Equipping Sparse Solvers for Exascale (ESSEX / ESSEX II)

Gerhard Wellein Bruno Lang **Achim Basermann** Holger Fehske Georg Hager Tetsuya Sakurai Kengo Nakajima Computer Science, University Erlangen Applied Computer Science, University Wuppertal **Simulation & SW Technology, German Aerospace Center** Institute for Physics, University Greifswald Erlangen Regional Computing Center Applied Mathematics, University of Tsukuba Computer Science, University of Tokyo

ESSEX: 2013 – 2015 ESSEX II: 2016 – 2018

DLR German Aerospace Center

- Research Institution
- Space Agency
- Project Management Agency

DLR Locations and Employees

Approx. 8000 employees across 40 institutes and facilities at 20 sites.

Offices in Brussels, Paris, Tokyo and Washington

DLR Institute Simulation and Software Technology Scientific Themes and Working Groups

- Motivation
- Software:
 - Interoperability, portability & performance
 - Supporting libraries
- Multicoloring and ILU Preconditioning
- Extreme Eigenvalues Computation: Jacobi-Davidson Method
- Inner Eigenvalue Computation: Filter Diagonalization

ESSEX project – background

Quantum physics/information applications

Good approximation to full spectrum (e.g. Density of States)

 \rightarrow Sparse eigenvalue solvers of broad applicability

Application, Algorithm and Performance: Kernel Polynomial Method (KPM) – A Holistic View

 Compute approximation to the complete eigenvalue spectrum of large sparse matrix A (with X = I)

$$X(\omega) = \frac{1}{N} \operatorname{tr}[\delta(\omega - H)X] = \frac{1}{N} \sum_{n=1}^{N} \delta(\omega - E_n) \langle \psi_n, X\psi_n \rangle$$

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

Building blocks: Application: for r = 0 to R - 1 do (Sparse) linear Loop over random initial states $|v\rangle \leftarrow |rand()\rangle$ algebra library Initialization steps and computation of η_0, η_1 Algorithm: for m = 1 to M/2 do Loop over moments $\operatorname{swap}(|w\rangle, |v\rangle)$ $|u\rangle \leftarrow H|v\rangle$ ▷ spmv() Sparse matrix vector multiply $|u\rangle \leftarrow |u\rangle - b|v\rangle$ ⊳axpy() Scaled vector addition $|w\rangle \leftarrow -|w\rangle$ ▷ scal() Vector scale $|w\rangle \leftarrow |w\rangle + 2a|u\rangle$ Scaled vector addition ⊳axpy() $\eta_{2m} \leftarrow \langle v | v \rangle$ ⊳ nrm2() Vector norm **Dot Product** $\eta_{2m+1} \leftarrow \langle w | v \rangle$ ⊳ dot () end for end for

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

for r = 0 to R - 1 do $|v\rangle \leftarrow |rand()\rangle$ Initialization steps and computation of η_0, η_1 for m = 1 to M/2 do $swap(|w\rangle, |v\rangle)$ $|w\rangle = 2a(H - b1)|v\rangle - |w\rangle \&$ $\eta_{2m} = \langle v|v\rangle \&$ $\eta_{2m+1} = \langle w|v\rangle \Rightarrow aug_spmv()$ end for Augmented Sparse

Matrix Vector Multiply

The Kernel Polynomial Method (KPM)

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

for r = 0 to R - 1 do $|v\rangle \leftarrow |rand()\rangle$ Initialization steps and computation of η_0, η_1 for m = 1 to M/2 do $swap(|w\rangle, |v\rangle)$ $|w\rangle = 2a(H - b\mathbb{1})|v\rangle - |w\rangle \&$ $\eta_{2m} = \langle v|v\rangle \&$ $\eta_{2m+1} = \langle w|v\rangle \qquad \rhd aug_spmv()$ end for
$$\begin{split} |V\rangle &:= |v\rangle_{0..R-1} & \triangleright \text{ Assemble vector blocks} \\ |W\rangle &:= |w\rangle_{0..R-1} \\ |V\rangle &\leftarrow |\text{rand}()\rangle \\ \text{Initialization steps and computation of } \mu_0, \mu_1 \\ \text{for } m = 1 \text{ to } M/2 \text{ do} \\ &\text{swap}(|W\rangle, |V\rangle) \\ |W\rangle &= 2a(H-b\mathbb{1})|V\rangle - |W\rangle \& \\ &\eta_{2m}[:] &= \langle V|V\rangle \& \\ &\eta_{2m+1}[:] &= \langle W|V\rangle \qquad \triangleright \text{ aug_spmmv}() \end{split}$$

