
Synthetic tracking for orbital object detection in LEO

Josua Zscheile
(1)

, Paul Wagner
(1)

, Raoul-Amadeus Lorbeer
(1)

, Benjamin Guthier
(2)

(1)
German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring 38-40, 70569 Stuttgart, Email:

paul.wagner@dlr.de
(2)

Technische Universität Dresden, Faculty of Computer Science, 01062 Dresden, Germany

ABSTRACT

Passive optical systems are limited in their capabilities

to detect and track unknown objects in Low Earth Orbit

(LEO), especially if these are very faint. The established

streaking methods that utilize long exposure times suffer

from loss of signal due to the fact that the photons

reflected by the object are distributed over several

dozens to hundreds of image pixels and form a streak.

The last years have seen a rebirth of “Synthetic

Tracking” (ST). This approach mitigates the effect of

the photon distribution by taking many pictures with

short exposure times and adding up the signal of these

images. This leads to the light being focused on a few

pixels and less noise from surrounding pixels. We

propose the use of ST for the detection of LEO objects

on graphics hardware and evaluate its real-time

capabilities for future use in conjunction with a ranging

laser to obtain accurate trajectory information.

1. MOTIVATION

At the time of this work radar astrometry is the primary

ground-based method used for detection of LEO

objects. Radar telescopes have reportedly been able to

detect objects with diameter as small as 2 mm [1].

Currently around 17,000 objects are being observed

consistently [2], the smallest of which have a diameter

of 10 cm.

In comparison, (passive) optical methods are not that

prominent for ground-based detection of LEO objects.

They are usually used for objects in GEO and farther

away because active systems like radar do not have the

necessary range for objects in GEO and beyond. In LEO

optical systems have the potential to complement radar

in the task of debris detection due to the lower costs

compared to potent radar arrays and some objects being

more reflective in the visible spectrum than in the RF

spectrum.

While the optical detection of very bright objects like

the ISS is trivial, the task is more complex for very faint

objects that are far from being detectable by the human

eye. The dominant method of the past decades and for

the time being is called streak detection or “streaking”.

1.1 Streaking

For streak detection of LEO objects a camera system

with large field of view (some (°)²) is used with long

exposure times (around 1s, depending on the field of

view and the orbit to observe). LEO objects in the

resulting images form bright lines, also called streaks,

because their apparent movement over the exposure

time spans multiple pixels.

The exposure time has to be carefully chosen. Longer

exposure times lead to longer streaks which are more

easily detectable by edge detection algorithms and

contain more robust information about the orbit

parameters compared to short streaks. On the other

hand, longer streaks have a higher probability of having

“start” or “end” point (or both) beyond the field of view,

in which case a trajectory estimation can only have a

lower limit in terms of object speed. Additionally, from

one exposure the directionality of the movement cannot

be determined.

The signal on streaking images is distributed over many

pixels, degrading the signal strength in comparison to

cameras in a tracking mount, following a known object,

where the light reflected by the object is collected in a

few pixels.

1.2 Synthetic Tracking

Synthetic Tracking (ST) simulates the behaviour of

cameras operated in tracking mode with series of short

exposure images. In contrast to these cameras, it can

detect new objects and track multiple objects at the

same time. The algorithm will be discussed in detail

Chapter 3.

An important value when comparing different

techniques is the signal-to-noise ratio (SNR). SNR in

general is a measure of signal intensity against the noise

intensity. For astronomic images where the observed

objects can be considered to be a non-resolved point

source the SNR is usually measured as the peak value of

the light source divided by the background mean value.

Since the mean value of noise is offset by background

intensity, this is subtracted beforehand. This leads to the

definition of SNR as follows [3]:

𝑆𝑁𝑅(𝑆) =

𝑆

√𝐵

(1)

where S is the peak signal intensity and B is the

background mean intensity.

For streaks on the image the photons of the signal peak

are additionally distributed over multiple pixels along

the streak [4]. The signal thus becomes

𝑆′ =

𝑆

𝑙

(2)

with l being the streak length in pixel. As the

background remains the same in both scenarios, the

SNR of a static object can be directly compared to the

SNR of the moving object by the formula

𝑆𝑁𝑅(𝑆)

𝑆𝑁𝑅(𝑆′)
= 𝑙

(3)

due to more pixels with more noise in the streaked case.

