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Abstract

In this thesis, we investigate the problem of maximizing the link velocity of elas-
tic joints using velocity-sourced elastic actuators. More specifically, focusing on
joints with nonlinear series elastic actuators we derive motor control strategies
such that the link velocity is maximized at a given time instant when the joint
is initially at rest. Furthermore, we provide a physical interpretation for the de-
rived strategies by exploiting their time optimality. The interpretation reveals
the dependence of these strategies on periods of mass-spring systems which in
turn explains how nonlinear torque-deflection profiles influence the maximal link
velocity. In order to clearly illustrate this influence, we analyse in detail three
different elastic joints with softening, linear and hardening springs. In particu-
lar, we compare their maximal link velocities as well as the corresponding control
strategies and elaborate on the observed differences. Our theoretical results are
experimentally validated on the DLR Floating Spring Joint where link veloci-
ties at least more than three times the maximally applied motor velocity are
attained in less than a second. Several extensions are also provided which reveal
the influence of damping and stiffness actuation on optimal control strategies.
Finally, we give a proof of Pontryagin’s Minimum Principle, the main theorem
used in the thesis, by exploiting the properties of transition maps. Assuming
an additional degree in the smoothness of the system dynamics and the cost
functional, this leads to an extension of the principle, namely the Second Order
Minimum Principle.



Zusammenfassung

In dieser Arbeit untersuchen wir das Problem der Maximierung der Ausgangsge-
schwindigkeit von elastischen Gelenken mit geschwindigkeitsgesteuerten elasti-
schen Aktuatoren. Wir konzentrieren uns dabei auf Gelenke mit nichtlinearen se-
riell elastischen Aktuatoren und leiten Motorsteuerungsstrategien ab, so dass die
Ausgangsgeschwindigkeit zu einem gegebenen Zeitpunkt maximiert wird wenn
das Gelenk anfénglich in Ruhe ist. Dariiber hinaus liefern wir eine physikalische
Interpretation fiir die abgeleiteten Strategien, indem wir deren Zeitoptimalitéit
nutzen. Die Interpretation zeigt die Abhéngigkeit dieser Strategien von Perioden
von Masse-Feder-Systemen, die wiederum erkldren wie nichtlineare Kennlinien
fiir den Drehmoment die maximale Geschwindigkeit beeinflussen. Um diesen
Einfluss deutlich zu veranschaulichen, analysieren wir im Detail drei verschie-
dene elastische Gelenke mit degressiven, linearen und progressiven Federkennli-
nien. Insbesondere vergleichen wir die maximal erreichbaren Geschwindigkeiten
sowie die entsprechenden Steuerungsstrategien und erarbeiten die beobachteten
Unterschiede. Unsere theoretischen Ergebnisse werden experimentell an dem
DLR Floating Spring Joint validiert, wo Ausgangsgeschwindigkeiten von mehr
als dem Dreifachen der maximal kommandierten Motorgeschwindigkeit in we-
niger als einer Sekunde erreicht werden. Es werden auch Erweiterungen her-
geleitet, die den Einfluss einer aktiven Steifigkeits- und Dampfungssteuerung
auf optimale Steuerstrategien aufzeigen. Schliefslich geben wir einen Beweis fiir
das Minimumprinzip von Pontryagin, der Hauptsatz aus dem die Ergebnisse
der Arbeit hervorgehen, indem wir die Eigenschaften von Fliissen von Diffe-
rentialgleichungen nutzen. Unter der Annahme eines zusétzlichen Grads in der
Differenzierbarkeit der Systemdynamik und des Kostenfunktionals fiihrt dies zu
einer erweiterten Version des Prinzips, ndmlich zu dem Minimumprinzip zweiter
Ordnung.
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Chapter 1

Introduction

Robots are complex mechatronic systems whose performance limits largely de-
pend on the properties of their actuators. Different actuation technologies exist
each of which can, depending on the application, be more beneficial in terms
of execution speed, energy efficiency, accuracy, etc [26]. One such technology,
namely FElastic Actuation Technology, has attracted increasingly more attention
over the last two decades [56, 20]. Many researchers regard this technology as
the key in enabling humanoid robots to achieve human-like performances. This
view is particularly supported by the mechanical robustness of systems with
elastic actuators and by the possibility of using the elastic elements in these
actuators as a potential energy source [60, 23].

Numerous elastic actuator designs with constant and variable impedance
exist by now as well as studies which, for certain tasks, demonstrate their ben-
efits. In particular, being hit with a baseball bat the DLR Floating Spring
Joint (FSJ) [59], an Elastic Joint (EJ) with a variable stiffness actuator, has
been shown to handle impacts which can not be handled by traditional rigid
actuators currently found in industrial robots. Moreover, the DLR Hand Arm
System [18], which is designed to mimic the behaviour of a human’s arm and
which consists of several FSJ’s, has been shown to reach throwing velocities
which are not achievable with a rigid actuator using the same maximal motor
velocity and gear reduction as used during the experiments [22]. In other words,
for an explosive throwing motion it has been experimentally shown that elas-
tic actuators can increase the performance of a robot. Other similar explosive
motion tasks, such as hammering and kicking, as well as periodic motion tasks,
such as walking and hopping, have been also succesfully performed by robotic
systems with elastic actuators [17, 16, 46, 48, 33].

The main advantages of incorporating an elastic element into an actuator are
thus well understood and also validated at several EJ’s and Elastic Joint Robots
(EJR’s). One mathematical tool, which is commonly used in these validations,
is Optimal Control (OC) Theory [44] as it allows to find control strategies which
can fully exploit the elasticity in elastic actuators. Consequently, several frame-
works have been proposed to systematically apply this theory such that a given

10
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task is efficiently accomplished by an EJ or an EJR, see for instance [7] and
[25]. Nevertheless, being mainly based on numerical solution procedures these
frameworks do not provide a general understanding for the computed control
strategies and can also lead to suboptimal strategies.

Considering the lack of knowledge on the optimal control of even the sim-
plest EJR’s, the primary goal of this thesis has been to find physical principles
for control strategies which maximize the performance of EJ’s with nonlinear
impedance. More specifically, a very basic EJ model has been investigated
using OC Theory which takes account for the nonlinear torque-deflection pro-
files (TDP’s) as they commonly occur in existing designs [20]. Making use of
some simplifying assumptions, analytical solutions have been obtained which
describe, in terms of physical quantities, the optimal way to transfer the energy
generated by elastic actuators to the link of an EJ. Moreover, by studying the
resulting motion, a quantitative analysis has been conducted in order to reveal
the dependence of the attained performance on joint and task parameters. The
second goal of the thesis was to extend the obtained results to more complex
EJ models with variable impedance [56]. Focus was always given to explosive
motion tasks as they clearly demonstrate the capability limits of these joints.
The following papers have been published during the conducted research:

e Optimal Control for Maximizing Link Velocity of Visco-elastic joints.
Mehmet Can Ozparpucu and Sami Haddadin. Conference on Intelli-
gent Robots and Systems (IROS), 2013.

e Optimal Control of Elastic Joints with Variable Damping.
Mehmet Can Ozparpucu and Sami Haddadin. 13th European Control
Conference (ECC), 2014.

e Optimal Control of Variable Stiffness Actuators with Nonlinear Springs.
Mehmet Can Ozparpucu, Sami Haddadin and Alin Albu-Schéffer.
IFAC World Congress (IFAC), 2014.

e Optimal Control Strategies for Maximizing the Performance of Variable
Stiffness Joints with Nonlinear Springs.
Mehmet Can Ozparpucu and Alin Albu-Schiffer. Proc. 53st IEEE
Conf. Decision and Control (CDC), 2014.

The purpose of this introductory chapter is to clarify the need for the undertaken
line of research and to emphasize the significance of the attained results. To
achieve this, we will first start with a motivation for the use of elastic actuators
in robotic systems and discuss its main advantages. Moreover, taking an energy
point of view we will underline two basic control and design questions for EJ’s
which constitute the main focus of this thesis. Then, we will elaborate on the
approach we followed to tackle with these questions. Afterwards, an overview
of the existing results on the OC of EJ’s is given together with a classification
of different EJ models. Finally, we conclude this chapter by briefly discussing
the contents of the following chapters.
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1.1 Motivation and Challenges

Today, robotic applications exist in diverse areas such as manufacturing, health-
care, agriculture, space, etc [54]. The advances in actuator, sensor and comput-
ing technology have played a crucial role in the vast increase of these applications
as well as in their improvement. Conversely, the desire to use robots in different
fields has stimulated the further development of these technologies as well. In
particular, with the growing interest in making robots a part of our daily life
providing robots with human-like abilities have become a major goal in robotics
research. Motivated by the adjustable elasticity present in the musculoskele-
tal systems of humans, this interest has then resulted in the current Elastic
Actuation Technology.

The musculoskeletal system of a human consists of elastic elements such as
ligaments and tendons [58]. Taking a closer look at the actuators of this system,
i.e. at the muscles, one can see that the forces generated there are transmitted
to various joints not directly but rather by tendons which connect the muscles
to the bones. Following the same principle, elastic actuators are characterized
by the presence of elastic elements which can be modeled, similar to a tendon, as
an elastic spring attached to a torque generating actuator. Compared to their
rigid counterparts, the existence of such a spring leads to significant changes
in the properties of elastic actuators as well as to challenges in their control
when used in a robotic system. We want to next discuss these properties and
challenges.

The series elastic actuator (SEA), one of the first elastic actuators, has been
proposed more than two decades ago by Pratt and Williamson and consists
simply of a DC Motor, a planetary gearbox and a steel torsion spring that is
attached to the output shaft of the gearbox [45]. As discussed there, one of the
main advantages of the spring in this design is the increase in the shock tolerance.
This increase follows from the fact that the spring acts as a low-pass filter in
case of collisions so that the corresponding peak forces at the gears are reduced.
Consequently, the mechanical robustness of robotic systems can be significantly
increased when equipped with elastic actuators. It is interesting to note here
that current biomechanical studies similarly indicate that tendons protect the
muscles by acting as a mechanical buffer during rapid motions [19, 50, 51].

A second advantage of using an elastic element in an actuator is the possibil-
ity to store potential energy in that element. This property can allow robots to
accomplish periodic tasks, such as walking and hopping, with less energy expen-
diture [57]. Moreover, as already mentioned using a proper control strategy this
additional source of energy can also be used to realize explosive motion tasks.
Both of these aspects are also encountered in humans and animals [10, 4, 49].

Being mechanically robust, energy efficient and able to achieve energy in-
tensive tasks in a short duration are clearly all important properties for robots,
especially if they are to achieve human-like performances. Based on our discus-
sion so far, we can clearly see that EJ’s, i.e. joints with elastic actuators, can
provide robots with such properties. Nevertheless, there are still many open
questions on how to best control the actuators in these joints to accomplish
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particular tasks. For instance, even for the simplest EJ models, which consist
only of a motor, a nonlinear spring and a link, it is not fully understood how
to control the motor in order to maximize the link velocity if all motor con-
straints are taken into account. Similarly, for this case it is also not known
how to control the motor such that the link stops moving in the least possible
amount of time in case of a collision. Such strategies are important to evaluate
the capabilities and thus the safety of EJ’s, especially if they are to be used in
proximity to humans.

The reason for the deficiency in our understanding of the control strate-
gies for EJ’s follows mainly from the nontrivial relation between the motion of
the actuator and the link. In a Rigid Joint (RJ), the link motion is uniquely
determined by the motion of the rigid actuator and probably some kinematic
relations present due to the gear mechanism. In an EJ, on the other hand, the
motion of the link is infuenced only dynamically by the elastic forces present
in the joint. This nontrivial relation results in at least doubling the number of
the states which are required to analyse the dynamic behaviour of an EJ when
compared to a RJ. Moreover, this dynamic behaviour gets more complicated if
the elastic actuator can additionally adjust the impedance of the joint. Finally,
the way how constraints for the elastic actuator incluence the possible link mo-
tions becomes also nontrivial as it can not be directly derived from kinematic
considerations as done in a RJ.

In order to gain a better understanding on how to best make use of the
relation between the actuator and the link motion, one possible way is to look
at EJ’s from an energy point of view. In particular, focusing on explosive motion
tasks one can try to first find control strategies which, in a given time interval,
maximize the energy that is transfered from the actuator to the link. As the
corresponding maximal energy will in general depend on the system parameters,
one can then try to analyse this dependence. This leads to the following two
basic questions for EJ’s:

e How can we maximize the link velocity of an elastic joint?
e How does the maximal link velocity depend on joint parameters?

It is important to realize here that finding an answer to the first question can
provide a physical insight for how to optimally transfer the energy from the
actuator to the link by using the inherent elasticity in EJ’s. Understanding
the dependence of the resulting maximal energies on the joint and in particular
on the actuator parameters, the answer to the second question can be used to
derive design guidelines for elastic actuators especially if these actuators are to
be used for energy intensive tasks. In this thesis, we will apply OC Theory
to find complete answers to both of these questions under practically relevant
assumptions.
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1.2 Approach

OC Theory is a mathematical tool which can be used to analyse the maximum
performance of a system if there exists a mathematical model describing this
system’s dynamics in terms of first-order differential equations [44, 11]. More
specifically, given such a model and a cost functional, which is expressed in terms
of this model’s states and which describes a performance criteria, OC Theory
can be used to determine the control strategies which minimize this functional.
Considering now the two control and design questions from the previous section,
it is clear that by choosing an appropriate model for an EJ and cost functionals
related to the joint’s terminal link velocity, OC Theory can be directly used to
address these questions. For deriving control strategies for EJ’s and analyse the
resulting performance we will, therefore, also make use of this theory.

It is important to realize here that the two questions, as we have stated
in the previous section, are very basic but also very broad questions whose
answers will in general depend, besides the initial conditions of the EJ and the
given time interval, also on the chosen mathematical model. This model choice
is, however, not unique as there exist numerous elastic actuator designs with
different actuation possibilities. Even for the same design, different models
can be chosen which, for instance, differ on how detailed they consider the
motor dynamics. As we will see in Section 1.3, in contrary to the large number
of existing designs, only a few number of EJ models have been analyzed so
far using OC Theory. Moreover, these studies concentrate mostly on models
with linear impedance, constant or adjustable, which allows them to obtain
analytical solutions. Studies investigating models with nonlinear impedance also
exist, but they rely on numerical methods and focus only on a particular design
without a detailed analysis on how a different choice for actuator parameters
might influence the system’s performance. Noting that the output torque of
existing elastic actuators with variable impedance are mostly described by a set
of nonlinear functions [56, 20], the contributions of the existing studies to the
control and design of EJ’s are therefore limited.

In order to derive general physical principles for EJ’s, we have analysed in
this thesis simplified models of these joints such that the corresponding OC
strategies could be expressed analytically. In particular, we have applied OC
Theory to three such models and used them to investigate the influence of ac-
tuator parameters, such as spring nonlinearity and maximal motor velocity,
and actuation possibilities, such as variable damping and variable stiffness. Our
primary focus was given to a basic model consisting of a motor, a link and a non-
linear spring for which the analytical derivation turned out to be very complex
due to the nontrivial relation between OC strategies and spring characteristics.
The obtained results have been then extended to the other two models.
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Figure 1.3.1: EJ with Variable Impedance

1.3 State of the Art

In this section, we want to give an overview of the existing results on OC strate-
gies for EJ’s. Moreover, we want to clarify how this thesis and our publications
on the subject extend these results. As already mentioned, there are different
design approaches for elastic actuators leading to different models for EJ’s. To
be able to clearly distinguish between the various results in literature, we will
first introduce a classification for EJ models of different complexity.

1.3.1 Elastic Joint Models

From a mechanical perspective, an EJ can be regarded as a system consisting of
two rigid bodies, namely a motor and a link, which are attached to each other
by a torsional elastic spring and damper. The motor together with the spring
and the damper constitute the elastic actuator of that system and the motion
of the link is determined by this actuator through the torques acting at the
spring and damper. Figure 1.3.1 graphically illustrates this system in its most
general form, where I,,,; denotes the motor’s mass of inertia and 6 its position.
Similarly, M denotes the link’s mass of intertia and ¢ its position. Moreover, K ;
stands for the stiffness of the spring and D; for the damping coefficient of the
damper. It is important to recall here that depending on their designs elastic
actuators can control the torque acting between the motor and the link through
different mechanisms [56]. This is accounted for in Fig. 1.3.1 by letting K; to
be a function of both the spring deflection ¢ = 6 — g and a stiffness variable os.
Similarly, D is defined as a function of the time-derivative' of the deflection ¢
and a damper variable og.

The dynamic behaviour of the system depicted in Fig. 1.3.1 can be math-
ematically described once we are given the function 7 g, which describes the
torque in the spring as a function of ¢ and o, and the function 7;p, which
describes the torque in the damper as a function of qb and o4. These functions
influence the way how the energy of an EJ can in general be changed and also
distributed along the motor, spring and link. As already mentioned, depending
on the elastic actuator, the total torque 7; between the motor and the link of
an EJ, i.e. the sum of 755 and 7; p, may or may not be adjustable through a
stiffness and/or damper variable. This, however, has a direct influence on the

1We use dots to indicate derivatives with respect to time t.
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’ 1 ‘ O o4
MC | o4 = const. | o4 = const.
MSC - o4 = const.

MDC | o4 = const. -

MIC - -

(a) Assumptions for o5 and oq
(it e {MC,MSC,MDC,MIC?})

L g ] s |
LS | 155(¢,05) =050
NS -

(b) Assumptions for 77 g
(4 € {LS,NS})

L k] 1.0 |
UD TJ,.D = 0
LD | 75p(¢,04) = 0ad
ND -

(c) Assumptions for 77 p
(k € {UD, LD, ND})

Table 1.1: Classification of EJ Models (£7; ;1)

corresponding OC strategies. Moreover, the way how the two functions 7; g
and 7 p are related to their arguments, i.e. whether this relation is linear or
nonlinear, also has an effect on these strategies.

In order to be able to distinguish between the different actuation possibilities
for EJ’s we propose in Fig. 1.3.2 a classification of EJ models. As indicated
there, we first have a general class of models £7 p;7¢ which is based on the sys-
tem depicted in Fig. 1.3.1 and for which both o4 and o4 are adjustable. Three
subclasses are then derived from this class which are denoted by £7 v, ET msc
and £J pype- They only differ in the adjustability of o and o4. More specifi-
cally, for models in the subclass £7 p;c both o4 and o4 are constrained to take
constant values. This is indicated in Fig. 1.3.2 by representing K; and D,
as a function of only ¢ and ¢, respectively. Similarly, for models in £7 ys¢
and £J ppe the damping variable o4 and the stiffness variable o are assumed
to remain constant, respectively. In other words, models in £7j;s¢c consist
of a variable stiffness actuator (VSA) [60] and models in £J ppe a variable
damping actuator (VDA) [56]. Finally, two additional subscripts are used to
specify whether the two functions 755 and 7;p are linear in their arguments
and whether damping is present in the system. Table 1.1 gives a summary of
the different assumptions for the proposed classes for EJ’s.
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Figure 1.3.2: Classification of EJ Models
(In this thesis, the models in the gray area are investigated. The main focus is
given to the model on the lower left corner.)

1.3.2 Optimal Control Strategies

Based on the classification we introduced in the previous subsection, Table 1.2
gives an overview of the EJ models which are investigated in the literature
using OC Theory. As shown there, most existing works deal with joints having
either a SEA, i.e. models in the class £y, or a VSA, i.e. models in the
class ETmsc [24, 16, 17, 39, 21]. Making use of different motor models, they
all investigate motor control strategies which either maximize the terminal link
velocity of EJ’s or the stored potential energy. Similarly, in [47] EJ models in
the classes EJ pype and £J apre have been investigated to realize a reaching
task. We will next summarize some of the main findings of these works and
clarify how the results of this thesis extend them.

1.3.2.1 Elastic Joints with SEA’s (£Jnmc¢)

In the literature, studies following an approach similar to the one we pursue
in this thesis mostly exist for undamped EJ’s with linear SEA’s (LSEA’s) [17,
24, 16, 39, 21]. In these actuators, the TDP describing the output torque as a
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ET M jk ET msc,jk ET MDC,jk
J=LS |j=NS|j=LS|j=NS |k=LD|k=ND
) 4, 17, 16] [17, 16]
Analytical 130, 21, 40] [43] 130, 21] [42, 43] [41] -
Numerical - [24] - [24] - [47]

Table 1.2: Investigated EJ Models in Literature (The publications [40, 41, 42]
and [43] resulted from the research conducted by the author during the thesis
period.)

function of the spring deflection is linear. Consequently, when the position of
the motor is fixed the dynamics of an EJ with such an actuator corresponds
exactly to the dynamics of a conservative and linear mass-spring system (MSS)
[35]. In particular, the link will oscillate in this case with the corresponding
MSS'’s eigenfrequency whenever the joint has a positive energy.

Existing studies on EJ’s with LSEA’s reveal a close relation between the os-
cillatory nature of MSS’s and optimal control strategies maximizing the joint’s
terminal link velocity as well as the joint’s potential energy. In particular, mod-
eling the motor as a velocity source it has been shown in [24], using Pontryagin’s
Minimum Principle (PMP) [44], that in order to maximize the link velocity of
an EJ with a LSEA at a given time instant, the motor velocity needs to peri-
odically switch between its minimum and maximum value provided the given
time is sufficiently high. Furthermore, the frequency of this switching has been
shown to correspond to the eigenfrequency of the corresponding MSS while its
phase has been shown to be uniquely determined by the final time. Similarly, in
[39, 21] it has been shown that the same principle also applies when maximizing
the potential energy at a given terminal time.

In [17], the problem of maximizing the link velocity is discussed as well.
Nevertheless, in contrary to [24] the final time has been left free and constraints
have been included on the switching number of the controls and on the final
link position. Based on the conducted analysis, it can be observed that for this
particular problem the optimal motor velocity simply changes its sign whenever
the torque in the spring changes its sign. Moreover, the maximal link velocity
is always attained at zero spring deflection. In this thesis, we will show how
these problems are all closely related. More importantly, we will introduce
the concept of resonance energies which extend existing results on joints with
LSEA’s to joints with nonlinear SEA’s (NSEA’s).

