCAPS</td>
<td>Generic Calibration Processing System (developed at IMF)</td>
</tr>
<tr>
<td>GCOS</td>
<td>Global Climate Observing System</td>
</tr>
<tr>
<td>GENESIS</td>
<td>DLR’s Generic System for Interferometric SAR Processing</td>
</tr>
<tr>
<td>GEOMAR</td>
<td>Helmholtz-Zentrum für Ozeanforschung Kiel</td>
</tr>
<tr>
<td>GFZ</td>
<td>Geoforschungszentrum Potsdam (Germany’s National Research Centre for Geosciences)</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment (onboard ERS-2)</td>
</tr>
<tr>
<td>GOME2</td>
<td>Global Ozone Monitoring Experiment-2 (on MetOp)</td>
</tr>
<tr>
<td>GSD</td>
<td>Ground Sampling Distance</td>
</tr>
<tr>
<td>GSOC</td>
<td>German Space Operations Center</td>
</tr>
<tr>
<td>GTO</td>
<td>GOME-type total ozone</td>
</tr>
<tr>
<td>GUF</td>
<td>Global Urban Footprint (developed at DFD)</td>
</tr>
<tr>
<td>HD</td>
<td>High definition</td>
</tr>
<tr>
<td>HGF</td>
<td>Helmholtz-Gemeinschaft Deutscher Forschungszentren (Helmholtz Association of German Research Centres)</td>
</tr>
<tr>
<td>HITRAN</td>
<td>High-Resolution Transmission Molecular Absorption Data Base</td>
</tr>
<tr>
<td>HPC</td>
<td>High Power Computing</td>
</tr>
<tr>
<td>HRWS</td>
<td>High Resolution Wide Swath (commercial X-band SAR mission concept)</td>
</tr>
<tr>
<td>HTM</td>
<td>Haze Thickness Map</td>
</tr>
<tr>
<td>HySpex</td>
<td>Imaging spectrometer (Norsk Elektro Optikk)</td>
</tr>
<tr>
<td>IASI</td>
<td>Infrared Atmospheric Sounding Interferometer (onboard MetOp)</td>
</tr>
<tr>
<td>IMF</td>
<td>Institut für Methodik der Fernerkundung (Remote Sensing Technology Institute)</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric SAR</td>
</tr>
<tr>
<td>IPA</td>
<td>DLR’s Institute of Atmospheric Physics</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared (spectral range)</td>
</tr>
<tr>
<td>ISRO</td>
<td>Indian Space Research Organization</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>ITP</td>
<td>Integrated TanDEM-X Processor</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace Exploration Agency</td>
</tr>
<tr>
<td>KIT</td>
<td>Karlsruher Institut für Technologie</td>
</tr>
<tr>
<td>KNMI</td>
<td>Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological Institute)</td>
</tr>
<tr>
<td>LBL</td>
<td>Line-by-line</td>
</tr>
<tr>
<td>LCZ</td>
<td>Local Climate Zone</td>
</tr>
<tr>
<td>LMF</td>
<td>Lehrstuhl für Methodik der Fernerkundung, TU München (Remote Sensing Technology)</td>
</tr>
<tr>
<td>LMU</td>
<td>Ludwig-Maximilians-Universität München</td>
</tr>
<tr>
<td>LTM</td>
<td>Long-term Monitoring</td>
</tr>
<tr>
<td>MAV</td>
<td>Micro Air Vehicle</td>
</tr>
<tr>
<td>MAJA</td>
<td>MACCS-ATCOR Joined Atmospheric Correction (ESA project)</td>
</tr>
<tr>
<td>MERLIN</td>
<td>Methane Remote Sensing Lidar Mission (Franco-German cooperative mission)</td>
</tr>
<tr>
<td>MetOp</td>
<td>Meteorological Operational Satellites (EUMETSAT)</td>
</tr>
<tr>
<td>MIRA</td>
<td>Model for IR Scene Analysis</td>
</tr>
<tr>
<td>MPC</td>
<td>Mission Performance Center</td>
</tr>
<tr>
<td>MSI</td>
<td>Multispectral Imager</td>
</tr>
<tr>
<td>MTG</td>
<td>Meteosat Third Generation satellite (EUMETSAT)</td>
</tr>
<tr>
<td>MUSES</td>
<td>Multi-User System for Earth Sensing (platform on ISS)</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration (USA)</td>
</tr>
<tr>
<td>NDACC</td>
<td>Network for the Detection of Atmospheric Composition Change</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared (spectral range)</td>
</tr>
<tr>
<td>NISAR</td>
<td>NASA-ISRO Synthetic Aperture Radar</td>
</tr>
<tr>
<td>NL-LRTC</td>
<td>Non-Local Low-Rank Tensor Completion</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration (USA)</td>
</tr>
<tr>
<td>NRT</td>
<td>Near real-time</td>
</tr>
<tr>
<td>OCRA</td>
<td>Optical Cloud Recognition Algorithm (developed at IMF)</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>OpAiRS</td>
<td>Optical Airborne Remote Sensing Facility and Calibration Home Base (EOC user service)</td>
</tr>
<tr>
<td>PACO</td>
<td>Python Atmospheric Correction</td>
</tr>
<tr>
<td>PAZ</td>
<td>Spanish X-Band SAR satellite based on TerraSAR-X</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PDGS</td>
<td>Payload Data Ground Segment</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PGS</td>
<td>Payload Ground Segment</td>
</tr>
<tr>
<td>PILS</td>
<td>Profile Inversion for Limb Sounding (developed at IMF)</td>
</tr>
<tr>
<td>PolInSAR</td>
<td>polarimetric SAR interferometry</td>
</tr>
<tr>
<td>PS</td>
<td>Persistent scatterer</td>
</tr>
<tr>
<td>PSI</td>
<td>Persistent scatterer interferometry</td>
</tr>
<tr>
<td>PTB</td>
<td>Physikalisch-Technische Bundesanstalt</td>
</tr>
<tr>
<td>Py4CatS</td>
<td>Python scripts for Computational Atmospheric Spectroscopy</td>
</tr>
<tr>
<td>RoMIO</td>
<td>Robust Multi-pass InSAR technique via Object-based low-rank tensor decomposition (developed at IMF)</td>
</tr>
<tr>
<td>SAINT</td>
<td>(developed at IMF)</td>
</tr>
<tr>
<td>SAOCOM-CS</td>
<td>Argentinian L-band SAR system with passive companion satellite</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SAR-Lab</td>
<td>IMF’s research and development environment for SAR processing</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (onboard ENVISAT)</td>
</tr>
<tr>
<td>SGM</td>
<td>Semi-global matching</td>
</tr>
<tr>
<td>SiPEO</td>
<td>Signal Processing in Earth Observation (research team at TUM)</td>
</tr>
<tr>
<td>SIR-C/XSAR</td>
<td>Spaceborne Imaging Radar-C/X-band Synthetic Aperture (Space Shuttle mission)</td>
</tr>
<tr>
<td>SRON</td>
<td>Netherlands Institute for Space Research</td>
</tr>
<tr>
<td>SSU</td>
<td>Sparse Spectral Unmixing</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>SWIR</td>
<td>Shortwave infrared spectral region</td>
</tr>
<tr>
<td>TanDEM-X</td>
<td>German TerraSAR-X add-on for Digital Elevation Measurement</td>
</tr>
<tr>
<td>Tandem-L</td>
<td>Mission proposal based on two L-Band SARs</td>
</tr>
<tr>
<td>TCCON</td>
<td>Total Carbon Column Observing Network</td>
</tr>
<tr>
<td>TELIS</td>
<td>Terahertz and Submillimeter-Wave Limb Sounder (developed at IMF)</td>
</tr>
<tr>
<td>TerraSAR-X</td>
<td>German high-resolution X-band SAR satellite</td>
</tr>
<tr>
<td>TMSP</td>
<td>TerraSAR-X Multi-Mode SAR Processor (developed at IMF)</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of atmosphere</td>
</tr>
<tr>
<td>TOPS</td>
<td>Terrain Observation with Progressive Scan (SAR scan mode)</td>
</tr>
<tr>
<td>TROPOMI</td>
<td>Tropospheric Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>TUM</td>
<td>Technical University of Munich</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned aerial vehicle</td>
</tr>
<tr>
<td>UPAS</td>
<td>Universal Processor for UV/VIS/NIR Atmospheric Sensors (developed at IMF)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet (spectral range)</td>
</tr>
<tr>
<td>VHR</td>
<td>Very high resolution</td>
</tr>
<tr>
<td>VirES</td>
<td>Virtual workspace for Earth Observation scientists (web-based service of ESA)</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible (spectral range)</td>
</tr>
<tr>
<td>VNIR</td>
<td>Visible and near infrared spectral region</td>
</tr>
<tr>
<td>WDC-RSAT</td>
<td>World Data Center for Remote Sensing of the Atmosphere (at DFD)</td>
</tr>
<tr>
<td>XDibias</td>
<td>IMF’s image processing system</td>
</tr>
<tr>
<td>ZKI</td>
<td>Center for Satellite-based Crisis Information at DFD</td>
</tr>
</tbody>
</table>
DLR at a glance

