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Abstract 

Developing software for large and complex experiments is a challenging task. It must incorporate many 
requirements from different domains, all with their own conceptions about the overall systems. An additional level of 
complexity is added if the experiment is conducted autonomously during a sounding rocket flight. Without a proper 
software architecture and development techniques, achieving and maintaining a high code quality is a very 
cumbersome task. 

This paper describes the architecture and the model-driven development approach we used to implement the 
control software of the experiments in the MAIUS-1 mission (matter-wave interferometry in microgravity). In this 
mission, the software had to handle around 150 experiments in six minutes autonomously and adapt to changes in the 
control flow according to real-time data from the experiment.  

The MAIUS-1 mission was the first mission to create Bose-Einstein condensates in space and conduct other 
experiments with ultra-cold gases on a sounding rocket. Besides the scientific goals in the area of quantum-optics, 
other important objectives of the mission were the miniaturization and further development of laser systems, vacuum 
components, optical sensors, and other related technologies. To fulfil these goals, new experimental hardware has 
been created which had to be integrated and tested with the software of the experiment computer. 

The custom-made hardware and the considerable number of domains involved brought up many challenges for 
the software engineering. To face all these challenges of developing software with this high complexity, we chose to 
follow a model-driven software development approach. Several domain-specific languages (DSLs) accompanied 
with specialized tools were created to allow the physicists and electronic engineers to describe system components 
and the experiments in a domain-specific way. These descriptions were then automatically transformed in C++ code 
for the flight software. This way we could actively incorporate all the domains involved in conducting the 
experiment directly in building the flight software without compromising the software quality. 

We created a versatile software platform not only for the MAIUS-1 mission but also for upcoming missions with 
similar experiments and hardware. With our approach we were able to generate around 84% of the source code for 
the final flight software from the domain-specific models. Besides the improvement of the development process, the 
code generation made a significant contribution to the overall software quality as almost all manual coding of error-
prone boilerplate code could be mitigated. 
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Acronyms/Abbreviations 

Application programming interfaces (APIs), Bose-
Einstein condensate (BEC), domain-specific language 
(DSL), experiment execution graph (EEG), Graphical 
Modelling Framework (GMF), graphical user interface 
(GUI), interface control documents (ICD), International 
Space Station (ISS), matter-wave interferometry in 
microgravity (MAIUS), printed circuit board (PCB), 
Systems Modelling Language (SysML), 
telecommand/telemetry (TM/TC), Unified Modeling 

Language (UML), YAML Ain't Markup Language 
(YAML). 
 
1. Introduction 

A lot of technical challenges arise, when developing 
software to control a large and complex experiment. 
One significant problem is the frequently changing 
constraints and requirements of the software due to the 
nature of an experimental setup. Experiment sequences 
and even the hardware will change throughout the 
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whole development process. Therefore, an important 
aspect of the development is a high degree of flexibility 
while keeping the software maintainable. This way new 
or changed requirements and constraints can be easily 
integrated, while the software stays stable enough to 
reliably run the experiments. The classical design 
process for the software with fixed requirements and 
designs is often not feasible when the experiment itself 
has a low technology readiness level at the beginning of 
the process and the technology extends the boundaries 
of what is technical possible. 

This paper presents the architecture and the software 
engineering approach of the experiment control 
software for the MAIUS-1 mission [1]. The MAIUS-1 
mission had the goal to conduct cold-gas experiments 
on a sounding rocket flight and create the first Bose-
Einstein condensate (BEC) in space.  

An experiment and mission of this size involves 
many domain experts, each having a specific 
perspective on the experiment. The biggest challenge 
we were facing was how to combine all requirements 
and contributions of the different domains involved into 
a single flight software product.  

An essential aspect of the process was the 
formalization of the knowledge transfer between the 
domain experts. It is essential to have a knowledge-base 
of some kind where everyone can add and change data 
about their own domain and retrieve information about 
others. 

Usually a knowledge base is written in natural 
language in form of formal documents or a collaborative 
wiki. Especially in space projects the first approach is 
followed. Formal documents with release and approval 
processes are usually the driver of such large-scale 
developments. 

