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Abstract

Nature evolved legs to travel in difficult terrain. Biological legged locomotion
displays different gaits to minimize the energy needed to move with certain
velocities. For example, humans walk with low velocity but switch to running
when moving faster. Robotic legged locomotion proves to be a challenging
topic. Most state-of-the-art motion planning approaches heavily control
legged robotic systems in order to perform aspired movements. Changing
the intrinsic dynamics of the system through control is necessary since the
dynamics do not inherently exhibit the desired motions. However, recent
work suggests that embedding desired dynamics into segmented robotic legs
reduces the necessity of extensive control.

This Master’s Thesis combines theoretical templates for legged locomotion
with physically realizable robotic legs. It first presents energy-conservative
spring-loaded inverted pendulum (SLIP) models, which explain the existence
of different gaits in legged locomotion. These templates are modified to
capture the effects of physical damping and ground contact dynamics. A
minimal control action compensates the resulting energy losses. Hereby,
several natural gaits could be displayed with a non-conservative SLIP model.
Based on this newly developed model, a segmented leg featuring a pantograph
mechanism is designed. The inherent dynamics of this robotic leg are matched
with the SLIP dynamics of the non-conservative template model. Based on
optimized design parameters, the influence of deviating parameters on the
natural dynamics is analyzed. These imprecisions occur when physically
realizing the robotic leg.

Natural gaits can be transferred from energy-conservative SLIP models to
non-conservative models. SLIP-like dynamics are embedded into segmented
legs, which can reduce the control necessary to exhibit periodic motions. Gaits
supported by the intrinsic dynamics result in reduced energy consumption.
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Chapter 1

Introduction

This thesis is written with the Chair of Sensor Based Robotic Systems and
Intelligent Assistance Systems at TUM, in cooperation with the Institute
of Robotics and Mechatronics at the German Aerospace Center (DLR). It
addresses the question of how natural gaits of legged biological systems
transfer to legged robotic systems.

1.1 Motivation

Nature has found the best way to move in difficult terrain. Legged locomotion
minimizes energy consumption per velocity. Bipedal locomotion uses a
walking gait for low velocities and switches to a running gait for high
velocities. Quadrupedal mammals walk when traveling at low velocity. With
increasing velocity, the gait switches to trotting and for high velocities to
galloping. Since gaits have an optimal velocity range in which they are most
efficient, switching between gaits allows the biological system to move with
minimal energy. We want to transfer the characteristics of natural gaits to
legged robots to reduce the energy consumption of locomotion.

Walking, trotting, and galloping are found across many species of quad-
rupedal mammals. This leads to the hypothesis that gaits are not a mean
of control, but rather embedded in the dynamics of the mammalian body.
Different gaits can be regarded as oscillations of one system on different
energy levels. We want to integrate these dynamics into robotic legs to reduce
the amount of control and energy necessary to exhibit legged locomotion.

1.2 Related Work

There are several approaches to reduce the complexity of natural legged
locomotion. Biological legs store energy in tendons and muscles, which leads
to the mechanical representation of the leg as a spring. Blickhan [1989]
proposed a simple spring-mass model as a template for a natural leg. This
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model exhibits ground reaction forces while hopping which closely resemble
those occurring in running biological systems. This model is referred to
as the spring-loaded inverted pendulum (SLIP) model. Geyer et al. [2006]
added a second leg spring to the spring-mass model. They showed that the
bipedal SLIP model not only displays running gaits but also walking gaits.
The key aspect of producing the ground reaction force profile of natural
walking was proven to be the double support phase. A drawback of these
models is, that only the dynamics of the stance phase are modeled. The leg
angle in flight phase is static, resulting in the absence of swing leg dynamics.
Gan et al. [2018b] extended the bipedal SLIP model to incorporate a swing
leg dynamic. This led to the discovery of a wide variety of bipedal gaits
never before shown in reduced template models. Most SLIP-based models
of legged locomotion reported in literature so far are energy-conservative,
taking the impact of contact dynamics not into account.

Movement in complex terrains requires segmented legs. Periodic motions
of a leg can be described with the length and the angle of the leg. Hereby,
the leg length is the distance between the hip and foot, and the connecting
line between hip and foot defines the leg angle. Lakatos et al. [2017] proposed
a matching procedure to embed desired oscillation modes present in legged
locomotion into the dynamics of an articulated robotic leg. The locomotion
of this leg is defined by its natural dynamics, which results in energy-efficient
movements. The intrinsic dynamics of the leg do not need to be changed
by control, rather control excites the natural dynamics to replace energy
lost through friction and ground contact. The study proposes a pantograph
leg mechanism as an ideal robotic system to integrate SLIP-like dynamics.
This segmented leg features a pantograph mechanism and closely resembles
mammalian legs.

1.3 Goal of the Thesis

This thesis aims at transferring natural gaits to legged robots on the basis
of the introduced concepts. First, a non-conservative SLIP model is built.
It is used to study whether energy fluctuations in a periodic motion influ-
ence the existence of natural gaits. Secondly, the natural gaits found in
conservative models are transferred to our new model. Thirdly, a pantograph
leg is parametrized to display SLIP-like dynamics and a natural gait is
demonstrated.

1.4 Structure

The structure of this thesis closely follows the chronological order in which
the research was conducted.
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Chapter 2 talks about the foundation needed to understand the reasoning
and methods used in the following chapters. The bipedal SLIP model,
as well as its extensions, are thoroughly explained. The definition and
characterization of a gait and stride are presented. In the end, the theory
behind the generation, analysis, and evaluation of our results are introduced.

Chapter 3 extensively explains our modifications in the dynamics of the
extended SLIP model and how the hybrid dynamics is computed. Further-
more, it explains the details of our search for different gaits and in the end
presents and evaluates all gaits found.

Chapter 4 introduces the pantograph leg with SLIP-like dynamics. It ex-
plains the restrictions on and the process of choosing the physical parameters.
Furthermore, the so-parametrized leg is compared to biological legs.

Chapter 5 discusses the relevance of this work. In chapter 6, all findings
are summarized, and future work on the non-conservative SLIP model and
the pantograph leg model is presented.
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Chapter 2

Foundation

This chapter introduces the history of templates for legged locomotion. Fur-
thermore, the terms gait and stride are defined. In the end, the mathematical
theory of gait analysis is explained.

2.1 Spring Loaded Inverted Pendulum (SLIP)
Model

v
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Figure 2.1: One stride of a running spring-mass system (Adapted from
Blickhan [1989], Fig. 5)

The SLIP model was first introduced by Blickhan [1989] as “The spring-
mass model for running and hopping”. It consists of a body point mass
m with a massless translational spring with resting length l and stiffness
k. This planar model is conservative, has no controller and therefore its
motion is only defined by its inherent dynamics. Steady state running can
be described by magnitude v, angle β of body velocity at touchdown, and
the angle of attack α. The angle of attack complies with the hip angle of a
human runner, and describes the direction of the leg when ground contact is
established. At touchdown, the leg spring is uncompressed. In stance, the
spring compresses and lengthens again, switching to the flight phase when
it is fully uncompressed again. After ground contact is broken, the spring
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instantly goes in the configuration defined by the angle of attack. Figure 2.1
represents a stride of the system. The plot on the right shows idealized
ground reaction forces present during stance. The spring-mass model exhibits
hopping and running gaits. The energy conversion of potential and kinetic
energy of the CoM is sufficiently similar to the exchange of energies observed
in experiments of human running.
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Figure 2.2: Ground reaction forces of the IP model (Adapted from Geyer
et al. [2006])

Mochon and McMahon [1980] showed that the body CoM position in
bipedal walking can be modeled with the inverted pendulum (IP) model.
This vaulting over stiff legs nevertheless cannot reproduce the characteristic
M-shaped vertical GRF profile of the human walking gait in stance (Fig-
ure 2.2). The blue line displays the GRF profile of the IP model in stance,
and the green line represents the idealized profile of a human bipedal walker.

Geyer et al. [2006] introduced the bipedal SLIP model. It was created
by adding second massless spring with the same stiffness k and resting
length l to the spring-mass model. Additionally to running gaits, they
found walking gaits replicating the out-of-phase changes of potential and
forward kinetic energy, as well as the CoM trajectory observed in human
walking. Moreover, they found that the key element of the walking motion
is the double support, leading to the characteristic M-shaped GRF profile
(Figure 2.3). Their work gave an insight into how a bipedal model with only
one set of kinematic parameter values can exhibit walking and running. This
endorses the hypothesis that oscillations of this system at different energy
levels result in distinctive gaits.

2.2 Extended SLIP Model

The bipedal SLIP model captures stance dynamics. However, the swing leg
dynamics is suppressed by the predefined angle of attack. As a result, the
swing phase is not defined by a passive dynamic motion. The drawbacks
include possible infinitesimal small non-physical swing times, the necessity
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Figure 2.3: One stride of a walking bipedal SLIP model (Adapted from
Geyer et al. [2006])

to actively adapt the angle of attack to different gaits, and the restriction to
gaits with the same angle of attack for both legs.

