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Abstract— Current ergonomic assessment procedures require
observation and manual annotation of postures by an ex-
pert, after which ergonomic scores are inferred from these
annotations. Our aim is to automate this procedure, and to
enable robots to optimize their behavior with respect to such
scores. A particular challenge is that ergonomic scoring requires
accurate biomechanical simulations which are computationally
too expensive to use in robot control loops or optimization.

To address this, we learn Contextual Ergonomics Models,
which are Gaussian Process Latent Variable Models that have
been trained with full musculoskeletal simulations for specific
tasks contexts. Contextual Ergonomics Models enable search in
a low-dimensional latent space, whilst the cost function can be
defined in terms of the full high-dimensional musculoskeletal
model, which can be quickly reconstructed from the latent
space. We demonstrate how optimizing Contextual Ergonomics
Models leads to significantly reduced muscle activation in an
experiment with eight subjects performing a drilling task.

I. INTRODUCTION

Musculoskeletal diseases and disorders (MSDs) are a ma-
jor problem for industry workforces worldwide. The Health
and Safety Executive in the UK reports that between 2001
and 2002, 5.7 million working days were lost due to back
pain related disorders that arose or deteriorated at work. Up-
per limb and neck related disorders accounted for an estimate
of 1.4 million lost working days. Combined, this amounted
to £5.7 billion in production losses [1]. In Germany, MSDs
were responsible for 154 million days of absenteeism and
costed over e30 billion gross value losses in 2016 [3].

The prevention of MSDs therefore has a high priority
in the industrial world. To perform preventative ergonomic
assessments by analyzing and identifying risk factors, several
standards exist, such as the Ergonomics Assessment Work-
sheet (EAWS) [5], OCRA [6] and Rapid Upper Limb As-
sessment (RULA) [7]. The procedure for these assessments
is that an ergonomics expert observes a human performing
the task to be evaluated, and annotates the required human
postures on a paper form, such as the RULA form shown
in Figure 2. These annotations are then mapped to an
ergonomics score for the task. These scores make clear
which parts of the process should be re-designed for better
ergonomics and to reduce injury risk. This approach has
several disadvantages: 1) the form is filled manually and thus
labor-intensive, and it requires expertise 2) the assessment
metric is not continuous 3) the underlying risk factors, e.g.
high muscle activation, are not identified in the form.
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Fig. 1: A light-weight robot presents a board to be drilled.
Left: drill hole location not optimized. Right: optimized with
respect to the Contextual Ergonomics Model. Bottom: EMG
readings of the left trapezius muscle.

Our aim is to develop an ergonomic assessment that
enables automatic assessment, that takes all musculoskeletal
variables into account, and that can be performed continually
over time. Furthermore, queries should be very fast, so
that robots are able use such models to optimize their
behavior, ideally integrating ergonomic knowledge in the
control loop of the robot. Robotic safety, which focuses on
immediate rather than long-term injuries, has seen a similar
development, i.e. from off-line static assessments to safety-
aware controllers [8].
The contributions of this paper are the following:

• Optimizing robotic behavior with respect to ergonomic
scores based on full musculoskeletal reconstructions.

• Enabling fast optimization by dramatically reducing
query times by learning a Contextual Ergonomics Model
(CEM). A CEM is a surrogate model which is im-
plemented as Gaussian Process Latent Variable Model.
It is trained off-line with data from highly detailed
musculoskeletal simulations [11].



• Showing that optimization of Contextual Ergonomics
Model leads to significantly reduced muscular activa-
tions in an experiment where 8 subjects perform a
drilling task.

II. RELATED WORK

In this section, we discuss related work on ergonomic
assessment through manual annotation by experts, or au-
tomated assessments using simulation and biomechanical
models. Finally, we discuss approaches where ergonomic
measures are optimized explicitly, as in our work.