end for

Augmented Sparse Matrix Multiple Vector Multiply

KPM: Heterogenous Node Performance

KPM: Large Scale Heterogenous Node Performance

Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems M. Kreutzer, A. Pieper, G. Hager, A. Alvermann, G. Wellein and H. Fehske, IEEE IPDPS 2015 *Thanks to CSCS/T. Schulthess for granting access and compute time

ESSEX-II: Software Packages

Links to open source repositories at https://blogs.fau.de/essex/code

Software: Interoperability portability & performance

Kernel library (GHOST) and solver framework (PHIST)

GHOST library

 Hybrid MPI+X execution mode (X=OpenMP, CUDA)

- Algorithm specific kernels: SIMD Intrinsics (KNL) and CUDA (NVIDIA)
 → 2x 5x speed-up vs. Optimized general building block libraries
- Tall & skinny matrix-matrix kernels (block orthogonalization)
 → 2x 10x speed-up vs. Optimized general building block libraries
- SELL-C-σ sparse matrix format

• Open Source code & example applications: <u>https://bitbucket.org/essex/ghost</u>

 System with multiple CPUs (NUMA domains) and GPUs

- System with multiple CPUs (NUMA domains) and GPUs
- -np 1: use entire CPU

- System with multiple CPUs (NUMA domains) and GPUs
- -np 1: use entire CPU
- -np 2: use CPU and first GPU

- System with multiple CPUs (NUMA domains) and GPUs
- -np 1: use entire CPU
- -np 2: use CPU and first GPU
- -np 3: use CPU and both GPUs

- System with multiple CPUs (NUMA domains) and GPUs
- -np 1: use entire CPU
- -np 2: use CPU and first GPU
- -np 3: use CPU and both GPUs
- -np 4: use one process per socket and one for each GPU

Option: distribute problem according to memory bandwidth measured

A Portable and Interoperable Eigensolver Library

PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) sparse solver framework

- General-purpose block Jacobi-Davidson Eigensolver, Krylov methods
- Preconditioning interface
- C, C++, Fortran 2003 and Python bindings
- Backends (kernel libs) include GHOST, Tpetra, PETSc, Eigen, Fortran
- Can use Trilinos solvers Belos and Anasazi, independent of backend

Getting PHIST and GHOST

- <u>https://bitbucket.org/essex/[ghost,phist]</u>
- Cmake build system
- Availale via Spack
- <u>https://github.com/spack/spack/</u>
- PHIST will join Extreme-Scale Development Kit, <u>https://xSDK.info/</u>

PHIST & GHOST – interoperability & performance

- Anasazi Block Krylov-Schur solver on Intel Skylake CPU
- Matrix: non-sym. 7-pt stencil, N = 128³ (var. coeff. reaction/convection/diffusion)

- Anasazi's kernel interface mostly a subset of PHIST → extends PHIST by e.g. BKS and LOBPCG
- Trilinos not optimized for block vectors in row-major storage

Anasazi: https://trilinos.org/packages/anasazi/ Tpetra: https://trilinos.org/packages/tpetra/

Software: Supporting libraries

FT/CR library (CRAFT) and matrix generation (ScaMac)

CRAFT library: Application-level Checkpoint/Restart & Automatic Fault Tolerance

Application-level Checkpoint/Restart(CR):

- Simple & extendable interface to integrate CR functionality with minimal code changes
- Node-level CR using SCR, asyn. CP., Multi-stage & Nested CPs, signal based CP

Automatic Fault Tolerance (AFT) using CR

- Define `AFT-zones' for automatic communication recovery in case of process failures.
- Detection and recovery methods from User-level Failure Mitigation (ULFM) MPI-ULFM.