Gan et al. [2018b] extended the bipedal SLIP model with a torsional
spring at the hip joint for both legs. Therefore, the natural mechanical
dynamics condition the leg swing. For this polar spring, a swing frequency is
defined, rather than a spring stiffness. The latter would demand a foot mass,
which would violate the requirement of energy conservation. The angle of the
leg and its velocity are now fully defined by the dynamics of the system. The
leg length is held constant during swing to prevent infinite small oscillations.
The configuration of the system is fully described through its body CoM
position and the leg angle α, as well as the corresponding velocities.

The different gaits shown by this model and their connections were
extensively analyzed. A variety of gaits was found - including walking,
running, skipping, and bipedal galloping - of which some have never been
discovered in SLIP models before. A discussion of their results can be found
in Section 3.5, together with our own gait analysis.

In addition, the team presented a dynamically complete quadrupedal
SLIP model in Gan et al. [2018a]. Their investigations demonstrated how
quadrupedal bounding gaits of a model without body pitch are related to
bipedal gaits. The hind and front legs of a bounding quadruped move in
pairs, making it possible to compare their motions to individual legs of a
biped.
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Figure 2.4: Extended SLIP model (Adapted from Gan et al. [2018b])

2.3 Gait Definition

A gait is defined as a periodic motion characterized by its initial parameter
set X . All states except the horizontal position x of the body return to
their initial values after one full stride, causing these gaits to also be called
period-1-gaits. We define the beginning and end of a stride without loss of
generality to be in the apex. The apex corresponds to zero velocity and a
maximum vertical height of the body.

Gait families, e.g. walking or running, are distinguished by their footfall
patterns, number of swing leg oscillations and whether the swing leg retracts
or not before hitting the ground. The same characteristics are shared by
all solutions of one family, for example walking at different speeds always
includes a double support phase.

2.4 Mathematical Tools

This section introduces the mathematical theory behind our gait analysis.

2.4.1 Poincaré Section

Figure 2.5: Periodic orbit in the y, ẏ plane with marked Poincaré section

7



Figure 2.5 plots the periodic system states of one stride in the y, ẏ plane.
The marked apex event gives us the Poincaré section used for the analysis
of the periodic orbit. The Poincaré map P maps initial states Xo to final
states Xfinal after one stride. The state trajectories are obtained through
numerical integration of the dynamics of a full stride. Periodicity can be
enforced using a zero function (2.1).

Φ := P (X∗)−X∗ = 0 (2.1)

2.4.2 Continuation

Periodic solutions in the Poincaré section evolve along one-dimensional
manifolds called ‘branches’. Discovering a branch of solutions (e.g. hopping
on spot with increasing height) is called continuation (Dankowicz and Schilder
[2013]).

Starting with a known solution X∗
n we can find a solution X∗

n+1 with
distance d numerically. The following needs to hold:

• X∗
n+1 is a periodic solution (2.2)

• it has a fixed distance to the last solution (2.3)

• and the step direction conforms with the last steps direction (2.4)

Φ(X∗
n+1) = 0 (2.2)

||X∗
n+1 −X∗

n|| = d (2.3)

(X∗
n+1 −X∗

n) · (X∗
n −X∗

n−1) > 0 (2.4)

Finding X∗
n+1 solving these equations is numerically sensitive to well-

guessed initial states Xo
n+1. We can generate Xo

n+1 by either assuming a
constant development of solutions (2.5) or by utilizing the results of the
Floquet analysis of the Poincaré map.

Xo
n+1 = X∗

n + d · (X∗
n −X∗

n−1) (2.5)

Continuation is in fact a Prediction-Correction-Process, with (2.5) or the
Floquet Analysis (see Section 2.4.3) proposing methods on predicting nearby
solutions Xo

n+1, and (2.2)-(2.4) giving the conditions for correcting the guess.

2.4.3 Floquet Analysis

Disturbing a stable X∗
n in any direction not along the branch by a small ∆x

results in a return of the system to X∗
n. A disturbance in the direction of

8



X∗
n+1, however, will result in the system staying on the new trajectory. This

characteristic is exploited by the Monodromy matrix Jn = ∂P
∂X

∣∣
X∗
n
.

It evaluates the partial derivative of the Poincaré map P with respect to
the system states at a periodic solution X∗

n. It approximates the effects of
a small change of system states on the system states after one stride. We
approximate the Monodromy matrix numerically by computing the central
differential quotients for all states of X∗

n,i. X
+
n,i and X−

n,i denote periodic
solutions X∗

n,i, where the ith component has been disturbed by a small ∆x
in positive (respective negative) direction (2.6).

Jn,i =
P (X+

n,i)− P (X−
n,i)

2 ·∆x
(2.6)

The eigenvalues λn,i of Jn are called Floquet Multipliers, and for X∗
n

being a solution to a periodic system there must be one with value +1.
The corresponding eigenvector vn,i is tangential to the solution branch and
therefore points towards X∗

n+1. With vn,i having unit length, the guess for
the next solution is computed by (2.7).

Xo
n+1 = X∗

n + d · vn,i (2.7)

The step size d can be chosen arbitrarily. Larger values lead to a faster
discovery of the solution branch, but might compute initial guesses that do
not converge to a periodic solution. Smaller step sizes significantly increase
to computation time of discovering a whole solution branch, but produce
closer guesses of neighboring solutions.

2.4.4 Bifurcations

Different gait solution branches connect at bifurcation points. Bifurcations
occur when there is more than one Floquet multiplier with a value +1. A
bifurcation marks a break in the symmetry of the solution. The additional
eigenvectors vn,i are not tangential to the former solution branch. They
point in the direction of a new branch, which is discovered with a separate
run of the continuation algorithm. Bifurcations point out the correlation of
different solution branches. An example is that hopping with a very small
forward velocity is nearly indistinguishable from hopping on spot with the
same CoM height. These two solutions lie on two different branches, but
are both close to the bifurcation point, where the hopping on spot motion
develops into a forward hopping motion.
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Chapter 3

Non-Conservative SLIP
Model

The non-conservative SLIP model is developed as an intermediate step
towards our goal of transferring the results of the natural gait analysis of the
extended SLIP model to a physically realizable model of a legged system.
The following key features let our model overcome physically impossible
characteristics of the extended SLIP model:

Contact Dynamics The system takes contact dynamics into account, which
result from a finite leg mass. This is implemented with a non-zero foot
point mass.

Damping The system accounts for friction, which is present in all physically
realizable mechanical systems. This is modeled with viscous damping.

Thrust Contact dynamics and friction both result in energy loss of the
system. This is compensated for by a mechanism called ’Thrust’, which
adds energy to the system by increasing the rest length of the spring
acting along the leg axis.

The exact implications and realizations of these features will be elaborated
on in Sections 3.2.

3.1 Dynamic Model

The model consists of a body mass mb with fixed rotation and a comparatively
small foot point mass mf . The world position of the body is given by (x, y).
The position of the foot with respect to the body is given in polar coordinates,
with radius l and angle α. These properties will be denoted as leg length (or
leg axis) and leg angle. The latter is zero if the foot CoM is directly below
the body CoM.

10



The absolute positions of the body and foot mass with respect to a
ground-fixed coordinate system are given in (3.1). The state of the system

can be described by the configuration variables q =
(
x y α l

)T
and

corresponding velocities q̇ =
(
ẋ ẏ α̇ l̇

)T
.

rb =

(
x
y

)
rf =

(
x+ sin(α) · l
y − cos(α) · l

) (3.1)

The leg axis is modeled as a massless radial spring with resting length
lo, stiffness kl and damping bl. The system features a massless polar spring
around the body CoM with resting angle α0, stiffness kα and damping bα.

The model is visualized in Figure 3.1, which also lists dimensionless
example parameters used in our analysis. The parameters are normalized
with respect to the total body mass mtot, leg length lo, and gravity constant
g (see Hof [1996]). The advantage is that dimensionless parameters generalize
the solutions and enable easy and fast comparison and transfer of results to
other models.

mb

mf

x, y

α

l

bl

rb

rf

kl
kα, bα

x

y

Parameter Value Unit

mtot 1 kg
lo 1 m
αo 0 rad
g 1 m/s2

mb 0.9 mtot

mf 0.1 mtot

kl 10 mtotg/lo
kα 1 mtotlog

bl 1 mtot

√
g/lo

bα 0.1 mtotlo
√
glo

Figure 3.1: Non-conservative SLIP model with example parameters

3.2 Hybrid Dynamics

The non-conservative SLIP model exhibits both continuous and discrete
dynamic behavior and therefore is a hybrid dynamic system.

