
69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 1 of 10

IAC-18-A2.5.6

A Model-driven Software Architecture for Ultra-cold Gas Experiments in Space

Benjamin Wepsa,b, Daniel Lüdtkea*, Tobias Franza, Olaf Maibauma, Thijs Wendrichc, Hauke Müntingad,
Andreas Gerndta

a Simulation and Software Technology, German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig,
Germany
b now at Jena Optronik GmbH, Otto-Eppenstein-Straße 3, 07745 Jena, Germany
c Institute of Quantum Optics and QUEST-Leibniz Research School, Leibniz University Hannover, Welfengarten 1,
30167 Hannover, Germany
d Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2,
28359 Bremen, Germany
* Corresponding Author: daniel.luedtke@dlr.de

Abstract

Developing software for large and complex experiments is a challenging task. It must incorporate many
requirements from different domains, all with their own conceptions about the overall systems. An additional level of
complexity is added if the experiment is conducted autonomously during a sounding rocket flight. Without a proper
software architecture and development techniques, achieving and maintaining a high code quality is a very
cumbersome task.

This paper describes the architecture and the model-driven development approach we used to implement the
control software of the experiments in the MAIUS-1 mission (matter-wave interferometry in microgravity). In this
mission, the software had to handle around 150 experiments in six minutes autonomously and adapt to changes in the
control flow according to real-time data from the experiment.

The MAIUS-1 mission was the first mission to create Bose-Einstein condensates in space and conduct other
experiments with ultra-cold gases on a sounding rocket. Besides the scientific goals in the area of quantum-optics,
other important objectives of the mission were the miniaturization and further development of laser systems, vacuum
components, optical sensors, and other related technologies. To fulfil these goals, new experimental hardware has
been created which had to be integrated and tested with the software of the experiment computer.

The custom-made hardware and the considerable number of domains involved brought up many challenges for
the software engineering. To face all these challenges of developing software with this high complexity, we chose to
follow a model-driven software development approach. Several domain-specific languages (DSLs) accompanied
with specialized tools were created to allow the physicists and electronic engineers to describe system components
and the experiments in a domain-specific way. These descriptions were then automatically transformed in C++ code
for the flight software. This way we could actively incorporate all the domains involved in conducting the
experiment directly in building the flight software without compromising the software quality.

We created a versatile software platform not only for the MAIUS-1 mission but also for upcoming missions with
similar experiments and hardware. With our approach we were able to generate around 84% of the source code for
the final flight software from the domain-specific models. Besides the improvement of the development process, the
code generation made a significant contribution to the overall software quality as almost all manual coding of error-
prone boilerplate code could be mitigated.

Keywords: software engineering, model-driven development, experiment control, code generation, sounding rocket

Acronyms/Abbreviations

Application programming interfaces (APIs), Bose-
Einstein condensate (BEC), domain-specific language
(DSL), experiment execution graph (EEG), Graphical
Modelling Framework (GMF), graphical user interface
(GUI), interface control documents (ICD), International
Space Station (ISS), matter-wave interferometry in
microgravity (MAIUS), printed circuit board (PCB),
Systems Modelling Language (SysML),
telecommand/telemetry (TM/TC), Unified Modeling

Language (UML), YAML Ain't Markup Language
(YAML).

1. Introduction

A lot of technical challenges arise, when developing
software to control a large and complex experiment.
One significant problem is the frequently changing
constraints and requirements of the software due to the
nature of an experimental setup. Experiment sequences
and even the hardware will change throughout the

mailto:daniel.luedtke@dlr.de

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 2 of 10

whole development process. Therefore, an important
aspect of the development is a high degree of flexibility
while keeping the software maintainable. This way new
or changed requirements and constraints can be easily
integrated, while the software stays stable enough to
reliably run the experiments. The classical design
process for the software with fixed requirements and
designs is often not feasible when the experiment itself
has a low technology readiness level at the beginning of
the process and the technology extends the boundaries
of what is technical possible.

This paper presents the architecture and the software
engineering approach of the experiment control
software for the MAIUS-1 mission [1]. The MAIUS-1
mission had the goal to conduct cold-gas experiments
on a sounding rocket flight and create the first Bose-
Einstein condensate (BEC) in space.