For the flight software development of MAIUS-1 we 
set up a model-driven engineering approach that has 
been widely proposed to replace the currently dominant 
document-centric engineering approach [2]. We created 
a machine-readable, formal model of the experiment 
apparatus and developed the software with the 
information stored in this model. This way the domain 
experts themselves can directly contribute to the 
software without having to care too much about 
software engineering aspects. From the software domain 
perspective this approach is advantageous as it enables 
the automatic generation of parts of the control software 
using the information embedded in the models. 

This paper describes our way to implement these 
abstractions using a model-driven approach to develop 
the software. Several domain-specific languages (DSL) 
then provide different views of the system.  

The remainder of the paper is organized as follows: 
The next section gives a brief overview of related work. 
Sect. 3 presents the use case of the MAIUS-1 mission in 
more details. Sect. 4 introduces the concept of the flight 

software development following the model-driven 
development approach. Sect. 5 gives an overview of the 
actual implementation of the flight software followed by 
Sect. 6 with some results. Finally, Sect. 7 gives some 
conclusions and an outlook to future work. 
 
2. Related work  

Most embedded software in the space domain is 
written in C. The main reason for this is the flexibility 
and availability of vendor support. The problem with 
powerful languages such as C/C++ is the high 
complexity that comes with the power and in 
consequence the big effort one must take to keep the 
software maintainable.  

To face the problem of complex programming 
languages specialized languages have been developed. 
A sophisticated way to keep the system maintainable 
and decrease the manual implementation of interfaces is 
to apply model-driven software architectures [3]. These 
kinds of architectures rely to a great extent on a model 
which maps the structure and interfaces of the system. 
Out of this model, views can be derived to provide all 
the important information about the system to the 
different domain experts while hiding unnecessary parts 
of the system. This makes it possible to describe the 
software in a way that is focused on the problem and 
abstracted from implementation details.  

To describe these models general-purpose modelling 
languages or so-called domain-specific languages 
(DSLs) can be used. The most popular modelling 
language for the software domain is the Unified 
Modelling language (UML). For modelling physical 
systems, an extension to UML, the System Modelling 
Language (SysML), was created. Both languages 
provide graphical diagrams to describe certain aspects 
of the software or the system, respectively. Other 
common modelling languages can be found in 
commercial products like Matlab/Simulink. 

DSLs on the other hand open the possibility to 
provide a specialized formal language for a single 
domain of the project which can be designed to fit their 
needs. Moreover, it is possible to define multiple DSLs 
to cover multiple domains with different programming 
models and merge them into a single model afterwards 
[4]. The idea behind this concept is the mapping of the 
problem space into the solution space [5]. With a DSL it 
is possible to solve tasks in the problem space, which is 
a view on the system that is fitted to the specific 
problem. DSLs can be either textual or graphical.  

Modelling software for design and documentation 
purposes has been applied for many years. The large 
benefit in terms of quality and cost of the software 
development comes when also automatic code 
generation from the model is used. This allows the 
transformation of the model description from the 
problem space to the solution space. The solution space 
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finally is usually a general programming language 
which can then be compiled and executed on the target 
platform. 

Like the modelling approaches, there exist general-
purpose code generators and domain-specific code 
generators. Examples for general code generators are 
code generators included in UML editors like Enterprise 
Architect or the autocoders available for 
Matlab/Simulink. Domain-specific code generators are 
usually based on coding templates and can be 
specifically tailored to the specific domain or project [6]. 

The trend to move from manual written source code 
to automatically generated code is common in safety-
critical embedded systems, especially in the automotive 
domain [7]. But also in the aerospace sector, autocoding 
is used more often in recent years. For instance, the 
Mars Science Laboratory entry descent, and landing 
flight software consists of approximately 1 million lines 
of handwritten C code and 2.5 million lines of 
autocoded software [8].  

 
3. MAIUS-1 mission use case 

The use case for which we implemented the model-
driven software architecture is the experiment control 
software of the MAIUS-1 mission. It is tailored to a 
highly customized hardware setup which uses its own 
protocol for communication. The following section 
describes the setup and requirements of the experiment 
hardware which is important to understand the concepts 
behind the models. 