1.3.2.2  Elastic Joints with VSA’s (£J msc)

VSA’s enable EJ’s to actively change their TDP. This change in turn influences
both the potential energy stored in these joints and their oscillatory behaviour.
In order to understand how to best exploit this additional degree of freedom in
the control, research has been mainly directed towards EJ models in which an
instantaneous change between two linear TDP’s, a minimal and maximal TDP,
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was allowed. In other words, the eigenfrequency of the corresponding MSS’s was
assumed to be directly controllable. Under this assumption, control strategies
have been proposed in [17] for a position-sourced motor to attain high termi-
nal link velocities at a given position. These strategies satisfy the necessary
conditions provided by PMP for the task of maximizing the terminal link veloc-
ity and are determined under the assumption that the Hamiltonian is zero. A
physical principle has been also found describing these strategies. According to
this principle the motor position switches between its minimum and maximum
value depending on the sign of the link velocity. Similarly, the VSA switches
the controllable eigenfrequency between its minimum and maximum value, and
the switchings occur whenever the product of the link velocity with the spring
torque changes its sign [54].

In [39, 21], focus was given to an EJ model with a velocity-sourced motor.
Under the simplifying assumption of directly controlling the eigenfrequency, the
problem of maximizing the potential energy of an EJ at a given terminal time
has been investigated there. The obtained analytical expressions for the control
strategies show the existence of a physical principle closely related to the one
found in [17] for EJ’s with position-sourced motors. In particular, for control
strategies leading to a zero Hamiltonian the motor velocity switches between
its minimum and maximum value depending on the sign of the spring torque.
The VSA, on the other hand, switches in this case the eigenfrequency between
its minimum and maximum value depending on the sign of the product of this
torque with its time-derivative. For control strategies leading to a non-zero
Hamiltonian the principle is more complex, but can be described in terms of
the potential energy of the joint and the kinetic energy of the link. In this thesis,
we will show the existence of similar physical principles for the case when the
VSA is allowed to instantaneously change the TDP by switching between two
nonlinear functions of the deflection, see also [42, 43]. Considering the currently
existing VSA designs, this is a practically more relevant scenario.

1.3.2.3  Elastic Joints with VDA’s (€7 ype)

Regarding the OC of EJ’s with VDA’s, a reaching task has been analysed in [47]
such that a desired link position is reached while minimizing a cost functional
that accounts for the deviation of the link trajectory from the given target. More
specifically, setting the motor position to the desired link position and fixing
the TDP of an EJ optimal control strategies have been found for the adjustable
damping in a VDA. Numerical results obtained using the ILQR method [31]
show that for this particular task the damping in the system needs to switch
between its minimum and maximum value. In this thesis, OC strategies are
investigated for a more simplified EJ model for which analytical solutions could
be obtained. The existence of switching strategies as observed in [47] have been
then shown to be necessary whenever a linear cost functional is to be minimized,
see also [41].



CHAPTER 1. INTRODUCTION 20

1.4 Thesis Organization

In this thesis, we have mainly investigated optimal control strategies for an
undamped EJ with a NSEA, see Fig. 1.3.2. In particular, treating the motor of
the actuator as a velocity source and assuming that the joint is initially at rest
we have fully solved the problem of maximizing the link velocity of such EJ’s
at a given terminal time. The main body of the thesis is devoted to deriving
the solution to this problem. Furthermore, we also investigate optimal control
strategies for more complex EJ models and more general cost functionals. The
thesis is organized as follows:

e Chapter 2 formulates the problem of maximizing the link velocity of an
EJ with a velocity-sourced NSEA in the context of OC theory.

e Chapter 3 provides several preliminary results on mass-spring systems as
well as a novel result on their periods.

o Chapter 4 discusses switching control strategies maximizing the energy of
EJ’s.

e Chapter 5 introduces an iterative construction method to determine opti-
mal control strategies maximizing the link velocity of EJ’s.

e Chapter 6 discusses the maximal link velocity of EJ’s by making use of the
proposed method. Furthermore, the applicability of the obtained results
is experimentally verified using the DLR FS.J.

e Chapter 7 extends the obtained results on optimal control strategies to
EJ’s with VDA’s and VSA’s.

e Chapter 8 concludes the thesis by summarizing the main results, discussing
their implications and giving an outlook for future research directions.

There are also two appendices in the thesis. The first appendix, that is Appendix
A provides a proof of PMP for a fairly general OC problem and also shows how
to further extend this principle under appropriate assumptions on the system
dynamics and cost functional. Appendix B contains the proofs for the various
propositions stated in the thesis.



Chapter 2

Problem Formulation

In this thesis, we will make use of OC Theory to mostly determine control
strategies which maximize the link velocity of EJ’s at a given time instant.
Focusing on the case where the joints are initially at rest and controlled by
velocity-sourced SEA’s, the main purpose of the current chapter is to formulate
this velocity maximization problem as an OC problem. This requires us to first
find the control system that mathematically describes the dynamics of an EJ
and then to express the cost functional describing our problem as a function
of this system’s states. In the following section, we focus on determining the
required control system?!.

2.1 Control System X

The control system corresponding to a given OC problem is a 4-tuple consisting
of the state-space X, the state dynamics f, the control set U and finally the class
of admissible controls U [53]. In order to determine these four quantities and
thus the control system ¥ for our problem, we will first describe the dynamics
of an EJ with a velocity sourced SEA. Moreover, we will also clarify several
properties of TDP’s of SEA’s that are common in most existing designs and
that we will take as granted.

As already discused in Sec. 1.3.1 and also illustrated in Figure 2.1.1, an EJ
with a SEA can simply be regarded as a mechanical system which consists of a
motor and a link that are attached to each other by a possibly nonlinear spring.
Consequently, using g to denote the link position and 6 for the motor position
the dynamics of such a joint is given by the following two differential equations

IThe introduced control system will be used in Chapters 4-6, i.e. the main body of the
thesis, where we analyse EJ’s with velocity-sourced SEA’s. In Chapter 7, we will slightly
adjust this system to be able to account for the additional parameters and control variables
in the more complex EJ models. Similarly, we will also formulate there different OC problems
dealing with more general cost functionals.

21
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0(t) q(t)

Figure 2.1.1: EJ Model with a SEA

[35]:

é = uc [_emaz7 9maa:]a

Mg = 715(9), (2.1.1)
1.2

where M > 0 stands for the link’s mass of inertia with respect to its rotation
axis, 77 : R — R for the TDP? describing the output torque as a function of the
deflection in the spring ¢ = 6 — ¢ and finally u for the controlled motor velocity
whose magnitude is bounded by the maximum motor velocity Omaz > 0. Based
on the TDP’s present in most existing SEA designs, we will have the following
three standing assumptions for 7 ;:

(A1) 7;: R — R is symmetric with respect to the origin.
(A2) 7;: R — R is a continuously differentiable function of the deflection.

(A3) The stiffness-deflection profile (SDP) K; : R — R, i.e. the first derivative
of 77, is positive at each deflection value.

Having described the dynamics of EJ’s with SEA’s and also clarified the general
properties of their TDP’s, we next find the state-space X and the state dynamics
f for our problem.

Both X and f can be determined by the differential equations (2.1.1)-(2.1.2)
and the mathematical states we choose to describe our problem. We take these

states as the spring deflection and the link velocity, i.e. * = (ml xg)T =
(¢ q)T, due to their direct relation to the potential energy stored in the SEA

and to the kinetic energy of the link. With this choice, our state-space becomes
simply the two-dimensional space R?, i.e.

X =R (2.1.3)

Moreover, by differentiating « with respect to time we get using the differential
equations (2.1.1)-(2.1.2) the state dynamics f : R? x R — R? with

&= f(x,u) = (li_(xf) . (2.1.4)

M

2For an undamped EJ, we simply have 75 = TJ,S-
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To determine our control system X, we now need to find its control set and
further choose the class of admissible controls over which we will search for
the optimal control strategy. The control set of a control system describes the
constraints on the values of the control. For our problem, the control w in (2.1.4)
corresponds to the motor velocity and according to (2.1.2) the control set is then
given by . )

U = [ Omaz;s maz)- (2.1.5)

Similar to the control set, the class of admissible controls ¢/ describes the func-
tion space to which the controlled motor velocity belongs. We will take this
class to be the practically relevant set of piecewise continuous functions® which
are defined on a compact interval D = [tg,t¢] C R with ¢; > ¢y and which take
values in U. Denoting this set by PCy, we thus have

U =PCy. (2.1.6)

In order to ease our analysis, we will assume that all the functions in U are
left-continuous at t € [to,t¢) and continuous at tj.

Equations (2.1.3)-(2.1.6) fully describe the control system ¥ = (X, f,U,U)
which we will use to formulate our OC problem in Section 2.3. It is important
to remark here that in this description we do not specify particular values for
M or Opaz. Similarly, we do not provide the exact expression for the TDP. This
is justified by the fact that the solution method we propose in this thesis can
be applied for any admissible choice for these three parameters. Nevertheless,
we will also see that OC strategies and the resulting maximal link velocities do
depend on these parameters. In order to be able to easily distinguish between
control systems with different parameters and also to rigorously formulate our
OC problem, we require some basic definitions which we provide next.

2.2 Basic Definitions

In this section, we present definitions and notations which we will use in the for-
mulation of our OC problem and which will simplify our discussions in the later
chapters where we derive and analyse the solution to the formulated problem.

Following [53], we call any control « in the set of admissible controls I an
admissible control. A piecewise continuously differentiable function @ : D =
[to,tf] — X is then said to be a trajectory of ¥ if there exists an admissible
control u sharing the same domain as @ such that &(t) = f(x(t),u(t)) holds
at each t € D where this derivative exists. Moreover, in this case we will
call the pair (x,u) an admissible controlled trajectory of ¥ and refer to « as the
trajectory corresponding to u. Since ¥ = (X, f,U,U) is a time-invariant system,
without loss of generality we always choose the initial time tg of  and w as 0,
ie. D = [ty,ts] = [0,tf]. Consequently, their domains of definition depend only
on their final time t; > 0.

3In the thesis, we will adopt the definition of piecewise continuous functions and piecewise
continuously differentiable functions from [34].
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Let us consider now the set of all trajectories of 3. Following this time
[55], we will denote this set by Traj(X). For each x € Traj(X), we use zg =
(:1:10 $20)T := (0) to denote its initial state and x; = (a:lf .’L‘Qf)T = x(ty)
to denote its terminal state. Moreover, we use T'(x) := t; to denote the final
time of & and refer to this time also as the time along x. The trajectory
x* € Traj(X) will then be called a time-optimal trajectory of ¥, if T'(x*) is less
then or equal to T'(z) for any € Traj(X) with @y = zj and xy = }. Finally,
an admissible control u* is called a time-optimal control of ¥ if there exists a
time-optimal trajectory x* of ¥ such that (x*,«*) is an admissible controlled
trajectory.

As we will see in Chapter 5, the notion of time-optimality we have just
introduced plays an important role in understanding how to maximize the link
velocity of series elastic actuators in a limited time. In particular, we will
show that control strategies maximizing the link velocity at a given time are
always time-optimal in case the joint is initially at rest. In that chapter, we
will also show that these particular strategies are always piecewise-constant.
We want to next introduce the definitions and notations used in the thesis to
discuss different possibilities for piecewise-constant control strategies and the
trajectories corresponding to them.

We call a control described by a piecewise-constant function of time simply
a switching control and denote the set of all admissible switching controls by
Sy. Note that a control in Sy C PCy is uniquely described by its final time y,
its switching times in (0,t;) at which it changes its value and finally the control
values at the initial time and at the switching times. We define the switching
number of such a control as the number of its switching times, which is always
non-negative and finite. Moreover, if ¢ > 0 is the switching number of a control
u € Sy we will refer to this control also as an admissible switching control with
1 switchings.

Given an admissible switching control v : D — U with ¢ switchings, we
use tgo = 0 and tg;4+1 := ty to denote its initial and final time, respectively.
Moreover, if ¢ > 0 we use tg  to denote the switching times of that control with
ke {l,...,i} and tso < tg1 < ... < tg+1- Regardless of the value of i, we
also introduce a finite partition of the domain D using the times tg,...,t5,i4+1
such that the control takes the same value in each element of this partition.
This partition consists of ¢ + 1 subsets of D defined by

tok,t kA
Dy i= d Usirtsinr) kAT (2.2.1)
tsptsptr] k=i

where k € S; :={0,...,i}.

Finally, for any time-dependent variable related to a switching control u with
i > 0 switchings we indicate the value of that variable at tsx € {ts,0,...,tsi+1}
by putting the upper left superscript k to that variable. For instance, *u denotes
for each k € S; 11 the value of the control u at tg . Similarly, if « is a trajectory
corresponding to u, * denotes the value of that trajectory at ts k-
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The definitions we have so far provided for ¥ are valid regardless of our choice
for the control system parameter, i.e. for the three-tuple p := (M, 77, 0maz) € Ps
with

Ps :=(0,00) x C;, x (0,00), (2.2.2)

where C} denotes the set of all TDP’s satisfying (A1)—(A3). Note that for each
possible choice of p, equations (2.1.3)-(2.1.6) describe a unique control system
Y = (X, f,U,U). More specifically, there exists a one-to-one correspondence
between the parameter set Ps, and the set of control systems satisfying the
assumptions from Sec. 2.1. To emphasize this bijective relation between p
and 3, we will occasionally call ¥ as the control system corresponding to the
parameter p. Similarly, for the functions which we will define in the following
chapters for the control system ¥, we will either expand their domains using
the set Py or call them the function corresponding to p, if we want to explicitly
state their dependence on the elements of p . This will especially be done in
Chapter 6 where we analyse the influence of the control system parameters on
the maximal link velocity of EJ’s.

2.3 Optimal Control Problem

Based on the control system ¥ described in Section 2.1, we introduce the fol-
lowing cost functional J : &/ — R, with

J(u) = —zay, (2.3.1)

where z2; denotes the terminal link velocity of the trajectory @ which starts
from the initial state @y = 0 and which corresponds to the control u. Our
OC problem on maximizing the link velocity of an EJ with a SEA can then be
formulated as follows.

Link Velocity Mazimization Problem (LVMP): Given a final time ¢y > 0,
find the control u°P* which minimizes J(u) over all admissible controls u € U
defined on D = [0, t;].

Having mathematically formulated our OC problem, we want to use OC
Theory to find its solution. As we show in Chapter 5, the control strategies
solving the introduced LVMP, i.e. the optimal controls for the LVMP, can be
derived using mainly PMP [44]. Nevertheless, in order to simplify the derivation
of these controls and the computation of the corresponding optimal trajectories
for the LVMP we will first provide some preliminary discussions on the prop-
erties of 3. More specifically, in the following chapter we will have a detailed
look at the trajectories of MSS’s, i.e. trajectories of ¥ corresponding to u = 0,
and at the time properties of these systems. In Chapter 4, we then turn our
attention to trajectories of ¥ corresponding to switching control strategies and
discuss how to maximize the energy stored along these trajectories.



Chapter 3
Mass-Spring Systems

In this chapter, we will discuss trajectories and time properties of MSS’s and
investigate how they are influenced by the energy and TDP of such systems.
Our results on trajectories will be used for constructing candidates for opti-
mal control strategies solving the LVMP and for determining the resulting link
velocities. Our results on time properties will, on the other hand, help in de-
termining the optimality of the constructed strategies as well as in finding a
physical interpretation for the optimal strategies.

3.1 Trajectories

A MSS consists simply of a mass that is attached to a wall by a spring. Conse-
quently, such a system can be thought of as an EJ with a fixed motor position.
Making use of (2.1.1) and the notations we have previously introduced for EJ’s,
the dynamics of a MSS can then be described by the second-order differential
equation )

M+ 75(¢) =0, (3.1.1)

where ¢ denotes as before the deflection in the spring. It is important to note
here that given an initial deflection ¢y := ¢(0) and an initial velocity ¢g := ¢(0),
a two-times continuously differentiable function ¢ : [0,¢;] — R solving (3.1.1)
exists for each value of t; > 0 due to our assumptions on 7;. Moreover, this
solution is unique [52]. Based on the definitions we have introduced in Section
2.2, we will call a pair (¢, ¢) that consists of a solution of (3.1.1) and its time-
derivative a trajectory of a MSS. Our aim is now to first elaborate on the energy
stored along trajectories of MSS’s.

The energy of a MSS consists of the kinetic energy of its mass and the
potential energy stored in its spring. The potential energy E,; : R — [0, 00) is
a function of only the deflection and is given by the integral

¢
Epot(¢):/o T7(s)ds. (3.1.2)

26
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Similarly, the kinetic energy Eyin : R — [0,00) of a MSS depends only on its
velocity ¢:

_mezéMﬁ. (3.1.3)

Multiplying now both sides of (3.1.1) with d), integrating with respect to time
and using our assumptions on 7, it can be observed that along a trajectory of
a MSS the system’s energy Fpss : R? — [0,00) with Epyrss(¢, d) = Epot(¢) +

Eyin(9) is constant and given by

EMSS(¢7 (b)

%o .
/ U@®+%Mﬁ (3.1.4)
0

¢m,am 1 .
= / T7(s)ds = §M¢72mw. (3.1.5)
0

Notice that in (3.1.5) we use @q. > 0 to denote the maximum deflection which
the system can obtain at ¢ = 0, and similarly q-bmam > 0 to denote the system’s
maximum velocity attainable at ¢ = 0.

According to (3.1.4), the energy along a trajectory of a MSS is uniquely
determined by the initial values ¢ and $o. Moreover, this energy can only be
equal to zero if both ¢y and ¢, are zero. In this case the MSS is simply in static
equilibrium and does not move, i.e. » = 0. In all other cases, the system’s energy
and thus ¢4, and (ﬁmaz are positive. Moreover, for a sufficiently high final time
the system will periodically oscillate between — @00 and ¢uaq [36, 52]. We want
to next take a closer look at the trajectories of MSS’s with positive energy.

It is important to first realize that for any given ¢,,,, > 0, the equality
Eprss(o, (i)) = fo "% 17(s)ds describes a closed curve in the phase plane. In-
deed, this equality can be solved for the magnitude of the velocity as follows:

. 2|7 ry(s)ds
‘¢|(¢a¢mam) = \/W, (316)

where we have |¢| : [—@mazs Pmaz] X (0,00) = [0,00). The values |@|(¢, dmaz)
takes at ¢ € (—dmazs Pmaz) Provides then the upper half of the aforementioned
curve in the phase plane while the negative of these values will give the lower
half. Both parts will join at the minimum and maximum deflection values.

It now follows from (3.1.4)-(3.1.5) that in a phase plane trajectories of MSS’s
move on closed curves when their energies are positive. Figure 3.1.1 illustrates
these curves as well as several trajectories moving on them for three different
TDP’s and various values of ¢pay (75 € {751,752, 753}, M = 1[kgm2]). More
specifically, in Fig. 3.1.1 (Top) three TDP’s are plotted for ¢[rad] € [—3Z, %]
together with the corresponding SDP’s and potential energy functions. The
TDP’s are chosen such that each of them shows a different spring characteristic
but attains the same potential energy of 5J at the deflection ¢. = {zrad. For
each of these TDP’s, the corresponding closed curves are then plotted in Fig.
3.1.1 (Bottom) for four different values of ¢,,q.. On each of these curves, a
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Figure 3.1.1: Trajectories of MSS’s with different Spring Characteristics

(Ts1(¢) = m sin(55 0), 7r2(0) = 2309, 753(¢) =

m sinh(22¢), M = 1[kgm2])

trajectory is also depicted which starts from zero deflection with the maximal
velocity and terminates at ¢ = %. Notice that on the upper half of the

phase planes where ¢ is positive, the deflection increases, while on the lower
part it decreases. Consequently, all the depicted trajectories rotate clockwise as
they move on the closed curves in Fig. 3.1.1.

A closer look at Fig. 3.1.1 (Top) shows now how different spring charac-
teristics can influence the values of 75, K; and E,, at various deflections. As
illustrated there, for the third TDP 7; 3 which is depicted on the right and which
shows a progressive spring characteristic, the torque at ¢ = ¢, is greater than
the torque values attained by the other two TDP’s at this deflection. Similarly,
the stiffness value at this deflection, i.e. K j(¢.), takes the highest value for 7, 3.
These two observations are merely a consequence of the condition on the stored
potential energy E,,; according to which the chosen TDP’s need to store the
exact same energy at this deflection. Another consequence of that condition is
that for each ¢ > ¢. the potential energy E,.:(¢) that is stored using 7,3 is
greater than the energy stored using the other two TDP’s while for each ¢ in
(0, ¢¢) the potential energy stored using 771, which shows a degressive spring
characteristic, is the greatest. This also results in the stiffness value at zero
deflection, i.e. K 7(0), being the greatest for 7.

As shown in Fig. 3.1.1 (Bottom), choosing different TDP’s does not only
influence the stiffness, torque and potential energy values at various deflections
but also the curves on which the trajectories of MSS’s move. In the following,
we want to briefly discuss several properties of these curves which will explain
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the similarities as well as the differences observed in Fig. 3.1.1 (Bottom) and
show, in particular, how the differences are related to the previously discussed
values of 77, Ky and Epot

Note that regardless of the TDP, the closed curves described by the equal-
ity EMSS(¢»¢.5) = fo " 17(s)ds enclose a greater area as ¢p,q, and thus the

013l 1

positive everywhere it is defined, see (3.1.6). Moreover, all these closed curves
are symmetrical not only with respect to the horizontal axis, as expected from
(3.1.6), but with respect to both axes. This property is due to the two energy
functions (3.1.2) and (3.1.3) being both even functions and allows us to define
similar to (3.1.6) the magnitude of the deflection |4 : [—maz, Pmaz] X (0,00) —
[0,00) as a function of ¢ and brmaz With

system’s energy increases. This follows from the partial derivative 5

9106 = By (531(as = ) (3.1.7)

where Ep_olt denotes the inverse of the potential energy function restricted to non-

negative deflection values, i.e. of Ejot|[0,0). This symmetry property also allows
us to concentrate only on the part of the phase plane where both ¢ and gb are
non-negative when analysing the properties of these curves. Consequently, all
the properties of the curves can be found by simply analysing the two functions
(3.1.6) and (3.1.7).