An experiment and mission of this size involves
many domain experts, each having a specific
perspective on the experiment. The biggest challenge
we were facing was how to combine all requirements
and contributions of the different domains involved into
a single flight software product.

An essential aspect of the process was the
formalization of the knowledge transfer between the
domain experts. It is essential to have a knowledge-base
of some kind where everyone can add and change data
about their own domain and retrieve information about
others.

Usually a knowledge base is written in natural
language in form of formal documents or a collaborative
wiki. Especially in space projects the first approach is
followed. Formal documents with release and approval
processes are usually the driver of such large-scale
developments.

For the flight software development of MAIUS-1 we
set up a model-driven engineering approach that has
been widely proposed to replace the currently dominant
document-centric engineering approach [2]. We created
a machine-readable, formal model of the experiment
apparatus and developed the software with the
information stored in this model. This way the domain
experts themselves can directly contribute to the
software without having to care too much about
software engineering aspects. From the software domain
perspective this approach is advantageous as it enables
the automatic generation of parts of the control software
using the information embedded in the models.

This paper describes our way to implement these
abstractions using a model-driven approach to develop
the software. Several domain-specific languages (DSL)
then provide different views of the system.

The remainder of the paper is organized as follows:
The next section gives a brief overview of related work.
Sect. 3 presents the use case of the MAIUS-1 mission in
more details. Sect. 4 introduces the concept of the flight

software development following the model-driven
development approach. Sect. 5 gives an overview of the
actual implementation of the flight software followed by
Sect. 6 with some results. Finally, Sect. 7 gives some
conclusions and an outlook to future work.

2. Related work

Most embedded software in the space domain is
written in C. The main reason for this is the flexibility
and availability of vendor support. The problem with
powerful languages such as C/C++ is the high
complexity that comes with the power and in
consequence the big effort one must take to keep the
software maintainable.

To face the problem of complex programming
languages specialized languages have been developed.
A sophisticated way to keep the system maintainable
and decrease the manual implementation of interfaces is
to apply model-driven software architectures [3]. These
kinds of architectures rely to a great extent on a model
which maps the structure and interfaces of the system.
Out of this model, views can be derived to provide all
the important information about the system to the
different domain experts while hiding unnecessary parts
of the system. This makes it possible to describe the
software in a way that is focused on the problem and
abstracted from implementation details.

To describe these models general-purpose modelling
languages or so-called domain-specific languages
(DSLs) can be used. The most popular modelling
language for the software domain is the Unified
Modelling language (UML). For modelling physical
systems, an extension to UML, the System Modelling
Language (SysML), was created. Both languages
provide graphical diagrams to describe certain aspects
of the software or the system, respectively. Other
common modelling languages can be found in
commercial products like Matlab/Simulink.

DSLs on the other hand open the possibility to
provide a specialized formal language for a single
domain of the project which can be designed to fit their
needs. Moreover, it is possible to define multiple DSLs
to cover multiple domains with different programming
models and merge them into a single model afterwards
[4]. The idea behind this concept is the mapping of the
problem space into the solution space [5]. With a DSL it
is possible to solve tasks in the problem space, which is
a view on the system that is fitted to the specific
problem. DSLs can be either textual or graphical.

Modelling software for design and documentation
purposes has been applied for many years. The large
benefit in terms of quality and cost of the software
development comes when also automatic code
generation from the model is used. This allows the
transformation of the model description from the
problem space to the solution space. The solution space

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 3 of 10

finally is usually a general programming language
which can then be compiled and executed on the target
platform.

Like the modelling approaches, there exist general-
purpose code generators and domain-specific code
generators. Examples for general code generators are
code generators included in UML editors like Enterprise
Architect or the autocoders available for
Matlab/Simulink. Domain-specific code generators are
usually based on coding templates and can be
specifically tailored to the specific domain or project [6].

The trend to move from manual written source code
to automatically generated code is common in safety-
critical embedded systems, especially in the automotive
domain [7]. But also in the aerospace sector, autocoding
is used more often in recent years. For instance, the
Mars Science Laboratory entry descent, and landing
flight software consists of approximately 1 million lines
of handwritten C code and 2.5 million lines of
autocoded software [8].