A. Manual Annotation

In the current standard procedure for ergonomic assess-
ment, an expert observes a human performing the task to be
assessed, and records ‘uncomfortable’ and ‘strange’ postures
with given prototypical poses and tables as in Figure 2.
Such forms may also take into account risk factors such as
excessive force exertion, long task duration, and frequent
repetitions. After classifying problematic key postures, a
score is given to each of them.

Fig. 2: First step of the ergonomics assessment process
for the Rapid entire body assessment (REBA), a modified
version of Rapid Upper Limb Assessment (RULA)

The scores are summed and the overall result dictates the
level of risk within a given scale as in Figure 3. After this
stage, it is clear which parts of the process should be re-
designed for better ergonomics and to reduce injury risk.

Fig. 3: EAWS traffic light risk assessment in accordance to
Machinery Directive 2006/42/EC (EN614)

As discussed in Section I, the disadvantages of this ap-
proach is that ergonomic expertise is required, the assessment
is not continual, and the procedure must be carried out every
time the working space is relocated, redesigned or altered
in some way. Furthermore, this technique cannot isolate the
underlying risk factor of why a posture is ergonomically
inadequate, e.g. high muscle activation.

B. Automated Assessment with (Biomechanical) Simulations

To address the issues of manual annotation, several ap-
proaches simulate humans performing tasks, and perform
the assessment based on this simulation. The challenge here
is thus not the observation – one has full access to the
simulation – but rather the simulation itself.

For instance, the Editor for Manual work Activities
(EMA) [9] integrates a manufacturing planning tool with
the semi-automatic generation of human behaviors. Once
the simulation is set up, the EAWS worksheet can be
automatically filled out, based on the simulated kinematics
of the human operators acting in the environment, e.g. joint
angles.

In [10] the analysis of a workplace is done with Tec-
nomatix Jack and Catia-Delmia Human, both tools have
to be setup off-line and provide only off-line ergonomics
assessment, i.e. values for spinal cord loading are given and
one must compare them with a given metric, for example
NIOSH lifting equation. Most of this software uses biome-
chanical approximations to calculate possible values of the
muscle activation, reaction forces and joint moments, which
might based on human performance characteristics gathered
statically. However, a measure of how accurate those values
really are for each evaluation is missing. Moreover, the
analysis is driven by inverse kinematic approaches that might
not represent a good range of human motion.

In contrast to kinematic-based methods, musculoskeletal
modeling offers insight into the internal body loading. Many
software packages have been developed for musculoskele-
tal modeling, that allow for complex motion simulations
and their biomechanical analysis. Commonly used packages
are the AnyBody Modeling System (AMS) [11], LifeMod-
eler [12], VIMS [13], and OpenSim [14]. OpenSim is an
open source software, where ergonomics analysis can also
be performed through a plugin, also here the results are not
available offline.

AMS [11] is distributed with a very comprehensive full
body model. It can resolve configurations with closed kine-
matic loops, which are frequent at workplaces, e.g. two-
handed tool holding, double-stance postures. Such muscu-
loskeletal simulations have been used for ergonomic analysis,
[15], but do not systematically automate the process.

C. Optimizing Robot Behavior with respect to Ergonomic
Measures

Recently, the idea of optimizing ergonomics for HRC has
been analyzed in [16]. There, a simplified human model is
developed and used for optimizing the ergonomic score for
kinematic poses based on REBA - Rapid Entire Body As-
sessment [17]. The authors derive a continuous cost function
Cposture(q) = Σn

i=1wiQi(q), using a 2nd order polynomial
Qi(q) of the model’s joint configuration q. The weights wi

are learned by minimizing the difference of the REBA score
and Cposture for various random postures of the human
model. The framework optimizes kinematic postures and,
therefore, musculoskeletal values are not taking into account.



The validity of the approach is measured by questionnaires
and the corresponding REBA scores for the task.