That means, depending on streak length, that ST shows

promise to find objects orders of magnitude dimmer

than streaking methods can detect. In addition,

directional ambiguity is not present and the start and end

points of objects can be determined much more

accurately, leading to better trajectory estimation when

compared to streaking.

2. RELATED WORK

The first mention of Synthetic Tracking [4] explores the

feasibility of this algorithm for detection of Near-Earth

Asteroids (NEAs). To achieve this, the authors stack 60

images recorded by a 200 inch telescope with 500 ms

exposure time. They achieved SNR higher by 20 to 40

compared to streaking methods.

In 2017 some of the same authors [5] proposed the use

of ST on multiple CubeSats to radically increase the

number of known and continuously tracked NEAs. In

this configuration they plan to stack 80 images of 10 s

exposure time recorded by an on board 10 cm telescope.

In 2018 the JPL scientists reported again on their

successes with ST on a ground-based 40 inch telescope

[6] as well as on board the SkySat-3 satellite [7].

While the authors promoted the potential in terms of

real-time processing, at the time of this work their

presented detections all ensued in post-processing.

Furthermore, NEAs can be observed with large

telescopes because of their low apparent velocity.

The so-called Shift-and-Add method (to be described

below) that is the basis for the ST strategy is much

older. For speckle astronomy, the degrading

atmospheric influences are resolved by taking many (not

necessarily digital) exposures of a celestial object,

shifting them with respect to each other so that the

brightest spots aligns, and adding their intensity values

up [8]. If only the most promising exposures are added

up, the approach is often called “Lucky Imaging” [9].

First validation of far away, unresolved binary or multi-

star systems from speckles was a typical use case of

these approaches. SAA is also used for validation of an

orbiting object [4], where the orbit of an object is known

at least broadly and the observation is meant to refine

and confirm prior observations. In this case the amount

of shifts that have to be calculated is much lower due to

prior knowledge than in the case presented here, where

goal is to achieve new detections and the whole

spectrum of angles and velocities has to be searched in.

In contrast to all these contributions, we propose the use

of Synthetic Tracking for detection of space debris in

LEO and show, that the algorithm has the capabilities of

being optimized to a degree where real-time detection

and tracking becomes possible. The former has been

shown to work very recently [10]. This offers the

possibility to use other instruments, e.g. ranging lasers,

to refine orbital measurements on the same overpass to a

point where the object can be continuously tracked in

future overpasses, not getting lost again due to too high

uncertainty in the orbital parameters.

3. METHOD

3.1. The Synthetic Tracking Algorithm

Synthetic Tracking is based on the Shift-and-Add

(SAA) algorithm. It takes as input a stack of n+1 images

S = {I0, I1, …, In} (usually video frames) and a shift

vector v = (vx,vy) and returns a shifted image ISAA.

The input images are ordered consecutively with respect

to time, ideally with a set framerate. The vector v

denotes a proposal for the apparent movement vector of

one or more unresolved (point-like) objects through the

image stack. The value for a pixel (x, y) in the shift

image ISAA for a shift vector v = (vx,vy) is calculated as

𝐼𝑆𝐴𝐴(𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) = ∑ 𝐼𝑖(𝑥 +

𝑖𝑣𝑥

𝑛
,

𝑛

𝑖=0

𝑦 +
𝑖𝑣𝑦

𝑛
)

(4)

An object moving “through” the image stack with

directional velocity v results in a high pixel value in

ISAA, as all the faint signals on the single images,

possibly not distinguishable from noise, add up. Doing

this for every pixel results in the complete shift image.