 
Fig. 1. The experiment apparatus of MAIUS-1 before 

integration into the rocket (© Leibniz University 
Hannover) 

Fig. 1 shows the MAIUS-1 cold atom experiment 
before integration into the sounding rocket. The system 
consists of an ultra-high vacuum system [9] with an 
atom chip, a diode laser system, and compact 
electronics, which will be discussed in the following.  
 
3.1 Experiment hardware 

The hardware which must be controlled by the on-
board software consists of so-called “cards” at the 
lowest level. Every card is basically a single printed 
circuit board (PCB) with chips for a specific purpose 
(e.g. driving laser diodes or control shutters) and is 
stackable with other cards (see Fig. 2 for an example 
electronic stack). Those cards are assembled into so-
called “stacks”, where each card is connected with the 
others over a bus. A stack usually has all the cards for a 
specific subsystem of the experiment (e.g. laser driver 
or vacuum pump control). The cards in this stack are 
programmable, meaning that some parameters can be 
set either directly or programmed in advance to follow a 
timed order of parameter settings. The programming is 
done via an Ethernet interface to the on-board computer. 
These timed instructions which we call “sequences” 
have to be uploaded to the corresponding stacks and can 
then be started simultaneously on all stacks. The 
hardware is then executing the sequences in real-time. 

This brief overview of the hardware outlines the 
components and features the on-board software must 
address. In terms of model-based software engineering, 
these components have to be mapped into a model of 
the hardware, and the on-board software will rely on 
this model. 
 
3.2 Involved domains 

As explained before, the construction of an 
apparatus of this complexity needs the involvement of 
experts from different domains. The experiment control 
system of the MAIUS-1 mission mainly involves three 
domains: electronics, physics, and software.  

The electronics domain is responsible for the 
hardware design and the definition of the 
communication protocols to access the hardware. From 

 
Fig. 2. One of the electronic stacks from the MAIUS-1 

experiment 
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the software point of view, they provide the description 
how to communicate with the cards and stacks they 
design, and which parameter of each card can be set or 
read.  

The second domain, physics, consists of the people 
who actually conduct the experiment. They define the 
scientific goals of the mission as well as the behaviour 
of the experiment to achieve these goals.  

The software domain is responsible for the 
architecture, development, and integration of the 
experiment control software. 
 
3.3 Autonomy requirements 

It was crucial for the mission that the experiments 
can be conducted autonomously during the flight 
without involvement of the ground station. The 
microgravity phase, where most of the experiments 
were carried out, was only six minutes long. Constant 
contact to the ground station could not be guaranteed. 
Thus, experiments that rely on human interactions were 
not possible due to the fragility of the radio link, but 
limited access was possible. Additionally, the limited 
time of the microgravity phase should be used for as 
many (different) experiments as possible. To make the 
most out of this limited time, optimizations and 
adjustments on the parameters had to be done in-flight 
as they are directly coupled to the latest measurements 
of the experiment. 

Without autonomous execution of the experiments 
the mission might fail as parameters cannot adapt to the 
current state of the apparatus. 

As shown, it is necessary that optimizations must be 
done on the on-board computer instead of sending data 
down and have the experimenters decide on the 
experiment flow. However, to keep the control of the 
experiment flow, in case the autonomous control fails, 
the control mechanism needs a way to influence the 
execution from the ground. 
 
3.4 Payload integration 

The on-board computer had also the task to 
communicate with the avionic system of the sounding 
rocket and to provide a telecommand/telemetry 
(TM/TC) interface. The integration of the MAIUS-1 
payload in the flight system is detailed in [10]. The 
communication to the service module of the rocket was 
realised by a special serial interface and an Ethernet link 
for the TM/TC. 
 
4. Concept 

The main design driver of the flight software 
concept for MAIUS-1 is the creation of a joint model, 
which describes both the hardware and the experiment 
flow. The goal was, from the software engineering 
perspective, to create tools to allow the domain experts 

to describe the hardware and the experiments, 
respectively, by themselves.  