In [18], the authors developed a whole-body dynamical
human model that describes the relation between contact
points and a resultant contact force via a Lagrangian for-
mulation, and use it on-line for robot control. The human
model structure follows the statically equivalent serial chain
method. The method is validated with hand-over experiment
between a light-weight robot and a human wearing an Xsens
suit [22]. This work not only minimizes the joint load, but
also maximizes the manipulability measure of the human.

Our approach also optimizes robot behavior with respect to
ergonomic measures, the difference being that we reconstruct
highly accurate and complete biomechanical simulations.
The fast reconstruction of these simulations is achieved by
off-line training of surrogate models, the so-called Contex-
tual Ergonomics Models. The biomechanical reconstructions
allow many different ergonomic scores to be computed and
optimized, rather than only kinematic ones. In this paper for
instance, we minimize muscle activations, as electromyog-
raphy (EMG) can be readily used to empirically verify if
muscle activations did indeed decrease.

III. TRAINING CONTEXTUAL ERGONOMICS MODELS

The aim of this work is to develop models which on the
one hand simulate the musculoskeletal system as accurately
as possible – i.e. as accurate and complete as the AnyBody
model – whilst having very low query times – i.e. fast enough
to be run in an ergonomic optimization or robot control loop.

To achieve this aim, we learn surrogate models – called
Contextual Ergonomics Models (CEMs) – from the full-scale
musculoskeletal simulations for specific task contexts, for
instance a drilling task. Most tasks place strong constraints
on the possible body configurations, and the variations in
these configurations can therefore be mapped to a latent
space. The surrogate models are able to map the latent space
to the full-scale musculoskeletal simulation with which it was
trained. Therefore, it is both complete (full reconstructions)
and fast (queries are made in the low-dimensional latent
space). Next, we describe how data for the Contextual
Ergonomics Model (CEM) is generated using the AnyBody
Modeling System (AMS) [11], and how the CEM is learned
using a Gaussian Process Latent Variable Model [21].

A. Data Generation and Model Parameters

The AnyBody model is a full human body, comprised of
all major body parts such as upper and lower extremities,
a trunk model including detailed models of the lumbar
spine and the abdominal pressure. Each part is based on
cadaver measurements and/or medical imaging studies from
an individual subject. This model includes 63 segments
and nearly 1000 muscle branches that represents all main
physiological muscle complexes of the human body. The
generic model is 75.6 kg and 1.80 m, and can be scaled
to different body postures [19].

Outputs variables from the musculoskeletal simulations
in AMS include joint angles, joint moments, joint reaction

loads, and muscle activation. AMS has been applied in
many different fields of applications, including orthopedics,
automotive, assistive devices, aerospace, ergonomics, and
sports [20].

The training data for the Contextual Ergonomics Model
is generated as follows. First the task and task parameter
space is determined. In this paper, we chose a two-handed
drilling task, where the task parameter vector is the 3D drill
hole location, the mass of the drill, and the force applied
to the drill. Uniformly sampling this space lead to 7632
kinematically feasible drill locations, which are visualized
in Figure 4.

Fig. 4: Modeling a drilling task in AnyBody Modeling
System. Green dots represent a reachable point of the drilling
location. Virtual body markers can be seen on the left image.

For each drill location, the following ergonomics-relevant
musculoskeletal variables are recorded: joint moments and
force reactions, five muscle activation envelopes, i.e., for
trunk, right and left arms and hands. Furthermore, for vi-
sualization purposes, we attach 117 virtual markers to the
human model and record their (x, y, z) global coordinates.

B. Gaussian Process Latent Variable Models (GPLVM)

As is evident in Figure 4, holding the drill with two hands
in front of the body dramatically reduces the number of
possible postures. For this reason, we train a latent variable
model with this data, so that the low-dimensional latent space
that captures the variation in this reduced posture space is
automatically determined.