3. MAIUS-1 mission use case

The use case for which we implemented the model-
driven software architecture is the experiment control
software of the MAIUS-1 mission. It is tailored to a
highly customized hardware setup which uses its own
protocol for communication. The following section
describes the setup and requirements of the experiment
hardware which is important to understand the concepts
behind the models.

Fig. 1. The experiment apparatus of MAIUS-1 before

integration into the rocket (© Leibniz University
Hannover)

Fig. 1 shows the MAIUS-1 cold atom experiment
before integration into the sounding rocket. The system
consists of an ultra-high vacuum system [9] with an
atom chip, a diode laser system, and compact
electronics, which will be discussed in the following.

3.1 Experiment hardware

The hardware which must be controlled by the on-
board software consists of so-called “cards” at the
lowest level. Every card is basically a single printed
circuit board (PCB) with chips for a specific purpose
(e.g. driving laser diodes or control shutters) and is
stackable with other cards (see Fig. 2 for an example
electronic stack). Those cards are assembled into so-
called “stacks”, where each card is connected with the
others over a bus. A stack usually has all the cards for a
specific subsystem of the experiment (e.g. laser driver
or vacuum pump control). The cards in this stack are
programmable, meaning that some parameters can be
set either directly or programmed in advance to follow a
timed order of parameter settings. The programming is
done via an Ethernet interface to the on-board computer.
These timed instructions which we call “sequences”
have to be uploaded to the corresponding stacks and can
then be started simultaneously on all stacks. The
hardware is then executing the sequences in real-time.

This brief overview of the hardware outlines the
components and features the on-board software must
address. In terms of model-based software engineering,
these components have to be mapped into a model of
the hardware, and the on-board software will rely on
this model.

3.2 Involved domains

As explained before, the construction of an
apparatus of this complexity needs the involvement of
experts from different domains. The experiment control
system of the MAIUS-1 mission mainly involves three
domains: electronics, physics, and software.

The electronics domain is responsible for the
hardware design and the definition of the
communication protocols to access the hardware. From

Fig. 2. One of the electronic stacks from the MAIUS-1

experiment

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 4 of 10

the software point of view, they provide the description
how to communicate with the cards and stacks they
design, and which parameter of each card can be set or
read.

The second domain, physics, consists of the people
who actually conduct the experiment. They define the
scientific goals of the mission as well as the behaviour
of the experiment to achieve these goals.

The software domain is responsible for the
architecture, development, and integration of the
experiment control software.

3.3 Autonomy requirements

It was crucial for the mission that the experiments
can be conducted autonomously during the flight
without involvement of the ground station. The
microgravity phase, where most of the experiments
were carried out, was only six minutes long. Constant
contact to the ground station could not be guaranteed.
Thus, experiments that rely on human interactions were
not possible due to the fragility of the radio link, but
limited access was possible. Additionally, the limited
time of the microgravity phase should be used for as
many (different) experiments as possible. To make the
most out of this limited time, optimizations and
adjustments on the parameters had to be done in-flight
as they are directly coupled to the latest measurements
of the experiment.

Without autonomous execution of the experiments
the mission might fail as parameters cannot adapt to the
current state of the apparatus.

As shown, it is necessary that optimizations must be
done on the on-board computer instead of sending data
down and have the experimenters decide on the
experiment flow. However, to keep the control of the
experiment flow, in case the autonomous control fails,
the control mechanism needs a way to influence the
execution from the ground.

3.4 Payload integration

The on-board computer had also the task to
communicate with the avionic system of the sounding
rocket and to provide a telecommand/telemetry
(TM/TC) interface. The integration of the MAIUS-1
payload in the flight system is detailed in [10]. The
communication to the service module of the rocket was
realised by a special serial interface and an Ethernet link
for the TM/TC.

4. Concept

The main design driver of the flight software
concept for MAIUS-1 is the creation of a joint model,
which describes both the hardware and the experiment
flow. The goal was, from the software engineering
perspective, to create tools to allow the domain experts

to describe the hardware and the experiments,
respectively, by themselves.

