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ABSTRACT 

Passive optical systems are limited in their capabilities 

to detect and track unknown objects in Low Earth Orbit 

(LEO), especially if these are very faint. The established 

streaking methods that utilize long exposure times suffer 

from loss of signal due to the fact that the photons 

reflected by the object are distributed over several 

dozens to hundreds of image pixels and form a streak. 

The last years have seen a rebirth of “Synthetic 

Tracking” (ST). This approach mitigates the effect of 

the photon distribution by taking many pictures with 

short exposure times and adding up the signal of these 

images. This leads to the light being focused on a few 

pixels and less noise from surrounding pixels. We 

propose the use of ST for the detection of LEO objects 

on graphics hardware and evaluate its real-time 

capabilities for future use in conjunction with a ranging 

laser to obtain accurate trajectory information. 

1. MOTIVATION 

At the time of this work radar astrometry is the primary 

ground-based method used for detection of LEO 

objects. Radar telescopes have reportedly been able to 

detect objects with diameter as small as 2 mm [1]. 

Currently around 17,000 objects are being observed 

consistently [2], the smallest of which have a diameter 

of 10 cm. 

In comparison, (passive) optical methods are not that 

prominent for ground-based detection of LEO objects. 

They are usually used for objects in GEO and farther 

away because active systems like radar do not have the 

necessary range for objects in GEO and beyond. In LEO 

optical systems have the potential to complement radar 

in the task of debris detection due to the lower costs 

compared to potent radar arrays and some objects being 

more reflective in the visible spectrum than in the RF 

spectrum. 

While the optical detection of very bright objects like 

the ISS is trivial, the task is more complex for very faint 

objects that are far from being detectable by the human 

eye. The dominant method of the past decades and for 

the time being is called streak detection or “streaking”. 

 

1.1 Streaking 

For streak detection of LEO objects a camera system 

with large field of view (some (°)²) is used with long 

exposure times (around 1s, depending on the field of 

view and the orbit to observe). LEO objects in the 

resulting images form bright lines, also called streaks, 

because their apparent movement over the exposure 

time spans multiple pixels. 

The exposure time has to be carefully chosen. Longer 

exposure times lead to longer streaks which are more 

easily detectable by edge detection algorithms and 

contain more robust information about the orbit 

parameters compared to short streaks. On the other 

hand, longer streaks have a higher probability of having 

“start” or “end” point (or both) beyond the field of view, 

in which case a trajectory estimation can only have a 

lower limit in terms of object speed. Additionally, from 

one exposure the directionality of the movement cannot 

be determined. 

The signal on streaking images is distributed over many 

pixels, degrading the signal strength in comparison to 

cameras in a tracking mount, following a known object, 

where the light reflected by the object is collected in a 

few pixels. 

1.2 Synthetic Tracking 

Synthetic Tracking (ST) simulates the behaviour of 

cameras operated in tracking mode with series of short 

exposure images. In contrast to these cameras, it can 

detect new objects and track multiple objects at the 

same time. The algorithm will be discussed in detail 

Chapter 3. 

An important value when comparing different 

techniques is the signal-to-noise ratio (SNR). SNR in 

general is a measure of signal intensity against the noise 

intensity. For astronomic images where the observed 

objects can be considered to be a non-resolved point 

source the SNR is usually measured as the peak value of 

the light source divided by the background mean value. 

Since the mean value of noise is offset by background 

intensity, this is subtracted beforehand. This leads to the 

definition of SNR as follows [3]: 
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where S is the peak signal intensity and B is the 

background mean intensity. 

For streaks on the image the photons of the signal peak 

are additionally distributed over multiple pixels along 

the streak [4]. The signal thus becomes 
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(2) 

with l being the streak length in pixel. As the 

background remains the same in both scenarios, the 

SNR of a static object can be directly compared to the 

SNR of the moving object by the formula 
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due to more pixels with more noise in the streaked case. 