In general, a latent variable model relates a set of latent
variables X ∈ RN×q to a set of observed variables Y ∈
RN×D via some parameters W ∈ RD. The parameters
are found by maximizing the likelihood given the data. As
a standard approach, the latent variables are marginalized
and the parameters obtained by likelihood maximization.
In GPLVM the parameters are marginalized and the latent
variables optimized instead [21]. Unlike PCA and Factor
Analysis (FA), GPLVM can handle nonlinear mappings.

As described above, a Gaussian process (GP) is a non-
parametric and probabilistic supervised learning approach
that is defined within a Bayesian framework. A GPLVM is



also a non-linear method for dimensionality reduction [21].
It serves to think of it as an extension of PCA to non-
linear mappings with a qualitative measure: the variance.
As with PCA, by compressing the data we don’t loose
important information since the latent components that are
chosen are the most representative of the data and maximize
its likelihood [21]. Under the assumption that yi={1,N} are
i.i.d., for Y ∈ RDx1, we have the marginalized likelihood
w.r.t. the latent variables of all the data as

p(Y |W , σ2) =

N∏
i=1

p(yi|W , σ2), (1)

from which we can find the parameters W through maxi-
mization. If instead the parameters are marginalized we get,

p(Y |X, σ2) =

D∏
i=1

N (yi|0,XXT + σ2I). (2)

The X which maximize the likelihood are of the following
form

X = UqLV T . (3)

We can see that Equation (3) is a projection of the matrices
LV T , associated with the eigenvalues of D−1Y Y T and
their rotations, to a space X of dimension q through U .
In this sense, our data Y can be projected into an embedded
lower-dimensional space X .

We have chosen GPLVM over, for instance, deep learning
methods, because GPLVM is a generative model, because it
has an explicit measure of variance in the latent space, and
can be trained with only very limited amounts of data.

C. Training the GPLVM with the AMS Data

The data acquired, as described in Section III-A, are
used for the training of a GPLVM. In our case, a data
point consists of a high dimensional vector of 117 position
markers, that represent the posture of the human model,
and the associated dynamic values1 such as joint moments,
muscle force reactions and muscle activations of various
muscle groups.

yi = [Kin, Dyn] , (4)

The input vector yi consists of kinematics and dynamic
values, Kin, Dyn. Joint marker global positions x, y, z are
stored in Kin ∈ R117, whereas the vector Dyn holds joint
moments ∈ R30, joint force reactions ∈ R120 and envelope
muscle activations ∈ R6.

We chose a 2-dimensional latent space for the projection
of the data, q = 2. Optimization of the latent variables is
achieved through maximization of the log-likelihood and its
derivatives via stochastic gradient descent. This algorithm
is a probabilistic non-parametric approach to regression.
The algorithm also provides dimensionality reduction as
explained above, which can be helpful for visualizing the

1In this work, by dynamic data or values, we refer to the nature of the
quantity in context, not to their time series representation.
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Fig. 5: Latent space representation for a 2D task (a plane)
with 11 data point inputs shown as red crosses, these are the
simulated values from AnyBody musculoskeletal model. On
the right, a visualization of the posture associated with the
latent point, shown as a black dot on the left figure, and the
corresponding max joint moment on the colorbar as a line.

data or embedding the learned model into control methods
for pHRI, as done with the so called safety map in [8].

Figure 5 shows the latent space visualization. Here,
each red cross represents the training values, e.g. a 147-
dimensional vector since we use joint moments. The uncer-
tainty is represented on gray scale, with certain areas (white)
around the observed data points

In summary, we have use an accurate but computationally
expensive musculoskeletal simulation to generate training
data (147-D vectors). This training data is mapped to a 2D
latent space using GPLVM. The trained GP is the Contextual
Ergonomics Model. “Contextual” because it is specific to a
task, in this case drilling. The constraints the task introduces
enable the full 147-D to be mapped to a latent space.
“Ergonomics”, because it is able to very quickly reconstruct
the 147-D vector of musculoskeletal variables, from which
different ergonomic scores can be computed. In the next
section, the CEM is used to optimize robotic behavior.