These descriptions should then automatically be
converted to the actual flight software. If all the tools
are available, the software developers would be
theoretically not needed, when changes are made to the
hardware or the experiments are prepared.

However, engineers and scientist from different
domains working on the experiment apparatus have
their own specific views on the system with a focus on
their domain. All these different data need to be
combined in the development of the flight software. The
challenge was how these different views and
requirements could be combined in a consistent way
that not a single person or group, for instance the
software development team, had to check and manage
the complete process manually.

To achieve this, interfaces needed to be established
to define the communication between the components
of the domains. Traditionally this is done with
documents that describe these interfaces and which are
then implemented manually. One example for these
documents in the area of on-board software for
spacecraft are interface control documents (ICD).

In our experience, defining those interfaces in a
document tend to result in a lot of overhead work
throughout the whole development process. The reason
for this is that the documents exist independently of the
implemented interfaces and changes in each of them
must be synchronized with the others.

Following the model-based approach, the model
becomes the single point of truth that collects all
information and automatically ensures the consistency
between the different components and domains. From
this model the actual source code of the flight software
is then generated. This way we can use the model itself
not only to describe the software that has to be
generated, but also use the model as a knowledge base
of the system. Once these interfaces are defined, it is
possible to provide an interface to the domain experts
that will update automatically whenever a part of the
model has been changed.

4.1 System layers

To achieve the goal of providing domain-specific
views of the system several abstraction layers were
introduced. The information from the different layers
were combined to a model that covers all important
aspects relevant to the flight software and supporting
tools. From this model, source code and other artefacts
can then be generated.

To enable the domain experts to provide the required
information, domain-specific front-ends to this model
were developed. The front-end on each layer provides
only the necessary technical details for the layer in
question.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 5 of 10

Fig. 3. The conceptual layers of the different DSLs and

the targeted domain

In total five different descriptions, i.e. domain-

specific languages, have been created for this
architecture: four textual and a graphical modelling
language. In a bottom-up ordering, starting with the
description of the actual hardware and the
communication with the on-board computer, each
following language will abstract the representation up to
a description of the experiment behaviour. These
hierarchical layers are shown in Fig. 3 and will be
explained in detail in the following subsections.

These descriptions are then combined and converted

in a model. From this model, the C++ source code for
the flight software as well as descriptions for supporting
tools is generated. This includes a channel list for the
sequence generation and templates to decode the
different telemetry data streams on the ground station.
Fig. 4 shows the general workflow of this process.

4.2 Hardware description

The base layer of the model is the description of the
hardware. This description represents the
communication with the custom experiment hardware in
a textual way. The description is split up into two parts
with respect to the hardware architecture described in
Sect. 3.1: cards and stacks.

The Card DSL is used to describe the parameters
which can be read from and written to a hardware card.
This includes for example the local address, the data
type, and the bit pattern used for a specific parameter.
To access these parameters the Card DSL exposes so-
called channels to the outside which abstract the access
to the parameters. This is needed as some parameters
need a sequence of commands to access the correct
parameter (e.g. setting a multiplexer before reading out
an analogue measurement).

To model the stacks, which aggregate cards, another
description has been designed: the Stack DSL. Each
instance of a stack holds instances of the cards it
contains and addresses them inside the stack bus.
Furthermore, the channels, which are provided from the
aggregated cards, are exposed and define the feature set
of the single stack that is then used by the higher levels
of the model.

These two descriptions correspond to the electronic
domain point of view to the entire software. Therefore,
the DSLs have been designed together with the
hardware developers to provide them an intuitive tool to
describe their own hardware.

The hardware description provides the basic
functionality to control the apparatus. The next layers
build upon this foundation and add the behaviour to the
model.

4.3 Sequence description

The next two levels in Fig. 3 lead to the experiment
domain consisting of the sequence models:
subsequences and sequences.