These descriptions should then automatically be 
converted to the actual flight software. If all the tools 
are available, the software developers would be 
theoretically not needed, when changes are made to the 
hardware or the experiments are prepared.  

However, engineers and scientist from different 
domains working on the experiment apparatus have 
their own specific views on the system with a focus on 
their domain. All these different data need to be 
combined in the development of the flight software. The 
challenge was how these different views and 
requirements could be combined in a consistent way 
that not a single person or group, for instance the 
software development team, had to check and manage 
the complete process manually.  

To achieve this, interfaces needed to be established 
to define the communication between the components 
of the domains. Traditionally this is done with 
documents that describe these interfaces and which are 
then implemented manually. One example for these 
documents in the area of on-board software for 
spacecraft are interface control documents (ICD). 

In our experience, defining those interfaces in a 
document tend to result in a lot of overhead work 
throughout the whole development process. The reason 
for this is that the documents exist independently of the 
implemented interfaces and changes in each of them 
must be synchronized with the others. 

Following the model-based approach, the model 
becomes the single point of truth that collects all 
information and automatically ensures the consistency 
between the different components and domains. From 
this model the actual source code of the flight software 
is then generated. This way we can use the model itself 
not only to describe the software that has to be 
generated, but also use the model as a knowledge base 
of the system. Once these interfaces are defined, it is 
possible to provide an interface to the domain experts 
that will update automatically whenever a part of the 
model has been changed. 
 
4.1 System layers 

To achieve the goal of providing domain-specific 
views of the system several abstraction layers were 
introduced. The information from the different layers 
were combined to a model that covers all important 
aspects relevant to the flight software and supporting 
tools. From this model, source code and other artefacts 
can then be generated. 

To enable the domain experts to provide the required 
information, domain-specific front-ends to this model 
were developed. The front-end on each layer provides 
only the necessary technical details for the layer in 
question.  
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Fig. 3. The conceptual layers of the different DSLs and 

the targeted domain 
 
In total five different descriptions, i.e. domain-

specific languages, have been created for this 
architecture: four textual and a graphical modelling 
language. In a bottom-up ordering, starting with the 
description of the actual hardware and the 
communication with the on-board computer, each 
following language will abstract the representation up to 
a description of the experiment behaviour. These 
hierarchical layers are shown in Fig. 3 and will be 
explained in detail in the following subsections.  

 
These descriptions are then combined and converted 

in a model. From this model, the C++ source code for 
the flight software as well as descriptions for supporting 
tools is generated. This includes a channel list for the 
sequence generation and templates to decode the 
different telemetry data streams on the ground station. 
Fig. 4 shows the general workflow of this process.  
 
4.2 Hardware description 

The base layer of the model is the description of the 
hardware. This description represents the 
communication with the custom experiment hardware in 
a textual way. The description is split up into two parts 
with respect to the hardware architecture described in 
Sect. 3.1: cards and stacks. 

The Card DSL is used to describe the parameters 
which can be read from and written to a hardware card. 
This includes for example the local address, the data 
type, and the bit pattern used for a specific parameter. 
To access these parameters the Card DSL exposes so-
called channels to the outside which abstract the access 
to the parameters. This is needed as some parameters 
need a sequence of commands to access the correct 
parameter (e.g. setting a multiplexer before reading out 
an analogue measurement). 

To model the stacks, which aggregate cards, another 
description has been designed: the Stack DSL. Each 
instance of a stack holds instances of the cards it 
contains and addresses them inside the stack bus. 
Furthermore, the channels, which are provided from the 
aggregated cards, are exposed and define the feature set 
of the single stack that is then used by the higher levels 
of the model. 

These two descriptions correspond to the electronic 
domain point of view to the entire software. Therefore, 
the DSLs have been designed together with the 
hardware developers to provide them an intuitive tool to 
describe their own hardware. 

The hardware description provides the basic 
functionality to control the apparatus. The next layers 
build upon this foundation and add the behaviour to the 
model. 
 