Figure 1. Illustration of Synthetic Tracking principle

Synthetic Tracking calculates the shift images for every

sensible shift vector v. The choice of the vectors is

based on how fast objects in orbit are expected to move

with respect to the camera setup. Our reference system

is an Andor Zyla sCMOS 5.5 with a Zhongyi Mitakon

Speedmaster 85 mm f/1.2 objective pointed at zenith, a

minimum orbit height of 400 km and a maximum orbit

height of 1200 km. This system has a field of view of

9.4° by 11.1°. Assuming a circular orbit, this means that

the maximum length of the shift vector |v|max = 251 px,

and the minimum |v|min = 79 px at the highest resolution

of 2560x2160 px. At this image resolution, each pixel

spans 15.8” by 15.8”

3.2 Realisation on GPU

Adapting an algorithm for efficient use of graphics

cards resources is a task that requires special care in

order to weigh the different kinds of memory,

processing units and their capabilities, capacities,

throughput and bandwidths. Our implementation uses

the CUDA computing platform for NVIDIA graphics

cards in C++. High efficiency of calculations on

graphics cards is achieved with a high degree of

parallelization. The task should be subdivided into many

small sub-tasks, optimally in such a manner that the

sub-tasks perform the same calculations on different

input to as high an extent as possible. This is called the

Single Instruction Multiple Data (SIMD) paradigm.

When one such sub-task is mapped on one computation

thread on GPU, this consequently follows the Single

Instruction Multiple Threads (SIMT) architecture of

graphics cards.

The instructions for every thread are defined in a kernel

that is written like a function in C. Threads are bundled

in blocks. A set of up to 32 threads in a block can be

executed simultaneously, because each Processing

Block has 32 cores; this set is called a warp. In our

implementation each thread is assigned a pixel in the

first image of the stack. The set of all blocks span the

whole image.

Threads in a warp can only perform the same operation

in at the same time, if they all execute the same

instruction, following the SIMT paradigm. If threads

diverge, they have to be executed consecutively instead.

This is mostly the case, if the controlling condition of

some if or switch instruction or some kind of loop

includes a component of the thread ID. This loss of

thread concurrency needs to be avoided.

The programmed kernel needs to be revised instruction

for instruction carefully. Considerable boosts in

performance can be achieved by avoiding costly

operations, type conversions and repeating unnecessary

operations in loops. An example of expensive

operations that can be replaced is divisions; they can be

replaced by multiplications with the reciprocal, if the

divisor is the same in multiple instructions.

A graphics card usually has multiple Streaming

Multiprocessors (SMs) who in turn have multiple

Processing Blocks (PBs). While only one warp can be

active at a time on a PB, loading and storing times are

effectively masked, because a SM can have multiple

warps in execution per PB, the inactive ones of which

are waiting for load or store operations. The memory of

a graphics card can be divided into three physically

different entities: global memory which all SMs can

access, Shared Memory private to one SM and registers

private to single threads. The access times and sizes

scale accordingly; global memory is slow to access but

large, shared memory is rather fast but limited, and

registers are accessed very fast but can only store very

limited data.

Our implementation exploits these features. The stack of

input images, while too large to reside in Shared

Memory, is declared as a layered stack of 2D textures

which reside in global memory. These textures are read-

only arrays that, when addressed, get cached in the

much faster local cache instead of the slower, larger

global cache. Access to a value in a texture is handled

by specialized texture units, who at the same time can

linearly interpolate the requested value, if an

intermediate-pixel position is needed. Lastly, texture

caching is performed in both directions of the texture

instead of only one direction for general global memory

accesses. This feature alone results in a speed increase

by a factor of four over an equal global memory only

implementation, as shown in chapter 4.2.

Each thread in our implementation calculates all shift

values ISAA(x, y, vx, vy) for fixed x, y and vy, iterating

through all input images and a subset of all vx. We

iterate through all of the vx for each image. Because

each image forms its own texture layer, the input data

requested by the threads is cached with a few accesses,

and all calculations that need this data are performed,

before the next texture has to be loaded. The specialized

texture units perform the linear interpolation very

efficiently which is usually necessary before adding a

value.

The intermediate results of this sum have to be stored. It

is not efficient to store them in global memory, and

registers have too little capacity in the general case. As

an aside, they cannot be used for dynamic allocation,

which is useful in many cases, including the ST

algorithm. Instead, we store these in faster shared

memory. The amount of shared memory needed

depends on the amount of vx processed in one kernel

call and the block size, because shared memory needs to

be allocated for all threads of a block. Data in shared

memory is only stored as long as the block is processed,

so the results have to be written to global memory

before the kernel execution ends. The choice of block

size and amount of vx calculated in one kernel call have

to be carefully balanced to ensure peak performance,

because the limited shared memory is allocated per

block and the amount of blocks that can be executed on

a SM concurrently depends on the fraction of shared

memory they occupy.