Sequences are an abstract description of the
behaviour of a single step of the experiment. One can
think of sequences as precisely timed steps of changing
the state of the apparatus. To achieve this, the following
information is needed: which channel should be
modified, how the channel is modified, and when to
change it. For the parameters, the sequence description
will import all channels exported from the stack
description that have been set up for the apparatus, so
that one can choose from all the available channels
described in the hardware description. Multiple channel

Model

EEG

Sequence

Subsequence

Stack

Card

C++ Source
Code

C++ Source
Code

C++ Source
Code

Channel List

C++ Source
Code

C++ Source
Code

Telemetry
Template

Fig. 4. The model-driven workflow from the different
abstraction layers to the generated source code of the

flight software and additional artefacts

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 6 of 10

settings can then be grouped into time slots, which
define the exact time when to set the given set of
parameter changes.

Additionally, to prevent repetitive code, the
description of the sequences is subdivided into
subsequence code as many parts of sequence will be
reused. Subsequences and sequences support parameters
in time and values. This makes both DSLs a very
versatile tool to implement the experiments.

These two layers represent the behaviour of the
experiment hardware and maps to the real-time
programming technique of the cards and stacks.

The Sequence and Subsequence DSL are one part of
the physicist domain view to the system giving the
experimenters a textual description of the single steps of
the experiment flow.

We designed both sequence DSLs with a tailored
YAML (YAML Ain't Markup Language) [11] syntax to
find a good trade-off between human and machine
readability. To create the sequences and subsequences, a
special graphical user interface (GUI) was developed to
support the creation of all required sequences (see
Fig. 5). This GUI exported the sequences and
subsequences in the defined YAML format.

4.4 Experiment execution graph

The uppermost layer of the model (see Fig. 3) is a

graphical representation of the experiment flow called
the Experiment Execution Graph (EEG). Basically, it
merges all information provided in all the lower layers
into a big picture. It provides methods to order the
sequences as well as setting up decisions and branch the
execution depending on the state of the experiment (e.g.
measured values or internal states of the software).

As seen in Fig. 6, the flow of execution is designed
as a binary decision graph. Like UML activity diagrams,
sequences are represented by boxes and decision points
by diamond shapes.

Fig. 6. An example of an Experiment Execution

Graph for the performance evaluation of the experiment

Every decision point has a binary output which

results in two branches that can be chosen, either if the
expression inside the decision point evaluates to true
(shown in green) or false (shown in red). These decision
points can either evaluate internal variables or
measurements from the experiment. With these decision
points the sequences can be arranged to adapt to
measured values from the experiment and thus running
autonomously.

4.5 Model validation

Following the model-driven approach, one important
benefit is the reduced number of errors in the software
by restricting the possibilities of the engineers,
physicists, and software developers. DSLs restrict the
possibilities compared to general-purpose programming
languages. The idea is that less possibilities leads to
fewer errors in the software. Additionally, DSL
descriptions are usually much more compact than the
equivalent description in C++. This also should lead to
fewer errors.

The correctness of the DSL description is checked
by the parser of the DSL. The grammar of the DSL
defines which combination of characters or graphical
elements is allowed and which not.

Fig. 5. Part of the graphical user interface to describe

sequences and subsequences.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 7 of 10

Besides the check of the syntactical correctness of
the models we also designed validators that checked
other semantic aspects. For example, the feasibility of
the duration of time slots for sequences was checked or
that the minimum value of a parameter is actually lower
than the maximum value.

These validators increase the reliability of the
system, since it ensures the correctness already in the
description phase.

5. Implementation

The architectural design of the software architecture
is highly focused on modularity to keep the software as
flexible as possible. Fig. 7 shows the top-level
components of the software architecture. Each blue box
represents a single module in the software where the
orange boxes stand for hardware components that must
be accessed and controlled from the software. The
software modules are designed as stand-alone
components, which run in their own tasks. Every
module has defined input and output slots to
communicate with other modules. This way the side-
effects were kept to a minimum and only appear at the
hardware communication.

Logger

Measurement
AcquisitionSequence Player

Telecommand
Dispatcher

Image
Acquisition

TM/TC Module

Camera 1

Camera 2

Experiment Hardware
(6 Stacks, 18 different Cards)

Timer

Timeline Signal
Receiver

Flight Timeline Signals

Fig. 7. The components and peripherals of the
MAIUS-1 flight software

For the communication between these modules, so-

called channels are provided (shown as arrows in the
figure). Each channel is unidirectional and handles a
single datatype that has to fit the input and output slots
of the connected modules.

