
Geophysical Research Letters

Photometric Modeling and VIS-IR Albedo Maps of Tethys
From Cassini-VIMS

G. Filacchione1 , M. Ciarniello1 , E. D’Aversa1 , F. Capaccioni1 , P. Cerroni1 , B. Buratti2 ,

R. N. Clark3, K. Stephan4 , and C. Plainaki5

1Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy, 2Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA, 3Planetary Science Institute, Tucson, AZ, USA, 4German Aerospace Center (DLR), Berlin,
Germany, 5Italian Space Agency (ASI), Rome, Italy

Abstract We report about the derivation of visible (VIS) and infrared (IR) albedo maps and spectral
indicators of Saturn’s satellite Tethys from the complete Cassini-Visual and Infrared Mapping Spectrometer
(VIMS) data set. The application of a photometric correction is necessary to remove illumination and
viewing effects from the I/F spectra, to compute spectral albedo and to correctly associate spectral
variations to changes in composition or physical properties of the surface. In this work we are adopting

the photometric correction proposed by Shkuratov et al. (2011, https://doi.org/10.1016/j.pss.2011.06.011)
to derive albedo maps of Tethys from disk-resolved Cassini-VIMS data. After having applied a similar
methodology to Dione’s data (Filacchione et al., 2018, https://doi.org/10.1002/2017GL076869), we present
here the results achieved for Tethys: surface albedo maps and photometric parameters are computed
at five visible (0.35, 0.44, 0.55, 0.70, and 0.95 μm) and five infrared (1.046, 1.540, 1.822, 2.050, and 2.200 μm)
wavelengths and rendered in cylindrical projection with a 0.5∘ × 0.5∘ angular resolution in latitude and
longitude, corresponding to a highest spatial resolution of 4.7 km/bin. The 0.35- to 0.55- and 0.55- to
0.95-μm spectral slopes and the water ice 2.050-μm band depth maps are computed after having applied
the photometric correction, in order to trace the leading-trailing hemisphere dichotomy, to constrain
the shape of the equatorial lens generated by the bombardment of high-energy magnetospheric electrons
on the leading hemisphere, and to observe the stronger water ice band depth and reddening within the
floors of Odysseus and Penelope impact craters.

Plain Language Summary Visible and infrared albedo maps of Tethys surface are derived from
Cassini-Visual and Infrared Mapping Spectrometer data set by applying a photometric correction able to
remove illumination and viewing effects from the data. This processing allows to build spectral indicator
maps able to trace composition changes in terms of visible colors and water ice band depth across the
surface. We focus our analysis on specific geologic features, including impact craters and low-albedo areas,
where exogenic processes are occurring. We report how E-ring particles, magnetospheric and cold plasma
particles bombardment, alter the surface of Tethys.

1. Introduction

This letter is the second of a series reporting photometric corrected maps of Saturn’s icy satellite surfaces from
Cassini/Visual and Infrared Mapping Spectrometer (VIMS) data (Brown et al., 2004). After having described the
photometric correction method introduced by Shkuratov et al. (2011) applied to Dione’s data set (Filacchione
et al., 2018), we continue to use a similar methodology for Tethys’ data set.