Focusing now on the differences in the curves in Fig. 3.1.1 (Bottom), one
important difference exists in the values of the maximum velocity ¢maz. As
shown there, given the same maximum deflection value the maximum velocity
the three MSS’s attain are not necessarily equal to each other. The reason
for this can be found by looking at the equality (3.1.5) which relates ¢,q.
and dpmaz- According to this equality, for any given MSS the value of bmaz 1s
directly related to the potential energy stored at the deflection ¢,,4,. As already
discussed, by our choice of the TDP’s all the three MSS’s analysed in Fig. 3.1.1
have the same potential energy for ¢,,4: = ¢. and since the masses of MSS’s
are also equal to each other so are their maximum velocities in this case. For
Omaz < @c, however, Epoi(Pmaz) takes its maximum value for 77, and similarly
for ¢maz > dc; Epot(Pmaz) is maximal for 773, Consequently, for ¢maz < ¢c
the maximum velocity quaI is greatest for 751 and for ¢p,q, > @ it is greatest
for 7;3.

Another important difference between the illustrated curves are their cur-
vatures at zero deflection and at the maximal deflection. These curvatures can
be quantitatively analysed by evaluating the partial derivatives %ﬁl (b, drmaz)

and a;‘-bfl (gi), ¢maz) at ¢ = 0 and at ¢ = 0, respectively. Using equations (3.1.6)-
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(3.1.7), it can be shown that these derivatives take the values

9°|9| wh
0, bmas) = ——0 3.1.8
a¢2 ( ’(b ) ¢mam ( )
21l M
0, = —— 3.1.9
6¢2 ( quaﬂf) TJ(¢maz) ( )
where wy = K"Tm) denotes the eigenfrequency of MSS’s when linearized

around their equilibrium. Notice that equations (3.1.8)-(3.1.9) and the pre-
viously discussed values of 75, K; and E,,; explain now why in Fig. 3.1.1 (Bot-
tom) the curvatures of the light blue and dark red dashed lines (¢.q0 > %rad)
at the two deflection values ¢ = 0 and ¢ = ¢4, are highest for 7;; and smallest
for 7;3.

For brevity, we will not go into a more detailed discussion on the properties
of the illustrated curves, but summarize all the equations required for their
analysis in Table 3.1. More specifically, we introduce in Table 3.1a the TDP
types Tjs, 71 and 774, which respectively generalize the TDP’s 771,72 and
773 from Fig. 3.1.1, and provide the corresponding SDP’s and potential energy
functions. Moreover, we give in Table 3.1b the expressions for the functions \¢|
and |¢| together with the equations for ¢, and wo which clarify the relation
between the domains of these two functions?.

Our discussion on the trajectories of MSS’s so far elucidates their dependence
on the system’s energy and on the TDP. We have, however, not yet discussed
the times these trajectories need to move from one state to another. In the
following section, we show how to explicitly compute these times.

3.2 Time Properties

Based on our discussion on the trajectories of MSS’s, we can see that for each
initial state (¢o, q'SO) with Farss(do, éo) > 0 there exists a unique periodic solu-
tion ¢ : [0,00) = R of (3.1.1) such that the corresponding trajectory constantly
rotates on a closed curve when illustrated in a phase plane. Choosing an arbi-

trary state (¢, ¢s) on that curve, which is not equal to the given initial state,
we are now interested in finding the times ¢ € (0,00) at which this trajectory
(¢, @) reaches this second state, i.e. for which we will have

(66).6() = (61, .). (3:2.1)

INotice that when using the expressions in Table 3.1 for the TDP 755, ¢ and ¢mas are
allowed to take values only in the intervals (fi, i) and (0, iﬁ respectively. This is
done in order to ensure that assumption (A3) is satisfied, see Section 2.1. Moreover, in the
definition of the TDP 7;; we use two parameters, K. and k., instead of only one. This choice
better indicates the similarities and differences between the different expressions for the three
TDP’s. In addition, it will also be useful in Sec. 6.2, where we analyse the dependence of the

maximal link velocity on system parameters using dimensionless parameters.




31

(0 < JU ‘0 < 0 < °3) sonsuesoeTeyy) Suridg JUeISPIP YHA S,SSIN 10§ suonenby °¢ oIqRL

MASS-SPRING SYSTEMS

CHAPTER 3.

“o® pue g (p)
ol U vt = () e e (1) (D ey = T
(7 p)quis 0m T HE)uts 0m zowg) TP
[((*7*@)quey) 37— ((*"“p)uued) q]*4e 0 [((*P@)us) 5 (P pg)s0o+1) —((*P* @) uis) 7 g] 4 (*7“) “p
i e ("7 uqp)ws) 3y F ()L
usy :Suudg SutuepIefy 171 :Sundg reoury $r1 :Sundg Suruagjog
‘L pue 21 (9)
(=) ~TFmg = ()30 = o U (11 ¢ () EEEEEE O — (y2) g (4°2) W o(1°1-) : (4°2)d
A e g — (=0 9)
? ?Ef; %Limﬂ\/vk|més S\VL (p)uss
N — z
:A oy ) UURY AqueﬂwwﬂwWWOAMH&%& vngvﬁ (¢)uss ( iawrmwﬁas Q ZEN@Q Jums¢ A%Nwav ,mo% ("9 ‘9)9L
45’1 :Quudg Sutuaprey 172 :Suudg redury §71 :Suudg Surusgjog
0m pue TP o] |p| (q)
o/ =%
E—— g E—— g
2, 0om 23 7 ¢
s = (ot e | OO
R GO e || (70

AOOOV > &3:@ AOO FOV B) ..3::@ Auwm FDV 5 &z:»@

4s'ry :Suudg Suruepaefy 111 :gutadg reaury $r1 :Sundg Suruajjog

sods pue L37 ‘I1 (e)

- D47 E ((¢74)s00 — 1) =&

(1 — (¢74)us0o)

(9?3)ysoo 2237 73] (¢22)800 24251 (P)r31

(@2)uws 737 = (9)45L | @y°5f = (P)112 | (P7y)ws 73 = (¢)° L || (P)12

A6 A ¢ (Y56

4s’ry :guridg Surueprepy | 11 :Suudg resury | ¥/1 :Suudg Surusjjog




CHAPTER 3. MASS-SPRING SYSTEMS 32

Moreover, we want to understand the influence a MSS’s energy and TDP have
on these times.

It is important to notice here that there exist infinitely many times for which
(3.2.1) will hold. Indeed, as (¢, @) rotates clockwise in the phase plane the state
(b5, gbg) will be reached for the first time at a positive time ¢; and keep reaching
this point after every oscillation period 7},. Consequently, ¢, and 7}, are sufficient
to describe the set of all possible times at which (3.2.1) will hold. We will next
show how to compute the minimum time ¢, that is required to reach the state

(¢s, ds) from (g, o) and discuss some of its main properties.

3.2.1 Minimum Time ¢,

There are different possibilities for computing the minimum time ¢5. In the
following, we will show how to compute ¢, using (3.1.6) and (3.1.7).

Let us first assume that the trajectory starts from zero deflection with a
positive velocity, as is the case for the trajectories illustrated in Fig. 3.1.1.
Moreover, assume that the state (¢, ¢;) lies in the first quadrant of the phase
plane. The velocity ¢ will then remain positive and the deflection ¢ will strictly
increase until (¢s, qbs) is reached for the first time. Consequently, for each ¢t €
[0, 5] we will have |@|(A(t), Pmaz) = %(t). Dividing now this relation by its left
hand side and integrating with respect to time, the minimum time ¢, will, for
positive values of ¢, be given by the function Ty : (—Pmazs Pmasz) X (0,00) = R
with

d¢

?s
T¢(¢sa¢mam) = / —_— - (3.2.2)
0 ‘¢|(¢7 ¢mam)

If we now look at the more general case with? sgn(gz'so) = sgn(ci)S) = sgn(¢s —
¢0), the function T can still be used to compute ¢,. Indeed, in this case
the velocity ¢ will again not change its sign in the time interval [0,t,] and
depending on this sign the deflection ¢ will either strictly increase or decrease
until (¢, ¢s) is reached. Consequently, for each ¢t € [0,¢s] we will now have
19(6(t), Prmaz) = sgn(ds fd)o)%(t). Dividing again this relation by its left hand
side, noting that both sides are positive and integrating with respect to time, ¢,
can be computed using now the function ¢ 4 : (—@mazs Pmaz)? % (0,00) = [0, 00)
with

ts,tb((bOv ¢S7 ¢max) = |T¢(¢sa ¢maw) - T¢(¢Oa ¢max)| . (323)

Equation (3.2.3) provides us a possible way to compute the minimum time
ts assuming that the sign of ¢ remains constant. As we will next show, we can
similarly find a function which can be used to compute ¢, in case the deflection
¢ and thus the acceleration do not change their signs.

2The sign function is defined as follows:
-1 z<0
sgn: R — {—1,0,1},z — sgn(z) =1 0 z=0.
1 x>0
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Assuming now that the initial state (¢, q-SO) lies in the first quadrant of the
phase plane and that ¢s equals to the maximal deflection ¢4z, ¢ and ¢ will
not change their signs and the velocity will strictly decrease until ¢ equals to

b5 = 0 for the first time. According to (3.1.1), the equality w
—i—f(t) will hold in this case for each ¢t € [0,¢;] leading to the function T, :
(_(bmaa:a q.smaw) X (O, OO) — R with

ey B bo Mdé
T4(90, fmas) = / 7 (1810, drmas) )

(3.2.4)

The function (3.2.4) gives the minimum time ¢, which is required by a MSS
starting from a positive deflection ¢y and a positive velocity (;50 to reach the
maximum deflection ¢,,4,. Similar to Ty, the same function can also be used
for the computation of ¢, in the more general case in which we have sgn(¢g) =
sgn(os) = sgn((,z-ﬁo — <Z5s) In this case, ¢ and ¢ will not change their signs in
the interval [0,ts] either. Moreover, for each ¢ in this time interval they will

be related to the velocity ¢ through the equality %W = sgn(ps —

gﬁo)%’(t) which in turn leads to the function ¢_; : (—bmaz> Pmaz)? % (0,00) —
[0, 00) with

ts,d;((;.s()a ésa émaz) = Td,(d)sv (Z.Smaz) - Td',(Q.SOa émaz) . (325)

Notice that (3.2.5) can be used to compute ¢, whenever the sign of the deflection
¢ remains constant.

In general, both ¢ and ¢ can change their signs in the time interval [0, t].
Nevertheless, these changes can never occur simultaneously. Therefore, it is
always possible to divide the trajectory into a finite number of subtrajectories
along which the sign of ¢ or ¢ remains the same. Consequently, equations
(3.2.2)-(3.2.5) provide all the necessary relations required to determine the time
ts for any state (¢s, ¢S) As we will later show in Section 3.2.2, these equations
can also be used to compute the period T, of a MSS. Nevertheless, before
showing how to compute the period of a MSS, we want to briefly discuss several
properties of the functions Ty and T, which will clarify the influence of the
system’s energy and TDP on ¢s and which will turn out to be useful in our
analysis of T},.

Looking first at Ty, the properties of this function are according to (3.2.2)
closely related to the properties of |¢>| Indeed, since for each given ¢,qr > 0
the function |¢|(., ¢maz) is an even function of the deflection it follows from the
definition of Ty that we have for each (¢, pmaz) € D1, = (—Pmaz, Pmaz) X
(0, 00)

T¢(_¢7 (bma:r) = _T¢(¢7 ¢ma1)- (3-2-6)

Moreover, since |¢| is positive at each element of D, so is the partial derivative
Ty

56 - Consequently, for each given ¢mar > 0 Ty(P, dmas) Will be a strictly
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Softening Spring: 71 Linear Spring: 7,2 Hardening Spring: 7,3

:)[s]

Ty(&; Pma

)ls]

T3(9, Pimaa

Hlrad/s| Hlrad/s] Hlrad/s]

Figure 3.2.1: The Time Functions Ty and Ty for MSS’s with different Spring
Characteristics

increasing function of ¢. This simply means that the minimum time t; a MSS
with a given energy requires to reach a deflection ¢, € (0, ®maz) from the state
(0, pmax) always increases as ¢, approaches the system’s maximal deflection
reéglgrdless of the system’s TDP. Similarly, by looking at the partial derivative
3 ¢mi$ it can be shown that given a deflection ¢ > 0 the minimum time required
to reach ¢ by a MSS with a sufficiently high energy from the initial state
(00, %0) = (0, Prmaz), i-e. Tp(ds, Pmax), always decreases as ez > @5 and thus
the system’s energy increases. Indeed, by applying Leibniz rule [61] to (3.2.2)

we first get % : D1, — R with

T,
3¢max

(6. bas) = — 2 Omas) ’ ds . (3.2.7)
M /°(|¢'>|<s,¢max>)3

The discussed decrease follows then from the partial derivative (3.2.7) being
negative at each (¢, ¢rmqaz) € D1, With ¢ > 0.

Figure 3.2.1 (Top) illustrates the function Ty for the three MSS’s whose
trajectories have been depicted in Fig. 3.1.1. More specifically, for each of
these MSS’s Ty is plotted as a function of the deflection ¢ for four different
values® of ¢p,ap. In addition, we have also plotted for the three MSS’s the
limits lide@—mm Ty(¢, dmaz) and lideﬂ%w T6(¢, dmaz) fOr Gmaz € (0, %)7
see the black dashed lines. According to (3.2.2) and (3.2.4), these limits provide
the minimum time a MSS requires to reach the state (¢maz,0) from (0, bmaz)-

3The exact same values have been used in Section 3.1 when investigating the trajectories
of these MSS’s.
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The illustrated graphs for the function Ty verify all of its discussed prop-
erties. Moreover, as expected from the independence of these properties on
the TDP, all the graphs for Tj, share a similar structure. Comparing the de-
picted limits, however, it can be observed that the dependence of these limits
oN Pz is different for the three MSS’s having different spring characteristics.
We postpone a detailed analysis of this dependence to Section 3.2.2, where we
will discuss oscillation periods of MSS’s. Nevertheless, it is important to already
note here how this observed difference is closely related to the difference in the
SDP’s of the three MSS’s analysed, see Fig. 3.1.1.

If we now look at the properties of Tq'aa we can see that they are similar to
the properties of Ty. Indeed, noting this time the close relation between Ty and

|¢| it can be first shown using (3.2.4) that we have for each (¢, dpmaz) € Dy, =
(7¢mara ¢maz) X (07 OO)

Té(_év Q.Smax) = —T¢(¢, qlsmaz) (328)
Moreover, since |@|(d, dmaz) > 0 holds at each (¢, pmas) € Dy, the partial

. . orT; . .. s .
derivative 6—5 is positive at each element of Dqu' In addition, the partial

derivative 82% -+ Dy, — R which according to (3.2.4) equals to
8T¢ .. 9 ¢ KJ <|¢|(Sa¢)max))
a(b (¢a¢maz) =-M ¢maa:/ 3dS (329)

© 75 (161(5: bmas))

takes always negative values. Finally, if we look at limg ;- T¢(¢’ Omaz) for

an arbitrary émw > 0 and note that this limit provides the minimum time a
MSS requires to reach the state (¢nqq,0) from (0, dmqz), We can see that Ty,
and T<i> are related to each other as follows:

m  Ty(, maz) = m  Ty($, dmax)- (3.2.10)

= bmax = bmac

Fig. 3.2.1 (Bottom) plots T}, as a function of ¢ for four different values of

(/')mm which correspond to the maximum deflection values used when plotting
T,. Furthermore, hmé—mSTnM Té((é, q'bmam) and limq-s_)_ﬁw Tq-b((é, ¢maw) are also
depicted. Due to the close relation (3.1.5) between ¢, and (z-bmam and the
discussed similarities of the functions Ty and T; all the illustrated graphs share
actually a similar structure. Table 3.1c provides analytical expressions of these
two functions for the TDP’s 75, 7;; and 7, which have been used in creating
Fig. 3.1.1. We will come back to these expressions again in Chapter 5 when we
construct optimal control strategies solving the LVMP.

Having shown how to compute the minimum time ¢, using mainly the two
functions Ty and Tq; and having discussed their basic properties, we next turn
our attention to the oscillation period T}, of MSS’s.
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3.2.2 Oscillation Period 7,

As already mentioned, functions ¢ : [0,00) — R solving (3.1.1) are periodic if
Enss(¢o, o) > 0. The oscillation period T, of MSS’s is given by the minimal
period of these solutions and we want to next show how to compute this period.

Following our discussion in the beginning of Section 3.2, the oscillation period
of a MSS is equal to the time required by its trajectory (qb ¢) to reach the state
(s, ¢s) for the second time after . Assuming that (¢, bs) is located in the first
quadrant of the phase plane, i.e. ¢s > 0 and (Z)é > 0, let us introduce four trajec-
tories, which respectively start from the states (gbg, qﬁg) (s, — s ), (—os, *d’s),
(— s, QSS) and terminate the first time they reach (¢s, gi)s), (— s, fq.Ss), (— s, cbs)
and (¢S,¢S). Since along these trajectories the sign of either ¢ or (;5 will not
change, the time required by each of them to reach their final state can be de-
termined using (3.2.3) and (3.2.5). Summing up these times leads us then to
the function T}, : (0,00) — (0, 00) with

Tp(¢mar) =4 T¢(¢s» ¢mam) + TQS((’{)S’ (i)max) s (3211)

where we have Epot(¢mam) = Ekin(¢mam) = EMS’S(¢S7 ¢s)7 ¢mam > 0 and
(¢s; ¢s) ( ¢maw) ( ¢maw)~

It is important to remark here that for deriving (3.2.11), we have made
use of the symmetry properties (3.2.6) and (3.2.8) together with the fact that
both T and Ty take positive values in their domains of definition when their
first arguments are positive. Moreover, notice that we have defined 7, as a
function of only the maximum deflection corresponding to the system’s energy.
This follows from the fact that for any state (¢s, ¢s) having the same positive
energy the corresponding trajectories will move on the same closed curve and
consequently the resulting oscillation period will be the same.

Using the fact that the oscillation period can be written as a function of
only ¢az, the expression (3.2.11) for T, can now be rewritten such that it only
depends on Ty or Td;. To see this, let us substitute in the right-hand side of
(3.2.11) the function \q5|(¢s, Gmaz) for the velocity bs. For each ¢mas > 0, the
resulting expression will then be a constant function of ¢,. Taking the limit of
this function as ¢, goes to 07 and to ¢,,,, yields then the following two more
common formulations for 7),:

Tp(mar) = 4 lHm Ty(dy, dmas), (3.2.12)
¢S*>¢’Vna1

= 4 lim T¢(¢s7 (bmaz)- (3213)
$s>Pmaz

Notice that the two equalities above clarify the well-known relation between the
limits depicted in Fig. 3.2.1 and the oscillation period 7}, of the corresponding
MSS’s.

Obviously, we could have directly defined the oscillation period using one
of the two limits in (3.2.12)-(3.2.13). Nevertheless, for both of these limits an
integral needs to be evaluated which has a singularity either at ¢ = ¢4, Or at
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& = Gmaz. Consequently, for TDP’s for which no analytical expressions exist for
T or Ty approximating these integrals numerically is not straightforward. In
order to have our method of finding the optimal control strategy being applicable
for any TDP satisfying our assumptions we have decided to follow this current
approach. Moreover, this approach enables us to analyse the dependence of T},
on ¢p,q. for any MSS as we will shortly see.

Table 3.1d summarizes for the three TDP’s 75, 7;; and 7,5, analytical ex-

pressions for T}, which have been found using (3.2.13). Moreover, the derivatives
dT,

BT — of these expressions are provided in that table as well. Based on the sign
0? these derivatives, it can now be concluded that in accordance with the limits
depicted in Fig. 3.2.1 the oscillation period T}, for the TDP 7;, is always a
strictly increasing function of ¢y, on (0, 57-) regardless of the value of the
parameters K., k. and M. Similarly, for the linear TDP 7;; T, is always con-
stant while for 77 45, it is always strictly decreasing on (0, 00). In the remainder
of this subsection, we will take a closer look at the derivative dd:Z - and show
in particular how the observed monotonicity of 7, generalizes to MSS’s with
arbitrary softening and hardenir;g springs?.

A general expression for d:;nf; - can be found by taking the derivative of
(3.2.11) with respect to ¢mq,. When taking this derivative, however, it needs to
be taken into account that in the right-hand side of (3.2.11) both ¢, and ¢, are
positive and lie on the closed curve described by Eprss(ds, ¢S) = fo ™ rr(s)ds.
This can be done by substituting, as before, the function |gi)|((;$S7 Dmaz) for the
velocity d)s. Taking the partial derivative of the resulting expression with respect
t0 Gmag and using (3.1.5) together with (3.1.6) and (3.2.4) we can then conclude

that dgTzl : (0, maz) — R is given by®
dTp . 3T¢ TJ (¢ma3c)
d¢ma:r (¢mal‘) =4 8¢maz (st, ¢7naz) + TJ(¢S)¢S +
or, . .
T2 Omar) 26 (6 G| (3.2.14)

Md')ma:c ad)mam

where we have the same conditions on ¢, and (s, ¢S) as in (3.2.11).

The dependence of the oscillation period of a MSS on its maximal deflection
and thus on its energy can now be investigated by analysing the sign of (3.2.14).
Based on our previous discussions, we already know that the first and third
terms in the parenthesis are always negative. The second term, on the other
hand, is always positive. Consequently, for a given MSS the sign of dii’; -
can take different values depending on ¢,4,. The following proposition gives

4We call a spring softening/hardening if the corresponding TDP satisfies assumptions

2
(A1) — (A3), is two-times continuously differentiable, and dd(;:é] (¢) is negative/positive for
each ¢ > 0. '
5Notice that according to (3.1.5), (3.1.6) and (3.2.4), we have 4®maez — 71 (¢maz)

démaz Mbmaz

alé mas or; . .
Boma (00 fmaz) = Hi7esd and T (s, dmar) = 75155y
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. " . . a7, .
sufficient conditions under which a sign change of 5 3, can never occur in a
maz

given interval.

Proposition 1. Let 75 be a given TDP such that
1. 7 satisfies assumptions (A1) — (A3),
2. Tj is two-times continously differentiable,

3. There exists a ppmqr > 0 such that we have

(Vo € (0, Prmax)) (sgn (((1;;](@) = const.) )

Then for any MSS with the TDP 75, we have

(V¢ € (0, max)) {sgn (diﬁm (¢)> = —sgn <C:;;(¢)ﬂ .