That means, depending on streak length, that ST shows 

promise to find objects orders of magnitude dimmer 

than streaking methods can detect. In addition, 

directional ambiguity is not present and the start and end 

points of objects can be determined much more 

accurately, leading to better trajectory estimation when 

compared to streaking. 

2. RELATED WORK 

The first mention of Synthetic Tracking [4] explores the 

feasibility of this algorithm for detection of Near-Earth 

Asteroids (NEAs). To achieve this, the authors stack 60 

images recorded by a 200 inch telescope with 500 ms 

exposure time. They achieved SNR higher by 20 to 40 

compared to streaking methods. 

In 2017 some of the same authors [5] proposed the use 

of ST on multiple CubeSats to radically increase the 

number of known and continuously tracked NEAs. In 

this configuration they plan to stack 80 images of 10 s 

exposure time recorded by an on board 10 cm telescope. 

In 2018 the JPL scientists reported again on their 

successes with ST on a ground-based 40 inch telescope 

[6] as well as on board the SkySat-3 satellite [7]. 

While the authors promoted the potential in terms of 

real-time processing, at the time of this work their 

presented detections all ensued in post-processing. 

Furthermore, NEAs can be observed with large 

telescopes because of their low apparent velocity. 

The so-called Shift-and-Add method (to be described 

below) that is the basis for the ST strategy is much 

older. For speckle astronomy, the degrading 

atmospheric influences are resolved by taking many (not 

necessarily digital) exposures of a celestial object, 

shifting them with respect to each other so that the 

brightest spots aligns, and adding their intensity values 

up [8]. If only the most promising exposures are added 

up, the approach is often called “Lucky Imaging” [9]. 

First validation of far away, unresolved binary or multi-

star systems from speckles was a typical use case of 

these approaches. SAA is also used for validation of an 

orbiting object [4], where the orbit of an object is known 

at least broadly and the observation is meant to refine 

and confirm prior observations. In this case the amount 

of shifts that have to be calculated is much lower due to 

prior knowledge than in the case presented here, where 

goal is to achieve new detections and the whole 

spectrum of angles and velocities has to be searched in. 

In contrast to all these contributions, we propose the use 

of Synthetic Tracking for detection of space debris in 

LEO and show, that the algorithm has the capabilities of 

being optimized to a degree where real-time detection 

and tracking becomes possible. The former has been 

shown to work very recently [10]. This offers the 

possibility to use other instruments, e.g. ranging lasers, 

to refine orbital measurements on the same overpass to a 

point where the object can be continuously tracked in 

future overpasses, not getting lost again due to too high 

uncertainty in the orbital parameters. 

3. METHOD 

3.1. The Synthetic Tracking Algorithm 

Synthetic Tracking is based on the Shift-and-Add 

(SAA) algorithm. It takes as input a stack of n+1 images 

S = {I0, I1, …, In} (usually video frames) and a shift 

vector v = (vx,vy) and returns a shifted image ISAA. 

The input images are ordered consecutively with respect 

to time, ideally with a set framerate. The vector v 

denotes a proposal for the apparent movement vector of 

one or more unresolved (point-like) objects through the 

image stack. The value for a pixel (x, y) in the shift 

image ISAA for a shift vector v = (vx,vy) is calculated as 
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An object moving “through” the image stack with 

directional velocity v results in a high pixel value in 

ISAA, as all the faint signals on the single images, 

possibly not distinguishable from noise, add up. Doing 

this for every pixel results in the complete shift image. 

