
Equipping Sparse Solvers for Exascale
(ESSEX / ESSEX II)

Gerhard Wellein Computer Science, University Erlangen
Bruno Lang Applied Computer Science, University Wuppertal
Achim Basermann Simulation & SW Technology, German Aerospace Center
Holger Fehske Institute for Physics, University Greifswald
Georg Hager Erlangen Regional Computing Center

Tetsuya Sakurai Applied Mathematics, University of Tsukuba
Kengo Nakajima Computer Science, University of Tokyo

ESSEX: 2013 – 2015
ESSEX II: 2016 – 2018

DLR
German Aerospace Center

• Research Institution
• Space Agency
• Project Management Agency

DLR Locations and Employees

Approx. 8000 employees across
40 institutes and facilities at 20 sites.

Offices in Brussels, Paris,
Tokyo and Washington

DLR Institute Simulation and Software Technology
Scientific Themes and Working Groups

Software for Space
Systems and Interactive

Visualization

Intelligent and
Distributed Systems

D
ep

ar
tm

en
ts

W
or

ki
ng

 G
ro

up
s

Onboard Software Systems

Modeling and Simulation

Scientific Visualization

Virtual and Extended Reality

High-Performance
Computing

Software Engineering

Distributed Software Systems

Intelligent Systems

Intelligent Algorithms and
Optimization

Parallel Numerics

High Performance Computing
Teams

Parallel Numerics

Dr. Jonas Thies

Intelligent Algorithms
& Optimiziation

Dr. Martin Siggel

Department
High Performance Computing

Head: Dr. Achim Basermann
Deputy: Dr. Margrit Klitz

Quantum Computing

• Motivation

• Software:
– Interoperability, portability & performance
– Supporting libraries

• Multicoloring and ILU Preconditioning

• Extreme Eigenvalues Computation: Jacobi-Davidson Method

• Inner Eigenvalue Computation: Filter Diagonalization

ESSEX project – background

Quantum physics/information applications
),(),(trHtr

t
i
 ψψ =
∂
∂

𝑯𝑯 𝒙𝒙 = 𝝀𝝀 𝒙𝒙

 Sparse eigenvalue solvers of broad applicability

“Few” (1,…,100s) of
eigenpairs “Bulk” (100s,…,1000s)

eigenpairs

Good approximation to full spectrum (e.g. Density of States)

Large,
Sparse

and beyond….

𝝀𝝀𝟏𝟏,𝝀𝝀𝟐𝟐, … , … , … , … ,𝝀𝝀𝒌𝒌, … , … , … , … ,𝝀𝝀𝒏𝒏−𝟏𝟏,𝝀𝝀𝒏𝒏

Application, Algorithm and Performance: Kernel Polynomial
Method (KPM) – A Holistic View

• Compute approximation to the complete eigenvalue
spectrum of large sparse matrix 𝐴𝐴 (with 𝑋𝑋 = 𝐼𝐼)

The Kernel Polynomial Method (KPM)

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

Sparse matrix vector multiply
Scaled vector addition
Vector scale
Scaled vector addition
Vector norm
Dot Product

Application:
Loop over random initial states

Building blocks:
(Sparse) linear
algebra library

Algorithm:
Loop over moments

The Kernel Polynomial Method (KPM)

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

Augmented Sparse
Matrix Vector Multiply

The Kernel Polynomial Method (KPM)

Optimal performance exploit knowledge from all software layers!