Proof. See Appendix B.1. O

It is well known that the period of a MSS with a linear TDP is always
constant and does not depend on the system’s energy, see for instance [35].
Proposition 1 generalizes this property by providing a relation between the
sign of the derivative dg:iz and the sign of ddQTQJ. More specifically, with this
proposition we now see that the period of a MS% with a softening spring always
increases if the system’s energy is increased. Similarly, the period of a MSS
always decreases with increased energy if the system has a hardening spring. In
Chapter 5, we will see how different possibilities for the sign of dgﬁ - influence
the optimal control strategies solving the LVMP.




Chapter 4

Switching Control Strategies

As we will show in Chapter 5, optimal controls for the LVMP are all switching
controls. In order to better understand the trajectories corresponding to these
optimal controls, we derive in this chapter several properties of 3 for the case
when the system is controlled by an element of Sy. In particular, we will
first look at the trajectories corresponding to admissible switching controls and
clarify their relation to trajectories of MSS’s. Focusing on the energy stored
along trajectories of 3, we will then discuss the maximal energy which can be
attained using admissible switching controls with a limited switching number.

4.1 Trajectories

Let us assume that v : D — U is an admissible switching control with the
switching number ¢ > 0. By definition, we know that for any given k£ € .S; the
value of the control u remains constant in the time interval Dy. Moreover, if i
is positive and k£ < 7 holds the control will instantaneously change its value at
tsk+1. According to (2.1.4), along trajectories of the control system ¥ which
corresponds to u, the time-derivative of the deflection will then not be continu-
ous at ts 1. This is in clear contrast with trajectories of MSS’s. Nevertheless,
trajectories corresponding to w and trajectories of MSS’s are both closely re-
lated and in this section we will elaborate on this relation. In particular, we will
show how using this relation we can construct trajectories corresponding to any
admissible switching control.

To see the above mentioned relation, let us first fix a k£ € S; and focus on the
time interval Dj, where u is constant. Taking the time-derivative! of the first

1Strictly speaking, if ts 1 is a switching time the time-derivative of x1 does not exist at
this time. Nevertheless, in such a case it follows from the continuity of the state = and the

piecewise continuity of u that the two limits lim,_,— #1(¢) and lim, 4 21(?) exist, see
—tg totg

(2.1.4). In accordance with our assumption on the control u being left-continuous, see the
definition of PCy and Sy in Sec. 2.2, we will use, with a slight abuse of notation, #1(ts 1) to
denote the limit lim, 4 21(%).

-t
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row of (2.1.4) and substituting the second row into the resulting expression, we
arrive then at the following second-order differential equation for the dynamics
of the deflection x1:

My + 75(x1) =0. (4.1.1)

Clearly, (4.1.1) is the exact same differential equation that describes the dy-
namics of a MSS. Consequently, we can make use of all the functions introduced
in the previous chapter to find and analyse the solution to this equation. In
particular, using these functions with the mass and TDP of ¥ we can uniquely
compute x; and %7 at each ¢t € Dy, if we know the two boundary conditions
kpy = z1(ts k) and kg = #1(tsk). Moreover, using xzs = ku — 41 we can also
determine the trajectory x corresponding to u for ¢t € Dy.

Depending on the values of ¥z, and *, it is important to distinguish here
between two different cases as we have done for MSS’s. First of all, from our
discussions in Chapter 3 we know that in a phase plane the pair (zq,41) will
remain at the origin if both kx, and ¥4, and thus EMSS(kml, k:irl) are equal to
zero. In this case, the deflection in the spring remains at zero for each t € Dy,
while both the motor and the link rotate with the same velocity. In a phase
plane, the trajectory @ will then simply be described by a point on the vertical
axis with its position depending only on the value of the control.

In the more general case where (¥z1,* ;) # 0 holds, we know that in a phase
plane the pair (x1,#;) will move on a closed curve described by Eyss(x1,%1) =
Earss(Fx1,F41). From the symmetry of this closed curve and the equality
xo = Py — &4 it follows that in a phase plane = will then also move on a closed
curve. Moreover, this curve can be obtained from the closed curve for (x1,41) by
simply shifting it vertically by ¥u. Finally, if the time interval Dy, is sufficiently
long z; will periodically oscillate between —Fmae and ¥¢r,q, while zo will
oscillate between *u — kgﬁmaz and ku + kgi;maz.

It is important to remark here that for both cases discussed above, the
constant value of Fprss(x1,@1) in the time interval Dy, corresponds physically to
the energy of the EJ when computed relative to a frame that is rigidly attached
to the motor. For that reason, we will call this value the system’s relative energy
along the trajectory = in D and denote it simply by ¥F,.;. Since our choice
for k was arbitrary, this energy is given for each k € S; by

¥ Erer i= Epot(F21) + Egin(Fd1). (4.1.2)

So far we have shown how depending on *z1,*&; and Fu, we can compute
and graphically illustrate = in Dy for any given k € S;. If the control u does
not switch, i.e. D = Dy, the entire trajectory & can thus be found using merely
the initial state xo and the control v = *u. We show in the following how using
xo and u we can find the entire trajectory if the switching number is non-zero.
Assuming that ¢ > 0 holds, we need to determine the values of x; and 4

at each tgy € {tso0,...,ts,:} in order to apply the results from our discussion
above. It is important to realize here that these values are not independent of
each other. Indeed, knowing the trajectory « in Dy with now k € S;_; we can
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Figure 4.1.1: Trajectories of EJ’s with velocity-sourced SEA’s and different

Spring Characteristics

uniquely determine the values of **'z; and **'4; at the switching time tg 11
using the continuity of x:

Mg, = lim  x4(t), (4.1.3)
t—)t;kJrl
Ml = Fly—ky g lim o dy(2). (4.1.4)
tﬁtg’,ﬁl

With equations (4.1.3)-(4.1.4) we can now use the trajectory « in Dy and
the change in the control at tg ;i1 to find the values **1x; and **1iy. This
also means that starting from k& = 0 with the two values for 92, and °%;, we can
iterarively construct the entire trajectory & by solving (4.1.1) to find x in Dy
and using, if k # i, (4.1.3)-(4.1.4) to determine the required boundary conditions
at the switching time tg ;1. Since the two values °z; and °%; depend only on
the initial state xy and the control u, we have thus found our desired way of
determining the trajectory « corresponding to u.

Note that our choice for the control u was arbitrary. Consequently, with
our results obtained so far we can now uniquely construct trajectories of %
which start from any given initial state 2y € R? and correspond to any u € Sy.
Moreover, having a means to construct these trajectories we can also analyse, as
in Chapter 3, how different TDP’s can influence trajectories of EJ’s with velocity
sourced SEA’s. In the remainder of this section, we want to briefly conduct such
an analysis by looking at the trajectories of three different control systems 31, ¥y
and X3 which only differ in their TDP’s?, see Table 4.1a-4.1c. More specifically,

2The subscripts used for the control systems are in accordance with the functions describing
their TDP’s. That is, the TDP’s in X1, 32 and X3 are equal to 751,772 and 753, respectively.
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M K@ k@ emaz
Yen || M€ (0,200) K. € (0,00) ke € (0,00) | Omaz € (0,00)
875 75 Tirad
2 1kgm?] W[Nm] 3z 1] 3757
71(8) = 725(0) = Kesin(.9), 8 € (— g0 o)
(a) Control Systems X and ¥
M Ke ke amaa:
Yid || M €(0,00) | Kc € (0,00) | ke € (0,00) | Omaz € (0,00)
Yo 1[kgm”] 23" [Nm| 1[1] ]
77(¢) = 751(¢) = Kekeg, ¢ € R
(b) Control Systems ;4 and X2
M KC ke emaz
Ysinn || M € (0,00) K. € (0,00) ke € (0,00) | Opmaz € (0,00)
I3 lkgm?] | —nig—p Nm 21 317
Srssi || 2.251[kgm?] | 135e~ % [Nm] 12[1] i[red]
TJ(QS) = TJ,sh(¢) =K. Sinh(keq5 9 ERi € (07 OO)

(c) Control Systems X,p,,33 and Xpg,;

Table 4.1: Parameters of the investigated Control Systems

we will apply to all these systems the same deflection dependent control strategy
which is known to maximize the terminal link velocity of EJ’s with LSEA’s when
they are initially at rest and when the control is constrained to have only one
switching [17]. Comparing the resulting trajectories and refering to our results
from the previous chapter, we will then see how with a NSEA we can reach the
same terminal link velocity as with a LSEA using less spring deflection and a
smaller amount of time.

Figure 4.1.1 illustrates for each of the three control systems the trajectory
that starts from the origin and corresponds to the control strategy mentioned
above. As shown there, all the applied controls start with their minimum motor
velocity and switch once to their maximum value when the deflection in the
spring equals to zero for the second time. Moreover, all trajectories terminate
as soon as the deflection equals to zero for the third time.

A closer look at the phase plot in Fig. 4.1.1 shows that the applied control
strategy results for each control system to the same values for z; and #; at
tso and tg;. Consequently, the relative energies OF..; and 'FE,.; and thus the
velocities ©¢pmae and mae are not affected by the TDP. This then results not
only in having a similar structure for the depicted trajectories but also in having
the same terminal link velocity of 46,,,.. Nevertheless, looking at the deflection
values attained along the depicted trajectories we can observe that the values
of °¢paz and ' ¢pqes depend on the TDP of the system. More specifically, these
two values are minimal for ¥; and maximal for X3. This difference in the



CHAPTER 4. SWITCHING CONTROL STRATEGIES 43

deflection trajectories actually occurs since the TDP of each system requires
different spring deflections to fully store the two relative energies °F,.; and
1E,.; as potential energy, see Fig. 3.1.1. Note, in particular, that 3, obtains
the minimal values since the two relative energies °E,..; and ' E,.; are less than
5J.

Comparing now the time along the depicted trajectories, it can be observed
that similar to the maximal deflection values the final time also depends on
the TDP of the systems. According to the relation between trajectories of
EJ’s and MSS’s we have just shown, this final time will be equal to the sum

T”(Ogm‘”) + T”(lﬁm‘”) for each system. Looking now at the limits depicted in
Fig. 3.2.1 (Top), it can be seen that both of these terms in this sum take
their minimal values for the control system Y; and their maximal values for
the control system 3. Accordingly, we see in Fig. 4.1.1 that the terminal link
velocity 49mam is reached by the control system ¥; using the least amount of
time and by X3 using the greatest amount.

Having introduced the concept of relative energy and shown how to construct
trajectories of ¥ corresponding to admissible switching controls, we next turn
our attention to the maximal energy which can be stored along these trajectories.
In particular, for a given switching number we provide switching strategies which
maximize this energy in minimum time. With our results we will then see that
the deflection dependent control strategy used in Fig. 4.1.1 actually maximize
both the terminal link velocity and the terminal energy of all the three control
systems over switching controls v € Sy with one switching.

4.2 Maximal Energy

As in a MSS, we define the energy of an EJ with a velocity sourced SEA as
the sum of the potential energy stored in its elastic elements and the kinetic
energy of its link. This energy is in general, in contrary to a MSS, not constant
and depends on the motor velocity. To see this, let us first find a mathematical
expression describing the energy stored along trajectories of . These trajec-
tories are uniquely determined by their initial state and by the control applied
to them?®. Taking also their time dependence into account leads us then to the
energy function Fry: R?2 x U x D — R with

EEJ(wo, U, t) = Epot (xl(t)) + Ekin (x2(t)) s (421)

where x denotes the trajectory corresponding v : D — U. Equation (4.2.1)
gives us the desired expression for the energy of ¥. The mentioned dependence
of this energy on the applied control can now easily be seen by taking the time-
derivative of this expression which leads to*

3EEJ

ot (o, u, t) = 77 (x1(t)) u(t). (4.2.2)

3See Appendix B.3.1.
4Notice that this time-derivative exists everywhere except at those points where u has a
discontinuity and the deflection x1 is non-zero.
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Note that for deriving (4.2.2), we have simply used (2.1.4) together with the
definitions (3.1.2)-(3.1.3).

According to (4.2.2) the influence of the control on the system’s energy
FErgy is closely related to the torque in the spring. The aim of this section is
to analyse this relation by discussing how to maximize Fpg; using admissible
switching controls when the system is initially at rest. More specifically, we will
deal with the problem of maximizing Fg; using controls v € Sy with a limited
number of switchings and focus in particular on the strategies which require the
least amount of time to reach this maximal energy. In order to be more precise,
let us now give here the mathematical formulation of this Energy Maximization
Problem (EMP).

Energy Mazimization Problem (EMP): For a given switching number ¢ > 0,
find the switching control u§ which maximizes Eg (0, u,ts) over all admissible
switching controls v € Sy with ¢ switchings in minimum time.

To increase readability, we will from here on mostly omit the first argument
of Er; whenever x( equals to 0. Moreover, in the remainder of this section we
will automatically assume that trajectories of a given control system start from
the origin if we do not explicitly state their initial state.

In order to derive the solution to the EMP, we want to first take a closer
look at the relative energy along a trajectory a which corresponds to a control
u € Sy with ¢ > 0 switchings. From our discussions in Section 4.1 we already
know that this relative energy is going to take only a finite number of values, see
(4.1.2). We will next show that these values are closely related to the system’s
energy. For this let us fix a k € S; and compare the relative energy *E,.; with
the energy Fpj(u,t) attained at a time ¢t € Dy. Using (4.1.2) and (4.2.1) we
obtain the following relation between both energies:

k, 2
EEJ(u,t) = kErel + M (; — kua’cl(t)) (423)
62 . .
< kErel +M % + emaz kd)maw . (424)

It is important to realize here that the inequality in (4.2.4) will hold with equality
only if we have |ku| = 0,4 for the magnitude of the control. Moreover, in case
¥E,¢ is non-zero both z;(t) = 0 and sgn (i1(t)) = —sgn(*u) must hold at
t e Dy.

Equation (4.2.3) clarifies the relation between the system’s relative and real
energy while (4.2.4) uses this relation to provide an upper bound for the total
energy along . Focusing on Egj(u,ts), we can see that the corresponding
upper bound at the final time only depends on By, and 0,,q5. Moreover, it fol-
lows from (4.2.3) that in case |"u| = 6,4, holds we can always attain this upper
bound by only adjusting, if necessary, the length of the time interval D;. Based
on these observations, it is tempting to assume that maximizing Ers(u,ts) re-
quires us to first maximize the relative energy ‘E,.;. This assumption can be
verified using the following proposition which provides the maximal value for
‘E,e as well as two sufficient conditions for a control to reach it.
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Proposition 2. Let i > 0 be a non-negative integer and u € Sy a control with
the switching number i. Then, along the trajectory x which starts from xy = 0
and corresponds to u we have for each k € S; the following inequality for the
relative energies:

FEret < Ermax(k) = WMG,QW. (4.2.5)
Moreover, all the inequalities hold with equality in case we have
u(0)] = Omaa, (4.2.6)
and )
(Vt € (0,t¢]) [z1(t) # 0 = u(t) = sgn (x1(t)) Omaaz]- (4.2.7)
Proof. See Appendix B.2. O

Proposition 2 tells us that along a trajectory a which corresponds to a
control u € Sy with 4 switchings, ‘B, is always bounded above by Er maz ().
Moreover, this upper bound will be attained exactly if the control w satisfies
the two conditions (4.2.6)-(4.2.7). Note that the magnitude of such a control
will always remain at émam, since & can not remain at zero deflection when the
relative energy remains positive.

We show in Appendix B.2 that an admissible switching control satisfy-
ing (4.2.6)-(4.2.7) always exists for any switching number®. Consequently, we
can now conclude from (4.2.3)-(4.2.4) and from Proposition 2 that maximizing
Egy(u,ty) using a control u € Sy with ¢ switchings is indeed only possible by
first maximizing *E,..; and then choosing the time interval D; such that (4.2.4)
holds with equality at ¢y with £ = 4. The following proposition provides the
corresponding maximum value of Egs(u,ts) and also clarifies how to reach it
after maximizing the relative energy ‘E,.; using the control strategy described
in Proposition 2.

Proposition 3. Let i > 0 be a non-negative integer and u € Sy a control with
the switching number i. Then we have the following inequality for the system’s
total energy:

Epy(u,tf) < Epag(i) == 2(i + 1) M6?2

max*

(4.2.8)

Moreover, the inequality in (4.2.8) will hold with equality if along the controlled
trajectory (x,u) with €y =0, (4.2.6)-(4.2.7) are satisfied together with

1(ty) = 0. (4.2.9)

5More specifically, we show in Lemma 41 that the two conditions (4.2.6)-(4.2.7) together
with an initial control u(0) € {~6maz,@mas} and a final time t; uniquely describe an admis-
sible controlled trajectory (a,u) with &y = 0. In addition, we show there that the control u
will then always be an element of Sy with its switching number depending on the final time ¢,
see (B.2.5). It follows from this last relation between the switching number and the final time
that for any given ¢ > 0 we can find an admissible switching control satisfying the conditions
(4.2.6)-(4.2.7) with ¢ switchings.
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Proof. Let u an admissible switching control with ¢ > 0 switchings. The in-
equality (4.2.8) follows from the inequality (4.2.4) by noting that for & = ¢ and
t =ty € D;, the maximal value for ' E,.; is given by E,. ;4. (i) and the maximum

value for ‘gmas by 1/ QE%‘“(” = (2i + 1)0maz-

Let us now assume that along the controlled trajectory (x,u) with o = 0 the
conditions (4.2.6), (4.2.7) and (4.2.9) are all satisfied. According to Proposition
2, for each k € S; the relative energy kE, . in Dy, is then positive so that x; can
never remain at zero in a finite time interval. This means that we have for each
k€ S, Fxy =0 and thus [*&1| = (2 4+ 1)0mee > 0. Since u has i switchings,
it follows from (4.2.6)-(4.2.7) and from the condition (4.2.9) that we must have

tp= ts,iJrM and thus @1 (tf) = —"i1. The proof now follows from (4.2.3)
with k =i and ¢ = ¢ if we also consider the equality sgn(‘#1) = sgn(‘u) which
holds due to Lemma 41. O

According to Proposition 3, the maximal energy which can be transfered to
an EJ with a velocity sourced SEA is given by F,,q.(7) if we use an admissible
switching control with ¢ > 0 switchings and if the system is initially at rest.
Moreover, this energy can be fully transfered to the system by using the deflec-
tion dependent control strategy from Proposition 2 if after the i’th switching
the control remains constant until the deflection of the spring equals to zero
for the first time after tg;. Note that there is a straightforward physical inter-
pretation for this strategy. Indeed, according to (4.2.2) this strategy requires
us simply to apply at each non-zero spring deflection the control input which
maximizes the power that flows into the system until the maximum possible
energy is transferred.

It is important to remark here that the three conditions (4.2.6)-(4.2.7) and
(4.2.9) are only sufficient for maximizing the system’s total energy using admis-
sible switching controls and not necessary. This is most obvious for switching
controls with 0 switchings where the corresponding trajectories are periodic. By
applying the control u = émam, for instance, the maximal energy for Eg; can be
attained periodically at multiple times if the final time is sufficiently high. Since,
however, the deflection in the spring will then also change its sign periodically,
we can see that Fgry can be maximized without satisfying (4.2.7). Nevertheless,
as the following proposition shows, in case the maximum value of Fg is to be
attained in minimum time all the three conditions from Proposition 3 must be
satisfied.

Proposition 4. Let i > 0 be a non-negative integer and v € Sy a control
with the switching number i such that Egj(u,tf) = Epmag(i). Then, along the
trajectory x which starts from xy = 0 and corresponds to u we have for each
kes;

"1 = 0APE e = Ermaz (k). (4.2.10)

In addition, for each k € S;11\{0} the following inequality holds for the time
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tsk:
1 k—1
tok 2 tmin(k) = 5 ;Tp( "maz), (4.2.11)
with
Epot('maz) = Er.mas (1) (4.2.12)

Finally, the inequality (4.2.11) will hold with equality for the final time ts, i.e.
for k =i+ 1, if and only if both (4.2.6) and (4.2.7) hold along (x,u) together
with (4.2.9). Moreover, in this case (4.2.11) will hold with equality also for each
ke SZ+1\{O}

Proof. See Appendix B.2. O

One important result we can immediately deduce from Proposition 4 is that
using a control u € Sy with 7 switchings one can only reach the maximal value
for Egy(u,ty), i.e. Epqq(i), if all the previously obtained relative energies are
maximized by that control as well, see (4.2.10). Moreover, this will only be
possible if switchings of the control occur at zero deflection and if the terminal
deflection equals to zero. Looking at the minimum time required to maximize
the system’s energy, i.e. at ty = t,n(¢ + 1), the second important result of
Proposition 4 is the direct relation between this time and the obtained relative
energies in terms of the oscillation period T, see (4.2.11)-(4.2.12).

Propositions 3 and 4 provide now together the solution to the EMP. In par-
ticular, given a switching number ¢ > 0 Proposition 3 establishes the existence
of a maximum of Eg(u,ts) over controls in Sy with ¢ switchings. Proposition
4 provides then the final time as well as the switching times of the control which
leads to this maximum value for Ep s using the least amount of time, see (4.2.11).
Since the magnitude of the control will remain at 6,,,, due to (4.2.6)-(4.2.7),
these times together with the initial value of the control u(0) € {fémaz, émm}
determine then uniquely the control strategy u§ which solves the EMP for the
given switching number i. Note that this also means that for any switching
number there exists exactly two different control strategies which will solve the
EMP.

If we now look back at Fig. 4.1.1, it can be observed that the controlled
trajectories there all satisfy the required conditions by Proposition 4 with ¢ =
1. Consequently, the depicted controls solve the corresponding EMP. In other
words, the maximum possible value for the total energy, which equals to E,;q.(1)
since the controls switch only once, is attained as fast as possible, i.e. t; =
tmin(2). Moreover, since the terminal deflection is equal to zero and the final
link velocity is positive we can also conclude that the depicted strategies actually
maximize the terminal link velocity over the set of all admissible switching
controls with one switching as well. It is important to realize here that given
any switching number 4, one can actually always find a control strategy that
solves the EMP and simultaneously maximizes the terminal link velocity over
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controls in Sy with i switchings®. In the following two chapters, we will take a
closer look at these control strategies solving the EMP and show in particular
that these strategies satisfy all the necessary conditions from PMP to be a
solution to the LVMP. Nevertheless, we will also see that for nonlinear TDP’s
they will not necessarily solve the LVMP.