3.2.1 Continuous Dynamics

Equation (3.2) expresses the continuous dynamics of the hybrid system.
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M(q)q̈ + b(q, q̇) = −∂Ue(q)
T

∂q
− d(q̇) + τext (3.2)

b(q, q̇) = C(q, q̇)q̇ +
∂Ug(q)

T

∂q
(3.3)

M(q) is the positive-definite inertia matrix. The bias force b (3.3) con-
tains the Coriolis and centrifugal forces C(q, q̇)q̇ and the forces due to the
gravitational potential Ug. Ue is the elastic potential energy, and Dq̇ accounts
for dissipative effects of linear viscous damping and friction. τext contains
external forces between the environment and the model.

The inertia matrix (3.4), the bias forces (3.5), the elastic potential (3.6),
and the dissipative term (3.7) are stated explicitly for this one-leg model.

M(q) =


mb +mf 0 cos (α) lmf sin (α)mf

0 mb +mf sin (α) lmf − cos (α)mf

cos (α) lmf sin (α) lmf l2mf 0
sin (α)mf − cos (α)mf 0 mf

 (3.4)

b(q, q̇) =


α̇mf

(
sin (α) lα̇− 2 cos (α) l̇

)
− cos (α)mf α̇

2l − 2 sin (α)mf α̇l̇ − g (mb +mf )

−lmf

(
g sin (α) + 2α̇l̇

)
mf

(
α̇2l + g cos (α)

)

 (3.5)

Ue(q) =
1

2
kα (α− θ1)2 +

1

2
kl (l − θ2)2 (3.6)

d(q̇) =


0
0
bαα̇

bl l̇

 (3.7)

The external forces (3.8) are only non-zero, when the system is in contact
with the ground. They are computed using the contact Jacobian J (3.9) and
the forces λ resulting from contact.

τext = JTλ (3.8)

J =

(
1 0 cos (α) l sin (α)
0 1 sin (α) l − cos (α)

)
(3.9)
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The contact forces λ are computed by taking the contact constraints that
hold the foot in place into account (3.10).

λ = −
(
JM−1JT

)−1
(
J̇ q̇ − JM−1

(
b+

∂UTe
∂q

+ d(q̇)

))
(3.10)

3.2.2 Discrete Dynamics

The dynamic model undergoes a discrete change at three events during
one stride, depicted in Figure 3.2. The ground contact is established at
touchdown, the control is activated at thrust, and the ground contact is lost
at liftoff. For completeness, the apex event is also introduced here.

Stance SwingSwing

lthrust

Apex Touchdown Thrust Liftoff Apex

t

Figure 3.2: One stride of the one-leg hopper

Apex

A stride starts in apex when the body is on its highest position. This
corresponds to ẏ = 0. The system is in swing phase, has no contact to the
ground and thrust is not active. Gravity causes the system to fall towards
the ground.

Touchdown

The touchdown occurs when the foot hits the ground and its vertical position
is zero (yfoot = 0). The system is now in contact with the ground. The
velocity of the foot is reset to zero by changing the impulse of the foot
(3.11). The velocities before and after the collision are denoted by q̇− and
q̇+, respectively. This velocity reset causes the kinetic energy of the foot to
become zero, which reduces the total energy of the system. After touchdown,
the system is in stance phase and the leg spring compresses due to the body
mass.
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q̇+ =
(
I −M−1JT

(
JM−1JT

)−1
J
)
q̇− (3.11)

Thrust

When the leg is the shortest, the leg spring is maximally compressed. The
change in spring length (l̇ = 0) at this time instance is zero and the system
switches to thrust phase. The control action ’thrust’ is activated and adds
energy to the system, amplifying the upwards movement of the body. Adding
energy to the system is necessary to compensate the energy loss through 1)
the velocity reset of the foot at touchdown and 2) the constantly dissipated
energy by damping. Periodic motions of the system can only be found, if
the energies of the system at begin and end of one stride are equal.

When the system reaches the thrust phase the resting leg length lo is
artificially increased by lthrust. This increases the deflection of the spring,
which correlates to an instantaneous increase ∆Ue,l of the energy stored in
the compressed spring (3.12).

∆Ue,l = U+
e,l − U

−
e,l =

1

2
kl[(lo + lthrust − l)2 − (lo − l)2] (3.12)

Liftoff

The foot leaves the ground when the contact forces in vertical direction
between the foot and the ground are zero (λy = 0). The system transitions
into the swing phase. The contact to the ground is lost and thrust is
deactivated. In difference to the (extended) SLIP model, the leg length is not
held constant during the swing phase. It is purely defined by the dynamics
and no active foot lift is incorporated.

Apex is detected when the body reaches its highest position so its vertical
velocity ẏ vanishes. This marks the completion of one stride.

3.2.3 Energy Fluctuation

There are three reasons why our model is non-conservative. First, the springs
are subject to damping to prevent infinite oscillations. This causes the system
to dissipate energy. Secondly, the kinetic energy of the foot mass is lost,
when the foot hits the ground and its velocity is set to zero. Thirdly, the
energy of the system is increased through thrust. It enables us to feed the
lost energy back into the system, which is necessary to be able to display
periodic solutions.

In Figure 3.3 the changes in total system energy throughout one stride
can be seen. Notice the discontinuity in kinetic energy at touchdown, as
well as the discontinuity in elastic energy when the thrust is brought into
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Figure 3.3: System energy during one stride

the system. The effects of damping can be observed when looking at the
decreasing total system energy in between the different events.

3.3 Search for Periodic Motions

The integration, respectively simulation of the system was solved in two
different, but interchangeable ways.

Event-based integration monitors specific event conditions to detect the
appropriate time to stop the simulation. An example of this is monitoring
the foot position in the swing phase to detect contact with the ground. This
leads to a stop of the solution of the swing dynamics. The ground contact
is established and the simulation is now solved taking contact forces (3.10)
into account.

Timing-based integration simulates the system until a predefined time.
An example for this is simulating the stance dynamics of the system after
touchdown for a predefined amount of time, that estimates the next event
time. The integration is then stopped, the thrust is activated, and the
simulation starts again. After simulating one stride, the solver checks if the
event condition at the chosen time was actually fulfilled, and must change
the timing variable in order to solve the dynamic system.

For simulation of our hybrid dynamic system, MATLABs ode45 was used.
It solves nonstiff differential equations based on an explicit Runge-Kutta
algorithm.
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3.3.1 Periodic Motion

Periodic motions are found by using fsolve, MATLABs solver for systems
of nonlinear equations. It takes an initial guess Xo (3.13) and modifies each
component to solve the problem res(Xo) = 0.

Xo =
(
x0 ẋ0 y0 ẏ0 α0 α̇0 l0 l̇0 lthrust,0

)
(3.13)

The Poincaré map P (X∗) of the periodic system states X∗ (3.14) is built
(see Section 2.4). It maps the initial system states Xi of one stride to their
respective values Xi+1 after the stride.

X∗ =
(
ẋ y ẏ α α̇ l l̇

)
(3.14)

Periodicity is enforced by using the zero function (2.1) as the residuum
(3.15).

res(X) = P (X)−X (3.15)

The Apex is chosen as the Poincaré section, so additionally, the periodic
system states need to comply with the apex condition ẏ = 0.

3.3.2 Event Detection

Swing Phase

contact = false
thrust = 0

Stance Phase

contact = true
thrust = 0

Thrust Phase

contact = true
thrust = lthrust

Touchdown
yfoot = 0

Thrust
l̇ = 0

Liftoff
lambday = 0

Apex
ẏ = 0

Figure 3.4: State machine for one stride

Figure 3.4 shows the different states of the system during one stride. The
event conditions are annotated to the state transitions. The event function
of ode45 monitors the zero crossings of these conditions to detect if an event
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is happening. The condition that is monitored changes depending on the
system state.

A stride starts in swing phase at apex, which means that the foot is not
in contact, the thrust is not active, and the apex condition ẏ = 0 holds.
ode45 integrates the system step by step while monitoring the touchdown
condition. If yfoot = 0, the integration stops, the system transitions into the
stance phase, and the foot now has ground contact. Additionally, the velocity
of the foot is reset to zero to model the impact. The simulation starts again,
monitoring the thrust condition l̇ = 0. When fulfilled, the integration stops
and thrust is activated. The thrust phase is simulated while monitoring the
liftoff condition. When the ground contact forces of the foot vanish, the
system transitions into the swing phase and contact and thrust are both
reset to zero. The swing phase is simulated until apex is reached and vertical
velocity ẏ of the body becomes zero.

3.3.3 Timing Variables

The system can also be simulated utilizing timing variables instead of the
event detection. An additional timing variable is added to the system for
every event.

The simulation starts at time t = 0 and simulates the system with
deactivated thrust and no ground contact until tTD. This is the initial guess
for the time instance when the foot hits the ground. The touchdown condition
yfoot = 0 might not be fulfilled at this time instance. This is taken care of
with a timing residuum explained later on. The contact is established and
the simulation is continued including contact forces (3.10). The system is
then simulated from tTD until tTHR, and thrust is activated. The simulation
continues until tLO, the ground contact of the foot is broken and thrust is
deactivated. From tLO until tAPEX the system is simulated using swing phase
dynamics.