Basic algorithm – Compute Cheyshev polynomials/moments:

Sparse matrix vector multiply
Scaled vector addition
Vector scale
Scaled vector addition
Vector norm
Dot Product

Augmented Sparse Matrix
Multiple Vector Multiply

KPM: Heterogenous Node Performance

• Topological Insulator Application

• Double complex computations

• Data parallel static workload
distribution

Intel
Xeon E5-2670 (SNB)

NVIDIDA K20X

Heterogeneous efficiency

KPM: Large Scale Heterogenous Node Performance

Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems
M. Kreutzer, A. Pieper, G. Hager, A. Alvermann, G. Wellein and H. Fehske, IEEE IPDPS 2015

CRAY XC30 – PizDaint*

• 5272 nodes
• Peak: 7.8 PF/s
• LINPACK: 6.3 PF/s
• Largest system in

Europe

0.53 PF/s
(11% of LINPACK)

*Thanks to CSCS/T. Schulthess for granting access and compute time

Motivated by quantum physics applications

Dissipative
Quantum Systems

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆𝐴𝐴
𝐴𝐴 𝜆𝜆 𝐴𝐴 = 0

Interoperable
Library

𝐴𝐴+ ≠ 𝐴𝐴

ESSEX - II
Conservative

Quantum Systems

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐴𝐴

ESSR: Blueprints

𝐴𝐴+ = 𝐴𝐴

ESSEX - I

ESSEX-II: Software Packages

ScaMaC
Scalable Matrix Collection

PHIST
Pipelined Hybrid Parallel Iterative

Solver Toolkit

GHOST
General, Hybrid, and

Optimized Sparse Toolkit

CR
AF

T
C/

R
&

Au

to
m

at
ic

 F
au

lt
To

le
ra

nc
e

lib

Links to open source repositories at https://blogs.fau.de/essex/code

User Applications

MPI+X X ∈ {CUDA,OpenMP,pthreads}

Hardware: CPU / GPGPU / Xeon Phi

3rd-party
libraries:
Trilinos,…

RACE
Recursive Adaptive Coloring

Engine

Software: Interoperability
portability & performance

Kernel library (GHOST) and solver
framework (PHIST)

• Hybrid MPI+X execution mode
 (X=OpenMP, CUDA)

• Algorithm specific kernels: SIMD Intrinsics (KNL) and CUDA (NVIDIA)
 2x – 5x speed-up vs. Optimized general building block libraries

• Tall & skinny matrix-matrix kernels (block orthogonalization)
 2x – 10x speed-up vs. Optimized general building block libraries

• SELL-C-σ sparse matrix format

• Open Source code & example applications: https://bitbucket.org/essex/ghost

GHOST library

Resource
arbitration

https://bitbucket.org/essex/ghost

The ESSEX Software Infrastructure: MPI + X with

The ESSEX Software Infrastructure: MPI + X with

The ESSEX Software Infrastructure: MPI + X with

The ESSEX Software Infrastructure: MPI + X with

The ESSEX Software Infrastructure: MPI + X with

A Portable and Interoperable Eigensolver Library

PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) sparse solver framework
• General-purpose block Jacobi-Davidson Eigensolver, Krylov methods
• Preconditioning interface
• C, C++, Fortran 2003 and Python bindings
• Backends (kernel libs) include GHOST, Tpetra, PETSc, Eigen, Fortran
• Can use Trilinos solvers Belos and Anasazi, independent of backend

Getting PHIST and GHOST
• https://bitbucket.org/essex/[ghost,phist]
• Cmake build system
• Availale via Spack
• https://github.com/spack/spack/
• PHIST will join Extreme-Scale Development Kit,

https://xSDK.info/

https://bitbucket.org/essex/%5Bghost,phist
https://github.com/spack/spack/
https://xsdk.info/

PHIST & GHOST – interoperability & performance

• Anasazi Block Krylov-Schur solver on Intel Skylake CPU

• Matrix: non-sym. 7-pt stencil, N = 1283 (var. coeff. reaction/convection/diffusion)

• Anasazi’s kernel interface
mostly a subset of PHIST
extends PHIST by e.g. BKS and
LOBPCG

• Trilinos not optimized for block

vectors in row-major storage

Anasazi: https://trilinos.org/packages/anasazi/
Tpetra: https://trilinos.org/packages/tpetra/

Lo
w

er
 is

 b
et

te
r

Blocking factor

Software: Supporting libraries

FT/CR library (CRAFT) and matrix
generation (ScaMac)

CRAFT library: Application-level Checkpoint/Restart
& Automatic Fault Tolerance

Application-level Checkpoint/Restart(CR):
• Simple & extendable interface to integrate CR functionality with minimal code changes
• Node-level CR using SCR, asyn. CP., Multi-stage & Nested CPs, signal based CP

Automatic Fault Tolerance (AFT) using CR
• Define `AFT-zones´ for automatic communication recovery in case of process failures.
• Detection and recovery methods from User-level Failure Mitigation (ULFM) MPI-ULFM.