DLR is the national aeronautics and space research center of the Federal Republic of Germany. Its extensive research and development work in aeronautics, space, energy, transport and security is integrated into national and international cooperative ventures. In addition to its own research, as Germany’s space agency, DLR has been given responsibility by the federal government for the planning and implementation of the German space programme. DLR is also the umbrella organisation for the nation's largest project management agency.

DLR has approximately 8000 employees at 20 locations in Germany: Cologne (headquarters), Augsburg, Berlin, Bonn, Braunschweig, Bremen, Bremerhaven, Dresden, Göttingen, Hamburg, Jena, Juelich, Lampoldshausen, Neustrelitz, Oberpfaffenhofen, Oldenburg, Stade, Stuttgart, Trauen, and Weilheim. DLR also has offices in Brussels, Paris, Tokyo and Washington D.C.

Remote Sensing Technology Institute

DLR’s Remote Sensing Technology Institute (Institut für Methodik der Fernerkundung – IMF) is located in Oberpfaffenhofen, Berlin-Adlershof, Bremen and Neustrelitz. IMF carries out research and development for retrieving geoinformation from remote sensing data. It conducts basic research on physical principles of remote sensing and develops algorithms, techniques, and operational processing systems. The processing systems are in operational use for national, European, and international Earth observation missions. The institute focuses on the remote sensing technologies synthetic aperture radar, optical remote sensing and spectrometric sounding of the atmosphere, and develops data science and artificial intelligence algorithms for Earth observation data analysis. For preparation and in support of space missions, IMF operates optical airborne sensors and laboratories. The institute contributes its expertise to novel sensor and mission concepts.

The German Remote Sensing Data Center (DFD) and IMF form DLR’s Earth Observation Center (EOC).

Imprint

Publisher:
German Aerospace Center (DLR)
Remote Sensing Technology Institute

Address:
Oberpfaffenhofen
82234 Weßling

Phone +49 8153 28-2673
e-mail richard.bamler@dlr.de

DLR.de