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Abstract
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A variety of “pseudo-Voigt” functions, i.e. a linear combination of the Lorentz and Gauss function (occasionally aug-
mented with a correction term), have been proposed as a closed-form approximation for the convolution of the Lorentz
™) and Gauss function known as the Voigt function. First, a compact review of several approximations using a consistent
<" notation is presented. The comparison with accurate reference values indicates relative errors as large as some percent.

Complex error function; Complex probability function; Plasma dispersion function; Faddeyeva function;

Keywords:

—1Pseudo-Voigt function
= .

QPA CS:

1 02.30.Mv Approximations and expansions

Q02.60.—x Numerical approximation and analysis

E 02.70.-c Computational techniques

Q
Q
8 1. Introduction
‘U Rapid yet accurate computation of the Voigt function
> [1] is a challenge in many fields of the physical sciences.
gBecause the convolution integral of a Lorentz and Gauss

L function does not have an analytical solution, approxima-
tions have been discussed in numerous papers. Whereas
many modern “state-of-the art” algorithms evaluate the
closely related complex error function (also known as com-
(O plex probability function, plasma dispersion function, or
Fadde(y)eva function, cf. e.g., 2H4)) utilizing sophisticated
numerical techniques, “simple” closed-form expressions
still appear to be attractive.

Linear combinations of the Lorentz and/or Gauss func-
tions have been suggested by several authors. Flores-
Llamas et al. [5] proposed a sum of the Lorentzian and
its derivatives and Melcher and Gerth [6] fitted the Voigt
functions by “generalized Lorentz functions”. McLean
et al. [7] have further developed an approximation orig-
inally suggested by Martin and Puerta [8, [@], Puerta
and Martin [I0, II] and proposed a superposition of four
Lorentzians [for a recent assessment see [I2]. Linear com-
binations of a Lorentz and Gauss function (sometimes
called “pseudo-Voigt” function and occasionally including
a correction term) have been suggested or used by Whit-
ing [I3], Matveev [I4], Peyre and Principi [15], Kielkopf
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[16], Wertheim et al. [I7], Thompson et al. [18], Teodor-
escu et al. [19], Ida et al. [20] and Liu et al. [21].

In this note we present an assessment of closed-form
expressions for the Voigt function using a combination of
Lorentz and Gauss functions. After a short review of the
basic definitions in the next subsection, we describe several
combinations using a consistent notation (in chronological
order). The results of our tests using an accurate Voigt
function code as reference are presented in Section [3] The
codes have been implemented in Python and a Scientific
Python (scipy.org) implementation has been used as a
reference. In the final Section [4] we provide a summary
and some conclusions.

2. Theory

2.1. The Voigt function
The Voigt function (normalized to /7) is defined by

y [ et
Kew =L [ a0
where x is a measure of the distance to the center peak, and
y is essentially the ratio of the Lorentzian and Gaussian
width, y = \/@7L/'yg. At the line center x = 0 the
Voigt function can be expressed as the exponentially scaled
complementary error function

K(0,y) = exp(y®)(1—erf(y)) = exp(y®)erfe(y) . (2)
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The Voigt function is symmetric, i.e. K(—z,y) = K(z,y)
and essentially reduces to the Lorentz function for large
|z +iy|. The Voigt function is identical to the real part of
the complex function

w(z) = K(z,y) + iL(z,y) = 1 /OO ¢! dt (3)

T J_ oo 21

= exp(—2?)erfe(—iz) with  z=xz+1iy. (4)

2.2. The Whiting [13] approzimation

To our knowledge the first approximation of the Voigt
function using a combination of Lorentz and Gauss func-
tions

K(z,y) = K(0,y9) [(1-n(y)G(z) + n(y)L(z)] (5)

with

1

G(z) = exp(—In2(z/zn)?) (7)
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is due to Whiting [13]. The weight factor is given by the
ratio of the widths of the Lorentz and Voigt profiles or

n = y/rn (8)

with the half width

o= (y+ VP Fam2) . 9)

An improved approximation is obtained by adding a cor-
rection term (i.e. K(x,y) — K(x,y) + C(z,y)) that is
given by “kind of Lorentzians and Gaussians”,

C(z,y) = 0.016 (1 — 1) [exp (—0.4(x/xh)(9/4)> (10)

o1
10 + (z/zy) /%

By definition, the approximation is exact in the center
at = 0. Furthermore, both approximations are exact for
the limiting cases of pure Lorentz and Gauss functions.
According to the author, “this approximation matches the
Voigt profile within 5 per cent at worst and is generally
within 3 per cent or less.”