Goal: Low programming & performance overhead

Tested Applications:
• GHOST & PHIST applications from ESSEX

• pFEM-CRAFT [Nakajima (U.Tokyo)]
 https://bitbucket.org/essex/craft

ScaMaC: Scalable Matrix Collection

Goal: Collection of parametrized sparse matrices for eigenvalue
 computations from (quantum) physics
Features:
• „Scalable“ matrix generator instead of fixed-size matrices
• Compatible with PETSc, Trilinos, GHOST, PHIST ...
• „Real World" (quantum) physics matrices, e.g.

– wave & advection-diffusion eqs.,
– correlated systems,
– graphene & topological insulators,
– quantum optics, (c)QED, optomechanics,...

• Real & complex, symmetric & non-symmetric, easy & hard to solve matrices
• Generating matrices of dimension 1011 in less than 30s on full scale OFP (0,5

Mcores)

Multicoloring and ILU
Preconditoning

RACE and ILU preconditioning

Recursive algebraic coloring engine (RACE)

Objectives
• Preserve data locality
• Generate sufficient parallelism
• Reduce synchronization
• Simple data format like CRS

Graph coloring: RACE uses recursive BFS level based method for “distance-k
coloring” of symmetric matrices
 Applications – Parallelization of

• iterative solvers, e.g. Gauß-Seidel
& Kaczmarz

• sparse kernels with dependencies,
e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Intel Skylake (20 cores)

Compare with
• Intel MKL
• RSB (data format)
• Multicoloring

RACE

Recursive algebraic coloring engine (RACE)

Objectives
• Preserve data locality
• Generate sufficient parallelism
• Reduce synchronization
• Simple data format like CRS

Graph coloring: RACE uses recursive BFS level based method for “distance-k
coloring” of symmetric matrices
 Applications – Parallelization of

• iterative solvers, e.g. Gauß-Seidel
& Kaczmarz

• sparse kernels with dependencies,
e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Intel Skylake (20 cores) Intel KNL (68 cores)

Compare with
• Intel MKL
• RSB (data format)
• Multicoloring

RACE

Integration of pKopen-SOL ILU in PHIST

• Eigensolvers in ESSEX-II (BEAST/BJDQR) require strong preconditioners
for solving ill-conditioned linear systems

• PHIST has a Fortran’03 interface and backend…
 with some modifications we could fully integrate a complete
 pKopen algorithm!

Work on pKopen-SOL ILU:
• applied 2 regularizations for robustness and better convergence

(blocking and diagonal shifting)
• efficient hierarchical multi-coloring for extreme scaling
Work on PHIST:
• extend matrix format to support block CRS
• Implement node-level performance models

Professional software workflow using git branches/pull requests and feature tests

Robustness & Scalability of ILU preconditioning

• Hierarchical parallelization of multi-colorings for ILU precond.

• High precision Block ILU preconditioning

• Apply algebraic block multi-coloring to ILU preconditioning:
2.5x – 3.5x speed-up vs multicoloring

Tokyo Univ.: Masatoshi Kawai (now Riken) , Kengo Nakajima et al.