6Note that for any given i > 0 the two control strategies solving the EMP only differ in
their signs. Consequently, due to the symmetry of the TDP’s the corresponding trajectories
will be symmetric with respect to the origin when they are depicted in a phase plane. This
means that one of the control strategies solving the EMP will always result to a positive
terminal link velocity as Emaz (i) > 0 and ‘z1 = 0.



Chapter 5

Optimal Control Strategies

In this chapter, we will first show that there always exists an admissible control
strategy solving the LVMP regardless of the given final time t; > 0. Then, in
Sec. 5.2 we will derive several basic properties of these control strategies. In
particular, making use of PMP [44] and the oscillation nature of both the state
and costate dynamics we derive necessary conditions for these strategies in terms
of the attained relative energies and spring deflections. Providing a construction
method for extremals, i.e. controlled trajectories satisfying the conditions from
PMP, and further introducing a parameterization to simultaneously account
for their final times and terminal link velocities, Sec. 5.3 finally shows how to
solve the LVMP. Noting the close relation between the time functions from Sec.
3.2 and the derived conditions for the solutions to the LVMP, we conclude the
chapter by revealing a physical principle behind these solutions.

5.1 Existence

We have shown in Chapter 3 that the period of a MSS with a hardening spring
strictly decreases as the system’s energy increases. According to Table 3.1d,
this period can even go to zero. For control strategies solving the EMP, this
means that for a SEA with hardening springs the time between two switching
times can go to zero as the number of switchings increase. Since by increasing
the switching number we can always increase the terminal link velocity, it seems
then reasonable to speculate that by using certain TDP’s the link velocity of an
EJ can be made arbitrarly large in a finite time. For such TDP’s, however, the
LVMP would not always have a solution. In this section, we will first show that
the situation just described can never occur and then prove that a solution to
the LVMP always exists.

We start our discussion by illustrating how for a given trajectory of ¥ we
can always build a compact subset of the state-space in which the trajectory
remains. For this, we will take an energy based approach. More specifically, we
will exploit (4.2.2) and show that the energy which can be transferred from or

49
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to the system in a limited time must be bounded.

Let (x,u) be an arbitrary controlled trajectory of 3 defined on D = [0,t¢].
Looking at the right-hand side of (4.2.2), we can see that at each ¢ € D the
power input to the system can be bounded using the maximum motor velocity
and the system’s current energy Eg;. Indeed, defining a maximal deflection
function! .42 : D — [0,00) which corresponds to the energy stored along
(x,u) with

wmaw(t) = E;:o%t (EEJ(:BO? u, t)) ) (5'1'1)

we have the following inequality for Fp; at each t € D:

O0FEg;
ot

(m07 u, t)‘ < émaaﬁTJ (wmax(t)) . (5'1'2)

Using the fact that (5.1.2) can only hold with equality if the link velocity equals
to zero, we arrive then at the following proposition leading to the desired com-
pact set.

Proposition 5. Let (x,u) be an admissible controlled trajectory defined on
D = [0,ts]. Then, the following inequality holds for the mazimal deflection
Ymaz given by (5.1.1):

(¥t € (0,t4]) [[Ymas(®) = Ymaz ()] < finaat] (5.1.3)

In particular, using the lower and upper bounds for Vg, defined by

Dio max {0, Drmaz(0) — Omast f} , (5.1.4)
wub = wmar(()) + émamtfy (515)

we can build a compact set Sg, with

S, = {y € R?|Enss(y1,92) € [Epot(V1n); Epot (Vus)] } (5.1.6)

such that the following relation holds along x:
(Vt € [0,tf]) [2(t) € Sg,]- (5.1.7)
Proof. See Appendix B.3.1. O

According to Proposition 5, we can now find for any trajectory of ¥ a lower
and an upper bound for the system’s energy which in turn describe a compact
set Sg, to which the trajectory will belong. It is important to note here that
these bounds depend only on xy and ¢ty but not on the applied control, see
(5.1.1) and (5.1.4)-(5.1.5). Consequently, any trajectory of ¥ sharing the same
initial state and final time will belong to the same compact set Sg, described
by (5.1.6). In particular, if we look at admissible trajectories starting from

INote that for SEA’s we have already reserved the symbol ¢maz for the maximum deflection
values corresponding to the system’s relative energy.
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the origin and terminating at the final time ¢, we can see that their energy is
bounded above by Epot(émwt #). This shows that their terminal link velocity
can not grow unbounded in finite time as speculated.

With Proposition 5 we can now also solve the existence problem for the
LVMP using mainly Filippov’s Theorem [14]. Indeed, using the compact sets
from that proposition together with the compactness of the control set U and the
fact that the set fy(z) := {f(x,u) € R%|u € U} is convex for each & € R?, it can
be seen that all the conditions required to apply this theorem are satisfied [11].
Taking also several properties of the optimal control strategies into account?,
we can then arrive at the main result of this section.

Proposition 6. A solution to the LVMP egists for each final time ty > 0.
Proof. See Appendix B.3.1. O

Having established the existence of solutions to the LVMP, we next turn
our attention to the necessary conditions which need to be satisfied by these
solutions.

5.2 Basic Properties

In this section, we will derive several basic properties of control strategies solv-
ing the LVMP. More specifically, we will first apply PMP to find necessary
conditions for these strategies in terms of costates. A first analysis of these
conditions will show that optimal controls for the LVMP are always piecewise
constant. Focusing on switching control strategies, we will then take a closer
look at the time evolution of the costates. In particular, by analysing the differ-
ential equations describing the costate dynamics we will obtain mathematical
expressions which clarify the relation between costates and trajectories corre-
sponding to switching controls. Finally, we will use these expressions to find a
relation between optimal control strategies and optimal trajectories.

5.2.1 Minimum Principle

Let us call an admissible controlled trajectory (a,u), which consists of an op-
timal control for the LVMP and the corresponding optimal trajectory with
xo = 0, an optimally controlled trajectory. According to PMP, we have then the
following result for these trajectories.

Proposition 7. Let (x,u) be an optimally controlled trajectory defined on the
interval D = [0,ts]. Then, there must exist a continuously differentiable costate®
A D — (R?)* such that the following first three conditions hold at each t € D
and the fourth condition at the final time ty:

2Filippov’s Theorem can ensure for our OC problem only the existence of an OC strategy
in the space of Lebesgue measurable functions taking values in U almost everywhere.
3As in [53], we use (R™)* to denote the set of all n-dimensional row vectors.
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1. Costate Dynamics
At) = (- Koy, ) n (). (5.2.1)

2. Minimum Condition

H (2(t), u(t), A(H)) = min H (2(t), v, A(})) (5.2.2)

where H : R?2 x U x (R?)* — R denotes the Hamiltonian function given by

H(z,u,A) = Af(z,u)
= M(u—z)+ )\2%. (5.2.3)
3. Hamiltonian Condition
H (z(t), u(t), A(t)) = —Aa, (5.2.4)
where A\, € {0,1} is a constant scalar.
4. Transversality Condition
Altp)=(0 —v), (5.2.5)

where v is a positive constant scalar.

Proof. The proof follows directly from applying PMP to the LVMP and is omit-
ted for brevity. A proof of PMP is provided in Appendix A, see Theorem 37. [

Based on the definitions given in [53], we will call the 4—tuple A = (x, u, A, As)
consisting of an admissible controlled trajectory (z,u) with xy = 0, a constant
scalar A\, € {0,1} and a continuously differentiable costate A such that the
conditions (5.2.1)-(5.2.5) are satisfied an extremal lift for the LVMP. In addi-
tion, the admissible controlled trajectory (x,u) of such an extremal lift A will
simply be called an eatremal for the LVMP (corresponding to A). Moreover,
if A, equals to zero we will call the extremal (lift) an abnormal extremal (lift)
and otherwise a normal extremal (lift). Finally, if an extremal is equal to an
optimally controlled trajectory we will call this extremal an optimal extremal
for the LVMP.

According to Prop. 7, we thus know that there exists an extremal lift for each
optimally controlled trajectory. Moreover, using the condition (5.2.2) together
with the Hamiltonian function in (5.2.3) we can see that given an extremal lift
A the value of the control u in that lift always depends on the sign of the first
costate A\ as follows:

u(t)_{._ém‘”f M) >0 (5.2.6)
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where t € D. In addition, notice that (5.2.1) and (5.2.5) imply that there always
exists a sufficiently small time interval (t; —e,t5) € D where \; is negative.
Consequently, using (5.2.6) we can also conclude that we have the following
equality for the terminal value of u:

u(ty) = Omag- (5.2.7)

It is important to remark here that (5.2.6) does not give any information on
the control u if A;(¢) = 0 holds in a finite time-interval. We have just seen that
this can not happen in a sufficiently small neighborhood of the final time ¢;. In
the following proposition, we similarly show that whenever \;(t) equals to zero
in t € [0,tf) its time-derivative will be non-zero so that the condition (5.2.6)
actually uniquely determines the control u. Moreover, with this proposition we
will also see that Ay can be equal to zero at most once in case the first state,
i.e. the spring deflection, remains negative or positive.

Proposition 8. Let A = (x,u, A, \y) be an extremal lift for the LVMP which
is defined on the interval D = [0,t]. Then, u is a switching control with its
initial value given by

~Opnazsgn (A (0))  A(0) #0

where A1 (0) # 0 holds in case A\1(0) equals to zero. In addition, ts € (0,tf) is a
switching time of u if and only if M\ (ts) is equal to zero in which case we have

7y (z1(ts)) _
mxl(ts) =\, (5.2.9)

with M\ (tg) # 0. Finally, if the control u has i > 0 switchings we have
(Vk € Sip1\{0}) [sen (Fz1) = (=1)MTH1A,]. (5.2.10)
Proof. See Appendix B.3.2. O

With (5.2.6) and Proposition 8, we can now conclude that optimal control
strategies solving the LVMP will always be admissible switching controls which
take values in the boundary of the control set U. Moreover, if (x, ) is an opti-
mally controlled trajectory corresponding to the extremal lift A = (x,u, A\, \,),
the initial value of the control u will depend according to (5.2.1) and (5.2.8)
only on the initial costate Ag := A(0). Finally, the switching times of u will be
uniquely given by the zeros of A; in the interior of its domain.

Our analysis so far clearly demonstrates the close relation between the op-
timal control strategies and the costates. Since X represents a physical system,
it is then natural to expect that we can find a description of these costates in
terms of physical quantities. In the following subsection, we will see that this
is indeed possible by studying the solutions to the differential equation (5.2.1)
along trajectories corresponding to admissible switching controls.
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5.2.2 Costates with u € Sy

In Section 4.1, we have introduced an iterative procedure to construct a trajec-
tory which starts from a given initial state and corresponds to a given admissible
switching control. Note that for such a trajectory (5.2.1) describes a linear dif-
ferential equation for the costate and has therefore a unique solution provided
we know the initial costate. OQur aim is now to introduce an iterative procedure
which will enable us to construct this solution.

Let us assume that (x,u) is an admissible controlled trajectory with uw : D —
U being a switching control with ¢ > 0 switchings. As in Section 4.1, we will first
focus on finding the solution A : D — (R?)* of (5.2.1) in the time interval Dy,
where k£ € S;. In particular, we will show how to determine this particular part
of the solution assuming we are given the boundary condition *A := A(ts x)-

Depending on the relative energy ¥FE,.; stored along x, we need to again
distinguish between two cases. Assume first that *E,.; is zero. In this case,
z1(t) will be equal to zero for each ¢ € Dj. Consequently, (5.2.1) becomes
a linear differential equation with constant coefficients whose solution can be
explicitly written as

sin(wo (t—ts %))
A =Fa[ s '(wo(t —tsk)) Ta— 7 (5.2.11)
—wp sin (wo(t —tsk)) cos(wo(t —tsk))

where t € Dj. Notice that (5.2.11) describes X in terms of harmonic oscillations

with the eigenfrequency wg = KJT(O).

Assuming now that *E,.; is non-zero, we already know from our previous
discussions in Chapters 3-4 that z; will continuously increase and/or decrease
over time. Moreover, r; will take values in the interval [—*¢,,0z, *®maz] and
its time-derivative #; will only change its sign whenever x; is at one of the
boundaries of that interval. In order to find the solution of (5.2.1) for this
case, one possible approach would be now to first make use of the relation
(3.2.3) to express 1 as a function of time. The resulting expression can then
be substituted into (5.2.1) yielding a time-varying linear differential equation.
Finally, the solution of that equation can be found, for instance, by computing
the corresponding transition matrix function [34]. In this thesis, we will follow a
more straightforward approach where the main idea is to use (3.2.3) to rewrite
(5.2.1) such that the continuously changing deflection becomes the independent
variable instead of the time. By exploiting the relation between the state and
costate dynamics, this leads to a linear first-order partial differential equation
whose solution can be directly related to the solution of (5.2.1) as shown in the
following proposition.

Proposition 9. Let (x,u) be an admissible controlled trajectory such that
u: D — U is a switching control with i > 0 switchings and let X : D — (R?)*
be a solution of (5.2.1) for this trajectory. Moreover, let 1) : (—Gmaxs Pmaz) X
(0,00) = R, (2, drmaz) = 1(T, dmaz) be a solution to the following partial differ-
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ential equation:

. 29
(I¢\(:v, ¢mam)) a—z + T‘]]\(;)n +ne =0, (5.2.12)

where 1, is a constant scalar. Finally, let k be an element of S; and Dy, C Dy,
a non-empty open interval with

(Vt € Dy) [sgn (21(t)) = vg], (5.2.13)

where vy € {—1,1} is also a constant scalar. In this case, if there exists a
t € Dy, such that

Xo(t) = n(1(8), " Smaz) AH ((F), u(®), A(H) = —ne, (5.2.14)
then for each t € Dy, we have
Y NecVe
Alt) = ( 1311 (6) £ rma) 0)
k s (@1 (t)v
+ Tl(fﬁ(t), d)maw) <_ ]\/I‘(l;lh(rml(t):k(b:az) 1) . (5'2'15)

Moreover, at each boundary point t, of Dy, the equality (5.2.15) still holds if
limp, 5, 7 #1(t) # O while if this limit is equal to zero we have

A(l) = (=5 g (“Guas)  0)

— v 77(07k¢'7naz) Mn.
—sgn (z1(%)) ( TR n(%mw)) : (5.2.16)

7R dman)

Proof. See Appendix B.3.2. O

With Prop. 9 we can now see that in an open interval D C Dy, in which
the deflection x; either increases or decreases, A can always be described using
(z,u) and a solution of (5.2.12) provided the two conditions in (5.2.14) hold,
see (5.2.15). One of the main advantages of this description is that solutions
of (5.2.12) can be explicitly expressed in terms of physical quantities as we
show Appendix B.3.2, see Lemma 45. Furthermore, taking a closer look at the
corresponding expression, which we provide in Table 5.1a, we can conclude from
(5.2.15) that the costate X in Dy, can be uniquely described as a function of the
deflection if we know, in addition to (z,u), the values of 1. and 7(0,* ¢raz) -
Moreover, with these values X can also be determined at the boundaries of Dy,.
It is important to remark here that the number of times, at which #; changes
its sign in the interval Dy, is always finite. Consequently, we can always find a
finite number of open intervals satisfying the hypothesis of Prop. 9 such that Dy,
is contained in the closure of their union. To construct A in Dy, it would then
be sufficient, to find for each of these intervals the values of 7. and 17(0,*,4x)-
We illustrate next how to systematically carry out this construction.
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b max .711,{1.33 aT
77(%7 ¢maw) % 77(07 ¢mam) + Uc% 8¢miz (1‘, (bmaz)

(a) Mathematical Expression for n

limD¢9x—>¢b 77(35’ ¢mam) - Sgn(¢b) %

- S8 (@, ¢max . _dTp 75 (Smas

hmD¢91—>¢b 87;:45)) *% dbmaz (¢maz) - Sgn(gbb)%n(oa (bmam)
¢mam > Oa ¢b € {_¢max7 ¢maz}; D¢ = (_¢max7 ¢maz)

(b) Limits for n(., ¢mar) and 22(., maz)

Table 5.1: The Function : D1, — R

Computing 7. and 71(0,%¢,,..) in Dy Let my € {0,1,...} denote the nec-
essarily finite number of times at which @ is equal to zero in (tsx,ts g+1)-
Moreover, for each j € S, \{0} let s, denote the j’th time at which &, is
equal to zero in this interval. In addition, let g1, be equal to the switching
time gy and tg k., to tsx41. Finally, for each j € S, introduce the open in-
terval Dy, := (ts,,ts,k,,,) Which always satisfies the hypothesis of Prop. 9 by
construction. As already discussed above, for each j € S,,, the values A takes
in Dy, can be determined using (5.2.15) if we know the corresponding value of 7
and 7(0, ¢ pnqz). In addition, using (5.2.16) the values at the boundaries of Dy,
can be determined as well. To be able to distinguish between different intervals,
we will from now on use *7.; and *19; to denote, respectively, the value of 7
and 1(0, *¢maz) in the interval Dy, . Moreover, we will use vy ; := (—1)7 Fvy o
to denote the sign of &; in Dk]. We want to next show how to describe for each
j € S, the values of #7.; and ¥nq ; in terms of *A.

Let j be an arbitrary element of S,,, . We want to first show how to determine
the value of *7). ;. For this, let us note that the value of the Hamiltonian function
H(x(t),u(t), A(t)) will always remain constant in Dy regardless of whether the
pair (x,u) is an extremal or not, see the proof of Prop. 9. Consequently, when
applying Prop. 9 to construct A in Dy, we can simply set knc,j to

nej = Fne = —H (Fz, "u, " X) . (5.2.17)

Finding an expression for #1 ; in terms of *X is unfortunately more involved
as it depends, in contrary to knc’j, also on #1|p,. To see this dependence, let us
first focus on the interval Dy,. Noting that ¢gj is a boundary point, it follows
then from Prop. 9 that two different expressions will exist for k7707o depending
on whether *#; is equal to 0 or not. Indeed, if ¥4 is not equal to zero it follows
from evaluating (5.2.15) at ¢ = tg; und using (5.2.17) that we have

M oT,
k k¢mawk)\2 knc [~)¢md;z (kxla k(bmaaf)
T00 = kg - 7 “Grmaz) ) (5.2.18)
|¢|( T, ¢maw) m

where we have also made use of the expression for 7(x, ¢maz) in Table 5.1a. If
Fi1(tsk) = 0, on the other hand, it follows from (5.2.16) with #, = tg that
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k17070 will be equal to

. kp. dT,
M Py [F000 0+ g5 (Fm)|
Mo,0 = —
TJ(k¢maz) Sgn(kxl)

Note that using (5.2.15)-(5.2.19), we can determine the costate A in Dy, and at
ts k-

Focusing now on an interval* Dy, with a positive j € S, , it can be shown
that *nq ; is closely related to *7 j_1. Indeed, we know that the first costate is
continuous at ts, and that {sx, is a boundary point of both Dy, , and Dy, .
Consequently, using (5.2.16) and the fact that x;(ts,) has the same sign as @
in Dy,_,, we can see that ”“770’]- is given by

k

(5.2.19)

"o = —"m05-1+2 "1 ;1 AP Pinaa), (5.2.20)
where A : (0,00) — R is the function defined by

1 Mépas 4T,
4 TJ(¢maz) d¢maz

With (5.2.18)-(5.2.20), we can now iteratively compute 7y ; for each j € S, \{0}
and thus determine A in Dy, as well as at tgy,,,.

Our discussion above provides all the means to construct A|p, along the
admissible controlled trajectory (x,u) when *¢,,., > 0. This construction is
graphically illustrated in Figure 5.2.1 for the three control systems ¥, ¥, and
33 from Table 4.1 by plotting for each system two different costate trajectories
against the time varying deflection. More specifically, for each of these systems
the costate trajectories are determined in D = Dy using Prop. 9 and (5.2.17)-

(5.2.20) for the controlled trajectory (x,u) with xg = (0 —59.mw)T, U= Opas

and t; = 3T,(°¢mas). In addition, for the costates in Fig. 5.2.1 (Top) Ao
T

was set to (0 —1—10)T and in Fig. 5.2.1 (Bottom) to (— i —%) . Notice

that along each controlled trajectory, 1 always changes its sign once at tg, =

A(¢7naa:) - (¢ma1‘)- (522]—)

%Tp(oqﬁmaz). Moreover, depending on the chosen initial costate Onc is either
equal to 0 or to 1, see (5.2.17).

As one can see from the graphs in Fig. 5.2.1, when the initial first costate and
thus %, is equal to zero the costates possess of symmetry properties shared by
each control system. This directly follows from (5.2.15) and (5.2.20) according
to which for %9, = 0 the first and second costates remain proportional to the
torque in the spring and to the time-derivative of the deflection, respectively.
Consequently, all the three curves representing the first costate in Fig. 5.2.1
(Top) can be directly expressed as a function of the deflection. For the second
costate, on the other hand, the corresponding curves do not directly represent a
function. Nevertheless, following our construction method described above one

4Clearly, such an interval only exists if &1 changes its sign in (ts,k>ts,k+1), i-e. mp > 1.
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Figure 5.2.1: Costate Trajectories in D = [0, M]
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can divide each of these curves into two subcurves on which the deflection either
increases or decreases. These two subcurves can then be described by a function
of the deflection, namely the function 7(.,¢maz) With 1. = 0 and 1(0, pmas) €
{°10.0,70.1}. Furthermore, they will join each other at the maximal deflection
O(bmaz-

If we now look at the graphs in Fig. 5.2.1 (Bottom), it can be observed that
for all the three systems two different functions of the deflection are needed
to fully describe the first as well as the second costate. In particular, both
costates take two different values at zero deflection. For the first costate, these

;;,fi’ with j € {0,1}, and thus only differ
in their signs. For the second costate, they are given by Ono,j with j € {0,1}, see
(5.2.15). As shown in Fig. 5.2.1, for the systems 3; and 33 these values differ,
consistent with (5.2.20), both in their signs and their magnitudes. Moreover,
for ¥4, i.e. the control system with the softening spring, there is a decrease in
the magnitude, while for the system X3 with the hardening spring there is an
increase. For the system Yo with the linear TDP, on the other hand, there is
again only a change of sign. In Sec. 5.4, we will provide a physical interpretation
which will explain why the value for 7(0, ¢nq.) in general changes with a sign
change of #; and clarify in particular how this change is related to the stiffness
characteristics of TDP’s. The interpretation will also explain the relation be-
tween the costates and the partial derivative 36T"’ which exists whenever the

Hamiltonian function is not equal to zero, see Table 5.1a. Notice that, it is this

are given according to (5.2.17) by —
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relation and the condition (5.2.20) which result in the more complex costate
trajectories in Fig. 5.2.1 (Bottom) when compared to the trajectories in Fig.
5.2.1 (Top).