Tethys is characterized by a high geometric albedo of 1.23 at 0.55 μm (the brighter Enceladus is at 1.38;
Verbiscer et al., 2007) and a bolometric bond albedo of 0.61 ± 0.09 (Pitman et al., 2010). Moreover, the satel-
lite has a low density, 0.98 g/cm3 (Thomas, 2010), indicative of a bulk composition mainly made of water
ice and small amount of rocky material. The surface of the moon shows different geological units (Stephan
et al., 2016), including large impact craters, such as Odysseus on the north hemisphere, high cratered ter-
rains, and large areas affected by tectonism such as Ithaca Chasma, a trough feature which extends for about
three fourths of the satellite’s circumference with a maximum depth of about 3 km and a width from a few
to about a hundred kilometers (Jaumann et al., 2009). A detailed description of Tethys properties derived
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from Cassini in the context of the Saturnian moons system is given in Jaumann et al. (2009), while geologic
maps of the moon’s surface derived from Cassini Imaging Science Subsystem (ISS) and VIMS observations have
been published by Roatsch et al. (2009, 2009). Global compositional maps of Tethys from VIMS data derived
in the past by Stephan et al. (2016), without applying any specific photometric correction, have allowed for
the characterization of the properties at hemispheric scale and the study of relationships between spectral
classes and geological units at local scales. At global scale, VIMS data have been exploited to measure Tethys’
disk-integrated colors and water ice band properties from observations taken from a wide range of illumi-
nation and viewing geometries (Filacchione et al., 2007, 2010, 2012) and to trace the spectral variability of
chromophores and water ice in the context of Saturn’s icy satellites and ring system (Filacchione et al., 2013).
In a recent study (Hendrix et al., 2018), UV, visible, and IR data are synergistically used to derive geometric
albedos of the icy satellites and to correlate surface color variations with the deposition of E-ring particle,
which contain a weathered organic material fraction. The observed reddening radial trend, which increases
from Enceladus to Rhea (Filacchione et al., 2013), could therefore be the consequence of the weathering by
magnetospheric particles of the organic material embedded in the E-ring particles; the reddening increases
with the age of the E-ring grains, and as a result, the grains impacting on Rhea’s surface are much redder than
those falling on inner moons. The reference albedo color map of Tethys has been derived from ISS camera
color images by Schenk et al. (2011). The map is photometrically corrected at visible wavelengths reaching
a spatial resolution of 1–1.5 km/pixel over the entire surface of the satellite. ISS map clearly shows the pres-
ence of prominent global asymmetries in both color and albedo with the darkest and reddest units observed
on the middle of the trailing hemisphere (longitude = 270∘) caused by interaction with magnetospheric cold
plasma and/or deposition of small dark particles. The leading hemisphere is in general affected by the deposi-
tion of E-ring water ice particles. A dark and bluish lens caused by the bombardment of high-energy electrons
embedded in Saturn’s magnetosphere is observed on the equatorial region of the leading hemisphere.

In this work we aim to use the complete VIMS data set and to apply a photometric correction in order to build
visible-near-infrared albedo and spectral indicators maps of Tethys and to give an interpretation of the results
for resolved geologic features.

2. Observations and Data Selection

During the entire Cassini mission (2004–2017) VIMS has acquired Tethys surface observations on more than
280,000 pixels from a very wide range of distances, illumination, and observation conditions. Among those, in
this work we have selected about 110,000 pixels that simultaneously fulfill the following conditions: (1) they
have an unsaturated signal (≤4,000 DN); (2) they have an incidence angle i≤ 80∘, an emission angle e ≤ 80∘,
and a phase angle 10∘ ≤ g ≤ 70∘; (3) they are acquired from distances≤100,000 km, corresponding to a spatial
resolution better than 50 km/pixel in nominal resolution mode and 17 or 17 × 25 km/pixel in high-resolution
mode respectively for the VIS and IR channels. This choice allows us to remove pixels acquired at very oblique
views and in the opposition effect regime, which cannot be corrected by the photometric model we are
adopting. VIMS-IR data are calibrated in I/F according to RC17 pipeline (Clark et al., 2012). VIMS-VIS data are
calibrated following the methods described in (Filacchione, 2006; Filacchione et al., 2007). The geometry infor-
mation associated to each VIMS pixel has been derived by a proprietary software based on the reconstructed
SPICE kernels (Acton, 1996) of the Cassini mission.

3. Photometric Correction

The details of the method used to determine the photometric correction are fully described in Filacchione
et al. (2018) and are not repeated here for the sake of brevity.

The photometric fit parameters a, b, c (see equation (5) in Filacchione et al., 2018) and statistical errors for
each of them are listed in Table 1. Due to long computation times, the analysis has been performed only on
five visible (0.35, 0.44, 0.55, 0.70, 0.95 μm) and five infrared (1.046, 1.540, 1.822, 2.050, 2.200 μm) wavelengths,
which means 10 out of the 352 VIMS spectral bands. We remark that this approach does not accounts for the
opposition surge effect: for this reason, the computed equigonal albedo turns out to be lower than the normal
albedo A(𝜆, g), which is defined at g = 0∘ and i = e (Hapke, 1993).