Timing variables are subject to changes by the solver, similar to the
initial system states. To assure that the event conditions are fulfilled at the
respective timings, we add a residuum for every event (3.16).

resTD = yfoot

∣∣∣
tTD

resTHR = l̇
∣∣∣
tTHR

resLO = Fcontact

∣∣∣
tLO

resAPEX = ẏ
∣∣∣
tAPEX

(3.16)
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3.3.4 Comparison of Event Detection and Timing Variables

Both methods can be used to find periodic gaits, but they have significant
differences.

Simulation without the Solver

Event detection enables physically accurate simulations of a stride with any
valid initial state, even non-periodic guesses. A valid initial state in apex
fulfills the apex condition and the foot of the model is above the ground.
Timing-based simulation has the drawback that exact timing variables cannot
be known beforehand. Using incorrect timings can result in a foot position
above or below the ground when the stance phase is initiated. Therefore
timing variables can only be used in combination with the algebraic solver
and an appropriate residuum.

Invalid Initial States

The solver might take an invalid initial guess of the system states. For
example, the foot position can be below the ground in apex. The event
detection will fail to observe the touchdown event and cannot produce a
residuum. But without the residuum, the solver cannot improve the guess of
the periodic initial states. Using timing variables results in the simulation of
a full stride and the display of a proper residuum.

Event Order

Timing variables let the solver choose the order of events. This allows
deciding which events need to happen, without restricting solutions to an
event pattern. When using event detection, we predefine the order of events
as indicated in Figure 3.4. This can lead to undetectable solutions with
different event patterns.

Interchangeability

Both methods produce valid solutions, but can not be used abundantly
interchangeable. When reading timing variables from a periodic event-based
simulation, the timings based simulation also produces a periodic solution,
and the event conditions are fulfilled at the timings. Therefore, periodic
solutions found by event detection can be transferred without limitations to
a simulation using timing variables.

A periodic solution produced with a simulation using timing variables
can produce a non-periodic stride when used together with event detection.
This will be explained with the example of an oscillating leg in Figure 3.5.
The foot swings through the ground with a small ∆y. The event detection
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will detect the first ground contact e∗i as the touchdown. The timing-based
simulation will report any of the multiple events (i.e. ei+2) where the event
condition yfoot = 0 is fulfilled as touchdown.

Figure 3.5: Foot mass oscillating around y = 0 with events e that fulfill
the touchdown condition

3.3.5 Multi-Legged Systems

The ode45 event function originally intends to monitor all event conditions
at once and to detect every single event at the same time. This might work
for the one-leg hopper, as every event will only happen once during one
stride. For multi-legged systems this usage is problematic.

Consider a bipedal gait shown in Figure 3.6. As mentioned before, the
leg length during swing phase is only defined by the swing dynamics of the
model. Therefore the swing leg cannot be shortened to not touch the ground
during some gaits. The swing of the foot through the ground must not be
detected as a touchdown or contact with the ground.

Figure 3.6: Running biped with foot moving through ground

The event detector needs to ignore such events so that the biped does
not stumble. In contrary, the timing-based simulation solves this problem
inherently. The only precondition is an arbitrarily good initial guess of the
event timings.

From the extensive analysis of the extended biped SLIP model by Gan
et al. [2018b] we know the chronological order of the events happening in
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the different bipedal gaits. This allows us to predefine the order of events
without missing possible gaits.

This translates to systems with a different number of legs. The natural
gait analysis of a conservative SLIP model provides guidance for the event-
based search of gaits of non-conservative SLIP models.

3.4 Bipedal Model

This section explains how the dynamic model of a one-leg hopper can be
extended to a bipedal system. The hybrid dynamics are similar, as well as
the search for periodic orbits.

mb x, y

mf

αR

lR

mf

αL

lL

rb

rf,R
x

yrf,L

Parameter Value Unit

mtot 1.2 kg
lo 1 m
αo 0 rad
g 1 m/s2

mb 0.83 mtot

mf 0.08 mtot

kl 16.67 mtotg/lo
kα 0.42 mtotlog

bl 1.67 mtot

√
g/lo

bα 0.04 mtotlo
√
glo

Figure 3.7: Non-conservative bipedal model with example parameters

The bipedal model was developed by adding a second leg - identical to
the first one - to the one leg model introduced in Section 3.1. The system
state can be fully described by (3.17), giving the positions and velocities of
the configuration variables.

q =
(
x y αR lR αL lL

)T
q̇ =

(
ẋ ẏ α̇R l̇R α̇L l̇L

)T (3.17)

The absolute positions of the body, right foot (R) and left foot (L) mass
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with respect to a ground-fixed coordinate system are given in (3.18).

rb =

(
x
y

)
rf,R =

(
x+ sin(αR) · lR
y − cos(αR) · lR

)
rf,L =

(
x+ sin(αL) · lL
y − cos(αL) · lL

) (3.18)

The biped model is visualized in Figure 3.7. We chose similar parameters
as Gan et al. [2018b] (mb = 1kg, kl = 20mbglo , ωα =

√
5
√
g/lo). The body

has a mass of mb = 1kg, and each of the feet have a mass of mf = 0.1kg.
The leg stiffness is chosen as kl = 20mbglo . The swing stiffness is computed

from the relationship ω2
α = kα

mf lo
. It resolves to kα = 0.5. These parameters

were normalized with mtot = mb + 2 ·mf = 1.2kg to get the dimensionless
parameters given in Figure 3.7.

3.5 Gaits

This section reports on the gaits found for our various non-conservative
models. First, we introduce our method to transfer the gait solutions
of conservative SLIP models to our non-conservative models. After that,
we describe the gaits of our models and compare them to gaits found in
conservative SLIP models.

3.5.1 Method

This section explains how we implemented the search for natural gaits. It
comments on why the methodology that was proposed by Gan et al. [2018b]
does not work with non-conservative systems. We explain our method for
finding natural gaits of tha actice system and explain how the analysis of
conservative systems is crucial for this.

Bifurcation Analysis

The Monodromy matrix J (see also Section 2.4.3) was built using event-based
simulation. It evaluates the influence of small changes to a periodic solution
of the system on the system states after one stride. The evaluation of the
eigenvalues and eigenvectors of M points out the direction of nearby periodic
solutions.

A periodic gait of the non-conservative system is not purely defined by
the periodic system states, but also by the thrust parameter lthrust. As
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this parameter is discrete, it is not affected by the changes in the periodic
parameters.

This was compensated for by investigating the continuous total energy
of the system (3.19) at the Poincaré section in apex and adding it to the
periodic system states.

T (q̇) = Ekin =
1

2
q̇TMq̇

U(q) = Ue + Ug

=
1

2
(kα(α− αo)2 + kl(l − lo)2) +mbgy +mfg(y − cosαl)

Etot = T (q̇) + U(q)

(3.19)

The Monodromy matrix did not have any eigenvalues with the value +1
anymore. This is a requirement for a correctly built Monodromy matrix of a
periodic solution. As a consequence, no eigenvector was tangential to the
solution branch and bifurcation points could not be found.

It follows that adding the total system energy to the periodic system
states does not yield a valid Monodromy matrix. The discrete system state
lthrust renders the application of Floquet analysis to this system impossible.

Building on Passive Gaits

We analyzed an extended SLIP one leg model and find its natural gaits
using the bifurcation analysis. These passive gaits, defined by their initial
states, are used as a basis for our search of gaits of the non-conservative
SLIP model. The differences between the various gaits allow for a targeted
search for specific gaits. The process persists of two separated simulation
runs, described in the following:

First Solver Run The parameters l, l̇, and lthrust need to be adjusted to a
given passive gait solution. The parameter statesX∗ =

(
x ẋ y ẏ α α̇

)
on the Poincaré section of the passive gait are prescribed to their re-
spective active counterparts. The missing parameters l, l̇, and lthrust
of the active system are chosen arbitrarily. The solver is tasked with
finding a periodic motion, while not altering the parameters taken from
the passive solution. This step is necessary because the problem is
badly scaled. Unfit parameters l, l̇, and lthrust won’t result in finding a
periodic gait of the non-conservative system.

Second Solver Run After l, l̇, and lthrust are adjusted, the search for a
periodic orbit is started again. All state variables are set free to be
manipulated by the solver. While the first step can yield approximately
nearly periodic solutions, the second step is necessary to accurately
solve the problem.
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Solution branches are discovered using the continuation method described
in Subsection 2.4.2. Close-by solutions are predicted assuming a constant
development of the solution branch (2.5).

3.5.2 One-Leg Hopper

An extended SLIP One-Leg Hopper (see Section 2.2) was developed. It was
parametrized to have the same leg angle eigenfrequency ωα,sw in swing, and
the same leg length eigenfrequency ωl,st in stance as the non-conservative one
leg hopper (see Table 3.1). The natural gaits found for this passive model
were used to discover periodic orbits of the non-conservative SLIP model.

