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DLR Locations and Employees 

Approx. 8000 employees across  
40 institutes and facilities at 20 sites. 

 
Offices in Brussels, Paris,  
Tokyo and Washington 
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• Motivation 
 

• Software:  
– Interoperability, portability & performance 
– Supporting libraries 

 
• Multicoloring and ILU Preconditioning 

 
• Extreme Eigenvalues Computation: Jacobi-Davidson Method 

 
• Inner Eigenvalue Computation: Filter Diagonalization 

 
 
 



ESSEX project – background  

Quantum  physics/information applications 
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 Sparse eigenvalue solvers of broad applicability  

“Few” (1,…,100s) of 
eigenpairs   “Bulk” (100s,…,1000s) 

eigenpairs 

Good approximation to full spectrum (e.g. Density of States)  

Large,  
Sparse 

and beyond…. 

𝝀𝝀𝟏𝟏,𝝀𝝀𝟐𝟐, … , … , … , … ,𝝀𝝀𝒌𝒌, … , … , … , … ,𝝀𝝀𝒏𝒏−𝟏𝟏,𝝀𝝀𝒏𝒏  



Application, Algorithm and Performance: Kernel Polynomial 
Method (KPM) – A Holistic View 

• Compute approximation to the complete eigenvalue 
spectrum of large sparse matrix 𝐴𝐴 (with 𝑋𝑋 = 𝐼𝐼) 

 



The Kernel Polynomial Method (KPM) 

Optimal performance exploit knowledge from all software layers! 

 
Basic algorithm – Compute Cheyshev polynomials/moments: 

 
 

Sparse matrix vector multiply 
Scaled vector addition 
Vector scale 
Scaled vector addition 
Vector norm 
Dot Product 

Application: 
Loop over random initial states 

Building blocks: 
(Sparse) linear  
algebra library 

Algorithm: 
Loop over moments 



The Kernel Polynomial Method (KPM) 

Optimal performance exploit knowledge from all software layers! 

 
Basic algorithm – Compute Cheyshev polynomials/moments: 

 
 

Augmented Sparse 
Matrix Vector Multiply 



The Kernel Polynomial Method (KPM) 

Optimal performance exploit knowledge from all software layers! 

 
Basic algorithm – Compute Cheyshev polynomials/moments: 

 
 

Sparse matrix vector multiply 
Scaled vector addition 
Vector scale 
Scaled vector addition 
Vector norm 
Dot Product 

Augmented Sparse Matrix 
Multiple Vector Multiply 



KPM: Heterogenous Node Performance 

• Topological Insulator Application 
  

• Double complex computations 
 

• Data parallel static workload 
distribution 

Intel  
Xeon E5-2670 (SNB) 

NVIDIDA K20X 

Heterogeneous efficiency 



KPM: Large Scale Heterogenous Node Performance 

 

Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems 
M. Kreutzer, A. Pieper, G. Hager, A. Alvermann, G. Wellein and H. Fehske, IEEE IPDPS 2015 

CRAY XC30 – PizDaint* 

• 5272 nodes 
• Peak:       7.8 PF/s 
• LINPACK: 6.3 PF/s 
• Largest system in 

Europe 

0.53 PF/s 
(11% of LINPACK) 

*Thanks to CSCS/T. Schulthess for granting access and compute time 



Motivated by quantum physics applications 

Dissipative  
Quantum Systems 

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆𝐴𝐴 
𝐴𝐴 𝜆𝜆 𝐴𝐴 = 0 

Interoperable 
Library 

𝐴𝐴+ ≠ 𝐴𝐴 

ESSEX - II 
Conservative 

Quantum Systems 

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐴𝐴 

ESSR: Blueprints 

𝐴𝐴+ = 𝐴𝐴 

ESSEX - I 



ESSEX-II: Software Packages 

ScaMaC 
Scalable Matrix Collection 

PHIST 
Pipelined Hybrid Parallel Iterative 

Solver Toolkit 

GHOST 
General, Hybrid, and 

Optimized Sparse Toolkit 
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Links to open source repositories at  https://blogs.fau.de/essex/code 

User Applications 

MPI+X     X ∈ {CUDA,OpenMP,pthreads}  

Hardware: CPU / GPGPU / Xeon Phi 

3rd-party 
libraries: 
Trilinos,… 

RACE 
Recursive Adaptive Coloring 

Engine 



Software: Interoperability 
portability & performance 

Kernel library (GHOST) and solver 
framework (PHIST) 



