Erratum: Comet 67P outbursts and quiescent coma at 1.3 AU from the Sun: dust properties from Rosetta/VIRTIS-H observations

by Dominique Bockelée-Morvan,1 G. Rinaldi,2 S. Erard,1 C. Leyrat,1 F. Capaccioni,2 P. Drossart,1 G. Filacchione,2 A. Migliorini,2 E. Quirico,3 S. Mottola,4 G. Tozzi,5 G. Arnold,4 N. Biver,1 M. Combes,1† J. Crovisier,1 A. Longobardo,2 M. Blecka6 and M.-T. Capria2

1LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France
2INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, via del fosso del Cavaliere, 100, I-00133, Rome, Italy
3CNRS, Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, 414 rue de la Piscine, BP53, F-38041 Grenoble, France
4Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute for Planetary Research, Rutherfordstraße 2, D-12489 Berlin, Germany
5INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy
6Space Research Centre, Polish Academy of Sciences, Bartycka 18a, PL-00716, Warsaw, Poland

Key words: errata, addenda – comets: general – comets: individual: 67P/Churyumov-Gerasimenko – infrared: planetary systems.

The paper ‘Comet 67P outbursts and quiescent coma at 1.3 AU from the Sun: dust properties from Rosetta/VIRTIS-H observations’ was published in MNRAS 469, S443 (2017). While performing a follow-up investigation, we discovered a numerical error in the algorithms that were developed to model the infrared continuum emission from a population of dust particles. The results of the scattering models for compact or moderately porous grains (Mie theory) and fluffy grains (Rayleigh-Gans-Debye theory, RGD) are both affected. Though the general conclusions of the paper are unchanged, the quantitative constraints obtained on the dust size distribution in the quiescent coma are slightly different.

Figs 8, 9, 10 and 11 should be replaced by, respectively, Figs 1, 2, 3 and 4 of this erratum. The new results introduce the following changes:

(i) Section 4.2, second paragraph (quiescent coma, Mie results): for moderately porous grains ($P_{\text{max}} = 0.5$), the sets of size distribution parameters which fit satisfactorily the measurements are now $(a_{\text{min}}, \beta) = (0.3 \mu m, 2.5)$ and $(0.9 \mu m, 3.0)$ (see Fig. 1). For non-porous grains, the updated parameters fitting the colour temperature and colour (whereas overestimating the bolometric albedo) are $(a_{\text{min}}, \beta) = (0.1 \mu m, 2.5)$ and $(0.5 \mu m, 3.0)$.

(ii) Section 4.2, last paragraph (quiescent coma, RGD results): we find now that, for a relative number of fluffy aggregates of...
25 per cent, the VIRTIS-H data can be explained providing the minimum radius of the particles exceeds 10 µm (Fig. 4). Good matches of colour, colour temperature and bolometric albedo are obtained for \((a_{\text{min}}, \beta) = (30 \mu\text{m}, 3.0)\) and \((20 \mu\text{m}, 3.5)\). Size indexes smaller than 2.5 are excluded (Fig. 4).

(iii) Section 6 (Summary and conclusions), fourth paragraph (Size distribution in quiescent coma): the parameters \((a_{\text{min}}, \beta)\) fitting the data assuming moderately porous grains should be updated following the corrections provided above. It was previously derived that, when considering mixtures of compact particles and fractal aggregates, a size index in the range 2–2.5 is favoured. We now find that the size index should be \(\geq 3\), which is consistent with the constraint obtained by Fulle et al. (2016) from GIADA data.

REFERENCES


This paper has been typeset from a \(\TeX/\LaTeX\) file prepared by the author.