The photometric correction shows further limitations which need to be considered in analyzing the derived
albedo maps: (1) the disk function D(i, e, g) is computed by assuming a spherical shape since a detailed digital
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Table 1
Photometric Fit Parameters for the Ten Visible and Infrared Channels Used to Render Albedo Maps Shown in Figures 1 and 2

Wavelength (μm) a b c

0.35 0.75042 ± 0.00106 −5.7173 ⋅10−3± 3.63⋅10−5 5.9202⋅10−6± 2.85⋅10−7

0.44 0.77108 ± 0.00100 −4.8690 ⋅10−3± 3.45⋅10−5 −1.5032⋅10−6± 2.71⋅10−7

0.55 0.79707 ± 0.00111 −4.7057 ⋅10−3± 3.83⋅10−5 −3.0856⋅10−6± 3.01⋅10−7

0.70 0.76842 ± 0.00110 −4.0931 ⋅10−3± 3.80⋅10−5 −6.4263⋅10−6± 2.97 ⋅10−7

0.95 0.74823 ± 0.00102 −3.1529 ⋅10−3± 3.53⋅10−5 −1.2415⋅10−5± 2.78⋅10−7

1.046 0.74563 ± 0.00174 −2.3805 ⋅10−3± 6.07⋅10−5 −2.0830⋅10−5± 4.96⋅10−7

1.540 0.45171 ± 0.00090 −3.9953 ⋅10−3± 3.10⋅10−5 8.0352⋅10−6± 2.43 ⋅10−7

1.822 0.70383 ± 0.00160 −3.9038 ⋅10−3± 5.50⋅10−5 −5.0489⋅10−6± 4.30⋅10−7

2.050 0.35282 ± 0.00059 −4.9093 ⋅10−3± 2.07⋅10−5 2.2163⋅10−5± 1.64⋅10−7

2.200 0.68231 ± 0.00127 −5.0104 ⋅10−3± 4.37⋅10−5 5.4471⋅10−6± 3.42⋅10−7

Note. The parameter a is the equigonal albedo value as defined in Filacchione et al. (2018).

shape model of the entire surface is not available. As a consequence of this, for rough morphologies, like on
Ithaca Chasma or on Odysseus crater rim, the computation of the incidence and emission angles is not reliable
and photometric residuals appear on the maps. In particular, the poor characterization of the incidence angles
also does not permit to completely filter out unilluminated pixels; (2) the choice to selecting wide-angle (i, e, g)
intervals allows to maximize the spatial coverage, but it implies a not uniform correction toward extreme
illumination/viewing geometries (discussed in section 4).

4. Albedo Maps

The method used to render albedo maps from single observations is described in Filacchione, Capaccioni,
et al. (2016), Filacchione, D’Aversa, et al. (2016): each individual VIMS pixel, fulfilling the filtering conditions
discussed in section 2, is calibrated in I/F and then photometrically corrected by means of the phase func-
tion F(𝜆, g) value computed with the coefficients reported in Table 1 and by the disk function D(i, e, g) value.
The resulting albedo is projected on the area defined by the four corners of the individual pixel on a cylindri-
cal grid rendered with a spatial sampling of 0.5∘ × 0.5∘ per bin along west longitude and latitude axes. This
sampling corresponds to a spatial resolution of 4.7 km/bin at the equator. A similar procedure is followed
independently for each wavelength. Since VIMS VIS and IR channels have different radiometric response and
instantaneous field of view, the resulting coverage can be slightly different from wavelength to wavelength.
In case of redundancy above a given 0.5∘ × 0.5∘ per bin, the average value is shown on the albedo map in
Figure 1a.

Tethys visible albedo color map covers all longitudes, with the exception of a gap in the middle of the trail-
ing hemisphere, and almost all latitudes between ±80∘. The albedo varies between 0.62 and 0.83 at 0.44 μm
(band B), 0.68–0.87 at 0.55 μm (G), and 0.65–0.82 at 0.7 μm (R). The largest impact craters (Telemachus, Icarius,
Ajax, Antinous, Penelope, Dolinus, Odysseus, and Anticleia), and Ithaca Chasma (see numerals on the map for
their identification), and the low-albedo equatorial lens (Paranicas et al., 2014; Schenk et al., 2011) centered
on the middle of the leading hemisphere (longitude = 90∘) and caused by the bombardment of high-energy
(>10 keV) electrons trapped in the Saturnian magnetosphere, are clearly visible. The lens encompasses the
meridional rim of the large Odysseus crater and appears to be not completely symmetric with respect to the
equator, but it is more extended toward northern latitudes (22∘) than on southern (−15∘) at longitude = 90∘
meridian. Despite the gap in the data coverage, the dark terrain area located on the middle of the trailing hemi-
sphere (longitude = 270∘) and encompassing Penelope, Ajax, Icarius, and Antinous craters appears visible on
VIMS albedo map.