The main reason why shared memory is faster than

global memory is that it is divided into 32 equally sized

memory banks, which can access their data

independently of each other. The data is split between

banks in such a way that consecutive 32-bit words of

data are stored on neighbouring banks. Therefore up to

128 Byte of data stored in succession can be accessed at

the same time. On the other hand, accessing every m
th

value where m is a multiple of two results in bank

conflicts, meaning that multiple words are stored on one

bank, and the accesses have to be serialized, which

delays all further execution accordingly.

We have taken special care to avoid bank conflicts by

manipulating the order in which data is stored in shared

memory. Which addresses are accessed at a given

computation step is dependent on the amount of vx

computed and the dimensions of the block. In the

general case it is fastest to store the intermediate results

of one thread consecutively in memory, followed by the

results of the next thread. This way any kernel execution

that includes vx = 0 will never lead to bank conflicts.

However, with our setup, in cases where |vx| is divisible

by four, another kernel performs better. This kernel

stores the results of same vx consecutively, followed by

the results of the next. While this concrete effect may

not occur on every system, it indicates that system

specific details may have relevant performance impact

due optimizations performed during execution on a

specific type of GPU.

4. RESULTS

4.1. Detection of LEO objects

For verification we tested our implementation on

simulated data that takes into account atmospheric

influences by modelling a point-like light source as a

two-dimensional Gaussian intensity distribution and

Photon shot noise modelled as random Poisson

distribution of the intensities as well as background

brightness. In accordance to the maximum of 100 fps

the model camera can record we chose stack height of

100 images for our analysis. Furthermore, we compute

all shift vectors v in increments of 1 (“step size”) in

their components. A more fine-grained search does not

yield in improved results because of the use of linear

interpolation, and higher step sizes lead to a rapid loss

of accuracy. We leave detailed analysis of the

performance of ST with respect to minimum object

brightness and according data evaluation strategies for

future work. For the results presented we applied a

simple algorithm that extracts the maximum intensity of

a shift image and returns it along with the pixel position,

in the image for every computed shift. In case of an

object, this pixel position is the position of the object in

the first image of the stack. We then compare all the

extracted maxima with each other. For illustration

purposes, we additionally subtracted the minimum value

of the shift domain from all values. Utilizing this

method, objects register as global maxima in the shift

vector space for SNR as low as 0.4 reliably, and we

have encountered global maxima for objects with SNR

as low as 0.1.

Figure 2. Example diagram of three objects moving

with vectors (-7px, 0px) (left), (0px, -7px) (centre) and

(5px, 3px) (right), respectively. Noise mean is 132,

SNRs are 0.41, 0.41 and 0.37, respectively.

We note that an object usually still registers with the

correct position and movement vector, even if noise

replaces it as global maximum in shift space. This

indicates that correlation with results from input stacks

analysed prior or following could result in much lower

SNR for detection.

Furthermore we briefly present the behaviour of the

maximum based method we chose.

Objects with same brightness show a higher intensity in

the shift space the closer they are to the shift component

axes, as Fig. 2 shows. The on-axis objects register with

both higher intensity in shift space as well as higher

SNR in the input data, because their spatial distribution

of the intensity always concentrates the light in a pixel’s

centre for the movement direction. For high brightness

regimes (SNR > 0.5) objects moving in a 45° angle to

the axes result in 20% to 25% lower intensity in the

shift images when compared to objects moving along

the axes. As a result of fewer random (noise) values

contributing to the values in the according shift image,

higher variance in the values and the selection of the

maximum pixel in a large image, noise intensity on the

axes in the shift domain is also more pronounced (Fig.

3).

Figure 3. Shift diagram of noise without objects (top).

The subtracted minimum value is 13,569.8, background

noise mean value is 66. Top view of the normalized shift

diagram to illustrate the location of high values

(bottom).