 



 

Figure 1. Illustration of Synthetic Tracking principle 

Synthetic Tracking calculates the shift images for every 

sensible shift vector v. The choice of the vectors is 

based on how fast objects in orbit are expected to move 

with respect to the camera setup. Our reference system 

is an Andor Zyla sCMOS 5.5 with a Zhongyi Mitakon 

Speedmaster 85 mm f/1.2 objective pointed at zenith, a 

minimum orbit height of 400 km and a maximum orbit 

height of 1200 km. This system has a field of view of 

9.4° by 11.1°. Assuming a circular orbit, this means that 

the maximum length of the shift vector |v|max = 251 px, 

and the minimum |v|min = 79 px at the highest resolution 

of 2560x2160 px. At this image resolution, each pixel 

spans 15.8” by 15.8” 

3.2 Realisation on GPU 

Adapting an algorithm for efficient use of graphics 

cards resources is a task that requires special care in 

order to weigh the different kinds of memory, 

processing units and their capabilities, capacities, 

throughput and bandwidths. Our implementation uses 

the CUDA computing platform for NVIDIA graphics 

cards in C++. High efficiency of calculations on 

graphics cards is achieved with a high degree of 

parallelization. The task should be subdivided into many 

small sub-tasks, optimally in such a manner that the 

sub-tasks perform the same calculations on different 

input to as high an extent as possible. This is called the 

Single Instruction Multiple Data (SIMD) paradigm. 

When one such sub-task is mapped on one computation 

thread on GPU, this consequently follows the Single 

Instruction Multiple Threads (SIMT) architecture of 

graphics cards. 

The instructions for every thread are defined in a kernel 

that is written like a function in C. Threads are bundled 

in blocks. A set of up to 32 threads in a block can be 

executed simultaneously, because each Processing 

Block has 32 cores; this set is called a warp. In our 

implementation each thread is assigned a pixel in the 

first image of the stack. The set of all blocks span the 

whole image. 

Threads in a warp can only perform the same operation 

in at the same time, if they all execute the same 

instruction, following the SIMT paradigm. If threads 

diverge, they have to be executed consecutively instead. 

This is mostly the case, if the controlling condition of 

some if or switch instruction or some kind of loop 

includes a component of the thread ID. This loss of 

thread concurrency needs to be avoided. 

The programmed kernel needs to be revised instruction 

for instruction carefully. Considerable boosts in 

performance can be achieved by avoiding costly 

operations, type conversions and repeating unnecessary 

operations in loops. An example of expensive 

operations that can be replaced is divisions; they can be 

replaced by multiplications with the reciprocal, if the 

divisor is the same in multiple instructions. 

A graphics card usually has multiple Streaming 

Multiprocessors (SMs) who in turn have multiple 

Processing Blocks (PBs). While only one warp can be 

active at a time on a PB, loading and storing times are 

effectively masked, because a SM can have multiple 

warps in execution per PB, the inactive ones of which 

are waiting for load or store operations. The memory of 

a graphics card can be divided into three physically 

different entities: global memory which all SMs can 

access, Shared Memory private to one SM and registers 

private to single threads. The access times and sizes 

scale accordingly; global memory is slow to access but 

large, shared memory is rather fast but limited, and 

registers are accessed very fast but can only store very 

limited data. 

Our implementation exploits these features. The stack of 

input images, while too large to reside in Shared 

Memory, is declared as a layered stack of 2D textures 

which reside in global memory. These textures are read-

only arrays that, when addressed, get cached in the 

much faster local cache instead of the slower, larger 

global cache. Access to a value in a texture is handled 

by specialized texture units, who at the same time can 

linearly interpolate the requested value, if an 

intermediate-pixel position is needed. Lastly, texture 

caching is performed in both directions of the texture 

instead of only one direction for general global memory 

accesses. This feature alone results in a speed increase 

by a factor of four over an equal global memory only 

implementation, as shown in chapter 4.2. 

Each thread in our implementation calculates all shift 

values ISAA(x, y, vx, vy) for fixed x, y and vy, iterating 

through all input images and a subset of all vx. We 

iterate through all of the vx for each image. Because 

each image forms its own texture layer, the input data 

requested by the threads is cached with a few accesses, 

and all calculations that need this data are performed, 

before the next texture has to be loaded. The specialized 

texture units perform the linear interpolation very 

efficiently which is usually necessary before adding a 

value. 