2.8. The Matveev [T]|] approximation

The approximation is given by

VIn2 . n
h

K(z,y) =

with a correction term

Clz,y) = 7]\(/% <15 +1+ n) (12)

X l0.066 exp <0.4 (;)2)
4055 (;)Q + (”C)J '

Th

The weight 7 is defined as in and the half width is given
by a refinement of Whiting’s approximation (9J\'|

T, = %(y+\/y2+41n2) (13)

2y
+0.05y |l - ——F—
y( y+\/y2+4ln2>

2V +0.05y (1 - %V> (14)
Th

Without correction term Matveev [14] reports a
“oreatest error of = 25% at n = 0.1 and = = 3”. With
correction the maximum error at the line center does not
exceed 0.6%, and for x/x, > 6 the error lies within the
limits of 1%” for any y. In the intermediate frequency
regime “the error nowhere exceeds 3%.”

2.4. The Kielkopf [16] approximation

Without correction term this approximation is identical
to , but with the weight and half width defined as

YTh
= 15
m 14 yxy (15)

41n?2
on = 1y <1+keln2+\/(1—keln2)2+ yI; ) (16)

The correction contains the difference of a Gaussian and
Lorentzian multiplied with a rational function of z (see

Online [Appendix B| for numerical values)

kl + k21'2

Clz,y) = W(lfﬂ)(G(x)*L(w))m' (17)

This approximation “is accurate to the order of 0.0001 of
the peak value of the function”.

2.5. The Thompson et al. [I8] approzimation

In contrast to the three approximations discussed so
far the weight factors of the Thompson et al. [I8] (and

INote that a prefactor ~y, for the correction term is missing in
Matveev’s Eq. (5) and is correctly inserted in Titov and Haus [22}
after Eq. (12)]. Furthermore, the factor n in is not given in
Titov and Haus [22] Eq. (12c¢)].



Liu et al. [2I], next subsection) approaches are defined by
power series of y. The pseudo-Voigt function is written as

vIn2

Th

K(r.y) = [(1 _G) +

Vrln2
with the Voigt half width and weight (see Online

Th

L@)| 0s)

(19)

2 3
n = 7'1£+7’2 <y) +T3<y> (20)
Th Th Ih

(1/5)
(to Tty o toy® + tayd + tayt + y5>

According to Ida et al. [20] the maximum deviation of
about 1.2% is found at y/(y + vIn2) ~ 0.5.

2.6. The Liu et al. [Z1|] approximation

Introducing a dimensionless parameter d = (y —
VIn2)/(y + vIn2) and approximating the weights (see
Eq. (B.4) in the Online Appendix) as

C, = lo + lld + lez + l3d‘3 (21)
ca = go+gid+ god® + gsd® (22)
the pseudo-Voigt function is written as
c VIn2
K(wy) = —=L() + co=—G(x)  (23)

xhﬁ Th

with the half width given by the Olivero and Longbothum
[23] approximation

an(y) = (y+vIn2) (1-0.18121(1 — d?) — Bsinnd)
B = 0.023665 exp (0.6d) + 0.00418 exp (—1.9d)
(24)
According to the abstract [2I] “the maximum errors of
width, area, and peak ... are 0.01%, 0.2%, and 0.55%,
respectively.”

3. Results

Ignoring the correction terms Egs. , , and ,

all algorithms use a weighted sum of the Lorentz and Gauss
function, where the Lorentz weight tends to one for y > 1
and zero for y < 1. Fig. [l] compares the weights of the
Lorentz function for all five approximations. The weights
of [Whiting| and Matveev| are identical by construction,
Eq. , and the Thompson et al. and |[Liu et al.| weights ap-
pear to be very similar (with differences for small and large
y only). For y =~ 1 (i.e. equal width of the Lorentz and
Gauss function) all weights are approximately 0.7. Note
that except for [Liu et al.|the Gaussian weight is simply
given by 1 —n.