IV. EXPERIMENTAL VALIDATION

The aim of this experiment is to demonstrate that 1) the
CEM can be used to optimized robotic behavior 2) the opti-
mized behavior leads to significantly lower muscle activation,
an indicator of more ergonomic working conditions.

Our aim here is not to advocate muscle activation as the
best or sole ergonomic measure to be take into account.
Rather, it is to show that, because the CEM reconstructs
the full musculoskeletal variables simulated in AnyBody
Modeling System (AMS), after training, we are able to
optimize with respect to muscle activation and calculate a
posture that lowers strain on working muscles. Moreover,
we can easily these signals with the help of EMG sensors
while performing the task.

The validity of the approach was evaluated with a human
performing a simulated drilling task assisted by a manipu-



lator, as illustrated in Figure 1. In the following we present
the experimental setup and the results.

A. Methods and Procedure

The setup consists of a LWR IV+ light-weight robot
mounted on a linear axis, 8 DOF, and a plate that is to be
drilled. A human operator stands in front of the robot in
order to drill the plate. The plate is presented by the robot
on different locations on a plane. All the experiments were
carried out with the same tool, a driller, which represents a
load of 1.8 [kg].

a) Task and Subjects: The drill was held with both
hands by the participants. The participant pushes the plate
with a certain force of 5, 10 or 15 [N], where visual
feedback was given of the measured external force, i.e.
the push, from the robot torque sensors. The readings at
5 [N] were considered as noise, both from the EMG and
the robot sensors, as the force level was too low, therefore
we present results gathered from the participants only for
the experiments carried out at 10 and 15 [N] of exerted
force. Each subject performed 24 drill tasks, i.e. 4 drill
locations (one of them optimized), 2 repetitions per location,
3 push forces (5,10,15). The order in which these tasks
were performed was randomized for each subject. In total, 8
subjects participated in this experiment.

b) Drill hole locations.: The robot presented the plate
at four different locations relative to the participant. We
denote these locations up, as in the left picture of Figure 1,
left, right, and optimized, as in Figure 1 right picture. The
up, left and right positions where hard coded and scaled
depending on the participant’s height and arm span, so
that is reachable, which were measured before starting the
experiment.

The optimized location is determine by minimizing max-
imum muscle activation, which are reconstructed from the
Contextual Ergonomics Model. Each CEM query is very
fast (12[ms]± 0.1), compared with 10[s] for performing the
simulation in AnyBody Modeling System for a point. And
the search space is the latent space, which is only 2D. For
these two reasons, a simple grid search was used to perform
the optimization. The step of the grid can be varied, for
example 10000 queries can be performed in 4 secs. For each
query, the 2D latent point is projected to the observed space,
the x, y, z coordinates of the joints and the high-dimensional
musculoskeletal vector, 123-D for muscle activation, 147-
D for joint moments and 237-D for joint force reactions.
From this vector, we extracted the variables related to the
optimized criteria and compute the cost associated with them,
in this case muscle activation. As explained before, the inputs
and the reconstructed high-dimensional vector consist of the
kinematic data and the dynamic properties stacked in one
vector. Thus, for calculating the cost, we just need to retrieve
the values from indices 118 up to the end of the vector.

The optimized location was taken from the kinematic
data of the optimal latent point, c.f. Figure 5. The (x, y, z)
coordinates were then scaled using the participant’s height
and arm span to calculate a desired end-effector Cartesian

point w.r.t. the base frame of the robot. The participants
were asked to stand on a position and not move until the
end of all the experiments, all trials for 5[N], 10[N] and
15[N] push force with two repetitions per trial. In general,
the required parameters, i.e. height, arm span and location of
the participant, can be calculated from external sensors such
as kinect or a motion capture device, e.g. Vicon.

c) Measuring muscle activation.: Subjects wore non-
invasive EMG surface sensors. We position 16 EMG sen-
sors for gathering muscle activation data, 8 per each side,
covering agonist antagonist muscles, as shown in Figure 6.
Lower body muscles are not taking into account for these
experiments. We use only EMG data that is recorded during
the drilling motion.