In general, ISS albedo map by Schenk et al. (2011) shown in Figure 1b appears more uniform than the VIMS
one in both spatial resolution and photometric rendering. Along with the higher spatial resolution of ISS with
respect VIMS, this is consequence of the broad filtering of the (i, e, g) angles ranges selected on VIMS data: for
comparison, ISS albedo map was built with data taken on a very limited phase range (from 10∘ to 30∘) applying
empirical photometric correction. For the VIMS data set we have relaxed the filtering in the 10∘–90∘ range to
achieve a more extended spatial coverage. As a consequence of this choice, despite adopting a mathematical
photometric correction, the rendering is progressively less accurate for high illumination and viewing angles
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Figure 1. (a) Tethys visible color albedo map at B = 0.44 μm, G = 0.55 μm, and R = 0.7 μm. Numerals indicate the
position of the principal geological features resolved on the map: (1) Telemachus crater, (2) Icarius, (3) Ajax, (4) Antinous,
(5) Penelope, (6) Dolius, (7) Odysseus, (8) Dark Equatorial Lens, (9) Anticleia, and (10) Ithaca Chasma. (b) Cassini-ISS color
map from Schenk et al. (2011).

resulting in some photometric residuals. The most evident of those residuals is the arc-shaped dark feature
starting from the edge of the dark equatorial lens (at approximately longitude = 45∘ at the equator), running
parallel to the south part of Ithaca Chasma and finishing at longitude = 90∘, latitude = −55∘.

The infrared albedo maps computed on a set of five wavelengths encompassing the center of the strongest
water ice bands at 1.54 and 2.05 μm and local continuum at 1.82 and 2.20 μm are shown as separate panels
in Figure 2. On the absorption bands the minimum albedo of 0.43 and 0.3 for the 1.54- and 2.05-μm wave-
lengths, respectively, is reached on the equatorial dark lens and toward the center of the trailing hemisphere
(longitude = 270∘). At the same wavelengths the maximum albedo is 0.61 and 0.38, respectively, measured
on the north hemisphere, in particular at longitude = 45∘ for latitude ≥ 45∘ on the north of the Anticleia
crater (label 9 in Figure 1). On the continuum wavelengths we observe a similar distribution but shifted toward
higher albedo values, up to 0.95 and 0.88 at 1.82 and 2.2 μm, respectively. Moreover, the dark equatorial lens
appears much more contrasted on the continuum rather than on the water ice absorption wavelengths: on
the 1.82-μm continuum the lens minimum albedo is about 0.79, while the terrains immediately outside it
are at 0.83; on the 2.05-μm water ice absorption the albedo is 0.32 within the lens and 0.33 outside it. If we
assume that the observed water ice band depth distribution is only driven by grain size effects and not by a
different abundance of contaminants within the lens, then a similar photometric behavior is compatible with
a distribution of larger water ice grains in the lens area with respect to the north hemisphere region where
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Figure 2. Tethys infrared albedo maps at 1.54 (a), 1.82 (b), 2.05 (c), and 2.20 μm (d).

the albedo is higher. As discussed in Filacchione et al. (2012), water ice particles with diameters of micron
to tens of microns are characterized by higher albedo on the infrared continuum compared to larger grains
(diameter of the order of hundred of microns to centimeters). The part of the Odysseus crater toward the
leading hemisphere (longitude = 110∘) appears darker at all four wavelengths: since a similar effect is seen
also on the visible albedo map in Figure 1, this is probably a photometric residual due to the rough rim mor-
phology and not a real feature. Conversely, the southernmost part of Ithaca Chasma (20∘ ≤ longitude ≤ 40∘,
−60∘ ≤ latitude ≤ −45∘) appearing consistently darker on all four infrared maps but not in the visible seems
to be a real albedo feature.