As discussed in Schreier [24] and in our previous assess-
ments of simple closed-form approximations of the Voigt
function [12] 28] 26], the range of y values encountered in
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Figure 1: The weight of the Lorentzian: 7 as defined in , ,
and ¢y, defined in .

molecular spectroscopy and atmospheric and astrophys-
ical applications spans many orders of magnitude. In
Fig. [2| (left) we compare the pseudo-Voigt approximations
with reference values for w(z), Eq. , obtained with the
wofz code (algorithm originally based on Poppe and Wi-
jers [27), 28] and later refined with ideas from Zaghloul and
Ali [29]; Scientific Python (http://scipy.org) implemen-
tation scipy.special.wofz with at least 13 significant
digits according to the documentation).

The function values shown on the left appear to be in
reasonably good agreement with the reference. However,
significant problems show up in the relative errors |K —
Kyots|/ Kwot, (right side) and for all approximations the
maximum error is larger than 1 percent.

In the line center (z = 0) the Whiting and Kielkopf ap-
proximations are exact by definition (assuming that the ex-
ponentially scaled complementary error function K(0,y) =
erfee(y), Eq. , is evaluated exactly). The other ap-
proximations have errors of some percent for y = 1, but
smaller errors for smaller and larger y. Note that in the
line center the Whiting and Kielkopf corrections vanish,
i.e. C(0,y) =0, in contrast to the Matveev correction.

In the line wings only Matveev’s approximation (with
and without correction) has relative errors decreasing with
increasing |z|. Evaluating the Voigt function for very large
x (z <2000 for y = 10 and = < 100 for y = 1) indicates
that for all other approximations the errors become con-
stant for large x. For Kielkopf this asymptotic error is
about 107 for y = 10 and 0.02 for y = 0.1 and 0.01.

For small y < 0.1 Matveev’s approximation appears to
be superior (with errors less than a few percent), however,
for y > 1 the correction term worsens the accuracy, and the
results shown in the top of Fig. 2Jhave been obtained with-
out the correction . For Kielkopf and Matveev, the
largest errors occur for intermediate values of z, whereas
the other approximations always fail for large x.

The contour plots of relative errors shown in Fig. |3| es-
sentially confirm these findings. Except for the Liu et al.
[21] Lorentz-Gauss combination all approximations have
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Figure 2: The Voigt function (left) and the relative error (right) for y 4 10 (top), y = 1.0, y = 0.1, and y = 0.01 (bottom). Note the different
range of x values in the four rows and the linear y axis of the top left plots.
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Figure 3: Contour plots of the relative error of the pseudo-Voigt approximations: In the first three rows the relative errors of the Whiting,
Matveev, and Kielkopf approximations without correction terms are shown on the left, and with correction on the right. The number in the
title indicates the maximum relative error.



at least a small region where the relative accuracy is bet-
ter than 10~ (see [24] for a discussion of the 10~ crite-
rion). For Whiting and Kielkopf a relative high accuracy is
achieved near the origin for small and large y, for Matveev
and Thompson only for small y.

The maximum relative error indicated in the title of all
subplots identifies Kielkopf’s code (with correction) as the
most accurate approximation. However, this maximum
error is relatively large for modern standards (about six
percent in the wings), and for small y Matveev’s code ap-
pears to be better.

Despite the significant accuracy problems of all pseudo-
Voigt approximations it is nevertheless instructive to
test the numerical performance of the codes. Simple
tests within the IPython interpreter [30] indicate that
the Kielkopf and Matveev approximations are somewhat
slower than the optimized combination of the Humlicek
[BI] and Weideman [32] rational approximations [24].
However, evaluation of HNOg3 cross sections in the mi-
crowave for a series of pressures and temperatures cor-
responding to Earth’s atmosphere in the 0—120km alti-
tude range is about a factor two slower with these two
pseudo-Voigt approximations compared to the Humlicek-
Weideman| combination. For details see the online ap-

pendix (xppendix D}

4. Summary and Conclusions

Closed-form expressions for the Voigt function based on
combinations of Lorentz- and Gauss-type functions show
significant accuracy problems, with relative errors in the
percent range. Note that in this study we have only consid-
ered “pseudo-Voigt” approximations based on an analyt-
ical, closed-form expression for the weight of the Lorentz
and Gauss components (as a function of y, the ratio of the
Lorentz and Gauss width). In several studies pseudo-Voigt
approximations have been used for analysis of experimen-
tal data, where the weight has been estimated by least
squares fitting [e.g. 17, [33)].