• Hybrid MPI+X execution mode  
     (X=OpenMP, CUDA) 
 

 

•  Algorithm specific kernels: SIMD Intrinsics (KNL) and CUDA (NVIDIA) 
      2x – 5x speed-up vs. Optimized general building block libraries 

 
• Tall & skinny matrix-matrix kernels (block orthogonalization) 
      2x – 10x speed-up vs. Optimized general building block libraries 

 
• SELL-C-σ sparse matrix format 

 
• Open Source code & example applications: https://bitbucket.org/essex/ghost 

 

 
 

 

GHOST library 

Resource 
arbitration 

https://bitbucket.org/essex/ghost


The ESSEX Software Infrastructure: MPI + X with        



The ESSEX Software Infrastructure: MPI + X with        
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The ESSEX Software Infrastructure: MPI + X with        



The ESSEX Software Infrastructure: MPI + X with        



A Portable and Interoperable Eigensolver Library 

PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) sparse solver framework 
• General-purpose block Jacobi-Davidson Eigensolver, Krylov methods 
• Preconditioning interface 
• C, C++, Fortran 2003 and Python bindings 
• Backends (kernel libs) include GHOST, Tpetra, PETSc, Eigen, Fortran 
• Can use Trilinos solvers Belos and Anasazi, independent of backend 

Getting PHIST and GHOST 
• https://bitbucket.org/essex/[ghost,phist] 
• Cmake build system 
• Availale via Spack  
• https://github.com/spack/spack/ 
• PHIST will join Extreme-Scale Development Kit, 

https://xSDK.info/ 
 

https://bitbucket.org/essex/%5Bghost,phist
https://github.com/spack/spack/
https://xsdk.info/


PHIST & GHOST – interoperability & performance 

• Anasazi Block Krylov-Schur solver on  Intel Skylake CPU 
 

• Matrix: non-sym. 7-pt stencil, N = 1283 (var. coeff. reaction/convection/diffusion) 

 
 

• Anasazi’s kernel interface 
mostly a subset of PHIST  
extends PHIST by e.g. BKS and 
LOBPCG 

 
• Trilinos not optimized for block 

vectors in row-major storage 

Anasazi: https://trilinos.org/packages/anasazi/ 
Tpetra:   https://trilinos.org/packages/tpetra/ 
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Software: Supporting libraries 

FT/CR library (CRAFT) and matrix 
generation (ScaMac) 



CRAFT library: Application-level Checkpoint/Restart 
& Automatic Fault Tolerance 

Application-level Checkpoint/Restart(CR):  
• Simple & extendable interface to integrate CR functionality with minimal code changes 
• Node-level CR using SCR, asyn. CP., Multi-stage & Nested CPs, signal based CP 

 
Automatic Fault Tolerance (AFT) using CR 
• Define `AFT-zones´ for automatic communication recovery in case of process failures. 
• Detection and recovery methods from User-level Failure Mitigation (ULFM) MPI-ULFM. 
 
Goal: Low programming & performance overhead 
 
Tested Applications: 
• GHOST & PHIST applications from ESSEX 

• pFEM-CRAFT [Nakajima (U.Tokyo)]   
 https://bitbucket.org/essex/craft 



ScaMaC: Scalable Matrix Collection 

Goal:  Collection of parametrized sparse matrices for eigenvalue 
 computations from (quantum) physics 
Features:  
• „Scalable“ matrix generator instead of fixed-size matrices 
• Compatible with PETSc, Trilinos, GHOST, PHIST ... 
• „Real World" (quantum) physics matrices, e.g.  

– wave & advection-diffusion eqs.,  
– correlated systems, 
–  graphene & topological insulators,  
– quantum optics, (c)QED, optomechanics,... 