5. Spectral Indicator Maps

The 0.35- to 0.55- and 0.55- to 0.95-μm spectral slopes and 2-μm band depth (Filacchione et al., 2012) are
spectral indicators suitable to study the relative amounts of compositional end-members (water ice and chro-
mophores) and regolith grain size. These quantities are computed from the albedo, and the resulting maps are
shown in Figure 3. The 0.35- to 0.55-μm slope map highlights the presence of the equatorial lens in great detail,
visible as a blue shaded ellipse centered on the equator of the leading hemisphere (map in panel a): the slope
is close to null on the center of the lens and increases up to ≈0.35 μm−1 on the edge of the lens. Similar to the
visible albedo map, the slope shows an asymmetry in the latitudinal direction, with a prevalence toward the
north hemisphere. On the lens region the focusing of magnetospheric particles flux has caused the sintering
of the water ice grains resulting in the formation of a regolith layer made by larger grains. As a consequence
of this alteration, changes in color (Schenk et al., 2011), thermal inertia (Howett et al., 2012), and diurnal
temperature (Filacchione, D’Aversa, et al., 2016) are observed on this area. Moving toward the anti-Saturnian
hemisphere the pacman feature, originally discovered on Composite Infrared Spectrometer (CIRS) tem-
perature maps (Howett et al., 2012), is visible on the spectral slope map as a local maximum (rendered
in red color). It encompasses the extension of the entire Odyseeus crater, which shows remarkably uni-
form red color (slope ≥0.35 μm−1) on the floor and walls of the rim. The anti-Saturnian quadrant, between
135∘ ≤ longitude ≤ 215∘ is characterized by a low spectral slope, similar to the values measured within the
lens (≤0.35 μm−1). The circular low-albedo area centered on the middle of the trailing hemisphere visible in
Figure 1 is characterized by a high spectral slope, which reaches the maximum reddening on the floor of the
Penelope crater (0.7 μm−1, label 5 in Figure 1). Within the limits of the map coverage, the reddening extends
at least within −45∘ ≤latitude ≤ 55∘. A low reddening (≤0.35 μm−1) is measured above Ithaca Chasma.

The absolute variability of the 0.55- to 0.95-μm slope (Figure 3, map in panel b) is less than one half of the 0.35-
to 0.55-μm slope resulting in a more noisy map. Nevertheless, spatial trends similar to the ones previously
discussed continue to be visible: the equatorial lens shows a negative slope, between −0.15 and −0.1 μm−1

resulting in bluer slopes than the rest of the leading hemisphere, which is between −0.1 and −0.05 μm−1.
The anti-Saturnian hemisphere is the region where the minimum slope (−0.25 μm−1) is measured. The 0.55-
to 0.95- μm slope on the center of the trailing hemisphere is moderately negative (−0.15 and −0.1 μm−1)
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Figure 3. Tethys cylindrical maps for 0.35- to 0.55-μm slope (a), 0.55- to
0.95-μm slope (b), and 2-μm water ice band depth (c). The equatorial lens
appears bluer than the rest of the leading hemisphere on the slopes
maps. The band depth is minimum on the equatorial lens and across the
trailing hemisphere.

and different from what seen on the 0.35- to 0.55-μm slope; the Penelope
crater floor has a color similar to the surrounding terrains.

The 2-μm water ice band depth (Figure 3, map in panel c) shows a variabil-
ity between 0.52 and 0.62: local band depth minima, rendered in red color,
are measured within the equatorial lens on the leading hemisphere and
on the majority of low-albedo units in the trailing (photometric residuals
could affect some areas around longitude = 270∘ resulting in high band
depth values). The maximum band depth, rendered in blue color, is seen
on the anti-Saturnian quadrant and on the pacman feature and in gen-
eral on the north hemisphere where the infrared albedo is maximum (as
shown in white color on maps in Figure 2). Apart the variability observed at
global scale, the map allows to appreciate the changes occurring on indi-
vidual morphological features: (1) on the meridional part of Ithaca Chasma
(20∘ ≤ longitude ≤ 40∘, −60∘ ≤latitude ≤ −45∘) a local minimum is
observed, which seems to be correlated with the rough topography and
low albedo at infrared wavelengths (Figure 2); (2) the floor of Odysseus
crater has an high band depth; the lower values seen on the east rim could
a photometric residual; (3) the floor of Penelope crater shows a remarkable
increase of the band depth with respect to the nearby terrains; (4) high
band depth is similarly seen on other impact craters like Telemachus and
Anticleia (labels 1 and 9, respectively, in Figure 1a).