Our conclusions now are therefore similar to those given
in Schreier [25] 26]: Closed-form expressions as presented
here might be desirable for certain applications, but their
quality is limited. In general approximations based on
modern state-of-the-art numerical methods, e.g. rational
approximations as discussed in Humlicek [3T], Weideman
[32], Humlicek [34] and Schreier [24] [35] are recommended.
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Appendix A. Translations

The Lorenz, Gauss, and Voigt profiles are defined as

v =) = o HE (A1)

. 1 /In2 1/2 v—\?2
ga(v=10,7c) = o <7r> - exp l—IHQ( - >
(A.2)

(v — rmne) = YT gy (A.3)

el

with normalization [ g¢(v,...)dr = 1 and half width at
half maximum (HWHM) ~. The dimensionless variables
of the Voigt function K are defined as ratios

i and y:vanV—L.
G G

z = VIn2

(A4)

In the definition of the pseudo-Voigt functions the follow-
ing ratios of the widths are used frequently

7L Y
Ya VIn2

Appendix B. Numerical Constants

The constant used in the Kielkopf [I6] half width approxi-
mation is ke = 0.0990 and the coefficients of the correction
term are
k1
ks =

+ 0.8029
-+ 0.2030

ky =
ky =

— 0.4207
+0.07335 .

(B.1)

The coefficients of the half width expansion of Thomp-
son et al. [18] are

to = (In2)*/? t1 = (In2)?-2.69269
ty = (In2)%?2.2.42843 t3 = (In2)-4.47163
ty = (In2)/2.0.07842 ts = 1.0
(B.2)
and the weight expansion is defined with
1 = +1.36603, 1 = —0.47719, 73 =40.11116.

(B.3)

_

The coeflicients of the Lorentz and Gauss weights used by
Liu et al. [21] are

lp = +0.68188 go = +0.32460
Iy = +0.61293 = —0.61825
1 9 (B.4)
lo = —0.18384 g2 = +0.17681
I3 = —0.11568 g3 = +0.12109

Appendix C. Matveev

As indicated in the footnote of subsection some dif-
ferences show up in the original work by Matveev [14] and
in Titov and Haus [22]. Whereas the y  ~r, factor in the
correction for the width is required for dimension reasons,
our tests depicted in Fig. [B4]indicate that the weight fac-

. tor i (or ¢ in the original work) has been forgotten by

Titov and Haus [22].

Appendix D. Computational efficiency

For a first, preliminary test of the speed of pseudo-Voigt
approximations we have used the IPython [30] builtin
“magic” function %timeit:

In [1]: from pseudoVoigt import *
In [2]: x=numpy.linspace(0.,100.,10001); y=1.0
In [3]: Y%timeit kielkopf (x,y)

424 ps + 273 ns per loop (mean £ std. dev. of 7
runs, 1000 loops each)

For the three cases y = 10.0, y = 1.0, and y = 0.001
(see Table the[Humlicek{Weideman combination sug-
gested in Schreier [24] is somewhat faster than the Kielkopf
and Matveev approximations. However, evaluation of one
or two exponential(s) (Gaussians) and two fractions for a
single x by the Kielkopf and Matveev codes appears to be
faster than the numerous multiplications required for the
“brute-force” Weideman [32] 24-term rational approxima-
tion or the Humlicek [34] rational approximation “zpf16”
generalized to 16 terms [35].

For a more realistic assessment, molecular cross sections
are computed as required for high resolution atmospheric
radiative transfer modeling, i.e. HNOj3 cross sections in
the 16 -17cm ™! interval resulting from the superposition
of 2376 lines in 6-27cm™! are computed for a series of
pressure and temperature pairs corresponding to altitudes
0-120km in Earth’s atmosphere (see Schreier [24, B5] for
more details). In Python the total time required with the
Kielkopf and Matveev approximations is more than a fac-
tor two larger than with the [HumlicekH{Weideman| combi-
nation.
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Figure B.4: Comparison of different versions of the Matveev [14]
out/with correction.

Table D.1: Execution time (in us) measured by the %timeit function
in the IPython interpreter. For all test 0 < x < 100 with n, = 10001
grid points. The tests have been performed on a desktop with an
Intel x86_64 CPU “i7-4770” running at 3.4 GHz with 8192 KB cache

size.

y 10.0 1.0 0.001
Kielkopf 459 424 393
Matveev 451 437 392
humlwei24 252 326 332
weideman24 803 801 809
zpfl6h 693 694 695

approximation. “off” and “on” indicate Matveev’s approximation with-
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