Our results so far show that we can always use (5.2.20) or Prop. 9 to
construct the costate A in the interval Dy C D using *A. Notice that in both
cases, we can uniquely determine **'X by making use of the continuity of .
Consequently, if the initial value of the costate Ay = °A is given we can determine
the costate A in the whole interval D. Indeed, starting from & = 0 and using for
each k € S; the controlled trajectory (x,u) to determine whether ¥E,.; is zero
or positive, we can iteratively apply our results to fully construct X\ as desired.

5.2.3 Switching and Terminal State Conditions

Let A = (x,u, A, \;) be an extremal lift for the LVMP. We already know from
Sec. 5.2.1 that the control w in this lift is a switching control which is uniquely
determined by the sign of \;. From Sec. 5.2.2, we further know that for each
k € S;, with ¢ > 0 denoting the switching number of u, A|p, can be expressed
in terms of ¥\, x; and 4; assuming that the relative energy *E,; is positive.
Under this assumption, the control u|p, can therefore also be expressed in terms
of these three terms. In the following, we will derive such an expression for the
control and use it to derive various conditions for its switching times as well as
the terminal time in terms of the attained deflection values. The assumption
on the relative energy ¥ E,..; being positive will be justified in Section 5.3, where
we show that for each extremal lift for the LVMP the relative energy actually
remains positive along the whole trajectory.

Let k be an element of S; for which the relative energy *E,.; is positive and
let mj, denote, as in Sec. 5.2.2, the number of times at which #; equals to zero
in the interior of Dy. Moreover, let j be an element of S,,, . According to Prop.
7-8, we know that w(t) is given by —6,q. sgn (M (t)) for each t € Dy, If we
now use Prop. 9 and in particular (5.2.15), we can rewrite this relation between
u and A; to obtain the following equality which holds for each ¢t € Dy, when
z1(t) # 0:

u(t)  sgn ([0 — AaC(z1(t), *Pmaz)] 21(t))

= , (5.2.22)
Omaz kv¢"j
where C': Do — R is the function defined by
BTd) (./,C ¢ ) + TJ<¢maz)
OPpmaz \ 7 T TAT T (x T,Pmax
C(@, $rmaz) = — — el ) (5.2.23)

Mémas

with D¢ := Dz, \{0} x (0,00). It is important to remark here that in (5.2.22),
kno’j7kv¢,j7k¢mw and A, are all constant. Consequently, one can regard the
right-hand side of (5.2.22) as a function of the deflection which is defined on
(—*Pmaz, " Gmaz)\{0}. If z1(t) is an element of this set, with ¢ € Dy, , the value

of this function at this deflection will be equal to the ratio a-“ﬁ = éki and thus

max max
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non-zero. Moreover, since both *v, ; and u are constant in Dy, the set {z,(t) €
R[t € Dy,} will describe an open interval depending only on zi(ts,) and
x1(ts,k,;,, ), and for each non-zero deflection value in this interval the function
will take the exactly same value. Finally, even if there exists a time ¢ € Dy,
with 1(t) = 0 this function can still be used to determine u(t) by taking its
limit as the deflection goes to zero. This simply follows from the fact that there
exists at most one zero of z; in Dy, and that u|ij is constant.

Our discussion above shows how the right-hand side of (5.2.22) can be used
to determine the control in Dy . Based on the continuity properties of u, the
value of u at tsx, can be clearly obtained using this expression as well. More
specifically, u(ts ;) will be equal to the limit of the expression as z(t) ap-
proaches z1(ts,) from the right if *v, ; > 0 and from the left, otherwise. The
value of the control u at tsy;,, can be similarly obtained by calculating the
corresponding limit of the expression at x1(ts;,,), if ts,,, is not a switch-
ing time. Nevertheless, if 5, , is a switching time the jump in u must be
accounted for as well. In order to find u(ts,,,), it is therefore crucial to deter-
mine whether tg s, , is a switching time or not. The following proposition shows
how this can be done by using the product at the numerator of the right-hand
side of (5.2.22).

Proposition 10. Let A = (x,u, A\, \y) be an extremal lift for the LVMP and
w a control with i > 0 switchings. Moreover, let k € S; such that *E,.., > 0,
J € Smy,t € Dy, and ¢ = z1(t). Finally, let Sy, the set of all deflections ¢y
such that [*¢| < kbmaz and

lim 105 — XaC(2, *braz)| © = 0, 5.2.24
D%\{O}BH%[ 10,5 (@, " maz)] ( )

where Dv, denotes the open interval (—*dmaz *Omaz). Then, tsk; is the k’th
switching time if and only if k > 0 and there exists an element ¢p € Sy, such
that sgn(¢ — ¢p) = *vgs ;. Moreover, in this case we have

. k o
ml(tS,kj) — {mln{d)b € S¢b‘¢b > ¢}7 Vo, = 1 ) (5225)

max{¢y € Sg,|pp < ¢}, Fvg; =1

Similarly, ts, . is the k + 1’th switching time (respectively, the final time) if
and only if k < i (respectively, k = i) and there exists an element ¢p € Sy, such
that sgn(¢p — ¢) = Fvy ;. Finally, in this case we have

max es < ¢}, Fug;=-—1
Biltspy,,) = XL € Baloy <0} e . (5.2.26)
min{¢, € Sg, |y > ¢}, Tvg; =1
Proof. See Appendix B.3.2. O

Prop. 10 provides now for both tsx, and ts, , a sufficient and necessary
condition to be a switching time. Moreover, for each of these times the attained
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Figure 5.2.2: Controls along Extremal Lifts
(t € Dy, i €{0,1,...},k € 55,5 € Smy, "bmaz > 0)

deflection is also provided if the control switches at this time, see (5.2.25)-
(5.2.26). According to the definition of the set Sy, in the proposition, it is
clear that the zeros of the limits of the product in (5.2.24) play an important
role in determining the deflection values x1(ts ;) and 21 (tsx,,,). Moreover, as
we have already discussed the sign of this product, with = x;(¢), divided by
Fvs ; uniquely determines the control in Dy, see (5.2.22). In order to better
understand the dependence of the control on the time-varying deflection and the
parameters *ng ;,*vs ; and \,, we will next investigate in detail the different
possibilities for the sign of this product along A, the zeros of its limits and the
value of Fv, ;. We start our investigation by distinguishing between two cases
based on the value of A,.

Abnormal Extremal Lifts Let us assume that A is an abnormal extremal
lift so that A\, = 0. According to (5.2.22), the value of u in Dy; depends then
directly on the sign of the product *1g jz1 in Dy, and *vg4 ;. Clearly, Fv, ; is an
element of {—1,1}. Similarly, the sign of *7 ; also belongs to this set. Indeed,
according to (5.2.4) and Prop. 8 both *\; and *2; must be equal to zero since
\q is equal to zero and &y = 0. Moreover, since ¥n, = )\, we know from (5.2.20)
and Prop. 9 that |*no ;| will be equal to [¥1go| = |FAz]. It follows then from
(5.2.5) that *A # 0 holds implying that ¥7 ; is non-zero. Finally, the sign of
71 in Dy, is constant and non-zero. To see this, let us first note that for a given
time ¢ € Dy, it follows from (5.2.4) and the positiveness of the relative energy
¥ B, that A\ () must be zero if 21(t) = 0. According to Prop. 8, t would then
be a switching time contradicting the fact that it is an element of (tsx,ts g+1)-
Since z7 is continuous, we can finally conclude that its sign remains constant
and belongs to {—1,1}.

With our discussion above, we now see that there are in total eight different
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possibilities regarding the signs of k79 ; and z; and the value of *vy ;. Each of
these possibilities results according to (5.2.22) in the control u to attain either
its minimum or maximum value. This is graphically illustrated in Fig. 5.2.2
(Left) by introducing a coordinate system in which the horizontal and vertical
axis denote the values of z; and ¥7y ;, respectively. More specifically, for each
of the eight possibilities a horizontal line segment has been drawn there with
an arrow representing the value of *v, ;. These segments all correspond to a
particular value of kﬁog and either start from the vertical axis, i.e. at zero
deflection, and terminate at ¥vy ¥ ¢4, or vice versa. It is important to notice
here that for A\, = 0, the equality in (5.2.24) is satisfied, regardless of the
particular values of *7g ; and *vy ;, if and only if the deflection ¢y, is zero. This
is indicated in Fig. 5.2.2 (Left) by the black dots on the vertical axis and can be
used with (5.2.22) and Prop. 10 to find explicit expressions for the deflections
x1(tsk,;), 21(tsk,,,) and the control u(ts,) depending on whether ts; is the
initial time, a switching time or a time at which #; changes its sign without a
change in the control. Moreover, it can also be determined whether tg, , will
be equal to the final time of Dy, i.e. to ts k41, which in turn yields the value
of u(ts,,.,)- The resulting expressions are provided® in Table 5.2a.
Normal Extremal Lifts If A is a normal extremal lift, i.e. A\, = 1, k770,j can
this time take any real value without violating (5.2.4)-(5.2.5). Moreover, in this
case the function C will influence the values which the product in (5.2.24) will
take along A. In the following, we will first take a closer look at the properties
of this function. Then, similar to the previous case we will introduce a graphical
illustration which clarifies the dependence of the control on ¥ ;, 21 and *vy ;.
First of all, according to (5.2.23) and the symmetry properties of 77, |¢| and
T4 we have

C(—I’,(ﬁmax) = _C(xa¢max), (5227)

for each (2, pmaz) € De. Moreover, at each such point C is differentiable with
respect to x and the corresponding partial derivative is given by

oc _ MépaaK ()
T T

where we have made use of (3.1.6) and (3.2.7). Since (5.2.28) is positive for each
(z, pmaz) € D, the function C(., ynaz) is strictly increasing on (—dmaz, 0) and
(0, prmax) for each @pqq, > 0. Finally, using (3.2.14) and (5.2.23) it can be shown
that the limits of this function as x approaches zero from the right and as =
approaches ¢4, from the left are given by

(5.2.28)

lim C(z, dmaz) = —00, (5.2.29)
r—0t

. ts,k; .
5We use “|.]” to denote the floor function. Consequently, the value of [ﬁJ determines

whether LS kjia is equal to tg 41 or not.
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and
lim  C(x, dmaz) = AlPmaz), (5.2.30)
T Pman
respectively. It is important to recall here that the function A in the second
limit was introduced in Sec. 5.2.2 when we discussed how to use Prop. 9 to
construct a costate trajectory and analysed the changes in 7(0, ¢,,q.) which can
occur at the minimal and/or maximal deflection values, see (5.2.20)-(5.2.21).

Based on the properties of C', we can now conclude that the graph of the
function C(.,* ¢mas) divides the set {(z1,%n0,;) € R?||z1] < ¥dmax} into three
open regions as illustrated in Fig. 5.2.2 (Right). As indicated there by the
horizontal line segments and arrows, for each of these regions the corresponding
elements lead, according to (5.2.22), to the same control value when the sign of
iy is the same. In addition, regardless of the value of *q ; and *v, ; there can
exist at most two deflection values for ¢, for which the equality in (5.2.24) will
hold. In other words, the set Sy, from Prop. 10 has at most two elements and
it follows further from (5.2.27)-(5.2.30) that the number of elements depends on
knoyj and A(*¢maz). Finally, these elements can all be graphically determined
by finding the intersection points between a horizontal line, which corresponds
to the value of ¥1q ;, and the two curves described by the closure of the graph
of C(.,F ppmaz), see Fig. 5.2.2 (Right). As in the previous case, this can be
used together with (5.2.22) and Prop. 10 to find expressions for the deflections
and controls at the boundaries of Dy, depending on the properties of tgy;.
These are provided in Table 5.2b-5.2e, where we use Ky : (—00, A(pmaz)] X
(0,00) = (0, dmazls (M0, Pmaz) = Ko(M0, Pmaz) to denote the function which
for each ¢4, > 0 equals to the continuously extended inverse of the function
Cl(0,6mas)* {bmas} (- Pmaz). Notice that each of these tables considers a different
case which is characterized by whether ¢s ;. is equal to the initial time or not
and by the sign of A(¥¢,,42). Moreover, for each of these cases the magnitude
of *no; and A(¥¢pq,) influence whether tgy,,, can be equal to a switching
time or the terminal time.

It is important to remark here that knowing the deflection values at s,
and tsg;,,, as provided in Table 5.2, we can directly determine the length of
the interval Dy, since kU¢’j is constant. Consequently, by combining all our
results so far we can now uniquely construct the extremal lift A in the closure of
Dy, by knowing only ts;, (tsk,), A(ts,k;) and the integers k and i. Indeed,
based on our results from Sec. 5.2.1 we can first determine the control u(ts ;)
using A(tsx;) and then kP maz and k%J using this control and x(tsy;). In
addition, depending on the value of tsk; and Al(tsykj) we can find out whether
tsk; is equal to tsx or not. Furthermore, we can determine the value of A\,
using (5.2.4) and the value of kno’j using Prop. 9. Moreover, the expressions
in Table 5.2 together with (3.2.3) will yield ¢sx,;,, and x1(ts,,,). Using the
construction procedures for states and costates in Sec. 4.1 and Sec. 5.2.2, this
will finally lead to the desired extremal lift A in the closure of Dy;. In addition,
using either the value of A\; at sk;4, or again Table 5.2 we can additionally
determine whether tg .., is equal to ts 41 or not.

Our discussion so far is valid for any j € S,,,. Since both = and A are
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continuous, this means that starting from j = 0 we can actually iteratively
apply the procedure described above to determine my and construct A in the
closure of Dy, by using the values of tg x, *@,*\, k and i. Similarly, in our choice
for k € S; we only required *E,.; to be positive. Consequently, if this energy
is known to be positive for each k € S; our results actually provide an iterative
procedure to fully construct the extremal lift A depending only® on its initial
costate Ag and the switching number of its control. In the following section,
we will see that the relative energy is indeed always positive along trajectories
in extremal lifts. Moreover, we will illustrate how to determine the set of all
extremals by making use of the iterative procedures just described.

5.3 Extremals for the LVMP

Let A = (z,u, X, \y) be an extremal lift for the LVMP such that u is a switching
control with ¢ > 0 switchings. It follows then from the transversality condition
(5.2.5) that the terminal costate is non-zero and this implies due to the linearity
of the costate dynamics the following inequality for the initial costate:

)\0 = (/\10,)\20) 7é 0. (531)

Moreover, by evaluating the Hamiltonian function H (z(t),u(t), A(t)) at the
initial time using (5.2.3)-(5.2.4) and noting that = starts from the origin we
can arrive at the following equality for Ajp:

A 1 1
Mo = —50 € {0, ——1}, (5.3.2)

amam 97)10.%

where we have also used the fact that A, € {0,1} and |%u| = ,as, see Prop.
7-8. Finally, as already discussed in Sec. 5.2 the terminal control in an extremal
lift is always positive which means that for each k € S; the control must satisfy

ku = (_1)i+kéma1‘~ (533)

Depending on whether |\ is zero or non-zero, or equivalently depending on
whether A is an abnormal or a normal extremal lift, evaluating (5.3.3) at k =0
leads then according to (5.2.1), (5.2.8) and (5.3.2) to two different conditions
for the sign of the initial costate in terms of the switching number:

Ao = 0 = sgn(Ay) = (—1)°, (5.3.4)

and _
A10 75 0= sgn(/\lo) = (—1)171. (535)

Clearly, there exists an infinite number of switching numbers ¢ > 0 and initial
costates Ag € (R?)* which satisfy (5.3.1)-(5.3.2) and (5.3.4)-(5.3.5). Moreover,
it follows from the properties of the state and costate dynamics in (2.1.4) and

6Notice that ts,o =0 and Op =xg=0.
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(5.2.1) that for each such A¢ and ¢ there always exists a unique extremal lift.
In this section, we will first show how to construct this extremal lift. More
specifically, using mainly our results from Sec. 5.2 we will show in Sec. 5.3.1-
5.3.2 how to uniquely construct abnormal and normal extremal lifts knowing
only their initial costate and the switching number of their controls. Exploiting
the properties of the extremals in these lifts, we will then show in Sec. 5.3.3 how
the set of all extremals can be parameterized by using only a one-dimensional
parameter. Since optimal extremals necessarily belong to this set, this will
enable us to reformulate the LVMP as a nonlinear programming problem (NPP)
[5] whose solution can be determined graphically or numerically.

5.3.1 Abnormal Extremal Lifts

Assuming that A = (x,u, A, Ay) is an abnormal extremal lift, we know from
(5.3.1)-(5.3.2) that Ao is equal to zero and that Agp is non-zero with its sign
given by (5.3.4). Moreover, regardless of the sign of Ayg, or equivalently the
switching number i of u, the magnitude of the initial control will be equal to
the maximal motor velocity so that the relative energy OF,..; will according to
(4.1.2) and (4.2.5) satisfy

OErel = E’r,maa:(o) = %Mefmw, (536)
since g = 0. Consequently, °F,..; is positive and we can use Table 5.2a, Prop.
9 and our results from Chapter 4 to show that the control v in A can be uniquely
determined by its switching number i. Indeed, noting first that %799 = Agg # 0
holds by Prop. 9, we can see from the first row of the table that tg o, is never
a switching time or the final time. Moreover, the magnitude of the deflection
at this time is equal to °@,q, > 0. Using then the second row of the table, we
can see that tg o, is a switching time if 7 > 0 and the terminal time if i = 0, i.e.
ts0, = ts,1. Furthermore, in both cases we have z1(tg1) = 0. Consequently, the

0
time tg 1 is equal to M which together with (5.3.3) uniquely determines

the control u in Dy. In addition, my = 1 and for each j € S,,, we have the
equalities Yvg ; = (—1)7 sgn(%1) = (—1)7 sgn(Aa0) and, by (5.2.4), (5.2.17) and
(5.2.20), %no,; = (—1)7Xgo. Using these expressions in (5.2.22), we can then
directly relate the applied control u to the sign of the deflection z; as follows:

[Vt € (ts0,ts1)] (u(t) =sgn (z1(t)) # O) . (5.3.7)

max

It is important to realize here that the control strategy in (5.3.7) has al-
ready been encountered in Sec. 4.2 when discussing switching control strate-
gies maximizing the energy of an EJ with a velocity-sourced SEA. In particu-
lar, if 4+ = 0 it follows from Prop. 3-4 that w is a solution to the EMP since
z1(ty) = z1(ts,1) = 0. As we show in the following proposition, if i > 0 the
relation between u and z; in (5.3.7) still holds at each time in D at which the
deflection is non-zero. Consequently, the control u always provides a solution
to the EMP.
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Proposition 11. Let (x,u) be an admissible controlled trajectory defined on
D = [0,ty] with xy = 0. Then, (x,u) is an abnormal extremal if and only if
there exists an integer i > 0 such that u is a switching control with i switchings
and solves the EMP with “u = (—1)%0,,4.. Moreover, in this case we have for
each k € S;+1\{0}

tsk = tmin(k), (5.3.8)
and
Fe = (1) 12k ( 0 ) : (5.3.9)
Omax
Proof. See Appendix B.3.3. O

With Prop. 11 we now see that the control v in A can indeed be uniquely
determined by its switching number 4, see (5.3.3) and (5.3.8). Moreover, knowing
the value of i the corresponding trajectory x can also be uniquely constructed
using our results from Sec. 4.1, see (5.3.9). Note that for the case when i = 1,
this construction is already illustrated in Fig. 4.1.1 for the systems ¥, 3 and
>3 since the control strategies depicted there solve the corresponding EMP with
one switching and with Oy = fémam.

In order to now fully construct A, we need to determine the costate A and
for this it is sufficient to know the magnitude of Ay in addition to 7. This is
shown in the following proposition, where we use our results from Sec. 5.2.2 to
describe A in terms of the extremal (x,u).

Proposition 12. Let A = (x,u, X\, \,) be an abnormal extremal such that u is
a control with 1 > 0 switchings. Then, for each k € S; and t € Dy, we have

)\(t) _ qu;\QO (_ T./(ﬂjﬁ\}(t)) x'l(t)) ) (5_3.10)

Proof. See Appendix B.3.3. O

When discussing the costate trajectories depicted in Fig. 5.2.1 (Top), we had
actually already noted the existence of a linear relation between the costate, the
torque in the spring and the time-derivative of the deflection for the case when
the Hamiltonian function is equal to zero. With Prop. 12, we now additionally
see how for an abnormal extremal this relation depends on the relative energy.
In the following we will see, as in Fig. 5.2.1 (Bottom), that the relation between
costates and the extremals are more complex if the Hamiltonian function is
non-zero.

5.3.2 Normal Extremal Lifts

If A = (z,u, A, A\y) is a normal extremal lift, the conditions (5.3.2) and (5.3.5)
uniquely determine Ajp in terms of the switching number i of the control w.
Moreover, since the initial control is equal to the maximal motor velocity and
since by Prop. 8 we have ¥z; # 0 for each k € S;\{0} the relative energy
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Table 5.3: mg, 'z; and ts,1 along a Normal Extremal

will remain positive along x. Consequently, A can be iteratively constructed if
the values of A\yp € R and ¢ > 0 are known, see Sec. 5.2.3. In the following,
we will illustrate how to carry out this construction and clarify how these two
values influence the switching times of the control as well as the deflection values
attained at these times. We start our discussion with the construction of A in
the interval Dy. Focusing on the case when the control is not constant, i.e.
i > 0, we then show how for each k € S;\{0} we can construct A in Dj using
mainly the value of the deflection, the sign of its time-derivative and the relative
energy at the k’th switching time.