• Real & complex, symmetric & non-symmetric, easy & hard to solve matrices 
• Generating matrices of dimension 1011 in less than 30s on full scale OFP (0,5 

Mcores) 

 



Multicoloring and ILU 
Preconditoning  

RACE and ILU preconditioning  



Recursive algebraic coloring engine (RACE) 

Objectives 
• Preserve data locality 
• Generate sufficient parallelism 
• Reduce synchronization 
• Simple data format like CRS 

Graph coloring: RACE uses recursive BFS level based method for “distance-k 
coloring” of symmetric matrices 
 Applications – Parallelization of  

• iterative solvers, e.g. Gauß-Seidel  
& Kaczmarz 

• sparse kernels with dependencies, 
e.g. symmetric spMVM  

Example: Node-level parallelization of symmetric spMVM (distance-2) 

Intel Skylake (20 cores) 

Compare with  
• Intel MKL  
• RSB (data format)  
• Multicoloring 
 

RACE 



Recursive algebraic coloring engine (RACE) 
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• Generate sufficient parallelism 
• Reduce synchronization 
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• iterative solvers, e.g. Gauß-Seidel  
& Kaczmarz 
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Example: Node-level parallelization of symmetric spMVM (distance-2) 
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• Intel MKL  
• RSB (data format)  
• Multicoloring 
 

RACE 



Integration of pKopen-SOL ILU in PHIST 

• Eigensolvers in ESSEX-II (BEAST/BJDQR) require strong preconditioners 
for solving ill-conditioned linear systems  

• PHIST has a Fortran’03 interface and backend… 
 with some modifications we could fully integrate a complete 
 pKopen algorithm! 
 
Work on pKopen-SOL ILU: 
• applied 2 regularizations for robustness and better convergence 

(blocking and diagonal shifting) 
• efficient hierarchical multi-coloring for extreme scaling 
Work on PHIST: 
• extend matrix format to support block CRS 
• Implement node-level performance models 

 
Professional software workflow using git branches/pull requests and feature tests 

 



Robustness & Scalability of ILU preconditioning 

• Hierarchical parallelization of multi-colorings for ILU precond. 
 
 
 
 

• High precision Block ILU preconditioning 
 
 

• Apply algebraic block multi-coloring to ILU preconditioning: 
2.5x – 3.5x speed-up vs multicoloring 
 

Tokyo Univ.: Masatoshi Kawai (now Riken) , Kengo Nakajima et al.  

Hokkaido Univ.: Takeshi Iwashita et al.  



pKopen-SOL:Parallel multi-coloring for ILU 

Proposed a hierarchical parallelization of multi-colorings 
 

Step1 Step2 Step3 Step4 

• Achieved almost constant iterations and good scalability  
     with a graphene model (500 million DoF).  
• Entire code PHIST+ILU runs on large Japanese systems Oakforest-

PACS and FX10 
 

• Proposed a hierarchical parallelization of multi-colorings 
 



Extreme Eigenvalues Computation:  
Jacobi-Davidson Method 

PHIST Routine 



Scalability on Oakforest-PACS 
            since 6 / 2018 number 12 of 

Cores: 
Memory:  
Processor:  
 
Interconnect:  

556,104 
919,296 GB 
Intel Xeon Phi 7250 68C 1.4GHz 
(KNL) 
Intel Omni-Path 

Linpack Performance 
(Rmax) 
Theoretical Peak 
(Rpeak)  

13.554 PFlop/s 
 
24.913  PFlop/s 

Nmax  
HPCG [TFlop/s]  

9,938,880 
385.479 

 
 

 

Impression of the Oakforest-PACS 
supercomputer at the Japanese joint center 
for advanced HPC (JCAHPC). 
 
 



Extreme eigenvalue computation with block Jacobi-Davidson 

Goal: 
Find eigenpairs (𝜆𝜆𝑗𝑗 ,𝑣𝑣𝑗𝑗)  of a large sparse matrix in a certain target space of the spectrum: 

𝑨𝑨𝑣𝑣𝑗𝑗 = 𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗  
• Project the problem to a suitable subspace 
• Solve the resulting small eigenproblem 
• Solve the correction equation 
• Orthogonalize to all previous search directions 
• Extend the subspace 

 
  Block variant: Compute the correction equation for 𝑛𝑛𝑏𝑏 EV concurrently 
  Limit global synchronization by exploitation of block vectors 
  Concurrently solve linear systems of equations in separate Krylov spaces 
  Combine computation of spMMVM and inner products  
  Store all block vectors row-wise 

Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,  
G., Wellein, G., Fehske, H. (2015). Increasing the Performance of the Jacobi--Davidson Method 
by Blocking. SIAM Journal on Scientific Computing, 37(6), C697-C722. 