The intermediate results of this sum have to be stored. It 

is not efficient to store them in global memory, and 

registers have too little capacity in the general case. As 

an aside, they cannot be used for dynamic allocation, 



which is useful in many cases, including the ST 

algorithm. Instead, we store these in faster shared 

memory. The amount of shared memory needed 

depends on the amount of vx processed in one kernel 

call and the block size, because shared memory needs to 

be allocated for all threads of a block. Data in shared 

memory is only stored as long as the block is processed, 

so the results have to be written to global memory 

before the kernel execution ends. The choice of block 

size and amount of vx calculated in one kernel call have 

to be carefully balanced to ensure peak performance, 

because the limited shared memory is allocated per 

block and the amount of blocks that can be executed on 

a SM concurrently depends on the fraction of shared 

memory they occupy. 

The main reason why shared memory is faster than 

global memory is that it is divided into 32 equally sized 

memory banks, which can access their data 

independently of each other. The data is split between 

banks in such a way that consecutive 32-bit words of 

data are stored on neighbouring banks. Therefore up to 

128 Byte of data stored in succession can be accessed at 

the same time. On the other hand, accessing every m
th

 

value where m is a multiple of two results in bank 

conflicts, meaning that multiple words are stored on one 

bank, and the accesses have to be serialized, which 

delays all further execution accordingly. 

We have taken special care to avoid bank conflicts by 

manipulating the order in which data is stored in shared 

memory. Which addresses are accessed at a given 

computation step is dependent on the amount of vx 

computed and the dimensions of the block. In the 

general case it is fastest to store the intermediate results 

of one thread consecutively in memory, followed by the 

results of the next thread. This way any kernel execution 

that includes vx = 0 will never lead to bank conflicts. 

However, with our setup, in cases where |vx| is divisible 

by four, another kernel performs better. This kernel 

stores the results of same vx consecutively, followed by 

the results of the next. While this concrete effect may 

not occur on every system, it indicates that system 

specific details may have relevant performance impact 

due optimizations performed during execution on a 

specific type of GPU. 

4. RESULTS 

4.1. Detection of LEO objects 

For verification we tested our implementation on 

simulated data that takes into account atmospheric 

influences by modelling a point-like light source as a 

two-dimensional Gaussian intensity distribution and 

Photon shot noise modelled as random Poisson 

distribution of the intensities as well as background 

brightness. In accordance to the maximum of 100 fps 

the model camera can record we chose stack height of 

100 images for our analysis. Furthermore, we compute 

all shift vectors v in increments of 1 (“step size”) in 

their components. A more fine-grained search does not 

yield in improved results because of the use of linear 

interpolation, and higher step sizes lead to a rapid loss 

of accuracy. We leave detailed analysis of the 

performance of ST with respect to minimum object 

brightness and according data evaluation strategies for 

future work. For the results presented we applied a 

simple algorithm that extracts the maximum intensity of 

a shift image and returns it along with the pixel position, 

in the image for every computed shift. In case of an 

object, this pixel position is the position of the object in 

the first image of the stack. We then compare all the 

extracted maxima with each other. For illustration 

purposes, we additionally subtracted the minimum value 

of the shift domain from all values. Utilizing this 

method, objects register as global maxima in the shift 

vector space for SNR as low as 0.4 reliably, and we 

have encountered global maxima for objects with SNR 

as low as 0.1. 

 

Figure 2. Example diagram of three objects moving 

with vectors (-7px, 0px) (left), (0px, -7px) (centre) and 

(5px, 3px) (right), respectively. Noise mean is 132, 

SNRs are 0.41, 0.41 and 0.37, respectively. 

We note that an object usually still registers with the 

correct position and movement vector, even if noise 

replaces it as global maximum in shift space. This 

indicates that correlation with results from input stacks 

analysed prior or following could result in much lower 

SNR for detection. 