Fig. 6: Location of Delsys EMG surface sensors on the
human operator, anterior and posterior views

B. Results

EMG readings from two EMG sensors are illustrated in
Figure 1. The muscle shown on that figure is the left trapezius
for the two different postures. For the non-optimized drill
location, the left trapezius readings showcase a higher muscle
activation than the pectoral in the optimized position.

To measure the effect of the optimization, we take the
mean activation from each EMG sensor, as visualized in
Figure 1. We perform a Student’s t-test between the one
optimized drill location and the three non-optimized loca-
tions. Since not all muscle activation are equally affected
and have different scaling, we perform these t-test separately
for each EMG reading. In Table I, we list the p-value of
this test for each of the 16 EMG sensors, and each of the
three non-optimized drill hole locations. We see that using
the optimized position leads to significant improvements in
almost all muscles. On average the improvement is between
85 and 89% depending on which reference location is used
(see left table).

In summary, with the Contextual Ergonomics Model
(CEM) we are able to optimize drill hole locations, and
this optimization leads to a significant decrease in muscle
activation for most muscle groups, as confirmed by EMG
readings.

V. CONCLUSION

In this work we proposed a novel approach for the fast
optimization of ergonomic scores that are based on full



TABLE I: Muscle activation ratio of up/left/right position
w.r.t. optimized position. For instance, 87% implies that
the average muscle activations are 13% less when using
the optimized position. White: difference not significant
(p > 0.05). Green: significant improvement. Red: signifant
increase in muscle activations.
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1 .00 .00 .00
2 .01 .13 .95
3 .00 .00 .00
4 .00 .00 .00
5 .00 .00 .07
6 .00 .00 .00
7 .19 .00 .00
8 .00 .00 .00
9 .70 .92 .05

10 .72 .02 .08
11 .64 .02 .00
12 .00 .01 .57
13 .00 .00 .00
14 .00 .00 .00
15 .01 .00 .00
16 .00 .00 .00

12/16 14/16 12/16

up left right
67 73 75
93 112 117
79 71 61
90 79 82
63 66 95
94 82 88
97 87 82
76 66 70
113 129 148
100 90 93
106 98 70
87 94 106
83 81 86
88 79 90
87 87 83
87 69 78

88.13 85.20 89.00

musculoskeletal reconstructions from a task latent space. A
probabilistic supervised learning Gaussian process projects
high-dimensional kinematic and dynamic data, gathered from
a simulated biomechanical model, into a low-dimensional
manifold which describes the task at hand. These represen-
tations and the generative features of the GPLVM give insight
into the risk generators even for postures not seen during off-
line training. The method is continuous in the latent space,
kinematic and dynamics.

In our future work, we want to track humans continually
over time [22], so that we may continually re-optimize
the robot’s behavior by integrating Contextual Ergonomics
Models in the control loop of the robot. Also, we will exploit
the estimates of the variance made by the GPLVM to speed
up the optimization; in higher-dimensional latent spaces grid
searches may be unfeasible.

In our current experiment, 5 variables related to mus-
cle activation were optimized. However, all musculoskeletal
variables are easily reconstructed from the latent space, and
any (or all) of these variables could be used in a cost function
without slowing down the search. In our future work, we
will investigate novel ergonomic measures which take into
account this wealth of musculoskeletal information, which
was hitherto not accessible for ergonomics assessments.
Moreover, we plan to develop risk thresholds based on es-
tablished ergonomic standards to not only determine relative
changes in muscle activation through optimization but also
report on risk levels (green – yellow – red, cf. Figure 2,
Figure 3), analogous to traditional ergonomic methods.
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