Goal: Low programming & performance overhead

Tested Applications:

- GHOST & PHIST applications from ESSEX
- pFEM-CRAFT [Nakajima (U.Tokyo)] \rightarrow

https://bitbucket.org/essex/craft

ScaMaC: Scalable Matrix Collection

Goal: Collection of parametrized sparse matrices for eigenvalue computations from (quantum) physics

Features:

- "Scalable" matrix generator instead of fixed-size matrices
- Compatible with PETSc, Trilinos, GHOST, PHIST ...
- "Real World" (quantum) physics matrices, e.g.
 - wave & advection-diffusion eqs.,
 - correlated systems,
 - graphene & topological insulators,
 - quantum optics, (c)QED, optomechanics,...
- Real & complex, symmetric & non-symmetric, easy & hard to solve matrices
- Generating matrices of dimension 10¹¹ in less than 30s on full scale OFP (0,5 Mcores)

Multicoloring and ILU Preconditoning

RACE and ILU preconditioning

Recursive algebraic coloring engine (RACE)

Graph coloring: RACE uses recursive BFS level based method for "distance-k coloring" of symmetric matrices

Objectives

- Preserve data locality
- Generate sufficient parallelism
- Reduce synchronization
- Simple data format like CRS

Applications – Parallelization of

- iterative solvers, e.g. Gauß-Seidel & Kaczmarz
- sparse kernels with dependencies, e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Recursive algebraic coloring engine (RACE)

Graph coloring: RACE uses recursive BFS level based method for "distance-k coloring" of symmetric matrices

Objectives

- Preserve data locality
- Generate sufficient parallelism
- Reduce synchronization
- Simple data format like CRS

Applications – Parallelization of

- iterative solvers, e.g. Gauß-Seidel & Kaczmarz
- sparse kernels with dependencies, e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Integration of pKopen-SOL ILU in PHIST

- Eigensolvers in ESSEX-II (BEAST/BJDQR) require strong preconditioners for solving ill-conditioned linear systems
- PHIST has a Fortran'03 interface and backend...

with some modifications we could fully integrate a complete pKopen algorithm!

Work on pKopen-SOL ILU:

- applied 2 regularizations for robustness and better convergence (blocking and diagonal shifting)
- efficient hierarchical multi-coloring for extreme scaling **Work on PHIST:**
- extend matrix format to support block CRS
- Implement node-level performance models

Professional software workflow using git branches/pull requests and feature tests

Robustness & Scalability of ILU preconditioning

• Hierarchical parallelization of multi-colorings for ILU precond.

High precision Block ILU preconditioning

Tokyo Univ.: Masatoshi Kawai (now Riken), Kengo Nakajima et al.

Apply algebraic block multi-coloring to ILU preconditioning:
 2.5x – 3.5x speed-up vs multicoloring

Hokkaido Univ.: Takeshi Iwashita et al.

pKopen-SOL:Parallel multi-coloring for ILU

• Proposed a hierarchical parallelization of multi-colorings

- Achieved almost constant iterations and good scalability with a graphene model (500 million DoF).
- Entire code PHIST+ILU runs on large Japanese systems Oakforest-PACS and FX10

Extreme Eigenvalues Computation: Jacobi-Davidson Method

PHIST Routine

Scalability on Oakforest-PACS since 6 / 2018 number 12 of

Cores: Memory:	556,104 919,296 GB
Processor:	Intel Xeon Phi 7250 68C 1.4GHz (KNL)
Interconnect:	Intel Omni-Path
Linpack Performance (Rmax)	13.554 PFlop/s
Theoretical Peak (Rpeak)	24.913 PFlop/s
Nmax HPCG [TFlop/s]	9,938,880 385.479

Impression of the Oakforest-PACS supercomputer at the Japanese joint center for advanced HPC (JCAHPC).