Furthermore we briefly present the behaviour of the 

maximum based method we chose. 

Objects with same brightness show a higher intensity in 

the shift space the closer they are to the shift component 

axes, as Fig. 2 shows. The on-axis objects register with 

both higher intensity in shift space as well as higher 

SNR in the input data, because their spatial distribution 

of the intensity always concentrates the light in a pixel’s 

centre for the movement direction. For high brightness 

regimes (SNR > 0.5) objects moving in a 45° angle to 



the axes result in 20% to 25% lower intensity in the 

shift images when compared to objects moving along 

the axes. As a result of fewer random (noise) values 

contributing to the values in the according shift image, 

higher variance in the values and the selection of the 

maximum pixel in a large image, noise intensity on the 

axes in the shift domain is also more pronounced (Fig. 

3). 

Figure 3. Shift diagram of noise without objects (top). 

The subtracted minimum value is 13,569.8, background 

noise mean value is 66. Top view of the normalized shift 

diagram to illustrate the location of high values 

(bottom). 

Another interesting aspect is the effects of very low 

influence of atmospheric disturbances (low standard 

deviation) in combination with a starting and end 

position of the object on or very near to edges or corners 

between pixels. Due to the lower signal intensity in 

these cases and the effects of linear interpolation of the 

values an object can register up to four peaks in shift 

domain in neighbouring pixels, with a local minimum, 

where the ground truth shift should register. The left 

object in Fig. 4 illustrates this effect; the real velocity 

vector is located in the middle between both peaks. This 

effect should however not occur under realistic seeing 

conditions, and is easy to catch, should it occur. 

 

Figure 4. Aliasing effect of four different in-between 

pixel starting positions (“edge” case). Shown are 

objects starting at (x, y) (right), (x+0.35, y) (back), 

(x+0.45, y) (front) and (x+0.5, y) (left) with Gaussian 

intensity standard deviation of 0.1, background noise of 

132 and SNR = 0.85. 

We expect future research to find more sophisticated 

methods to extract objects and their significant 

parameters from the results ST provides. 

4.2 Run time and Real-time capability 

The run time evaluation presented was performed on 

our development system with a NVIDIA Quadro K620 

graphics card with 2 GB DDR3 RAM, introduced in 

2014 and an Intel Xeon E5-2620 core i7 2.10 GHz CPU 

with 8GB RAM. Additionally, we performed some 

analysis on a system with a NVIDIA Quadro P4000 

with 8 GB DDR5 RAM from 2017 and an Intel Xeon 

E3-1270 core i7 3.60 GHz with 32 GB RAM. To 

account for fluctuations on load and frequency of the 

graphics card, the results are averages over ten 

measurements. The effects of different parameter 

choices are measured against the default configuration 

presented in Tab. 1. 

Frame dimensions 500 x 400 px 

Pixel depth 16 bit 

Stack Height 100 frames 

Number of passes 10 

Minimum velocity 1 (px/stack) 

Maximum velocity 10 (px/stack) 

Step size 1 

Resulting total number of shifts 

per pass 

316 

Table 1: Parameters for the computation time tests 
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The optimum run time for the computation of the SAA 

kernels on the K620 is 403ms; with the kernel that 

determines the maximum of each shifted image included 

the time is 438ms. In comparison, the according P4000 

runtimes are 62ms and 69ms, respectively. The former 

system is bound by shared memory bandwidth, while 

the latter is bound by texture memory bandwidth. 

Taking the maximum amount of texture fetches of the 

P4000 as theoretical limit, the computation could be 

sped up further by a maximum factor of 1.45 (94.9 

GTexels/s in our implementation vs. theoretical 137.4 

GTexels/s maximum). 