Phase ωα ωl

Swing 3.16 10
Stance 1.05 3.33

Table 3.1: Eigenfrequencies of the non-conservative SLIP one-leg hopper
[ω] =

√
g/lo

Conservative SLIP Model

In the following, we report on the gaits found for the extended SLIP one-leg
hopper. Figure 3.8 shows a projection of the initial states to the three-
dimensional parameter space of ẋ, y, and α̇.

Hopping in Place (HP) The characterization of HP is that all values
of the state vector in apex are zero, except for y. This gait can be found
in the range of y = [lo,

kl
2mg ]. The lower end of the value range is defined

by the resting leg length. The upper end is defined by a fully compressed
leg spring during the stance phase. Starting from y = 1 the eigenvectors of
the Monodromy matrix corresponding to the eigenvalue +1 strictly point in
positive y direction. The solutions found along this branch have increasingly
longer flight phases and higher velocity during touchdown. In addition, they
feature greater spring compression in stance phase.

We find 13 bifurcations along the hopping in place solution branch. The
first six are covered below. The additional eigenvectors corresponding to
an eigenvalue of +1 all feature components in the ẋ, α, and α̇ direction.
The solution branches starting at these bifurcation points all correspond to
forward (and backward) galloping gaits. The branches extend symmetrically
in positive and negative ẋ direction. Only the positive velocity range is
displayed.
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Figure 3.8: Gaits of the conservative one-leg hopper emerging from hopping
in place

Galloping Forward (G1 - G6) G1 and G2 are characterized by one
swing oscillation of the leg during a stride. In G1 the leg first swings forward
under the body and hits the ground during the forward motion. Therefore
one can observe a jump and a change of sign in leg angle velocity α̇ when
the touchdown happens. The leg then swings behind the body, lifts off
the ground and begins to swing forward again. In G2 the leg is always
vertically beneath the body in apex. It swings forward but starts swinging
back again before it touches the ground. This phenomenon known as ’swing
leg retraction’ (Seyfarth et al. [2003]) is widely found in nature, as it reduces
the relative velocity of the foot with respect to the ground. This results in
less energy loss through touchdown. While in stance phase the leg moves
behind the body, lifts off the ground and swings forward again.

G3 and G4 both incorporate an additional swing oscillation of the leg
during flight phase. In apex, the leg swings backward and then forwards
again. In G3 the leg hits the ground while swinging forwards, whereas in
G4 the leg retracts before touchdown, just like in G2. The leg then moves
behind the body while in stance. After liftoff, it swings to the front and back
again until apex is reached. In G4 the leg angle α in apex is always zero.

G5 and G6 follow the same pattern as the other gaits. They show
three oscillations of the leg in total during one stride. G5 displays the
discontinuity in swing leg velocity α̇ in touchdown, whereas G6 displays
swing leg retraction.
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Non-Conservative SLIP Model

In the following, we report on the gaits found for the non-conservative SLIP
one-leg hopper. Figure 3.9 projects the initial states of the solutions to the
three-dimensional parameter space of ẋ, y, and α̇.

Figure 3.9: Gaits of the non-conservative one-leg hopper emerging from
hopping in place

Hopping in Place (HP) We used the method described in Subsec-
tion 3.5.1 to find a first solution on the hopping in place solution branch for
the non-conservative model. We then used continuation to find a solution in
a small distance along the branch.

In apex the system states x, ẋ, ẏ, α, α̇ are zero. The body height y is
steadily increasing along the branch. The leg length l is always approximately
lo and its velocity l̇ zero. For very small y the leg is still oscillating when
reaching the apex and therefore the values of l and l̇ deviate from these
values. The parameter lthrust is increasing along with y.

Solutions can be found in the range y ∈ [1.07lo, 8.78lo]. The values of
thrust are in the range of ltrust ∈ [0.07lo, 0.72lo]. It can directly be seen,
that the non-conservative model can reach higher apex configurations than
the passive model. The highest configuration of the extended SLIP model
was defined by the maximum energy that can be stored in the system
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during highest spring compression in stance phase. In comparison, the non-
conservative model can have higher system energy in the apex. It loses the
additional energy through damping and the impact at touchdown before the
spring is maximally compressed in stance phase.

Galloping Forward (G2) We could find one forward galloping gait of
the non-conservative model. It shows the characteristics of the G2 gait of the
conservative model. The bifurcation happens at y = 1.21lo on the HP branch.
In apex, the leg is behind the body. This is different from the conservative
model, where the leg is directly beneath the body in the apex. The leg then
swings forward. Before it touches the ground it swings backward, clearly
showing the characteristics of ’swing-leg retraction’. While the foot is on
the ground, the body moves over the foot point. The leg starts to swing
forward again after liftoff. The system shows only one swing leg oscillation
when being in the air. We could find gaits with forward velocities up to
ẋ = 18.04

√
glo and the maximum thrust used was lthrust = 4.37lo.

Comparison of Extended and Non-Conservative Model Gaits

The non-conservative SLIP model does not display any gait without swing-leg
retraction. When the model is forced to place the foot on the ground, while
the leg swings forward, the body cannot be vaulted over the foot point. An
explanation of this behavior can be found when examining the velocity of
the leg angle. The velocity reset of the foot velocity in touchdown does not
lead to a change of sign of α̇. The forward motion of the system changes to
a backward motion within the step and the leg pushes the body towards the
ground. A periodic solution cannot be found. Therefore, the non-conservative
model does not display any gaits comparable with the gaits G1, G3, and G5
of the extended SLIP model.

The active model also does not display any gait where the leg shows more
than one swing oscillation in the air. This results from the damping of the
torsional spring. It causes the system to reach its maximum deflection of the
torsional spring only once. The gaits G4 and G6 of the passive model thus
have no counterpart in the active model.

3.5.3 Biped

The study of Gan et al. [2018b] analyzed a passive extended SLIP model
(Section 2.2). Corresponding gaits of the non-conservative bipedal model
have been given the same identifier. Bipedal models offer a variety of footfall
patterns when hopping in place.

Gaits where the two legs alternately touch the ground have a symmetrical
single stance footfall pattern. We defined the order of events of these gaits
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as Apex, TDR, ThrustR, LOR, Apex, TDL, ThrustL, LOL, and Apex. Both
legs perform the exact same motion, just half a stride out of phase.

Gaits with fully synchronized legs have an asymmetrical double stance
footfall pattern. The touchdown, thrust, and liftoff events of both legs
happen at the exact same time.

Symmetrical Single Stance

The gaits with a symmetrical single stance footfall pattern being considered
are the running-in-place gait (RP) and a running-forward gait (R2). Fig-
ure 3.10 shows a projection of the initial states to the three-dimensional
parameter space of ẋ, y, and α̇.

Figure 3.10: Gaits emerging from bipedal symmetrical single stance hop-
ping in place

Running-in-Place (RP) In apex the system states x, ẋ, ẏ, αR, α̇R, αL,
and α̇L are zero. The body height y is steadily increasing along the branch.
The leg lengths lR and lL are always approximately lo and the corresponding
velocities zero. The parameter lthrust is steadily increasing with higher y.

Solutions can be found in the range y ∈ [1.09lo, 16.06lo]. The thrust
required to reach the highest apex position is lthrust = 0.93lo. Again, this
model reaches higher body CoM positions than the passive model. The
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maximum energy in apex is not directly defined by the maximum energy
that can be stored in a fully compressed leg spring.

Running-Forward (R2) Solutions on this branch evolve with increasing
forward velocity and incorporate leg swing. The motions found along the
R2 branch closely resemble running gaits in nature. The leg angles follow
a quasi-sinusoidal trajectory. The legs display swing-leg retraction. The
leg moves backward before the foot hits the ground, and the energy loss
through touchdown is minimized by matching the velocities of the foot and
the ground.

The bifurcation happens at y = 1.04lo on the RP branch. Solutions have
a forward velocity of up to ẋ = 3.64

√
glo with thrust reaching lthrust = 0.48lo.

Asymmetrical Gaits

The gaits considered are the hopping-in-place gait (HP) and a galloping
gait (G2). The angle α of the right and left leg - as well as leg length l
and corresponding velocities - have an equal magnitude for both legs during
the whole stride. Figure 3.11 shows a projection of the initial states to the
three-dimensional parameter space of ẋ, y, and α̇.

Figure 3.11: Gaits emerging from bipedal asymmetrical double stance
hopping in place
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Hopping-in-Place (HP) The branch incorporates hopping on spot with
a body CoM position in y ∈ [1.08lo; 45.03lo]. The thrust parameter ranges in
lthrust ∈ [0.07lo; 1.71lo]. This gait reaches higher body CoM positions than
RP. In stance, the energy stored in the springs is doubled, as both legs are
in contact with the ground simultaneously.

Galloping (G2) This gait reaches forward velocities of up to ẋ = 8.64
√
glo,

with a maximum thrust of lthrust = 1.70lo. As all gaits of non-conservative
models with forward velocity, the leg is retracted prior to ground contact.
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Chapter 4

Pantograph Leg

The goal of this chapter is to design a segmented leg with a dynamic that
closely resembles the dynamics of the non-conservative SLIP model. Periodic
motions of segmented legs are usually achieved through some sort of control,
that changes the intrinsic dynamics of the system. By matching the dynamics
of this pantograph leg to those of the non-conservative SLIP model, the
control that is necessary to achieve periodic motions can be reduced to purely
compensating energy losses. When comparing the pantograph leg with the
SLIP model, we are referring to the model described in Chapter 3.