Another interesting aspect is the effects of very low

influence of atmospheric disturbances (low standard

deviation) in combination with a starting and end

position of the object on or very near to edges or corners

between pixels. Due to the lower signal intensity in

these cases and the effects of linear interpolation of the

values an object can register up to four peaks in shift

domain in neighbouring pixels, with a local minimum,

where the ground truth shift should register. The left

object in Fig. 4 illustrates this effect; the real velocity

vector is located in the middle between both peaks. This

effect should however not occur under realistic seeing

conditions, and is easy to catch, should it occur.

Figure 4. Aliasing effect of four different in-between

pixel starting positions (“edge” case). Shown are

objects starting at (x, y) (right), (x+0.35, y) (back),

(x+0.45, y) (front) and (x+0.5, y) (left) with Gaussian

intensity standard deviation of 0.1, background noise of

132 and SNR = 0.85.

We expect future research to find more sophisticated

methods to extract objects and their significant

parameters from the results ST provides.

4.2 Run time and Real-time capability

The run time evaluation presented was performed on

our development system with a NVIDIA Quadro K620

graphics card with 2 GB DDR3 RAM, introduced in

2014 and an Intel Xeon E5-2620 core i7 2.10 GHz CPU

with 8GB RAM. Additionally, we performed some

analysis on a system with a NVIDIA Quadro P4000

with 8 GB DDR5 RAM from 2017 and an Intel Xeon

E3-1270 core i7 3.60 GHz with 32 GB RAM. To

account for fluctuations on load and frequency of the

graphics card, the results are averages over ten

measurements. The effects of different parameter

choices are measured against the default configuration

presented in Tab. 1.

Frame dimensions 500 x 400 px

Pixel depth 16 bit

Stack Height 100 frames

Number of passes 10

Minimum velocity 1 (px/stack)

Maximum velocity 10 (px/stack)

Step size 1

Resulting total number of shifts

per pass

316

Table 1: Parameters for the computation time tests

-10

-3

40

100

200

300

-1
0

-5 0

5

1
0

200-
300
100-
200
0-
100

0,9-1

0,8-0,9

0,7-0,8

0,6-0,7

0,5-0,6

0,4-0,5

0,3-0,4

0,2-0,3

0,1-0,2

0-0,1

The optimum run time for the computation of the SAA

kernels on the K620 is 403ms; with the kernel that

determines the maximum of each shifted image included

the time is 438ms. In comparison, the according P4000

runtimes are 62ms and 69ms, respectively. The former

system is bound by shared memory bandwidth, while

the latter is bound by texture memory bandwidth.

Taking the maximum amount of texture fetches of the

P4000 as theoretical limit, the computation could be

sped up further by a maximum factor of 1.45 (94.9

GTexels/s in our implementation vs. theoretical 137.4

GTexels/s maximum).

Although it is hard to determine run times on systems

never tried, we expect at least an equal speed-up over

the P4000 with state-of-the-art Titan and RTX graphics

cards, as they have 72 SMs (Titan RTX) in comparison

to the 14 (P4000) and 3 (K620), DDR6 memory (DDR5

and DDR3, respectively) and higher clock rates

(1350MHz over 1227MHz and 1058MHz), among other

improvements.

 global

memory

only

input as

texture

Additionally

intermediate results

in shared memory

Kernel

run time

(ms)

5,470 1,439 438

Table 2: Run time comparisons exploiting the hardware

components of graphics cards to different degrees

Computation time is linearly dependent on image size in

pixels, number of images processed (stack height) and

number of shift vectors computed (Fig. 5).

Block size x

1 2 4 8 16 32 64

B
lo

ck
 s

iz
e

y

1

467 444

2

484 450 462

4

766 476 466 472 482

8

460 454 489 488

 16

447 441 476 504

 32 462 438 474 499

 64 475 474 503

 Table 3: relation of computation time (in ms) and block

size. Computation time includes maxima calculation.

As Tab. 3 shows, the choice of block size is also

impactful on performance. In contrast to the other

parameters however, there is no obvious mathematical

connection between the two.

Figure 5. Comparison of image size in px (top) stack

height in images (centre) and number of calculated

shifts (bottom) to computation time in ms.

It is obvious that total block size (both components

multiplied) should be at least 32. That is because the

maximum number of threads in a warp is 32, and a warp

can never consist of threads of multiple blocks.