Construction in Dy (i > 0) Let us first note that the sign of the control ‘u
and thus %v4 o directly depends on the value of i, see (5.3.3). Moreover, since
the initial deflection is equal to zero we know by Prop. 9 that %79 ¢ = Ay will
hold. Using Table 5.2b-5.2e, with £ = 0 and j € S,,,, C {0,1}, together with
(5.2.20) we can then find different expressions for the values of mg,lz; and
ts,1 depending on )\QO,A(Ogme) and . Table 5.3 provides these expressions
while Fig. 5.3.1 (Top) graphically illustrates their derivation. More specifically,
focusing on the case when i is an even integer the figure shows how we can
determine them by using the graph of C(.,° ¢,4.) and by plotting for each
J € S, the scalar Ong ; as a constant function of the deflection, see Fig. 5.2.2
(Right). For the case when i is an odd integer, the expressions in Table 5.3
can be similarly derived using the graph of C(.,O ®maz) and noting that 0%,0
will this time be negative. The dependence of the provided expressions on the
switching number follows from the symmetry properties of C' and from (5.2.20).

With the expressions in Table 5.3, we can now uniquely construct both the
control u and the corresponding trajectory x in Dy if we know the sign of the
initial control and A, see Fig. 5.3.1 (Bottom). Moreover, by using the resulting
controlled trajectory and applying the construction procedure from Sec. 5.2.2
with %190 = Ago the costate A can be determined, as well. This shows how to
construct A in Dy depending only on Ay and 3.

Construction in D (kK > 1,4 > 1) Let us assume that ¢ > 1 and k €
S;\{0} so that tg is a switching time and kng,o is equal to C(*21,*drmaz), see
Prop. 10. According to the relations provided in Table 5.2b-5.2e, there exist
then different possibilities for the variables my, *t1z; and ts k+1 depending on
the values of *21,*@maz, "vp0 and A(¥¢,a.). By successively applying the
provided relations in the table, as discussed in Sec. 5.2.3, and making use of
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Figure 5.3.1: Construction of  in Dy (“u = b4z, € {0,2,...},7 € Spmy)

the graphical illustration provided in Fig. 5.2.2 (Right) together with (5.2.20),
these possibilities can all be described using four main Switching Patterns each
of which provides a different relation for the desired variables, see Table 5.4a-
5.4d. The derivations of these relations are depicted in Fig. 5.3.2 for the case
when the deflection at tg is positive. As indicated there, a continuous change
in the values of this deflection and its time-derivative can change the switching
pattern followed by the control if A(¥¢,,q,) is fixed. This leads to five Limiting
Switching Patterns clarifying the relation between the main switching patterns,
see Table 5.4e.

Using the expressions in Table 5.4, it is now possible to uniquely determine
the values of my, *t1z; and ts k+1 using ke, by and tsk. As in the previous
case, these three terms can in turn be used to uniquely determine the extremal
(xz,u) in Dy, see Sec. 4.1. Moreover, with this extremal and the equality
*10.0 = C(*21,*Prmaz) the costate A| p, can be determined as well, see Sec. 5.2.2.
In other words, Table 5.4 provides all the necessary information to construct A
in Dy, using the k’th switching time and the value of the extremal at this time.

It is important to remark here that knowing A in Dy, it is always possible to
determine the value of the extremal at ¢ ;1. Since in our discussion above the
value for k € S;\{0} was chosen arbitrarily, this means that Table 5.4 actually
provides all the relations required to iteratively construct the extremal lift A
in D\ Dy if we know the values of 'z, u and ts,1. Moreover, these three terms
depend on Ay and i as we have seen when discussing the construction of A in
Dy. Combining our results on the construction of extremal lifts leads then to
an iterative procedure with which we can uniquely construct A in D depending
only on Ay and i. This procedure is graphically illustrated in Fig. 5.3.3 for the
systems X1, Y9 and X3 from Table 4.1, where we used the expressions in Table
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, 21, pman 3T, (" pmax o :
S’w3,4 : A(k¢1naw) = 71\-32){; <0 1 % =1 % - T¢(‘k+11‘1‘7 kd)muw)
kg Ty (Fdmaz
S asa A(k‘/)mam) = kTIO,O =0 0 AO#WUE %

(e) Limiting Switching Patterns Sw; 5, Sws 3, Swi 4> Sws 4> Swi 2 5.4

Table 5.4: my, k+1z, and ts k+1 along a Normal Extremal
(i > 1,5 € SO0}, " > 0,100 = C(*1, *dpmaz), Bt = —1)

sgn(kzq)



71

CHAPTER 5. OPTIMAL CONTROL STRATEGIES

(0 < Ty ™™g C{of\'s 24{

‘T1} 2 1) Iq ur sumeyeq SUMPIIMG (g g G NI

éM
” Tx Tx T

—
8
-
-8
=
s
3
- Ne)

h
|

Y
7
A
\
|
|
\
\

T.ot,« |Ag.§§6k QHVQ |7




CHAPTER 5. OPTIMAL CONTROL STRATEGIES 72

| —C(@1,"Gar) —C1, " Sna) — C@1, > Gyna) — 1)

P o

0.2 ; 02 y 02
,:/ >0 | ' \ 7 '
: | : — ! e ;
orf | : : o } : o — :;
0.2 = 02 4 0.2
0
X

zs[rad/s|
a[rad/s|
to[rad/s|

7 _— ——
2 = 2 S 2
0 0
x1[rad] z1[rad] z1[rad]
‘ — pAifs/rad]  —Nofs? /rad] ‘
0.2 0.2 0.2
-0.2 -0.2 -0.2
0 0 0
x[rad] x1[rad] z1[rad]

Figure 5.3.3: Normal Extremal Lift Construction for »1,Y> and X3
(t=2,k€Si,j€ Sm,,ty =0.55s)

3.1 to construct for each system an extremal lift with a control switching two
times, i.e. ¢ = 2. Moreover, for each lift the initial costate Aoy is chosen such
that the terminal time satisfies ¢y = tg 2 = 0.55[s]. Fig. 5.3.3 (Top) clarifies the
changes of 7 ; along the extremal lifts, with k € S and j € S, , as well as its
relation to the deflection values at the switching times and terminal time. Fig.
5.3.3 (Middle) plots the trajectories corresponding to the applied controls, and
finally Fig. 5.3.3 (Bottom) depicts the costate trajectories along the lifts.

5.3.3 Parameterization of Extremals

As we have already discussed, there exists a one-to-one correspondence between
extremal lifts and the set of pairs (Ag,4) satisying (5.3.1)-(5.3.2) and (5.3.4)-
(5.3.5). Therefore, each solution to the LVMP can be referred to by at least
one such pair. Note that our results from Sec. 5.3.1 and Sec. 5.3.2 show
how to determine for each such pair the corresponding extremal. Consequently,
with the construction procedures described there we can in principle solve the
LVMP for any given terminal time t;. Indeed, the desired solution can be
found if we first determine the set of all pairs (Mg, %), which lead to an extremal
terminating at the given time, then compare the corresponding terminal link
velocities and finally choose one pair resulting in the maximal terminal link
velocity. In the following, we will show how to simplify this solution process by
finding a parameterization for the family of all extremals [2]. This will lead to
a reformulation of the LVMP as a NPP which can be efficiently solved.

We start our discussion by showing how to parameterize all the normal
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extremals by exploiting their dependence on the initial costates. Focusing
first on normal extremals (x,u) for which the initial control is positive, Fig.
5.3.1 already indicates that there exists a continuous relation between the ini-
tial costate Ago and the state 'x. More specifically, the figure suggests that
as Ago goes from minus infinity to positive infinity, the state 'z will contin-
uously move from the origin to the state (0,29mam)T while remaining on the

closed curve described by the relative energy °E,..; = %M 072mw and the control
0

u = 9maz, see Sec. 4.1. Based on this observation and the dependence of 'x
on the switching number, let us introduce the injective and continuous function

lagt: Dy — R% 0 = 12§ (a) = (‘258 (a) wgg ()" with

By, (2M6}, ..ol (1-|al))
L& () = sgn(a) : (5.3.11)
200 maz

and D, := (—1,1)\{0}. For a € (0,1), the image of this function describes
the set of all states which normal extremals can attain at ¢g; if the control has
an even number of switchings, see Table 5.3 and the green dashed curves in

ext

Fig. 5.3.1 (Bottom). Similarly, the image of 'z% |(~1,0) is equal to the set of
all states which normal extremals with % = —6,,4, can attain at ts,1. More-
over, the union of these two images and the set of initial costates Ao satisfying
(5.3.1)-(5.3.2) with A, = 1 are homeomorphic. This can be shown using the
homeomorphism A§”* in Table 5.5a which is derived using (5.3.2),(5.3.5) and
Table 5.3. Finally, notice that lim,_,;- 'z%"(«) is equal to the value of 'z at-
tained by an abnormal extremal (z,u) if A is positive, and lim,_, 1+ 125 («)
gives the value of the same state if Ao is negative, see (5.3.4) and Prop. 11.

If we now take a closer look at our results from Sec. 5.3.2, we can observe
that for normal extremal lifts sharing the same initial costate the switching
number only influences the number of the switching times but not their values
or the values of the states at these times. This simply follows from the properties
of the state and costate dynamics in (2.1.4) and (5.2.1) according to which the
condition (5.2.2) uniquely determines both the state and costate trajectories
when the initial costate is non-trivial, see Appendix B.3.3. Since for any normal
extremal lift, the first costate is zero not only at the switching times but also
at the terminal time, based on Prop. 8 we can therefore conclude the following:
If A = (x,u,\\,) and A = (2,4, )\,) are two extremal lifts with Xy =
Ao and ¢ > > 0, where ¢ and 1 denote the switching numbers of u and w,
respectively; then for each k € S;, | we have t5 ) = ES,k and *x = ¥x. With the
homeomorphism from Table 5.5a, this result shows us that for each non-negative
integer k there must exist functions *¢¢** : D, — R and *z&* : D, — R? such
that for any normal extremal A with ¢ > max{0,k — 1} switching times and

Ao = A" (@), (5.3.12)

we have
MG (a) = tsp AP (o) = . (5.3.13)
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(_M w)

0’!71.[1/().' ’ 5glﬁl(lx)

Omaz sgn(a)

1
3
sgn(« AO max exr
<o <1 (_ gn(e) 28C0mas) _C(lxlst(a)70¢max))

brmaw = E (3M0O2,,,) >0

pot max

(a) AE"t 1 D,y — (R2)*

(k—1)m+arccos(1—2[a])

57 (o)

wq
\/|a|(1a|>>

km%mt(a) (71)k7129’mam SgIl(Ol) [ f0+ ‘Oz|

ke{l,2,.. LacD,=(—11)\{0}

(b) Fte®t and *x&t for Sy

Mt (B —k+ 1 k—1k
O R
i (DF 1Rt (B—k+1) Be(k—1,k)
w0 an (0 fuas) B=k

Be(k—LE,ke{l,2. .}

(¢) 57+ (0,00) = R and 2" : (0, 00) — R

Table 5.5: Parameterization of Extremals
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Notice that for k = 0, we simply have %% = 0 and z&"* = 0. More impor-
tantly, for £ = 1 this definition is in accordance with the previously introduced
function in (5.3.11).

It is important to realize here that the values of the functions in (5.3.13) can
be uniquely determined using the construction procedure from Sec. 5.3.2 and the
function )\8‘”. Table 5.5b provides these functions for the linear control system
Y:4. By using elliptic integrals and their inverses [1], it is actually also possible
to mathematically describe these functions for the nonlinear systems Y;,, and
Ysinh, see Table 3.1 and Table 5.3-5.4. Nevertheless, the resulting terms become
very long due to the iterative nature of the proposed construction procedure and
are therefore not given.

Turning back to our problem of solving the LVMP, let us assume that A is
a normal extremal lift with a control v having ¢ > 0 switchings. Our results
so far show how instead of using the pair (Xg,7) we can equivalently use the
pair (a,14) to refer to this lift if (5.3.12) holds. Moreover, using the functions
just introduced above we can also directly refer to the final time of u which
will be given by “*1¢¢**(«). This means that the control u in this lift might be
a solution to the LVMP for the final time t; = “1¢%" (). To definitely solve
this particular LVMP, however, we need to find the set of all controls which are
contained in an extremal, normal or abnormal, with the final time ¢;. According
to Prop. 11 and in particular (5.3.8), the question of whether there exists such
a control in an abnormal extremal is equivalent to the question of whether there
exists an integer k > 1 such that

tin (k) = L4 (5.3.14)

Similarly, the existence question for controls belonging to a normal extremal
and terminating at ¢y can be investigated by making use of the time functions
in (5.3.13). More specifically, based on the properties of )\Szt and the three
conditions (5.3.1),(5.3.2) and (5.3.5) we can identify the set of all such controls
by finding for each k > 1 the parameters 3, which belong to the set D™ C D,
defined by

Diet = {B € Dqo|sgn(8) = (-1)F 1}, (5.3.15)

and satisfy
M (B) = tg. (5.3.16)

Note that equations (5.3.14) and (5.3.16) provide an infinite number of equal-
ity constraints for the integer k& > 1 and the pair (8,k) € D™ x {1,2,...},
respectively. In addition, based on our discussion above we can see that for any
given final time ¢y > 0, solving the LVMP requires us to first find the solution set
for each of them and then to compare the corresponding terminal link velocities.
We want to next show how by exploiting the properties of the functions in these
equality constraints we can describe this whole process as a one-dimensional
NPP. The following proposition will be essential in our discussion.

Proposition 13. For any positive integer k, the functions *t¢** : D, — R and
k:cesmt : Do — R? are continuous. Moreover, if T; is two-times continuously
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differentiable they are continuously differentiable. In addition, in each case we
have for each a € D,

ktg'pt(_a) _ ktfg“(oz) > 0, (5317)
and

kgert(—q) = —Fz<t(q). (5.3.18)

ext

Finally, for " we have

lim ¥t&(a)

{0 | h=1 (5.3.19)

a0 tmin(k—1) k>2
and
lim "5 (@) = toin (k), (5.3.20)
a—1—
while for *z¢t we have
: k .ext k—1 0
lim "¢ (a) = (-1)"""2(k — 1) < ) , (5.3.21)
a—0t emaz
and
lim *z&(a) = (1) 12k ( , 0. (5.3.22)
a—1- emaz
Proof. See Appendix B.3.3. O

We had already given an explicit expression for 1w€S’3t in (5.3.11) which shows
that this function is continuous. Moreover, by the relations provided in Table
5.3 the same expression also implies that '¢%* is continuous. The main value
of Prop. 13 is that it shows that the functions *z&* and ¥t%*' remain to be
continuous for k£ > 2. In addition, it also states that for each k > 1 their limits
at the boundaries of D, are closely related to abnormal extremals as we have
also previously observed when discussing the limits of & at the non-zero
boundaries of D.,,.

Choosing an arbitrary £ > 1 and concentrating at the restriction of the
function *¢7¢ to the interval D¢t we can now make use of the limits in (5.3.19)-
(5.3.20) together with the symmetry property (5.3.17) to obtain the following
relation:

lim F1¢°(8) = lim FT1E(B) = tnin (k), (5.3.23)

Bie,1 Bi+1,0
where By, 1 denotes the base” D§** 5 8 — (—1)*~! and By1,0 the base D§% >
f — 0. According to (5.3.23), the two restricted functions *#§*|pes and
ktlpert| gz, can be both continuously extended and, more importantly, simul-
taneously described using one continuous function with a suitable domain. More
generally, since our choice for k was arbitrary it is possible to construct a con-
tinuous function whose graph contains, after a suitable transformation of the

"For notational simplicity, we use here the concept of the limit of a function over a base,
see [62].
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Figure 5.3.4: The Functions ¢§** and x&"* for X1, X, and X3, and the Maximal
Link Velocity z5% (Bope) for ty = 0.55]s|.

domain, the graph of all the restricted functions *t&¢| pe=t with k > 1. The func-

tion t&"" : (0,00) — R provided in Table 5.5¢ is such a function. It is constructed
by using for each k > 1 the mapping 8¢* : D¢t — (k — 1,k), 8 — B{*'(B) =
k—1+|8] and the condition that t&* (8¢*1(8)) = ¥t&(B) holds at each B € D§*.
Fig. 5.3.4 depicts tgxt for the three control systems 3i,¥, and X3 in the in-
terval (0,4]. Moreover, for each system the figure also illustrates, in the same
interval, the function 4" defined in Table 5.5c. Similar to ¢4, this function is
continuous and constructed using the condition® z&! (3¢*1(B)) = *x & (B) for
each k > 1 and 8 € D§"".

As already mentioned, solving the LVMP for a given final time ¢y > 0 re-
quires us to find for each k& > 0 the set of all solutions for the equality constraints
(5.3.14) and (5.3.16). Based on its construction and its relation to abnormal
extremals as described by (5.3.23), the function ¢§"* provides us a means to de-
termine the union of all these sets by finding the set of all parameters 5 € (0, 00)
solving the equality t§"*(3) = ¢;. Moreover, by evaluating x¢"* at each such 3
we can also determine the final states reached by all the extremals correspond-
ing to these parameters and thus also their final link velocity. Since the desired
optimal control is known to maximize this velocity, this leads us directly to the
following proposition® which shows how we can determine for any given final
time the solution to the LVMP by solving a NPP.

8Notice that similar to (5.3.23), we have according to (5.3.18) and (5.3.21)-(5.3.22)
limp, kpeet(B) = limg, ,, , ktlgert(B) for each k > 1.

9The proof of the proposition follows simply from Prop. 7 and the definition of the functions
t¢** and xZ*. It is omitted for brevity.
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Proposition 14. Let t; be an arbitrary positive scalar. Then the nonlinear
programming problem

Mazimize 255 (B) (5.3.24)
subject to t§"(B) = ty, (5.3.25)
B € (0,00), (5.3.26)

has at least one optimal solution. Moreover, the admissible switching control
w: [0,tf] = U with i > 0 switchings and |u| = Oyqq solves the LVMP if and
only if there exists a solution B°P' € (i,i+ 1] to the problem such that we have

Q% = (=1)pmaes (5.3.27)
for the initial value of that control and
(Vk € Si)[tsnr1 = t&H(BP" — i+ k)], (5.3.28)
for its switching times and final time. Finally, in this case we have
(VE € S)[FHa = (1) . 2% (8P — i + k)], (5.3.29)
for the optimally controlled trajectory (x,u).

Given any final time ¢; > 0, the optimal solution to the NPP in Prop.
14 can be searched for graphically since it is a one-dimensional problem. Fig.
5.3.4 illustrates this by showing how the graphs of t&** and z5% can be used to
determine, for the systems ¥;,3, and X3 and for ty = 0.55[s|, the parameter
3°P* solving the problem and the corresponding maximal link velocity z5% (3°F").
It is important to remark here that for all the three systems analysed in the
figure, it is sufficient to restrict our search for a solution to the interval (0, 4].
This follows from the observation that the function t§1t|(074] is strictly increasing
and from the fact that the value of *t&*! (), with a € Dy, and of t,,i, (k) always
increase with increasing k& > 1.

According to Fig. 5.3.4, for the systems ¥;,Y, and X3 there exists only
one solution to the NPP in Prop. 14 when ¢y = 0.55[s]. This means that for
all these three systems there can only exist one extremal terminating at this
final time. Consequently, we can now conclude that each of the three extremal
lifts constructed in Fig. 5.3.3 are actually optimal. Unfortunately, in general
there might exist multiple extremals terminating at the same terminal time. We
will see this in the next chapter, when we investigate the maximal link velocity
of control systems sharing the same dynamics as the DLR FSJ [59]. Since
our results only imply continuity of the function ¢§** but not monotonicity, in
such cases it is not straightforward to determine the solution set of the equality
(5.3.25). We conclude this section with a proposition, which provides lower and
upper bounds for this set as well as for the maximal value that can be attained
by the objective function (5.3.24). The proposition is especially useful when the
NPP in Prop. 14 is to be solved numerically.
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Proposition 15. Let t; > 0 be an arbitrary scalar and p¢* € (0,00) a scalar
for which the equality t; = t&"*(3°*") holds. Moreover, let

K
Wimin =  min M, (5.3.30)
‘fbe[ovemamtf] M
and
K
Wmez =  max M, (5.3.31)
¢€[019nLamtf] M

denote the minimal and mazimal eigenfrequency attainable at the final time ty,
respectively. Finally, let the integers iy, and iu, be given as follows'®:

mintL
i = max{0, [“ﬂﬂ — 2}, (5.3.32)
and
t
by = {”’"‘”‘fl .y (5.3.33)
™
Then, we have
Bt € (i, dup + 1]. (5.3.34)

Moreover, if 3°*t also solves the nonlinear programming problem described by
(5.3.24)-(5.3.26), the following inequalities hold for the corresponding terminal
link velocity x§% (B*):

2Epot (emaxtf)

0 < 258 (8% < i (5.3.35)

Proof. See Appendix B.3.3. O

5.4 Resonance Energies

The LVMP as formulated in Sec. 2.3 is actually a problem already studied in [24]
for the case when the TDP is linear [53]. As already mentioned, for sufficiently
large terminal times the corresponding OC strategies periodically switch be-
tween their minimum and maximum values with the EJ’s eigenfrequency. From
a mechanics point of view, OC Theory thus establishes the fact that an EJ with
a linear spring must be excited with its resonance frequency when the terminal
link velocity is to be maximized. The main aim of this section is to show how our
results obtained so far extend this well-known concept of resonance frequency
to a new concept which we will call resonance energies.

We will start our discussion by first clarifying the main properties of opti-
mally controlled trajectories for the linear control system X;;, see Table 4.1b.
These properties will directly follow from well-known results on the OC of linear

10We use “[.]” to denote the ceiling function.
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systems [30]. Afterwards, we show that some of these properties remain also
valid for systems with nonlinear TDP’s. Focusing on the common properties, we
then make use of Bellman’s principle of optimality [9] together with the concept
of parameterized families of extremals [37, 53] to find a physical interpretation
for the costates as well as the optimal control strategies. Using this interpreta-
tion, we further explain the relation between costate trajectories and the time
functions introduced in Sec. 3.2. Noting that this relation is valid for any TDP,
linear and nonlinear, our discussion will finally lead to the concept of resonance
energies.