4.1 Dynamic Model

The system consists of a trunk point mass mt and a thigh, shank, and foot
with masses m1..3. The lengths, CoM inertias, and CoMs are denoted by l1..3,
I1..3 and c1..3, respectively, with the CoM position at half the link length
ci = li

2 . The model is planar and the trunk position is given by (x, y). The
thigh is connected to the trunk by a hinge joint with an angle q1 and the knee
is attached to the thigh by a hinge joint with angle q3. The system features a
pulley, which is concentric to the hip and implements a coupling between the
the pulley, the hip, and the knee joint q3 = β(q2−q1). The parameter β adds
an additional design degree of freedom. The ankle is hinged to the shank
via angle q4. The leg features a pantograph mechanism, which kinematically
constrains the foot in parallel with the thigh q4 = −q3. The contact between
foot and ground is modeled as a point. The model is visualized in Figure 4.1.

The minimum set of coordinates is given by q =
(
x y q1 q2

)T
, which

together with the corresponding velocities q̇ =
(
ẋ ẏ q̇1 q̇2

)T
defines the

state of the system.
The hip joint angle q1 and pulley angle q2 are actuated by linear springs

with stiffness k1 = klin and k2 = αklin, and are subject to damping b1 = blin
and b2 = αblin.
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q4 = −q3

q3 = β(q2 − q1)

m2, l2, I
c
2

m3, l3, I
c
3

m1, l1, I
c
1

contact point

q1

q2
mt

α klin, α blin

klin
blin

Figure 4.1: Three-segmented pantograph-leg mechanism (Adapted from
Lakatos et al. [2017])

4.2 Hybrid Dynamics

The hybrid dynamics of the pantograph leg are similar to the ones of the
non-conservative SLIP model. Extensive details can be found in Section 3.2.

The continuous dynamics can be expressed by (4.1).

M(q)q̈ + b(q, q̇) = −∂Ue(q)
T

∂q
− d(q̇) + τext (4.1)

b(q, q̇) = C(q, q̇)q̇ +
∂Ug(q)

T

∂q
(4.2)

M(q) is the positive-definite inertia matrix. The bias force b (4.2) contains
the Coriolis and centrifugal forces C(q, q̇)q̇ and the gravitational potential Ug.
Ue is the elastic potential energy, and d(q̇) accounts for dissipative effects
like viscous damping and friction. τext contains external forces between the
environment and the model.

The external forces (4.3) are only non-zero when the system is in contact
with the ground. They are computed using the contact Jacobian J and the
forces λ resulting from contact.

τext = JTλ (4.3)

The contact forces λ are computed by taking the contact constraints that
hold the foot in place into account (4.4).

31



λ = −
(
JM−1JT

)−1
(
J̇ q̇ − JM−1

(
b+

∂UTe
∂q

+ d(q̇)

))
(4.4)

The system transitions four phases during one stride. The conditions
for phase transitions are formulated in task coordinates. The mapping f(q)
from joint to task coordinates is given in the next section. The stride starts
in apex, when ẏ = 0. The system has no contact to the ground and thrust
is not active. The touchdown occurs when the vertical position of the foot
is zero (yfoot = 0). The system is now in contact with the ground. The
velocity of the foot is reset to zero by changing the impulse of the foot
(4.5). The velocities before and after the collision are denoted by q̇− and q̇+,
respectively.

q̇+ =
(
I −M−1JT

(
JM−1JT

)−1
J
)
q̇− (4.5)

When the leg is spring is fully compressed (l̇ = 0) thrust is activated.
Herein lies a major difference to the application of lthrust in the non-
conservative SLIP model. As a reminder, lthrust is used to feed energy
into the system and artificially increases the resting length ldes = lo + lthrust
of the leg. The pantograph leg is physically constraining ldes to its maximal
total leg length ldes ≤ ltot = l1 + l2 + l3. When looking at the resulting resting
joint angles q1,o and q2,o it becomes evident that by further pretensioning the
corresponding springs the energy in the system increases, while the desired
leg length shortens and the knee bend direction changes. Therefore the
following rule is implemented:

If ldes exceeds ltot, the desired resting leg length ldes shortens by the
∆l = ldes− ltot by which the total leg length was exceeded and the knee bend
direction is reversed.

The liftoff happens, when the contact forces between the foot and the
ground are zero (Fcontact = 0). The contact to the ground is lost and thrust
is deactivated. The stride is completed with the next apex event.

4.3 Modal Dynamics Matching

The pantograph leg is parametrized to obtain SLIP-like dynamics. The
non-conservative SLIP model is used as a template. Its decoupled dynamics
are embodied in the design of the pantograph leg.

Investigation of the dynamics in stance (Lakatos et al. [2017]) and in swing
(Eßer [2018]) reveals that the design conditions (4.3) must hold, regardless
of system state.
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l2 = l1 + l3 (4.6)

Ic1 − Ic2 + Ic3 =
(3m1 +m2)

4
l21 +

(2m1 +m2)

2
l1l3 −

(4m2)

4
l23 (4.7)

− (m1 +m2)

4
l1l3 (4.8)

α =
β

2− β
(4.9)

Additionally to these conditions, all parameters need to have positive
values to be physically realistic.

The overall set of design parameters is given by ζ = ζ1 ∪ ζ2 ∪ ζ3.
ζ1 = (m1,m2,m3, l1, l2, l3, I

c
1, I

c
2, I

c
3) contains physical parameters of the leg.

ζ2 = (mt, klin, blin) includes the visco-elastic properties and trunk mass.
ζ3 = (α, β) covers the relational parameters which add two design DoFs to
the model. As discussed before, the CoMs ci = li/2 of the limbs are at half
of the limb length.

4.3.1 Task Coordinates

The mapping f of joint space q =
(
x y q1 q2

)T
to task space x =(

x y αleg l
)T

of a so-parametrized leg is given in (4.10).

x = f(q) =


x
y

(1− β
2 )q1 + β

2 q2
(l1 + l3)

√
2(1 + cos(β(q2 + q1)))

 (4.10)

The mapping of the joint to task velocities is given in (4.11), using the
Jacobian J .

ẋ = J(q)q̇ (4.11)

Describing the system in task coordinates leads to a simple specification
(4.12) of the absolute position of the trunk mass and the toe. These are
equivalent to the positions the body and foot mass of the SLIP model (3.1).

rtrunk =

(
x
y

)
rtoe =

(
x+ sin(αleg) · l
y − cos(αleg) · l

) (4.12)

The inverse mapping is not unique, as a configuration in task coordinates
αleg, l can be reached with either the knee to the right or to the left (see
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Figure 4.2). The mapping which results in positive angles q1 is given in
(4.13). The mapping which results in the opposite knee bend direction is
given in (4.14).

q1 = αleg −
π

2
+

arccos
(
2l21+4l1l3+2l23−l2

2(l1+l3)
2

)
2

q2 =
(−2 + β) arccos

(
2l21+4l1l3+2l23−l2

2(l1+l3)
2

)
+ (−π + 2αleg)β + 2π

2β

(4.13)

q1 = αleg +
π

2
−

arccos
(
2l21+4l1l3+2l23−l2

2(l1+l3)
2

)
2

q2 =
(2− β) arccos

(
2l21+4l1l3+2l23−l2

2(l1+l3)
2

)
+ (π + 2αleg)β − 2π

2β

(4.14)

l

αleg

l

αleg

Figure 4.2: Knee-configurations of the pantograph leg

The inverse mapping from task to joint velocities is given by q̇ = J−1ẋ.
A pantograph leg that is parametrized according to these conditions has

eigenmodes that separate the high-dimensional coupled dynamics into one-
dimensional invariant dynamics. These are equal to the uncoupled dynamics
of the SLIP model given by the leg angle αleg and leg axis l. The resting leg
length lo and resting leg angle αleg,o can be modulated as required.

4.4 Search for Optimal Design Parameters

We used a CMA-ES (covariance matrix adaptation evolution strategy) algo-
rithm to numerically optimize the design parameters of the pantograph leg.
The population size is set to 100, and the function was evaluated 20 times.
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4.4.1 Design Parameters

The pantograph leg is parametrized to be used in the BERT project. The
boundary conditions stem from the objective to build a small, dog-like
quadrupedal robot.

We started with a fixed set of key parameters, that together with the
modal conditions define all design parameters. The initial values for these
parameters were taken from Eßer [2018]. The total mass of one leg and a
quarter of the trunk is mtot = 0.6kg. The ratio of leg mass to body mass is
assumed as mleg/mtot = η = 1/6. The total leg length is set to lleg = 0.2m,
and the ratio of thigh to foot length is l1/l3 = γ = 2/3. The spring stiffness
amounts to klin = 2.75Nm/rad and the relational parameter β = 1. The
aim of the optimization is to match eigenfrequencies, for which we also need
to take the resting length of the leg into account. The ratio of resting leg
length to total leg length was chosen to be lo/ltot = ε = 0.9.