Therefore no other block sizes apart from 4x4 that are

not multiples of 32 were tested. The fastest computation

times are situated on the diagonal for a total block size

of 64. An explanation for this phenomenon could be that

this amount of threads hits the optimum between yields

more cache hit than configurations with block size 32,

but has less memory usage than bigger block sizes.

Finally, apart from some extreme cases, choosing one

size smaller than the other has shown to improve

performance, with small x component and big y

component being slightly better. It cannot be ruled out

that these findings are specific to the hardware used,

therefore testing for an optimal configuration with other

hardware may have an impact of a few percent on

computation time.

5. OUTLOOK

The setup leading to the results in Tab. 2 computes 316

shifts of images of size 500x400 px in 438ms. The

camera setup that is the real world model for this work

captures images of 2560 x 2160 px. That is 27.65 times

the amount of pixels. Moreover, all directions and

speeds for objects between 400 and 1200 km orbit

height have to be calculated. This means to maximum

velocity in a stack of frames spanning one second of

recording is 251 px/s, the minimum being 79 px/s. The

number of shifts that need to be calculated is

approximated by the difference of the areas of circles

with these radii:

 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋 ∙ 𝑟² (5)

This is only an approximation according to the Gauss

circle problem. The exact number can be determined by

checking for each point on the grid if its distance to the

centre point of the circle is less or equal to the radius.

For the values above it is 178272. Compared to the 316

shifts in the benchmarking case this means 564.15 times

the amount of shifts need to be calculated. Not taking

into account that the graphics card of the development

system could not store the input frame stack in global

memory, this increase in calculations by a factor of

roughly 15,600 would result in a computation time of

114 min for one second of input data. This means that a

system aiming to calculate this in one second would

need 6832 times the computing power of the graphics

card present in the development system. The system

with the single P4000 graphics card could do the same

in just under 18 minutes. Assuming the same speed up

of 6.3 times with a state-of-the-art graphics card, the

computation time can be estimated to be less than 3

minutes; 170 of these graphics cards clustered could

calculate all shifts in the sensible range. Extrapolating

the capabilities of graphics cards into the future, the

cards introduced in 2021 should be able to do this in a

cluster of 27 cards.

The supercomputer Summit, built in 2014, could run the

data processing of an estimated 166 cameras at the same

time only using its graphics cards. If we assume good

seeing conditions for 1/12
th

 of cameras at the same time,

it even could support a global network of 2000 cameras

(data transmission times notwithstanding).

Most of the scientific community does not currently

have these kinds of resources at their disposal.

However, data reduction techniques can be used to

further reduce run times.

Alternatively to using clusters of graphics cards other

measures can be taken to reduce the amount of

computations to perform. We implemented a function

that calculates shifts only for stripes on the borders of

the image, and only in the “inward” directions. The

reason for this approach is that in an ongoing

observation, objects appear at the edge of the observed

area of space and do not need to be found multiple times

in the same overpass. The stripe width should be

adapted to the maximum velocity an observed object

can have; in the model system the fastest possible object

would be visible for at least 8 seconds. As such, only a

fraction of each image needs to contribute for

computation, and only roughly half of the shifts need to

be calculated. Setting the stripe width to 502 px (double

the maximum apparent velocity) would reduce the

computation time by a factor of 0.38 to 43.3 minutes on

the development system’s graphics card.

Another approach that is often used to reduce the

amount of data in astronomy is pixel binning. Binning

with a factor n is a technique where the values of n by n

pixels are collected into one instead. Binning by two

would reduce the frame pixel count to 1/4th and the

amount of shifts to compute also to 1/4th (44300 shifts

instead of 18272), for a total sixteen-fold saving in

computations and computation time. The Quadro K620

used in development could compute this in just over 7

minutes, requiring a factor of 427 for real-time

capability, which can be achieved with a few state-of-

the-art consumer-grade graphics cards as exemplified

above. Of course, the sensitivity (SNR) and accuracy (in

pixel positon and speed vector) drop by a factor of two

each.

If the computational resources are limited, the shift

vector space can be limited to meet real-time

requirements. Restricting the search space to a range of

orbital directions can be performed e.g. by adding an

offset to a much smaller search radius. For example, a

circle that spans the whole search band with its diameter

has only 23217 shifts that need to be calculated, a speed

increase by a factor of 7.7.