4.3 Sequence description 

The next two levels in Fig. 3 lead to the experiment 
domain consisting of the sequence models: 
subsequences and sequences. 

Sequences are an abstract description of the 
behaviour of a single step of the experiment. One can 
think of sequences as precisely timed steps of changing 
the state of the apparatus. To achieve this, the following 
information is needed: which channel should be 
modified, how the channel is modified, and when to 
change it. For the parameters, the sequence description 
will import all channels exported from the stack 
description that have been set up for the apparatus, so 
that one can choose from all the available channels 
described in the hardware description. Multiple channel 
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C++ Source 
Code

C++ Source 
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C++ Source 
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Fig. 4. The model-driven workflow from the different 
abstraction layers to the generated source code of the 

flight software and additional artefacts 
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settings can then be grouped into time slots, which 
define the exact time when to set the given set of 
parameter changes. 

Additionally, to prevent repetitive code, the 
description of the sequences is subdivided into 
subsequence code as many parts of sequence will be 
reused. Subsequences and sequences support parameters 
in time and values. This makes both DSLs a very 
versatile tool to implement the experiments. 

These two layers represent the behaviour of the 
experiment hardware and maps to the real-time 
programming technique of the cards and stacks. 

The Sequence and Subsequence DSL are one part of 
the physicist domain view to the system giving the 
experimenters a textual description of the single steps of 
the experiment flow.  

We designed both sequence DSLs with a tailored 
YAML (YAML Ain't Markup Language) [11] syntax to 
find a good trade-off between human and machine 
readability. To create the sequences and subsequences, a 
special graphical user interface (GUI) was developed to 
support the creation of all required sequences (see 
Fig. 5). This GUI exported the sequences and 
subsequences in the defined YAML format. 
 
4.4 Experiment execution graph 

The uppermost layer of the model (see Fig. 3) is a 

graphical representation of the experiment flow called 
the Experiment Execution Graph (EEG). Basically, it 
merges all information provided in all the lower layers 
into a big picture. It provides methods to order the 
sequences as well as setting up decisions and branch the 
execution depending on the state of the experiment (e.g. 
measured values or internal states of the software). 

As seen in Fig. 6, the flow of execution is designed 
as a binary decision graph. Like UML activity diagrams, 
sequences are represented by boxes and decision points 
by diamond shapes. 
 

 
Fig. 6. An example of an Experiment Execution 

Graph for the performance evaluation of the experiment  
 
Every decision point has a binary output which 

results in two branches that can be chosen, either if the 
expression inside the decision point evaluates to true 
(shown in green) or false (shown in red). These decision 
points can either evaluate internal variables or 
measurements from the experiment. With these decision 
points the sequences can be arranged to adapt to 
measured values from the experiment and thus running 
autonomously. 

 
4.5 Model validation 

Following the model-driven approach, one important 
benefit is the reduced number of errors in the software 
by restricting the possibilities of the engineers, 
physicists, and software developers. DSLs restrict the 
possibilities compared to general-purpose programming 
languages. The idea is that less possibilities leads to 
fewer errors in the software. Additionally, DSL 
descriptions are usually much more compact than the 
equivalent description in C++. This also should lead to 
fewer errors. 

The correctness of the DSL description is checked 
by the parser of the DSL. The grammar of the DSL 
defines which combination of characters or graphical 
elements is allowed and which not.  

 

 
Fig. 5. Part of the graphical user interface to describe 

sequences and subsequences. 
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Besides the check of the syntactical correctness of 
the models we also designed validators that checked 
other semantic aspects. For example, the feasibility of 
the duration of time slots for sequences was checked or 
that the minimum value of a parameter is actually lower 
than the maximum value.  

These validators increase the reliability of the 
system, since it ensures the correctness already in the 
description phase. 
 
5. Implementation  

The architectural design of the software architecture 
is highly focused on modularity to keep the software as 
flexible as possible. Fig. 7 shows the top-level 
components of the software architecture. Each blue box 
represents a single module in the software where the 
orange boxes stand for hardware components that must 
be accessed and controlled from the software. The 
software modules are designed as stand-alone 
components, which run in their own tasks. Every 
module has defined input and output slots to 
communicate with other modules. This way the side-
effects were kept to a minimum and only appear at the 
hardware communication. 
 