Although it is hard to determine run times on systems 

never tried, we expect at least an equal speed-up over 

the P4000 with state-of-the-art Titan and RTX graphics 

cards, as they have 72 SMs (Titan RTX) in comparison 

to the 14 (P4000) and 3 (K620), DDR6 memory (DDR5 

and DDR3, respectively) and higher clock rates 

(1350MHz over 1227MHz and 1058MHz), among other 

improvements. 

 global 

memory 

only 

input as 

texture 

Additionally 

intermediate results 

in shared memory 

Kernel 

run time 

(ms) 

5,470 1,439 438 

Table 2: Run time comparisons exploiting the hardware 

components of graphics cards to different degrees 

Computation time is linearly dependent on image size in 

pixels, number of images processed (stack height) and 

number of shift vectors computed (Fig. 5). 
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  32 462 438 474 499 

   64 475 474 503 

    Table 3: relation of computation time (in ms) and block 

size. Computation time includes maxima calculation. 

As Tab. 3 shows, the choice of block size is also 

impactful on performance. In contrast to the other 

parameters however, there is no obvious mathematical 

connection between the two. 

 

 

Figure 5. Comparison of image size in px (top) stack 

height in images (centre) and number of calculated 

shifts (bottom) to computation time in ms. 

It is obvious that total block size (both components 

multiplied) should be at least 32. That is because the 

maximum number of threads in a warp is 32, and a warp 

can never consist of threads of multiple blocks. 

Therefore no other block sizes apart from 4x4 that are 

not multiples of 32 were tested. The fastest computation 

times are situated on the diagonal for a total block size 

of 64. An explanation for this phenomenon could be that 

this amount of threads hits the optimum between yields 

more cache hit than configurations with block size 32, 

but has less memory usage than bigger block sizes. 

Finally, apart from some extreme cases, choosing one 

size smaller than the other has shown to improve 

performance, with small x component and big y 

component being slightly better. It cannot be ruled out 

that these findings are specific to the hardware used, 

therefore testing for an optimal configuration with other 

hardware may have an impact of a few percent on 

computation time. 

  



5. OUTLOOK 

The setup leading to the results in Tab. 2 computes 316 

shifts of images of size 500x400 px in 438ms. The 

camera setup that is the real world model for this work 

captures images of 2560 x 2160 px. That is 27.65 times 

the amount of pixels. Moreover, all directions and 

speeds for objects between 400 and 1200 km orbit 

height have to be calculated. This means to maximum 

velocity in a stack of frames spanning one second of 

recording is 251 px/s, the minimum being 79 px/s. The 

number of shifts that need to be calculated is 

approximated by the difference of the areas of circles 

with these radii: 

 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋 ∙ 𝑟² (5) 

This is only an approximation according to the Gauss 

circle problem. The exact number can be determined by 

checking for each point on the grid if its distance to the 

centre point of the circle is less or equal to the radius. 

For the values above it is 178272. Compared to the 316 

shifts in the benchmarking case this means 564.15 times 

the amount of shifts need to be calculated. Not taking 

into account that the graphics card of the development 

system could not store the input frame stack in global 

memory, this increase in calculations by a factor of 

roughly 15,600 would result in a computation time of 

114 min for one second of input data. This means that a 

system aiming to calculate this in one second would 

need 6832 times the computing power of the graphics 

card present in the development system. The system 

with the single P4000 graphics card could do the same 

in just under 18 minutes. Assuming the same speed up 

of 6.3 times with a state-of-the-art graphics card, the 

computation time can be estimated to be less than 3 

minutes; 170 of these graphics cards clustered could 

calculate all shifts in the sensible range. Extrapolating 

the capabilities of graphics cards into the future, the 

cards introduced in 2021 should be able to do this in a 

cluster of 27 cards. 

The supercomputer Summit, built in 2014, could run the 

data processing of an estimated 166 cameras at the same 

time only using its graphics cards. If we assume good 

seeing conditions for 1/12
th

 of cameras at the same time, 

it even could support a global network of 2000 cameras 

(data transmission times notwithstanding). 

Most of the scientific community does not currently 

have these kinds of resources at their disposal. 