Alternatively, the search could be restricted to certain

orbit heights, which can be performed by choosing a

narrower band of orbital velocities. Fig. 6 (bottom)

illustrates this method for orbits of height between 400

and 500km, which translates to velocity vectors of

length 200 to 251, decreasing the search space and time

by a factor of over 2.7. Of course the possibilities are

not limited to a choice of shifts that is easy to select

from how the algorithm currently works or how it can

be easily adapted. Observing different velocity and

direction portions of shift space at the same time is

possible with the according hardware.

Figure 6. Proportional illustrations of strategies to limit

the search to certain parts of shift space using an offset

(top) or a narrower band (bottom).

6. SUMMARY

We have shown that Synthetic Tracking is a technology

useable for real-time detection and tracking of LEO

objects. The necessary hardware to perform continuous

real-time brute force search for all possible LEO objects

is not commonly available. Consequently, we have

shown that data reduction techniques can be used to

decrease computation time to real-time capability levels.

Furthermore the projected increase in computing power

of near future graphics cards over current state-of-the-

art models is expected to make such compromises

unnecessary in the coming years.

The prerequisite for such high performance is a highly

optimized implementation of the algorithm. We have

provided guide lines to achieve this level of

optimization.

The dominant method of optical detection of faint LEO

objects requires expensive optical systems with large

aperture telescopes. While not in the focus of this paper,

Synthetic Tracking shows promise to increase the

performance of single aperture systems, increasing

sensitivity and decreasing costs of the optical system.

Synthetic Tracking is a rather novel approach to

detection of celestial objects, especially in the fast

regime of LEO. There is still much research work to be

done. This includes efficient real-time pre-processing of

the input data, more sophisticated strategies to evaluate

the output and suitable data reduction techniques. When

these problems get addressed, Synthetic Tracking has

the potential to become the foundation of a high

performance, highly scalable global optical debris

detection system.

7. REFERENCES

1. Mehrholz, D. et al. (2002). Detecting, Tracking and

Imaging Space Debris, In ESA bulletin 109,

European Space Agency

2. space-track.org Frequently Asked Questions: What

are analyst objects?, Online at https://www.space-

track.org/documentation#faq (as of 05.12.2018)

3. Lim, S. (2008). Characterization of Noise in Digital

Photographs for Image Processing, HP Laboratories

4. Shao, M., Nemati, B., Zhai, C., Turyshev, S.G. &

Sandhu, J. (2014). Finding Very Small Near-Earth

Asteroids using Synthetic Tracking, In The

Astrophysical Journal, Volume 782, Number 1

5. Shao, M., Turyshev, S.G., Spangelo, S., Werne, T. &

Zhai, C. (2017). A constellation of SmallSats with

synthetic tracking cameras to search for 90% of

potentially hazardous near-Earth objects, In

Astronomy & Astrophysics, Volume 603, Article

A126

6. Zhai, C. et al. (2018). Accurate Ground-based Near-

Earth-Asteroid Astrometry using Synthetic Tracking,

arXiv.org e-Print archive

7. Zhai, C. et al. (2018). Technical Note: Asteroid

Detection Demonstration from SkySat-3* B612 Data

using Synthetic Tracking, JPL Publication 18-1

8. Baba, N., Isobe, S., Norimoto, Y. & Noguchi, M.

(1984). Stellar speckle image reconstruction by the

shift-and-add method, In Applied Optics

24(10):1403-5

9. Tokovinin, A. et al. (01.12.2010). High-resolution

imaging at the SOAR telescope, In Publications of

the Astronomical Society of the Pacific, Volume 122,

Issue 898, pp. 1483

10. Shao, M., Trahan, R., Zhai, C., Saini, N. &

Turyshev S.G. (2018). Synthetic Tracking on a Small

Telescope, Advanced Maui Optical and Space

Surveillance Technologies Conference

https://www.space-track.org/documentation#faq
https://www.space-track.org/documentation#faq

	Josua Zscheile(1), Paul Wagner(1), Raoul-Amadeus Lorbeer(1), Benjamin Guthier(2)