As the basis for this architecture DLR’s in-house
development “Tasking Framework” [12] was used. It
provides the base classes for the tasks, the
communication channels, and a scheduler to ensure the
timely execution of each task.

5.1 Software components

The main software components, as seen in Fig. 7,
are responsible for controlling the complete experiment.

The sequence player is organized as a play-list-
based music player where the music titles are in this
case the experiment sequences. In the lab, the operator
can load lists of sequences that are executed by
software. Sequences can be added or removed, and the

order can be changed by telecommands. When the
experiment is control by the EEG, the graph controls the
sequence player. If, for instance, at a decision point a
different sequence needs to be executed, the graph loads
the sequence to the sequence play list.

The logger is responsible of storing all
measurements locally on the on-board computer and
compressing data for the telemetry link. The data
includes experimental values and camera images as well
as housekeeping data of the experiment. The
architecture of the logger is quite generic. One can
define filters and data writers. It can be configured,
which data should be filtered and written to which
target. This allows a fine-grained configuration of the
data handling.

The measurement acquisition is the component that
regularly accesses the experiment hardware for sensor
readings and forwards it to the logger and some to the
sequence player for decisions in the EEG. The image
acquisition handles the capture and sending of camera
images from the experiment.

The telecommand dispatcher receives the
telecommands from the ground operator and distributes
them through the system, for example, to the sequence
player.

5.2 Integration of the models

The integration of the different models is organized
in layers according to the different model layers
described in Sect. 4.

Fig. 8 gives an overview of the different layers. The
base layer for the whole integration is the execution
platform with the core components of the system, which
provides a common interface to implement the artefacts
of the upper layers and provide methods to manage
these artefacts. We used the Linux Operating System
since the real-time requirements are not strict. The
custom-build hardware takes care of the real-time
execution of the sequences as described in Sect. 3.1.

Fig. 8. The different layers of the model integration

Further components on the base layer, like Tasking

Framework, Sequence Player, etc. are written in C++;
this implies that the whole integration was done in the

Linux Operating System

Core Components 3rd Party
Drivers

Hardware Models

Sequence Models

Custom Hardware Access

Custom Sequences
Sequence

Layer

Hardware
Layer

Execution
Platform

Graph LayerExperiment Execut ion Graph

http://upload.wikimedia.org/wikipedia/commons/a/ad/SS2_and_VMS_Eve.jpg

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 8 of 10

C++ language. That means software artefacts can be
written either in C++ directly or generated from a model
using a C++ code generator for that model.

The next two layers are corresponding to the
hardware and sequence models. These artefacts can be
either generated from the models described by the
according DSLs or implemented in C++ following the
defined application programming interfaces (APIs). On
the hardware layer, these custom implemented artefacts
can be used to access hardware that is not part of the
cards and stack hardware (e.g. cameras).

The same applies to the sequence layer, whose
artefacts can be generated from the models of
Subsequence and Sequence DSL or manually using
C++. A manual sequence is, for example, a module to
evaluate camera images to automatically detect features
of the cold atoms.

The topmost sequence graph layer then is purely
generated from the graphical sequence graph DSL, the
EEG. The integration is loosely coupled at the interfaces
between the different layers and can be used standalone
for specific use cases where only parts of the
experiment are used in the lab. This makes it possible,
for example, to explicitly set parameters using the
interface of the hardware model or executing sequences
without creating a whole graph.

5.3 Modelling framework

The DSLs, validators, and code generators are
implemented on the Eclipse Rich Client Platform.
Specifically, the Xtext framework [13] provides the
basis to create textual DSLs by defining the grammar.
Xtext provides then the infrastructure: editors with
syntax highlighting and a framework to implement
validators.

The code generators are implemented with the Xtend
language within the Xtext framework. The graphical
editor for the EEG was created with the Eclipse
Graphical Modelling Framework (GMF).

This whole toolset was integrated in a single
software packet that was provided to the engineering
and scientist team as a graphical user interface for
creating the different models. Another instance of the
code generators was created to provide automatic code
generation in the build process of the software.