We gradually freed the different key design parameters, only reaching
acceptable eigenfrequencies after all parameters were subject to optimization.
Table 4.1 lists the boundaries for the choice of the key design parameters.

Parameter Range Unit

mtot [0.4, 0.6] kg
η [0.1, 0.9]
ltot [0.2, 0.25] m
γ [0.55, 0.93]
ε [0.5, 0.9]
β [0.1, 1.9]
klin [2, 10] kg/s2

b/klin [0.001, 0.1] 1/s

Table 4.1: Boundary conditions for free design parameters

The optimization algorithm chooses a variable set within these bound-
aries. The parameters are normalized with total mass mtot, leg length
lleg, and gravitational constant g = 9.81m/s2, to continue the optimization
with dimensionless parameters. This is important, as our targets for the
eigenfrequency matching are also dimensionless.

The additional design parameters were computed as follows: The relative
parameter α can be calculated using β (4.15). If the second spring stiffness
k2 = αklin is outside the stiffness boundaries of klin, the optimization is
aborted.

α =
β

2− β
(4.15)

The lengths of the thigh, shank, and foot, and the resting leg length are
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computed in (4.16).

lo = εltot

lshank = ltot/2

lthigh = γ/(1 + γ)lshank

lfoot = lshank − lthigh

(4.16)

The dimensionless masses are computed from the modal conditions for
the foot mass and the inertia and the total leg mass (4.17). The indices
i ∈ {1, 2, 3} denote parameters of the thigh, shank, and foot.

Ic1 − Ic2 + Ic3 =
(3m1 +m2)

4
l21 +

(2m1 +m2)

2
l1l3 −

(3m2 +m3)

4
l23

m3 =
(m1l1 +m2(l1 − l3))

l3
mleg = m1 +m2 +m3

(4.17)

The total leg mass is computed with mleg = ζmtot. The inertias were
computed with (4.18). The center of mass of a limb is defined to be at half
the link length ci = li/2. A limb is modeled as a rigid body with two single
point masses. The position of those point masses is on the longitudinal axis
of the link, with distance ρli/2 from the center of mass ci. The values of
ρ were predefined, to maximize the range of γ that leads to positive limb
masses. ρ1 = 2 prescribes the point masses to be located outside of the thigh
segment between the hip and knee joints. ρ2 = 0.125 describe that the two
point masses of the shank are located close to the CoM of the shank. ρ3 = 1
defines that the point masses of the foot are located inside the ankle joint
and the toe tip.

Ici = 1/4ρ2imil
2
i (4.18)

4.4.2 Eigenfrequency Matching

The eigenfrequencies were computed separately for stance and swing phase.
The inertia matrix M was evaluated in equilibrium leg configuration,

where the leg has resting length and angle. M is separated into four 2× 2
submatrices (4.19).

M(q) =

[
M2×2
bb Mbj

MT
bj M2×2

jj

]
(4.19)
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The lower right submatrix of the stiffness matrix K contains the joint
stiffness of q1 and q2 (4.20).

K =

[
0 0

0 K2×2
jj

]
(4.20)

The eigenfrequencies in swing phase are approximated by solving the
generalized eigenvalue problem (4.21) using the leg inertia matrix in swing
Msw = Mjj and stiffness matrix Ksw = Kjj in swing. The eigenfrequencies
ωsw =

√
λsw are computed from the eigenvalues. The leg angle eigenfrequency

ωsw,α belongs to the eigenvector v = (1, 1)T , and the eigenvector v = (0, 1)T

corresponds to the leg length eigenfrequency ωsw,l.

λswMswv = Kswv (4.21)

The eigenfrequencies in stance phase take the Jacobian of the contact
constraint Φjb(q) into account (4.22). It describes the foot point in the world.
The inertia matrix Mst in stance is given in (4.23), and the stiffness matrix
Kst in (4.24).

Φjb =

(
∂rtoe(q)

∂[q1 q2]T

)−1(∂rtoe(q)
∂[x y]T

)
(4.22)

Mst = Mbb −MbjΦjb(q)− Φjb(q)
TMT

bj + Φjb(q)
TMjjΦjb(q) (4.23)

Kst = Φjb(q)
TKjjΦjb(q) (4.24)

The eigenfrequencies ωst =
√
λst are computed from the eigenvalues

of (4.25). The leg angle eigenfrequency ωst,α belongs to the eigenvector
v = (1, 0)T , and the eigenvector v = (0, 1)T corresponds to the leg length
eigenfrequency ωst,l.

λstMstv = Kstv (4.25)

In our cost function (4.26), we used the eigenfrequencies of the non-
conservative SLIP model (3.1) as the optimization target. We followed an
least-squares approach to minimize the difference between the desired and
pantograph leg eigenfrequencies. The term for the leg angle eigenfrequency
in swing is fully weighted. Our analysis showed that the leg swing in flight
phase significantly influences the forward velocities reachable in hopping.
The divergence of desired and actual eigenfrequencies in stance phase are
weighted with 0.5. The leg length frequency in swing is not considered in the
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cost function, as the oscillation behavior of the leg length in swing barely
influences the ability of the leg to express periodic gaits.

cost = (ωsw,α,des − ωsw,α)2 + 0.5 · (ωst,α,des − ωst,α)2

+ 0.5 · (ωst,l,des − ωst,l)2 + 0.3 · (xisw,α,des − xisw,α)2
(4.26)

We also add the least squares term of the damping ratio of the swing leg
angle to the cost function, weighted with 0.3, to obtain damping values that
do not prohibit the system from swinging. The damping ratio was obtained
with the method described by Shaw and Pierre [1993]. The comparability of
the pantograph leg with the non-conservative SLIP model would get lost if
the damping inside the pantograph leg would be estimated to high.

4.5 Analysis of the Results

The CMA-ES algorithm optimized the dynamics of the pantograph leg to
have the eigenfrequencies listed in Table 4.2. The desired values are listed
for comparison. The dimensionless desired damping ratio ξsw,α,des = 0.1581
was closely reached with ξsw,α = 0.1506.

Phase ωα,des ωl,des

Swing 3.16 10
Stance 1.05 3.33

Phase ωα ωl

Swing 3.16 8.77
Stance 1.03 3.37

Table 4.2: Desired and optimized eigenfrequencies of the pantograph leg
[ω] =

√
g/lo

Table 4.3 lists the optimal design parameters with dimensions, that have
been found with the optimization introduced in Section 4.4.

We analyze the influence of the spring stiffness klin on the optimized
eigenfrequencies.

The total body mass and the total leg length are defined as mtot =
0.4394kg and ltot = 0.2308m respectively. These are the optimized values
given by the numerical optimization in Section 4.4. The spring stiffness is
taken from klin ∈ [2N/m, 10N/m] in steps of 10% of the optimized klin,opt =
8.8993N/m

The search for optimized design parameters is started with the free param-
eters η, γ, ε, β, b/klin. Figure 4.3 displays the best optimized eigenfrequencies
that could be reached by the CMA-ES algorithm.

The target eigenfrequencies are reached with k = 100% · klin,opt. When
deviating the optimal spring stiffness by 20% in a positive or negative
direction, the desired leg angle swing eigenfrequency can still be achieved.
The match of the eigenfrequencies in stance is still satisfactory. The influence
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Parameter Value Unit

mtot 0.4394 kg
lo 0.1985 m
αo 0 rad
g 1 m/s2

mtrunk 0.2623 kg
mthigh 0.0472 kg
mshank 0.1224 kg
mfoot 0.0075 kg
lthigh 0.0500 m
lshank 0.1154 m
lfoot 0.0654 m
k 8.8993 N/m
b 0.1306 kg/s
β 0.4260
α 0.2706

Table 4.3: Optimized design parameter set

of the leg length eigenfrequency in the swing phase on the overall motion of
the system is negligible. When predefining a spring stiffness of less than 80%
of klin,opt the deviations of all eigenfrequencies from the desired ones become
unacceptably large.

We conclude that the large spring stiffness given by the optimizer is
necessary to reach the target eigenfrequencies. A small deviation of less
than 20% of the optimal spring stiffness leads to acceptable eigenfrequencies
but using a spring with significantly smaller stiffness results in smaller
eigenfrequencies.

Figure 4.4 shows the optimized mass distribution in dimensionless mass
parameters. It can clearly be seen, that a higher spring stiffness results in a
heavier leg when compared with the trunk mass. This analysis gives another
indication of why the optimal spring stiffness is as high. Smaller stiffnesses
lead to a lighter leg, which results in a physically not realizable very small
foot mass. The leg mass needs to be at least roughly a third of the total
system mass to enable foot segments with a significant mass.