Extreme eigenvalue computation with block Jacobi-Davidson

Goal:

Find eigenpairs (λ_j, v_j) of a large sparse matrix in a certain target space of the spectrum:

$$Av_j = \lambda_j v_j$$

- Project the problem to a suitable subspace
- Solve the resulting small eigenproblem
- Solve the correction equation
- Orthogonalize to all previous search directions
- Extend the subspace
- → Block variant: Compute the correction equation for n_b EV concurrently
- \rightarrow Limit global synchronization by exploitation of block vectors
- \rightarrow Concurrently solve linear systems of equations in separate Krylov spaces
- $\rightarrow\,$ Combine computation of spMMVM and inner products
- \rightarrow Store all block vectors row-wise

Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager, G., Wellein, G., Fehske, H. (2015). Increasing the Performance of the Jacobi--Davidson Method by Blocking. *SIAM Journal on Scientific Computing*, *37*(6), C697-C722.

Benchmarks

- Fixed number of 250 Jacobi-Davidson iterations
- No additional preconditioning

Matrices

- Symmetric 7-point Laplace, 8.4M rows/node
- General 7-point, some PDE, 2.0M rows/node

Solver parameters

- Krylov solver 10 iterations of MINRES (sym.)
- or GMRES+IMGS ortho (general)
- JD basis 16-40 vectors
- target eigenpairs near 0

Weak scaling

- Up to 0.5M cores
- Percentage indicates the parallel efficiency compared to the first measurement (smallest node count).
- Symmetric PDE problem with the largest matrix size
 N = 40 963,
- The best performance was obtained with a block size of 4.

Strong scaling

 Larger block size reduces number of Allreduce operations.

- corresponding 'block speedup' over the bs=1 case.
- The KNL doesn't seem to 'like' block size 2 very much (in contrast to XeonCPUs).
- Maybe the bandwidth can't be saturated with SSE?

Inner Eigenvalue Computation: Filter Diagonalization

Filter diagonalization - basics

- Compute all eigenpairs in $[\underline{\lambda}, \overline{\lambda}]$ within spectrum [a, b] of sparse matrix H (of dimension n)
- Filter diagonalization idea:
 - Use window function for projection onto search intervall
 - Approximate window function by polynomial in H
- Basic scheme:
 - Apply polynomial filter to set of search vectors ($n_s = 10^2$, ..., 10^3 in our case)
 - Orthogonalize filtered vectors
 - Compute Ritz-pairs and restart if neccessary
- Chebyshev Polynomials to construct filter with $H \to \widetilde{H}$ such that $\widetilde{\lambda} \in [-1, 1]$ $T_{n+1}(\widetilde{H}) = 2 \widetilde{H}T_n(\widetilde{H}) - T_{n-1}(\widetilde{H})$

Performance Engineering: Optimized GHOST kernels

- Kernel: Series of BLAS1 calls and sparse matrix multiple vector multiplication (spmmv)
- GHOST: All BLAS1 calls fused with spmmv → increased intensity

$$n = 2.1 \times 10^6, n_p = 500$$
$$I(n_s) = \frac{146}{80 + 260/n_s} \frac{F}{B}$$

Performance increases with block vector width (row-major storage!)

2x speed-up by kernel fusion \rightarrow increases kernel complexity!

>10% of peak performance for sparse matrix problem!

Algorithm Engineering

- Improve filter quality → reduce filter degree → reduce sparse matrix vector products
- Idea: Filter must be below threshold for $[\underline{\lambda} \delta, \overline{\lambda} + \delta]$
- Goal: Minimize δ (Lanzos smoothing kernel)

• In practice: 30-50% lower degrees \rightarrow equivalent savings in time

Large scale performance – weak scaling

Computing 100 inner eigenvalues on matrices up to $n = 4 \times 10^9$

$$rac{n}{node} = 2.1 imes 10^{6}$$

 $n_p = 500; n_S = 128$

BEAST and Z-PARES: shared tools for large EVPs

Visit our homepage: https://blogs.fau.de/essex/

THANK YOU!