6. Results

For the use case of the MAIUS-1 mission, the
development technique presented in this paper has been
successfully deployed. MAIUS-1 was launched in
January 2017 from Esrange in Kiruna, Sweden. Fig. 9
shows the MAIUS-1 team before the final integration of
the experiment with the rocket. MAIUS-1 created the
first BEC in space and successfully conducted
experiments with it [14].

In the final flight software, 84% of the C++ code was
generated from the models. The generated code covers
all boilerplate code that otherwise had to be
implemented by hand. As an added effect, the
generation of the boilerplate code increased the overall
code quality as these code segments are repetitive and
writing them by hand is error-prone and hard to debug.

Fig. 9. MAIUS-1 team with the payload and the service
module before integration with the rocket (© T. Schleuß)

However, we do not have statistics to proof this

claim, since we did not implement the software twice
with different methods for comparison. Nevertheless,
our experience with manual software development in
several space missions gives us confidence to support
this claim.

Beside the software engineering aspects, the use of a
combined model to describe the experiment hardware
and sequences had a positive effect on the collaboration
of the different domain experts. Every domain involved
in the development of the control software had their
own specialized view to the system on which they can
work. This approach was accepted and appreciated by
the software developers, engineers, and scientists.

The process of the definition and design of the DSLs
was a major step in the project to build a collective
understanding between the different domain experts.
Designing a formal language turned out to be more
efficient than trying to write long lists of requirements.
The grammars of the DSLs can be seen as formalized
requirements. A missing feature in the one of the DSLs
meant a not communicated requirement or a
misunderstanding between the domain experts and the
software development team.

The whole software was very flexible as well. With
only few modifications, it was used to control a

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 9 of 10

secondary payload of the MAIUS-1 mission. This
payload tested some new laser technologies and was
controlled by the same software on a computer
independent from the MAIUS experiment.

However, the initial requirement to develop software
for a short flight turned out to be cumbersome during
lab tests. We decided at the beginning to generate the
whole flight software and do not work with interpreted
code or similar approaches to make the software more
reliable. The drawback of this approach is that each
change of a sequence needs a recompiling and restarting
step.

7. Conclusions and outlook

This paper presented the model-driven software
engineering approach for the complex experiment
control of the MAIUS-1 mission, which created the first
BEC in space on a sounding rocket. The model-driven
approach was successfully implemented. Besides the
higher software quality as a result, the process of
defining domain-specific formal languages for the
different domains involved turned out to be an efficient
tool to gather and validate requirements instead of
writing long requirement documents.

Two MAIUS flights are planned for the next years
and an experiment on the International Space Station
(ISS) is currently prepared. This experiment, called
BECCAL, and the sounding rocket missions will be
controlled by improved versions of the presented
software. The biggest change will be an interpreted
sequence player. The subsequences, sequences, and
EEGs will no longer be transformed to C++ code but to
an intermediate representation, which will be executed
by a custom interpreter. This allows the modification of
sequences and EEGs without recompiling and restarting
the flight software.

Acknowledgements

This work is supported by the DLR Space
Administration with funds provided by the Federal
Ministry of Economics and Technology (BMWi) under
grant number DLR 50WM1131-1137, DLR
50WM1552-1557, DLR 50WP1431-1435, DLR
50WM0940, and DLR 50WM1240. We thank the
MAIUS-1 team for their contributions and support. In
particular, we want to mention H. Ahlers, D. Becker, A.
N. Dinkelaker, M. D. Lachmann, S. T. Seidel, and E. M.
Rasel. We are grateful to our former colleague M.
Deshmukh for her contributions to the DSL
development.

References
[1] S. T. Seidel, M. D. Lachmann, D. Becker, J. Grosse,

M. A. Popp, J. B. Wang, T. Wendrich, E. M. Rasel,
Quantus Collaboration, Atom Interferometry on
Sounding Rockets, pp. 309–312, Proceedings of the

22nd ESA Symposium on European Rocket and
Balloon Programmes and Related Research, Tromso,
Norway, 2015, 7 – 12 June.