However, data reduction techniques can be used to 

further reduce run times. 

Alternatively to using clusters of graphics cards other 

measures can be taken to reduce the amount of 

computations to perform. We implemented a function 

that calculates shifts only for stripes on the borders of 

the image, and only in the “inward” directions. The 

reason for this approach is that in an ongoing 

observation, objects appear at the edge of the observed 

area of space and do not need to be found multiple times 

in the same overpass. The stripe width should be 

adapted to the maximum velocity an observed object 

can have; in the model system the fastest possible object 

would be visible for at least 8 seconds. As such, only a 

fraction of each image needs to contribute for 

computation, and only roughly half of the shifts need to 

be calculated. Setting the stripe width to 502 px (double 

the maximum apparent velocity) would reduce the 

computation time by a factor of 0.38 to 43.3 minutes on 

the development system’s graphics card. 

Another approach that is often used to reduce the 

amount of data in astronomy is pixel binning. Binning 

with a factor n is a technique where the values of n by n 

pixels are collected into one instead. Binning by two 

would reduce the frame pixel count to 1/4th and the 

amount of shifts to compute also to 1/4th (44300 shifts 

instead of 18272), for a total sixteen-fold saving in 

computations and computation time. The Quadro K620 

used in development could compute this in just over 7 

minutes, requiring a factor of 427 for real-time 

capability, which can be achieved with a few state-of-

the-art consumer-grade graphics cards as exemplified 

above. Of course, the sensitivity (SNR) and accuracy (in 

pixel positon and speed vector) drop by a factor of two 

each. 

If the computational resources are limited, the shift 

vector space can be limited to meet real-time 

requirements. Restricting the search space to a range of 

orbital directions can be performed e.g. by adding an 

offset to a much smaller search radius. For example, a 

circle that spans the whole search band with its diameter 

has only 23217 shifts that need to be calculated, a speed 

increase by a factor of 7.7. 

Alternatively, the search could be restricted to certain 

orbit heights, which can be performed by choosing a 

narrower band of orbital velocities. Fig. 6 (bottom) 

illustrates this method for orbits of height between 400 

and 500km, which translates to velocity vectors of 

length 200 to 251, decreasing the search space and time 

by a factor of over 2.7. Of course the possibilities are 

not limited to a choice of shifts that is easy to select 

from how the algorithm currently works or how it can 

be easily adapted. Observing different velocity and 

direction portions of shift space at the same time is 

possible with the according hardware. 



 

Figure 6. Proportional illustrations of strategies to limit 

the search to certain parts of shift space using an offset 

(top) or a narrower band (bottom). 

6. SUMMARY 

We have shown that Synthetic Tracking is a technology 

useable for real-time detection and tracking of LEO 

objects. The necessary hardware to perform continuous 

real-time brute force search for all possible LEO objects 

is not commonly available. Consequently, we have 

shown that data reduction techniques can be used to 

decrease computation time to real-time capability levels. 

Furthermore the projected increase in computing power 

of near future graphics cards over current state-of-the-

art models is expected to make such compromises 

unnecessary in the coming years. 

The prerequisite for such high performance is a highly 

optimized implementation of the algorithm. We have 

provided guide lines to achieve this level of 

optimization. 

The dominant method of optical detection of faint LEO 

objects requires expensive optical systems with large 

aperture telescopes. While not in the focus of this paper, 

Synthetic Tracking shows promise to increase the 

performance of single aperture systems, increasing 

sensitivity and decreasing costs of the optical system. 

Synthetic Tracking is a rather novel approach to 

detection of celestial objects, especially in the fast 

regime of LEO. There is still much research work to be 

done. This includes efficient real-time pre-processing of 

the input data, more sophisticated strategies to evaluate 

the output and suitable data reduction techniques. When 

these problems get addressed, Synthetic Tracking has 

the potential to become the foundation of a high 

performance, highly scalable global optical debris 

detection system. 
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