Hokkaido Univ.: Takeshi Iwashita et al.

pKopen-SOL:Parallel multi-coloring for ILU

Proposed a hierarchical parallelization of multi-colorings

Step1 Step2 Step3 Step4

• Achieved almost constant iterations and good scalability
 with a graphene model (500 million DoF).
• Entire code PHIST+ILU runs on large Japanese systems Oakforest-

PACS and FX10

• Proposed a hierarchical parallelization of multi-colorings

Extreme Eigenvalues Computation:
Jacobi-Davidson Method

PHIST Routine

Scalability on Oakforest-PACS
 since 6 / 2018 number 12 of

Cores:
Memory:
Processor:

Interconnect:

556,104
919,296 GB
Intel Xeon Phi 7250 68C 1.4GHz
(KNL)
Intel Omni-Path

Linpack Performance
(Rmax)
Theoretical Peak
(Rpeak)

13.554 PFlop/s

24.913 PFlop/s

Nmax
HPCG [TFlop/s]

9,938,880
385.479

Impression of the Oakforest-PACS
supercomputer at the Japanese joint center
for advanced HPC (JCAHPC).

Extreme eigenvalue computation with block Jacobi-Davidson

Goal:
Find eigenpairs (𝜆𝜆𝑗𝑗 ,𝑣𝑣𝑗𝑗) of a large sparse matrix in a certain target space of the spectrum:

𝑨𝑨𝑣𝑣𝑗𝑗 = 𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗
• Project the problem to a suitable subspace
• Solve the resulting small eigenproblem
• Solve the correction equation
• Orthogonalize to all previous search directions
• Extend the subspace

 Block variant: Compute the correction equation for 𝑛𝑛𝑏𝑏 EV concurrently
 Limit global synchronization by exploitation of block vectors
 Concurrently solve linear systems of equations in separate Krylov spaces
 Combine computation of spMMVM and inner products
 Store all block vectors row-wise

Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H. (2015). Increasing the Performance of the Jacobi--Davidson Method
by Blocking. SIAM Journal on Scientific Computing, 37(6), C697-C722.

Benchmarks

• Fixed number of 250 Jacobi-Davidson iterations

• No additional preconditioning

Matrices

• Symmetric 7-point Laplace, 8.4M rows/node

• General 7-point, some PDE, 2.0M rows/node

Solver parameters

• Krylov solver 10 iterations of MINRES (sym.)

• or GMRES+IMGS ortho (general)

• JD basis 16-40 vectors

• target eigenpairs near 0

Weak scaling

• Up to 0.5M cores

• Percentage indicates the

parallel efficiency compared to

the first measurement

(smallest node count).

• Symmetric PDE problem with

the largest matrix size

N = 40 963,

• The best performance was

obtained with a block size of 4.

Strong scaling

• Larger block size reduces number of
Allreduce operations.

• corresponding ‘block speedup’ over
the bs=1 case.

• The KNL doesn’t seem to ‘like’ block
size 2 very much (in contrast to
XeonCPUs).

• Maybe the bandwidth can’t be
saturated with SSE?

O
ve

ra
ll

pe
rfo

rm
an

ce

Inner Eigenvalue Computation:
Filter Diagonalization

BEAST-P

• Compute all eigenpairs in [𝜆𝜆, 𝜆𝜆] within spectrum 𝑎𝑎, 𝑏𝑏 of sparse matrix 𝐻𝐻 (of
dimension 𝑛𝑛)

• Filter diagonalization - idea:
– Use window function for projection onto search intervall
– Approximate window function by polynomial in H

• Basic scheme:
– Apply polynomial filter to set of search vectors (𝑛𝑛𝑆𝑆 = 102, … , 103 in our case)
– Orthogonalize filtered vectors
– Compute Ritz-pairs and restart if neccessary

• Chebyshev Polynomials to construct filter with 𝐻𝐻 → 𝐻𝐻� such that 𝜆𝜆 � ∈ [−1, 1]
𝑇𝑇𝑛𝑛+1 𝐻𝐻� = 2 𝐻𝐻�𝑇𝑇𝑛𝑛 𝐻𝐻� − 𝑇𝑇𝑛𝑛−1 𝐻𝐻�

Filter diagonalization - basics

• Kernel: Series of BLAS1 calls and sparse matrix multiple
vector multiplication (spmmv)

• GHOST: All BLAS1 calls fused with spmmv increased
intensity

Performance Engineering: Optimized GHOST kernels

𝑛𝑛 = 2.1 × 106,𝑛𝑛𝑝𝑝 = 500

𝐼𝐼 𝑛𝑛𝑆𝑆 =
146

80 + 260/𝑛𝑛𝑆𝑆

𝐹𝐹
𝜆𝜆

nvidia V100

Performance increases with block
vector width (row-major storage!)