 

Logger

Measurement
AcquisitionSequence Player

Telecommand
Dispatcher

Image 
Acquisition

TM/TC Module

Camera 1

Camera 2

Experiment Hardware 
(6 Stacks, 18 different Cards)

Timer

Timeline Signal 
Receiver

Flight Timeline Signals

Fig. 7. The components and peripherals of the 
MAIUS-1 flight software 

 
For the communication between these modules, so-

called channels are provided (shown as arrows in the 
figure). Each channel is unidirectional and handles a 
single datatype that has to fit the input and output slots 
of the connected modules. 

As the basis for this architecture DLR’s in-house 
development “Tasking Framework” [12] was used. It 
provides the base classes for the tasks, the 
communication channels, and a scheduler to ensure the 
timely execution of each task. 
 
5.1 Software components 

The main software components, as seen in Fig. 7, 
are responsible for controlling the complete experiment.  

The sequence player is organized as a play-list-
based music player where the music titles are in this 
case the experiment sequences. In the lab, the operator 
can load lists of sequences that are executed by 
software. Sequences can be added or removed, and the 

order can be changed by telecommands. When the 
experiment is control by the EEG, the graph controls the 
sequence player. If, for instance, at a decision point a 
different sequence needs to be executed, the graph loads 
the sequence to the sequence play list.  

The logger is responsible of storing all 
measurements locally on the on-board computer and 
compressing data for the telemetry link. The data 
includes experimental values and camera images as well 
as housekeeping data of the experiment. The 
architecture of the logger is quite generic. One can 
define filters and data writers. It can be configured, 
which data should be filtered and written to which 
target. This allows a fine-grained configuration of the 
data handling. 

The measurement acquisition is the component that 
regularly accesses the experiment hardware for sensor 
readings and forwards it to the logger and some to the 
sequence player for decisions in the EEG. The image 
acquisition handles the capture and sending of camera 
images from the experiment.  

The telecommand dispatcher receives the 
telecommands from the ground operator and distributes 
them through the system, for example, to the sequence 
player. 
 
5.2 Integration of the models 

The integration of the different models is organized 
in layers according to the different model layers 
described in Sect. 4.  

Fig. 8 gives an overview of the different layers. The 
base layer for the whole integration is the execution 
platform with the core components of the system, which 
provides a common interface to implement the artefacts 
of the upper layers and provide methods to manage 
these artefacts. We used the Linux Operating System 
since the real-time requirements are not strict. The 
custom-build hardware takes care of the real-time 
execution of the sequences as described in Sect. 3.1. 

 

 
Fig. 8. The different layers of the model integration 

 
Further components on the base layer, like Tasking 

Framework, Sequence Player, etc. are written in C++; 
this implies that the whole integration was done in the 

Linux Operating System

Core Components 3rd Party 
Drivers

Hardware Models

Sequence Models

Custom Hardware Access

Custom Sequences
Sequence 
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Hardware 
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Execution 
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C++ language. That means software artefacts can be 
written either in C++ directly or generated from a model 
using a C++ code generator for that model. 

The next two layers are corresponding to the 
hardware and sequence models. These artefacts can be 
either generated from the models described by the 
according DSLs or implemented in C++ following the 
defined application programming interfaces (APIs). On 
the hardware layer, these custom implemented artefacts 
can be used to access hardware that is not part of the 
cards and stack hardware (e.g. cameras).  

The same applies to the sequence layer, whose 
artefacts can be generated from the models of 
Subsequence and Sequence DSL or manually using 
C++. A manual sequence is, for example, a module to 
evaluate camera images to automatically detect features 
of the cold atoms. 

The topmost sequence graph layer then is purely 
generated from the graphical sequence graph DSL, the 
EEG. The integration is loosely coupled at the interfaces 
between the different layers and can be used standalone 
for specific use cases where only parts of the 
experiment are used in the lab. This makes it possible, 
for example, to explicitly set parameters using the 
interface of the hardware model or executing sequences 
without creating a whole graph. 
 