6. Discussion and Conclusions

By deriving photometric corrected albedo and spectral indicators maps
of Tethys, we are able to trace the compositional changes occurring on
the surface of the moon and to study the relationship between spectral
indicators, exogenic processes, and morphological units. At visible colors
VIMS data are in good agreement with high-resolution map by ISS (Schenk
et al., 2011), allowing us to recognize the equatorial dark albedo lens on
the leading hemisphere caused by the interaction with high-energy elec-
trons trapped in Saturn’s magnetosphere and the wide dark feature in the
middle of the trailing hemisphere generated by the deposition of exo-
genic dark particles and cold plasma. The equatorial lens is likely related
to the deposition of energy guided by asymmetric electron bombard-
ment (Howett et al., 2011; Paranicas et al., 2012; Schenk et al., 2011). These
high-energy electrons drift in a retrograde direction relative to corotation
(Howett et al., 2012), and they preferentially impact low latitudes of Tethys’
leading hemisphere (Paranicas et al., 2012). The dark feature of the trail-
ing hemisphere may be generated by the deposition of nanophase grains
or charged magnetospheric particles or both. We note, however, that the
energetic protons of Saturn’s magnetosphere have very low fluxes along
the moon orbits (Kollmann et al., 2013). For example, the intensity of 1 MeV

protons near the inner Saturnian satellites (Paranicas et al., 2012) is several orders of magnitude below the one
at Ganymede (Paranicas et al., 2018). Moreover, whereas along the orbits of Janus, Mimas, and Enceladus, the
proton fluxes were measured at low levels (macrosignatures), at Tethys (like Dione) no flux decrease effect has
been observed, likely because of the faster radial transport there and the rate at which protons re-encounter
that moon (see Figure 4 in Paranicas et al., 2018). As discussed in Hendrix et al. (2018), while the effect of sur-
face’s alteration caused by protons is negligible, the cold plasma embedded in Saturn’s magnetosphere is the
principal mechanism causing the darkening occurring on Tethys’ trailing hemisphere.

While these two equatorial areas share common low visible and infrared albedos and low water ice band
depth, they differ in visible colors, being the leading hemisphere equatorial lens remarkably blue while the
trailing hemisphere appears very red. Such spectral differences are the consequence of the two very different
alterations occurring on these areas. In particular, the bombardment of high-energy electrons is responsi-
ble of the alteration of the surface regolith grain size because the energy released by electrons is sintering
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together ice grains resulting in the formation of larger grains. The low 2-μm band depth values observed
within the leading hemisphere equatorial lens (Figure 3c) could be the consequence of this process rather
than by a depletion of water ice content. A 2-μm band depth of 0.56 (supported by the 1.5-μm band of 0.34
derived from albedo maps in Figure 2) is compatible with the presence large water ice grains of the order of
1 cm (Filacchione et al., 2012). The presence of these large water ice particles is reinforced by the blue color
of the lens in the visible range (panels a and b) and by the anomalous thermal behavior of the terrain within
the lens (Filacchione, D’Aversa, et al., 2016; Howett et al., 2012). Moreover, we report about the asymmetric
shape of the lens, which extends more on the north (22∘) than on south (−15∘) latitudes. Such a morphol-
ogy could be the consequence of the disturbances occurring in the planetary magnetic field which is not well
aligned starting from the orbit of Tethys. This misalignment affects how the electrons travel past the moon
and where they preferentially impact the surface. It is therefore probable that local electromagnetics active
in the vicinity of Tethys are the cause of the asymmetric shape of the lens (Paranicas et al., 2018). We note that
the floors of several impact craters, mainly Penelope but also Odysseus, are remarkably red in the visible but
have very high water ice band depth in the infrared. A similar behavior indicated the presence of exogenous
chromophores especially on the trailing hemisphere low-albedo units. Finally, the north anti-Saturnian and
leading hemisphere region are characterized by high infrared albedo (0.95 at 1.82 μm), intermediate visible
color (≤0.35 at 1 μm), and high water ice band depth (>0.59): these properties are indicative of the deposi-
tion of fine and bright water ice particles from the E-ring. After Dione and Tethys, we plan to use a similar
methodology in the next future to the remaining Saturn’s satellites.
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