Figure 4.5 shows the influence of the choice of spring stiffness on the
length distribution of the thigh, shank, and foot. It can clearly be seen,
that the distribution of segment lengths is barely influenced by the deviating
stiffnesses. Rather the ratio of the thigh to foot length lies on the end of the
parameter range. This boundary cannot be softened, as it would result in
negative segment masses.
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Figure 4.3: Influence of stiffness k on achievable optimal eigenfrequencies
[ω] =

√
g/lo

Figure 4.4: Influence of stiffness k on mass distribution
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Figure 4.5: Influence of stiffness k on length distribution

4.6 Comparison to Biological Legs
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Figure 4.6: Biological limb traits scaled against body mass (taken from
Kilbourne and Hoffman [2013])

Kilbourne and Hoffman [2013] studied the leg length and inertial prop-
erties of 44 species of terrestrial mammals. They showed that leg length
scales with positive allometry (length ∝ bodymass0.4). This can be seen in
on the left-hand side of Figure 4.6. The green dot represents the optimized
pantograph leg, where the body mass is computed as bodymass = 4 ·mtot

because we defined mtrunk to be a quarter of the total trunk mass. The plot
on the right side shows that leg mass scales isometric (mleg ∝ bodymass1.0).

This analysis shows that the proportions of leg length, leg mass, and
total body mass chosen for the pantograph leg are similar to those present
in nature.
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Chapter 5

Discussion

In the following we interpret our results and compare them to previous
studies. Additionally we comment on the limitations of our findings and
highlight unexpected results.

The non-conservative SLIP model with minimal control is capable of
showing natural gaits. Periodic motions are compared to corresponding
gaits of established energy-conservative SLIP models. The dynamics of the
developed active model are matched to the dynamics of a pantograph leg.

5.1 Non-Conservative SLIP Model with Minimal
Control

A non-conservative SLIP model has been derived. On the contrary to energy-
conservative SLIP models introduced in literature until now, it considers
contact dynamics and damping. Both lead to energy loss during one stride.
It features minimal control, which acts on the translational spring and
counteracts the lost energy. This keeps the total system energy in apex
constant, which is necessary for the existence of periodic motions.

The control action instantaneously increases the elastic energy stored
in the translational leg spring, when this spring is maximally compressed
during the stance phase. Therefore, the control acts only on one DoF and
acts merely during the second half of the stance phase. This lets us speak of
minimal control.

Although only the leg length DoF is subject to control, we could find
periodic motions like forward hopping, that clearly incorporate motion in
two DoFs of the leg - leg angle and leg length. We can speak of these periodic
motions as the natural gaits of the non-conservative SLIP model, as the
dynamics of the model are defined by its natural dynamics without control
for the majority of a stride - the complete swing phase and the first half of
the stance phase.
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The minimal control approach lets us find natural gaits in the non-
conservative SLIP model.

5.2 Natural Gaits of the Non-Conservative SLIP
Models

When comparing the natural gaits of the non-conservative system with their
respective ones of the conservative SLIP model, two things are notable:

First, when hopping on spot, the non-conservative model reaches higher
body CoM positions. This holds for the one-leg model, as well as for the
bipedal model with both footfall patterns - symmetrical single stance and
asymmetrical double stance.

The maximum CoM height of the conservative model is defined by the
maximum energy that can be stored in the system. When the leg spring fully
compresses during the stance phase, the potential and kinetic energy of the
system become zero. The maximum total energy of the system is therefore
restricted by the energy that can be stored in a fully compressed leg spring.

The non-conservative model is subject to energy fluctuation during one
stride. It reaches the lowest total system energy in stance, when the leg
spring is maximally compressed and the thrust has not yet been activated.
In return, this means that the system energy in apex can be higher, which
relates to higher body CoM positions.

Secondly, conservative bipedal models reach higher forward velocities
than non-conservative bipedal models. The translational DoF is used to
transform kinetic and potential energy in the swing phase into elastic energy
in the stance phase. The rotational DoF redirects the leg spring force in
stance and adjusts the leg angle during the swing phase for the next ground
contact phase.

The minimal control approach only acts on the translational DoF, adding
energy to the system. The rotational DoF, on the other hand, is subject
to damping. We hypothesize that this impedes the redirection of leg spring
force, resulting in a higher body CoM trajectory, shorter stride length, and
lower maximum forward velocities. Furthermore, this hypothesis is supported
by the fact that the continuation of gaits with a forward motion of the non-
conservative model does not end in the singularity of fully compressed leg
springs. The maximum forward velocity is rather restricted by the absence
of solutions with periodic leg angles and velocities.

Natural gaits of the non-conservative SLIP models reach higher body CoM
trajectories, but lower forward velocities, when compared with conservative
models.
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5.3 Eigenfrequency Matching of the Pantograph
Leg

The modal conditions for design parameters lead to reduced, SLIP-like dy-
namics of the pantograph leg. The solution space for these design parameters
results in a large range of possible leg eigenfrequencies. This study proposed
a method to match the eigenfrequencies of the pantograph leg to those of
an arbitrary SLIP model. Prior to this study, SLIP-like dynamics could be
integrated into a pantograph leg, however, the resulting oscillating behavior
could not be influenced.

The eigenfrequency matching enables a specification of the characteristics
of the SLIP dynamic. It gives a guideline on how to choose design parameters
in the large solution space leading to SLIP-like dynamics. Furthermore,
matched eigenfrequencies enable the transfer of gait solutions found in simple
SLIP models to the pantograph leg and enables a prediction of the maximum
jumping heights or maximum forward velocities that can be achieved with
the leg.

The eigenfrequencies used in this study as a matching target were chosen
arbitrarily. Using a specific mammalian leg as a basis for the pantograph leg
enables the indirect measurement of eigenfrequencies from a motion video.
Eigenfrequency matching is most likely more accurate than trying to measure
and match parameters like the leg length stiffness.

The free design parameters of the pantograph leg were chosen so that the
leg compares to the two-segmented legs of the BERT robot. It is notable,
that the optimized spring stiffnesses are much higher than expected when
compared to the existing ones in the legs of BERT. This might result from
the higher leg swing eigenfrequencies.
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Chapter 6

Conclusion

This thesis contributes to several aspects of SLIP-like legged locomotion.
The concept of SLIP models has been transferred to a physically more
realistic model, which is influenced by energy fluctuations during a stride.
Additionally, SLIP-like dynamics have been embedded into a physically
realizable pantograph leg.

The non-conservative SLIP model has been build to incorporate viscous
damping and contact dynamic effects. The resulting energy loss is com-
pensated with a minimal control action. It adds energy into the system by
increasing the elastic energy stored in the leg spring. The model exhibits
periodic gaits including hopping on spot and forward motions. These motions
incorporate a movement of the angular DoF of the leg, although the control
is only acting upon the translational DoF of the leg.

The gaits of the active SLIP model can be classified as natural gaits,
since the control only adds energy into the system and lasts only half of the
stance phase. When comparing the gaits displayed by this active model with
gaits reported for conservative SLIP models, two major differences become
obvious. While hopping on spot, the non-conservative model reaches higher
body CoM positions. But when displaying forward motions, the maximum
velocity reached by bipedal models is lower than comparable results of passive
bipedal SLIP models. The non-conservative one-leg hopper on the other
hand reaches higher velocities than its conservative counterpart.

The pantograph leg has been parametrized to feature SLIP-like dynamics.
Additionally, the parameters were chosen with the goal to generate specific
leg eigenfrequencies. The motions of this physically realizable segmented leg
can be compared to gaits of the SLIP model effortlessly.

Overall, the concept of the SLIP model has been embedded into a
physically realistic segmented leg. Findings on gaits exhibited by the SLIP
model can be transferred to a pantograph leg, in order to use is for physical
robots.
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6.1 Future Work

6.1.1 Non-Conservative SLIP Model

Our findings let conclude that choice of how energy is fed back into the
system influences the ability of the model to reach certain heights or forward
velocities. Therefore, the usage of the control parameter should be evaluated.
The following open questions arise:

In our current implementation, the deactivation of the control induces a
small amount of energy into the system. Is it possible to control the system
less, i.e. a shorter period of time, to disable this side-effect?

The maximum forward velocity reached by the non-conservative SLIP
models is significantly lower than the corresponding velocities of conservative
models. Is the control of the leg angle necessary, or does this effect arise
from the choice of the damping parameter?

The control parameter is equal for all legs of multi-legged SLIP models.
Does this limit the ability to express gaits like bipedal skipping, where one
leg moves faster than the other and the legs touch (and leave) the ground
with different leg angles?

6.1.2 Pantograph Leg

The choice of target eigenfrequencies should be the subject of further research.
Various interesting research questions arise:

What are the leg eigenfrequencies of mammals with similar leg length
and total body mass?

How do the eigenfrequencies of the leg influence the mass distribution
and the spring stiffnesses?

Can the spring stiffnesses be reduced when enabling the leg to shorten
during the swing phase?

Do multi-legged models with pantograph legs exhibit natural gaits?
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