[2] A. L. Ramos, J. V. Ferreira, J. Barceló, Model-
Based Systems Engineering: An Emerging
Approach for Modern Systems, IEEE Transactions
on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42.1 (2012) 101–111.

[3] B. Selic, The pragmatics of model-driven develop-
ment. IEEE Software, 20.5 (2003) 19–25.

[4] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H.
Chafi, V. Popic, M. Wu, A. Prokopec, V. Jovanovic,
M. Odersky, K. Olukotun, Composition and Reuse
with Compiled Domain-Specific Languages, pp. 52–
78, ECOOP 2013 -- Object-Oriented Programming:
27th European Conference, Montpellier, France,
2013, 1 – 5 July.

[5] K. Czarnecki, Overview of generative software
development, in: J.-P. Banâtre, P. Fradet, J.-L.
Giavitto, O. Michel (Eds.), Unconventional
Programming Paradigms: International Workshop
UPP 2004, Le Mont Saint Michel, France,
September 15 – 17, 2004, Revised Selected and
Invited Papers, Springer Berlin Heidelberg, 2005, pp.
326–341.

[6] T. Franz, D. Lüdtke, O. Maibaum, A. Gerndt,
Model-based software engineering for an optical
navigation system for spacecraft, CEAS Space J,
10.147 (2018) 147–156.

[7] C. Ebert and C. Jones, Embedded Software: Facts,
Figures, and Future, Computer 42.4 (2009) 42–52.

[8] K. P. Gostelow, The Mars Science Laboratory entry,
descent, and landing flight software, 23rd
AAS/AIAA Spaceflight Mechanics Meeting, Kauai,
Hawaii, 2013, 10 – 14 February.

[9] J. Grosse, S. T. Seidel, M. Scharringhausen, C.
Braxmaier, E. M. Rasel, Design and qualification of
an UHV system for operation on sounding rockets,
J. Vacuum Science & Technology A 34 (2016)
031606.

[10] A. Stamminger, J. Ettl, J. Grosse, M. Hörschgen-
Eggers, W. Jung, A. Kallenbach, G. Raith, W.
Saedtler, S. Seidel, J. Turner, M. Wittkamp,
MAIUS-1 - Vehicle, subsystems design and mission
operations, pp. 183–190, Proceedings of the 22nd
ESA Symposium on European Rocket and Balloon
Programmes and Related Research, Tromso,
Norway, 2015, 7 – 12 June.

[11] O. Ben-Kiki, C. Evans, B. Ingerson, YAML Ain’t
Markup Language (YAMLTM) version 1.2,
http://www.yaml.org/spec/1.2/spec.html, (accessed
13.09.18).

[12] O. Maibaum, D. Lüdtke, A. Gerndt, Tasking
Framework: Parallelization of Computations in
Onboard Control Systems, ITG/GI

http://www.yaml.org/spec/1.2/spec.html

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-18-A2.5.6 Page 10 of 10

Fachgruppentreffen Betriebssysteme, Berlin,
Germany, 2013, 7 – 8 November.

[13] M. Eysholdt, H. Behrens, Xtext: implement your
language faster than the quick and dirty way, pp.
307–309, Proceedings of the ACM international
conference companion on Object oriented
programming systems languages and applications
companion, Reno/Tahoe, Nevada, USA, 2013, 17 –
21 October.

[14] D. Becker, M. D. Lachmann, S. T. Seidel, H.
Ahlers, A. N. Dinkelaker, J. Grosse, O. Hellmig, H.

Müntinga, V. Schkolnik, T. Wendrich, A.
Wenzlawski, B. Weps, R. Corgier, D. Lüdtke, T.
Franz, N. Gaaloul, W. Herr, M. Popp, S. Amri, H.
Duncker, M. Erbe, A. Kohfeldt, A. Kubelka-Lange,
C. Braxmaier, E. Charron, W. Ertmer, M. Krutzik,
C. Lämmerzahl, A. Peters, W. P. Schleich, K.
Sengstock, R. Walser, A. Wicht, P. Windpassinger,
E. M. Rasel, Space-borne Bose-Einstein
condensation for precision interferometry, eprint
arXiv:1806.06679, 2018.