Block vector width

2x speed-up by kernel fusion
increases kernel complexity!

>10% of peak performance for sparse
matrix problem!

● Improve filter quality reduce filter degree reduce sparse
matrix vector products

● Idea: Filter must be below threshold for [𝜆𝜆 − 𝛿𝛿, 𝜆𝜆 + 𝛿𝛿]
● Goal: Minimize 𝛿𝛿 (Lanzos smoothing kernel)

● In practice: 30-50% lower degrees equivalent savings in time

Algorithm Engineering

Computing 100 inner eigenvalues on
matrices up to 𝑛𝑛 = 4 × 109

Large scale performance – weak scaling
𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 2.1 × 106

𝑛𝑛𝑝𝑝 = 500; 𝑛𝑛𝑆𝑆 = 128

0.4 PFLOP/s 0.5 PFLOP/s

Typical Application[1]:
Topological Insulator

[1] Pieper, A., et al. Journal of Computational Physics 325, 226–243 (2016)

Oakforest PACS PizDaint 2

Joint work with Tsukuba Univ.:
Tetsuya Sakurai et al.

Visit our homepage: https://blogs.fau.de/essex/

THANK YOU!

https://blogs.fau.de/essex/

	Equipping Sparse Solvers for Exascale�(ESSEX / ESSEX II)�
	DLR�German Aerospace Center
	DLR Locations and Employees
	DLR Institute Simulation and Software Technology�Scientific Themes and Working Groups
	High Performance Computing�Teams
	Foliennummer 6
	ESSEX project – background
	Application, Algorithm and Performance: Kernel Polynomial Method (KPM) – A Holistic View
	The Kernel Polynomial Method (KPM)
	The Kernel Polynomial Method (KPM)
	The Kernel Polynomial Method (KPM)
	KPM: Heterogenous Node Performance
	KPM: Large Scale Heterogenous Node Performance�
	Motivated by quantum physics applications
	ESSEX-II: Software Packages
	Software: Interoperability portability & performance
	GHOST library
	The ESSEX Software Infrastructure: MPI + X with
	The ESSEX Software Infrastructure: MPI + X with
	The ESSEX Software Infrastructure: MPI + X with
	The ESSEX Software Infrastructure: MPI + X with
	The ESSEX Software Infrastructure: MPI + X with
	A Portable and Interoperable Eigensolver Library
	PHIST & GHOST – interoperability & performance
	Software: Supporting libraries
	CRAFT library: Application-level Checkpoint/Restart & Automatic Fault Tolerance
	ScaMaC: Scalable Matrix Collection
	Multicoloring and ILU Preconditoning
	Recursive algebraic coloring engine (RACE)
	Recursive algebraic coloring engine (RACE)
	Integration of pKopen-SOL ILU in PHIST
	Robustness & Scalability of ILU preconditioning
	pKopen-SOL:Parallel multi-coloring for ILU
	Extreme Eigenvalues Computation: �Jacobi-Davidson Method
	Scalability on Oakforest-PACS� since 6 / 2018 number 12 of
	Extreme eigenvalue computation with block Jacobi-Davidson
	Benchmarks
	Weak scaling
	Strong scaling
	Inner Eigenvalue Computation: �Filter Diagonalization
	Filter diagonalization - basics
	Performance Engineering: Optimized GHOST kernels
	Algorithm Engineering
	Large scale performance – weak scaling
	Foliennummer 46
	Foliennummer 47