5.3 Modelling framework 

The DSLs, validators, and code generators are 
implemented on the Eclipse Rich Client Platform. 
Specifically, the Xtext framework [13] provides the 
basis to create textual DSLs by defining the grammar. 
Xtext provides then the infrastructure: editors with 
syntax highlighting and a framework to implement 
validators.  

The code generators are implemented with the Xtend 
language within the Xtext framework. The graphical 
editor for the EEG was created with the Eclipse 
Graphical Modelling Framework (GMF). 

This whole toolset was integrated in a single 
software packet that was provided to the engineering 
and scientist team as a graphical user interface for 
creating the different models. Another instance of the 
code generators was created to provide automatic code 
generation in the build process of the software. 
 
6. Results  

For the use case of the MAIUS-1 mission, the 
development technique presented in this paper has been 
successfully deployed. MAIUS-1 was launched in 
January 2017 from Esrange in Kiruna, Sweden. Fig. 9 
shows the MAIUS-1 team before the final integration of 
the experiment with the rocket. MAIUS-1 created the 
first BEC in space and successfully conducted 
experiments with it [14].  

In the final flight software, 84% of the C++ code was 
generated from the models. The generated code covers 
all boilerplate code that otherwise had to be 
implemented by hand. As an added effect, the 
generation of the boilerplate code increased the overall 
code quality as these code segments are repetitive and 
writing them by hand is error-prone and hard to debug.  
 

 
Fig. 9. MAIUS-1 team with the payload and the service 
module before integration with the rocket (© T. Schleuß) 

 
However, we do not have statistics to proof this 

claim, since we did not implement the software twice 
with different methods for comparison. Nevertheless, 
our experience with manual software development in 
several space missions gives us confidence to support 
this claim.  

Beside the software engineering aspects, the use of a 
combined model to describe the experiment hardware 
and sequences had a positive effect on the collaboration 
of the different domain experts. Every domain involved 
in the development of the control software had their 
own specialized view to the system on which they can 
work. This approach was accepted and appreciated by 
the software developers, engineers, and scientists.  

The process of the definition and design of the DSLs 
was a major step in the project to build a collective 
understanding between the different domain experts. 
Designing a formal language turned out to be more 
efficient than trying to write long lists of requirements. 
The grammars of the DSLs can be seen as formalized 
requirements. A missing feature in the one of the DSLs 
meant a not communicated requirement or a 
misunderstanding between the domain experts and the 
software development team.  

The whole software was very flexible as well. With 
only few modifications, it was used to control a 
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secondary payload of the MAIUS-1 mission. This 
payload tested some new laser technologies and was 
controlled by the same software on a computer 
independent from the MAIUS experiment. 

However, the initial requirement to develop software 
for a short flight turned out to be cumbersome during 
lab tests. We decided at the beginning to generate the 
whole flight software and do not work with interpreted 
code or similar approaches to make the software more 
reliable. The drawback of this approach is that each 
change of a sequence needs a recompiling and restarting 
step. 

 
7. Conclusions and outlook  

This paper presented the model-driven software 
engineering approach for the complex experiment 
control of the MAIUS-1 mission, which created the first 
BEC in space on a sounding rocket. The model-driven 
approach was successfully implemented. Besides the 
higher software quality as a result, the process of 
defining domain-specific formal languages for the 
different domains involved turned out to be an efficient 
tool to gather and validate requirements instead of 
writing long requirement documents.  

Two MAIUS flights are planned for the next years 
and an experiment on the International Space Station 
(ISS) is currently prepared. This experiment, called 
BECCAL, and the sounding rocket missions will be 
controlled by improved versions of the presented 
software. The biggest change will be an interpreted 
sequence player. The subsequences, sequences, and 
EEGs will no longer be transformed to C++ code but to 
an intermediate representation, which will be executed 
by a custom interpreter. This allows the modification of 
sequences and EEGs without recompiling and restarting 
the flight software.  
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