Benchmarks 

• Fixed number of 250 Jacobi-Davidson iterations 

• No additional preconditioning 

Matrices 

• Symmetric 7-point Laplace, 8.4M rows/node 

• General 7-point, some PDE, 2.0M rows/node 

Solver parameters 

• Krylov solver 10 iterations of MINRES (sym.) 

• or GMRES+IMGS ortho (general) 

• JD basis 16-40 vectors 

• target eigenpairs near 0  
 



Weak scaling 

• Up to 0.5M cores 

• Percentage indicates the 

parallel efficiency compared to 

the first measurement 

(smallest node count). 

• Symmetric PDE problem with 

the largest matrix size 

N = 40 963,  

• The best performance was 

obtained with a block size of 4. 



Strong scaling 

• Larger block size reduces number of 
Allreduce operations.  

 

• corresponding ‘block speedup’ over 
the bs=1 case. 

• The KNL doesn’t seem to ‘like’ block 
size 2 very much (in contrast to 
XeonCPUs).  

• Maybe the bandwidth can’t be 
saturated with SSE? 
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Inner Eigenvalue Computation:  
Filter Diagonalization 

BEAST-P 



• Compute all eigenpairs in  [𝜆𝜆, 𝜆𝜆] within spectrum 𝑎𝑎, 𝑏𝑏  of sparse matrix 𝐻𝐻 (of 
dimension 𝑛𝑛)  

 

• Filter diagonalization - idea: 
– Use window function for projection onto search intervall 
– Approximate window function by polynomial in H 

 

• Basic scheme: 
– Apply polynomial filter to set of search vectors (𝑛𝑛𝑆𝑆 = 102, … , 103 in our case)  
– Orthogonalize filtered vectors 
– Compute Ritz-pairs and restart if neccessary 

 

• Chebyshev Polynomials to construct filter with 𝐻𝐻 → 𝐻𝐻� such that  𝜆𝜆 � ∈ [−1, 1] 
𝑇𝑇𝑛𝑛+1 𝐻𝐻� = 2 𝐻𝐻�𝑇𝑇𝑛𝑛 𝐻𝐻�  − 𝑇𝑇𝑛𝑛−1 𝐻𝐻�  

 

Filter diagonalization - basics 



• Kernel: Series of BLAS1 calls and sparse matrix multiple 
vector multiplication (spmmv) 

• GHOST: All BLAS1 calls fused with spmmv  increased 
intensity 
 
 
 
 
 
 
 
 
 
 

Performance Engineering: Optimized GHOST kernels  

𝑛𝑛 = 2.1 × 106,𝑛𝑛𝑝𝑝 = 500 
 

𝐼𝐼 𝑛𝑛𝑆𝑆 =
146

80 + 260/𝑛𝑛𝑆𝑆
 
𝐹𝐹
𝜆𝜆 

nvidia V100 

Performance increases with block 
vector width (row-major storage!) 

Block vector width 

2x speed-up by kernel fusion  
increases kernel complexity! 

>10% of peak performance for sparse 
matrix problem! 



● Improve filter quality  reduce filter degree  reduce sparse 
matrix vector products  

● Idea: Filter must be below threshold for  [𝜆𝜆  −  𝛿𝛿, 𝜆𝜆 + 𝛿𝛿]  
● Goal: Minimize 𝛿𝛿 (Lanzos smoothing kernel) 
 
 
 
 
 
 
 
● In practice: 30-50% lower degrees  equivalent savings in time 

 
 

Algorithm Engineering 



Computing 100 inner eigenvalues on 
matrices up to 𝑛𝑛 = 4 × 109 
 
 
 
 
 
 

Large scale performance – weak scaling 
𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 2.1 × 106 

𝑛𝑛𝑝𝑝 = 500; 𝑛𝑛𝑆𝑆 = 128 
 

0.4 PFLOP/s 0.5 PFLOP/s 

Typical Application[1]: 
Topological Insulator  

[1] Pieper, A., et al. Journal of Computational Physics 325, 226–243 (2016) 

Oakforest PACS PizDaint 2 



Joint work with Tsukuba Univ.: 
Tetsuya Sakurai et al.  



Visit our homepage: https://blogs.fau.de/essex/ 
 
 
 
 
 
 
 
 
 

THANK YOU! 

https://blogs.fau.de/essex/
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