The control system ¥;; is a completely controllable system with a compact
and convex control set. Consequently, given a final time ¢y > 0 the time-t-
reachable set from the origin, which we will denote by Reachs,, ¢, (0), is compact
and convex [53]. Moreover, since the same system also satisfies the normality
condition this set is actually strictly convex [30]. In addition, for each ¢; > 0
there exists exactly one control strategy solving the LVMP. More generally,
for any non-trivial linear combination of terminal states there exists exactly
one control strategy minimizing this combination. The following proposition
clarifies the relation between these strategies and also show that they all lead
to time-optimal and boundary trajectories'!.

Proposition 16. Let 7; be a linear TDP and A = (x,u, X\, \,) an extremal
lift for the LVMP which is defined on D = [0,t7]. Then, A is optimal, x is
time-optimal and (x,u) is a boundary trajectory. Moreover, for each ty € (0,ty]
the admissible control @ : [0,t¢] — U defined by

vt € [0,t5) [a(t) = u(t)], (5.4.1)
is the unique control that minimizes the cost functional J : PCy — R with!?
J(@) = Xty)zy, (5.4.2)
over all admissible controls @ defined on [0,ts].
Proof. See Appendix B.3.4. O

In general, it is not possible to directly determine whether the time-¢-reachable
sets of X2 are convex or not if the TDP is nonlinear. Consequently, for such sys-
tems the conditions provided by PMP can only be regarded as necessary condi-
tions. This also means that Prop. 16 can not be directly extended to extremal
lifts for an arbitrary control system Y. Nevertheless, applying first Filippov’s
Theorem [2] and then Sturm Comparison Theorem [3], as done in the proof of
Prop. 6, it is possible to see that Reachs ;,(0) will be compact for each t; > 0.
Moreover, an optimal extremal (x,u) for the LVMP, defined on D = [0, ], will
always terminate at the boundary this set. Finally, as we show in the following
proposition & will in this case also be a time-optimal trajectory.

113ee [53] for the definition of a boundary trajectory.
12Gimilar to (2.3.1), & denotes in (5.4.2) the terminal state to which the admissible control
u will steer the system X from the origin.
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Proposition 17. Let (x,u) be an optimally controlled trajectory. Then, (x,u)
is a boundary trajectory and x is a time-optimal trajectory.

Proof. See Appendix B.3.4. O

According to Prop. 17, time-optimality is a property shared by every opti-
mally controlled trajectory regardless of the TDP. This is in accordance with
the mathematical expressions we have found in Table 5.1a which describe the
costates in terms of the time functions from Sec. 3.2, see Prop. 9. Similarly,
for each control system X optimally controlled trajectories belong at each time
to the boundaries of the systems time-t-reachable sets. In order to extend the
concept of resonance frequency, we will next investigate these common prop-
erties in more detail and provide, in particular, a physical explanation for the
costates.

When using Bellman’s optimality principle to solve an OC problem, it is
known that the costates of the problem will be given by the gradient of the
value function if this function is continuously differentiable [15, 9]. To be able
to physically interpret the costates, we will therefore search for a value function
which can be used to distinguish between optimal and non-optimal trajectories
for the LVMP. For this aim, we will make use of the parameterized family of
extremals we introduced in Sec. 5.3.3.

Following [53], let us now introduce the continuous flow of extremals z¢** :
Dg x [0,00) = R2, (o, t) — x°“(a, t) which for each k > 0 and t € Dy, satisfies

t
z°(a,t) = F2&" () —|—/ F(x(a, 5), Fu)ds. (5.4.3)
ktgzt(a)
Similarly, let A" : D, x [0,00) — R?, (a, 1) — A°“*(a, t) denote the continuous
flow of costates defined by!?

A a,t) = A5 () —/0 A (a, s)g—i (" (o, 5)) ds. (5.4.4)

Moreover, let A = (x,u, A, A\s) be a normal optimal extremal such that u is
a switching control with the terminal time ¢; and switching number °?* > 1.
Then, by our results from Sec. 5.3.3 we know that there must exist a parameter
a°Pt € D, such that x is given by the restriction of £**(a°P?,.) to the interval
[0, +1 tsx(a°P?)]. Finally, assume that there exists an open interval I,ope C D,
containing a®?* such that for each o € I,op the restriction of z°**(c,.) to the
interval [0, +2 ¢ ()] is optimal with i T2 (o) < i F2¢52t (q°PT), In this
case, it follows from Prop. 17 that the set

Spi={x (a,t5) € R? | € LIpow }, (5.4.5)

defines a continuous curve on the boundary of Reachs ¢,(0). This is graphically
illustrated in Fig. 5.4.1 for the nonlinear control system X3 with i, = 2,

13Noting that % does not depend on the applied control strategy, we omit here, with a
slight abuse of notation, the second argument of this derivative.
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Figure 5.4.1: Physical Interpretation for the Costates

(Z=35,a%" = L Lo = (£,3),i%" = 2,t; ~ 0.57]s))

Pt = % and I opt = (i, %) As shown there, the costate Ay represents in this
case a normal vector to Sy and thus also to Reachy ;,(0). In the following, we
will derive our desired physical interpretation for the costates which will reveal
the reason behind this geometric property.

Making use of the set Sy, let us introduce the value function Vy : Dy, — R
with

Daort 1= Inont x [0, 4], (5.4.6)
Dy, =z (Dgont),
such that
Vi(y) =0, (5.4.8)
if y € Sy and™
Vi(y) =min{T(z) |z € Traj(X) Azo =y Az € S§}, (5.4.9)

if y ¢ Sy. According to its definition, Vy(y) provides the minimum time'®

required by trajectories of X to terminate on the set Sy when they start from
y € Dy, \S; and remain in Dy,. Clearly, for trajectories starting from the
origin we always have V(0) = t¢. More generally, by the Bellman’s principle of
optimality [9] we have for each o € Iyopt and t € [0, ¢/]

Vi (2 (o, t)) =ty — . (5.4.10)

The equality in (5.4.10) simply shows that the value function V; linearly de-
creases over time when evaluated along optimal trajectories. Assuming that

14Recall that for each trajectory @ of ¥, T'(x) denotes the terminal time tr.
15Notice that the existence of the minimum directly follows from our assumptions on the
existence of optimal extremals corresponding to pairs (o, i°P* 4 2) with a € I opt-
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V¢ is continuously differentiable, we can take the time-derivative of (5.4.10)
everywhere except at the switching times. This leads, as expected from the
Hamilton-Jacobi-Bellman equation, to the equality

OV | emt ozt _

which holds at each (o, t) € Dgort := Dagopt \Inort x {1tg(a), ..., "  tg(a)}.

A comparison of the Hamiltonian function in Prop. 7 with (5.4.11) already
suggests a close relation between A and the gradient of Vy. Similarly, if we
additionally assume that £°**(«, t) is differentiable with respect to o, we obtain
the following equality from (5.4.10):

8Vf ext 63:8“ -
%(m (o, 1)) e (a,t) = 0. (5.4.12)

Taking now a closer look at (5.4.11)-(5.4.12), one can see that knowing the
derivatives of " with respect to the time ¢ and parameter « one can uniquely
determine % (2"t (at, 1)) in Dgopt provided that these derivatives exist and are
linearly independent. The following proposition, which is closely related to the
results from [53] such as the Shadow-Price Lemma'®, provides conditions under
which this will be true for ¢**(«, t) in a particular subset of Dgop:. Moreover,
as shown there the provided conditions also ensure V; to be continuously differ-
entiable in this subset with a gradient which directly corresponds to the costates

of optimal extremals corresponding to parameters in [,opt.

Proposition 18. Let i > 1 be a positive integer and Ieat C D, = (—1,1)\{0}
a non-empty open interval. In addition, assume that for each k € S;\{0} the
functions ktg“ and kwg” are continuously differentiable on I,e=: and that for
each a € I ezt we have

0FMss

(kxezt( ) k ezt( )_k )dkxgzt
Ox 15 (&), Tog (X u

da

(a) > 0. (5.4.13)

Finally, let lo)mm, Dgeat and Dyest denote the sets
Dgest 1= {(o,t) |o € Tnest At € Ujy (Pt (), 115 (@) },

Dwﬁzt = lgyeat X (1tesxt(a)7i+1t§wt(a)),

and
Dt;zt = a:e’”t(Dwm),

and assume further that the restriction of %%t t0 Dyeat is an injective function.
Then, the restriction of £t to Dyt is continuously differentiable and we have

det (227" (0,1) 227 (a)) > 0, (5.4.14)

16The main contribution of the proposition is the interpretation of the time along trajectories
as an additional parameter used to parameterize the extremals.
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for each (a,t) € Emm. In addition, the unique function t?’” : Dt;zt R x—
t$°" which satisfies

(V(a,t) € Dgest) [t5 (2 (a,t)) = 1], (5.4.15)

is continuously differentiable and for each (a,t) € ﬁwm we have

8t6xt ext o ext -1
ﬁ (mewt(a,t)) = (0 ]_) (8§a (a,t) d%t (a,t)) y (5416)

while for each (a,t) € Dgest we have
ext

ot§

ox
Proof. See Appendix B.3.4. O

(2" (a, 1)) = =X (o, ). (5.4.17)

By applying Prop. 18, with Iest = I opt and i = i°P* + 1, we can see that for
each point y in the set Dy, \@®* (Inort x [0, t%"*(at)]) the function V; will be ex-
actly equal to the difference t; —¢5(y) provided z***|, (1571 (00,177 +24571 ()
is a surjection and (5.4.13) holds for each k € S;opt 1. Moreover, in this case it
follows from (5.4.16) -(5.4.17) that the gradient of the value function %me will

exist at each point in the set Dy, \a@®* (Iert x [0, ts(r)]) and satisfy

%(mext(a, 1)) = A (o, t), (5.4.18)
for each (a,t) € Iyort X <1t§mt(a),iom“t‘gxt(a)). It is important to remark
here that Prop. 18 can always be applied to analyse the extremals of systems
with linear TDP’s. Moreover, the differentiability condition on the functions
Fteet and k¢t can always be ensured when the TDP is two-times continuously
differentiable, see Prop. 13. Finally, regardless of the TDP the proposition can
always be applied if i°?* = 1. In deriving the concept of resonance energies we
will take the conditions required to apply Prop. 18 as granted. Note that these
conditions are also satisfied by the family of extremals analysed in Fig. 5.4.1.

Equation (5.4.18) provides us now the desired physical interpretation for the
costates according to which the costates represent, after the first switching time
of the control, the gradient of the minimum time required to reach the set Sy
in (5.4.5). In particular, evaluating (5.4.18) along the optimal extremal A, by
setting o to a°P!, and using (5.4.16) we can see that for each ¢t € (*tg(a®P?), ty]
A(t) will satisfy

A Jim, (257 (0) 257 (09) = (0 ). (5.4.19)

with By, (t) := bvf 5 (o, 8) — (Pt t). With (5.4.19), we can now also see that
A(t) will be a normal vector to the boundary of the reachable set Reachy ;(0)
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pointing inwards whenever ¢t > tg1. Moreover, according to (5.4.19) we also
see that at each such time the Minimum Condition in (5.2.2) simply requires
the optimal control to adjust the time-derivative of the optimal trajectory such
that the trajectory leaves the corresponding time-t-reachable set at its highest
possible rate. Finally, evaluating (5.4.19) at ¢ = t; one can observe, in ac-
cordance with Fig. 5.4.1, that the transversality condition requires the limit

ex

limgvf (t;) 823T(oz, s) to be a horizontal vector ensuring that the terminal link

velocity attained by the neighbouring extremals can not be greater then xo(ts).

In our analysis above, we have used the parameterization from Sec. 5.3.3 to
find an additional condition on optimally controlled trajectories, see (5.4.12).
Using this condition together with (5.4.11), we could relate in Prop. 18 the
gradient of V; to the flow of costates. We want to next further exploit this
condition to understand the meaning behind the analytical expressions we have
found in Sec. 5.2.2 for the costates. For this aim, let us recall that for each
k € Siore and j € Sy, , the costate A in Dy, is uniquely determined by (z,u)
if we additionally know the value of 779 ;, or equivalently the value of Ay when
the deflection is equal to zero in Dy, see Sec. 5.2.2. Based on this property,
let us introduce, as in Fig. 5.4.1, for each k € S;ope\{0} the continuous curves
ko Inopt — R? with

“v(a) = (x;“ (a,o’“tw(a))> ’

where *t, : Iyore — (Fts(a),*tg(a)) is the unique continuously differentiable
function satisfying the equality

(Vo € Iyowt) [25"" (o, "2, () = 0] .

Moreover, let ¥¢,,q0 @ Inort — [0,00) denote the maximal deflection function
corresponding to the relative energies attained along these curves. That is

(Vo € Tyopt) [kgpmax(a) = Ep_olt (Bkin (ku — kw(a)))] .

Without loss of generality, assume now that for a given k € Sjopt\{0} the

ext
derivative 692,1 (o, ty()) is positive for each a € I,opt and fix the integer
J € Smu—1 = {0,1} such that t,(a’") € Dy,. If we now choose a time ¢

from the same interval Dy, and set & = x(t), there will exist a sufficiently small
neighborhood Nz of & such that for each y € Nz we have

Vi(@) = Vi ("v(@)) = T (1, Pmae (@) , (5.4.20)

with

Brin ("u—"72(@)) = Eumss (1, "u — 52) . (5.4.21)
Similarly, if we choose a time ¢ from the interval Dy, , and set & = x(f) there
will exist a sufficiently small neighborhood Nz of & such that for each y € Nz
we have

Ty (kSDmar(C_“))

9 + T¢> (gla k@mar(d)) y (5422)

Vi(m) = Vi(*y(@) -
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with
Epin ("u —"72(a)) = Emss (91, v — 52) - (5.4.23)

Fig. 5.4.1 ilustrates two such possible choices for ¢ and f .

As one can observe from Fig. 5.4.1, equations (5.4.20)-(5.4.21) simply illus-
trate the fact that using only the function Ty we can relate the minimum time
required to reach the set Sy from a given state ¢ to the minimum time required
to reach the same set from a state *~(&) at which the deflection is zero provided
both states share the same relative energy and same sign of the velocity kv(m-.
If, on the other hand, there is a change in the velocity, the oscillation period
T, must also be accounted for as shown by (5.4.22). Furthermore, by partially
differentiating (5.4.20) and making use of the equalities in (5.4.18) and (5.4.21)
we can now get the exact same expressions for the costates A in Dy, as provided
in Prop. 9 and Table 5.1b. Similarly, by partially differentiating (5.4.22) we can

also find the expressions describing A in Dy, if we additionally use (5.2.20)-
(5.2.21) to relate 7 1ng . to Ing = % (Fy(a°r?)) and dg:iz (Fomaz (@),
Focusing now on the optimal control « in the normal extremal lift A, we

can see from (5.4.20)-(5.4.23) why for k¥ > 1 knowing the relative energy *¢,.42
and the boundary condition jT]o,k we can describe u|Dk7 as a function of the

deflection using the function C(.,* ¢yaz). In addition, the equations also clarify
why this description of the control must be adjusted whenever there is a change
in the sign of #; and why this adjustment is related to the system’s period T},
and thus TDP. Looking now back at the switching patterns illustrated in Fig.

5.3.2, one can observe that it is the period T, or more specifically its derivative
ATy _ 40 (Dimae)Ts (Smas)

d¢7na$ M¢7nam
trol strategies. For system’s with linear TDP’s, this derivative is equal to zero.

Consequently, it follows from the symmetry properties of C', that the value of
the deflection at two consecutive switching instants will share the same mag-
nitude, see Fig 5.3.2 (Middle Row). That is at both these instants the same
potential energy will be stored and this leads to the well-known harmonic oscil-
lation of such systems. For systems with nonlinear TDP’s, the same principle
still holds regarding the influence of the function C' on the potential energies
at the switching instants. In particular, knowing the first switching instant one
can uniquely determine all the other switching instants by making use of this
dependence. Describing the resulting control as a function of time is, however,
not straight-forward as for systems with linear TDP’s. This follows from the
energy-dependence of T,. The potential energies at the switching times and
the relative energies attained along the trajectories can, on the other hand, be
more easily determined and they also better explain the switching structure of
the optimal control. Since this is also true for controls in abnormal extremals
and, more importantly, for any control system >, we regard optimal control
strategies for the LVMP as excitation of the system with its resonance energies.

, which complicates the description of optimal con-



Chapter 6

Maximal Link Velocity

As stated in Prop. 6, a solution to the LVMP exists for each final time t; > 0.
Moreover, it follows from Prop. 15 that the terminal link velocity attained using
this solution is always positive. Consequently, for EJ’s with velocity-sourced
SEA’s we can always define a mazimal link velocity function ¢mq. : (0,00) —
(0, 00) with

Gmaz(t) = =J(u"), (6.0.1)

where u* denotes the control strategy solving the LVMP for the final time
ty =t, see also (2.3.1). The purpose of the current chapter is to first study the
properties of this maximal link velocity function. More specifically, we want to
clarify how this function depends on the final time as well as the parameters of
the control system X such as the maximal motor velocity and the TDP. Secondly,
we want to experimentally illustrate how to attain this maximal link velocity
with the DLR FSJ and thus validate our theoretical results. We will start our
discussion by investigating the dependence of ¢4, on the final time.

6.1 Final Time Dependence

In this section, we will first prove that the function ¢, is a continuous and
strictly increasing function of the final time. This will require us to investigate
in detail the relation between ¢, and optimally controlled trajectories. Then,
taking a geometrical approach and exploiting the derived properties of ¢4, We
will discuss how to construct the graph of ¢4, in a given interval. Moreover,
following the described procedure we will graphically illustrate ¢4, for several
control systems.

6.1.1 Continuity and Monotonicity

Let us assume that (x,u) is an optimally controlled trajectory defined in the
interval D = [0,t¢]. According to (6.0.1), the value of ¢ma. at ty will then
be clearly equal to the terminal link velocity x2(t¢). Moreover, for final times

87
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greater than t; the values attained by ¢pqe. will be greater than or equal to
zo(ty). Indeed, for any ¢ > t; we can define an admissible control @ : [0,¢;] — U

with
_ 0 t<e
a(t) = {u(t o) e , (6.1.1)

and ¢ = ty — ty. Using (2.1.4) and noting in particular that the origin is an
equilibrium point of ¥ when the control equals to zero, we can then see that the
pair (&, u) defined in the interval [0,¢] with

Z(t) = {0 b<e (6.1.2)

x(t—e) t>e’

is an admissible controlled trajectory. Moreover, this trajectory starts from the
origin and terminates at Zy = x so that we have z3(tf) < Gmaz(ts). Since our
choice for ¢y was arbitrary, we finally arrive at the relation

(Vt € (tf7 OO)) [xQ(tf) = Qmax(tf) < Qmax(t)] . (613)

Our discussion above simply shows that the terminal link velocity of (@, u)
is a lower bound of ¢4, in the interval [tf, co0). Similarly, we can show that the
trajectory of the link velocity, i.e. s, is a lower bound of ¢4, in the interval
(0,t¢]. To see this, let us first note that the restriction of = to a closed interval
[0,¢t] € D will always be a trajectory of ¥ if ¢ > 0. Clearly, this trajectory will
also start from the origin. Based on the definition of ¢4, we can then directly
arrive at the following relation between x and Gnqq:

(Vt € (0,t5]) [z2(t) < dmax(t)]- (6.1.4)

It is important to note here that equations (6.1.3)-(6.1.4) can be combined to
define a continuous function taking values always less than or equal to G,qz, i-€-
a continuous lower bound of §q,. Similarly, using the arguments above and
additionally exploiting the limits on the system’s maximal energy as discussed
in Prop. 5, we can find a continuous upper bound of ¢,,,, which depends on
the terminal link velocity z2(¢) and the maximal motor velocity. The following
proposition introduces these two functions and also clarifies their relation to

Qmaz .

Proposition 19. Let (x,u) be an optimally controlled trajectory which is de-
fined on the interval D = [0,t5]. Moreover, let ¢; : (0,00) — R and Gy :
(0,00) = R be two functions with

. () t <ty
qlb<t>—{x2(tf) it (6.1.5)

and

xa(ty) t <ty
() = N 7 6.1.6
Gup(t) {l’g(tf) N Epo,,(emwﬁérip:t(emmtf) 1>t ( )
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respectively. Then, both ¢y, and ¢, are continuous functions and we have
(t € (0,00)) [@n(t) < dmaz(t) < Gus(t)] - (6.1.7)
Moreover, all inequalities in (6.1.7) hold with equality at t =1t;.

Proof. See Appendix B.4.1. O

Given an optimally controlled trajectory, Prop. 19 provides now a means
to construct a continuous lower and upper bound of ¢4, using this trajectory
as well as the parameters describing ¥, see (6.1.5)-(6.1.7). Moreover, since
these two bounds intersect each other as well as ¢4, at the final time of the
given trajectory, Prop. 19 can be used together with Prop. 6, to show that
(maz 1S continuous at every point of its domain. Using additionally our results
on optimally controlled trajectories from Sec. 5.2 and 5.3, we can prove the
following proposition which establishes the desired monotonicity and continuity
properties! of ¢maz-

Proposition 20. The mazimal link velocity ¢mqz. : (0,00) — (0,00) is a con-
tinuous and strictly increasing function with the following limits:

tl_i)r(r)l+ Gmaz(t) =0 A tlgglo Gmaz (t) = 0. (6.1.8)
Proof. See Appendix B.4.1. O

6.1.2 Graph Construction

As we have seen in the previous chapter, if (x,u) is an optimally controlled
trajectory defined on D = [0,ts] there always exists a positive integer k& and a
parameter 3°P* € (k — 1, k], such that the trajectory’s final time and terminal
link velocity are given by ¢%°*(3°P") and z5% (B°P"), respectively. Consequently,
the value of Gyq. at t5°¢(8°P") will in this case be given by z5% (3°P*). Moreover,
following a geometric approach we can define? a continuous map *~ : (k—1,k] —

R? with “(8)
te:t B
F =(5 . 6.1.9
10 = (50) (6.19)
The image of this map will then contain the set of all final times and terminal
link velocities which can be attained by extremals when the control switches k—1
times. In addition, the map itself will describe a plane curve intersecting the
graph of ¢q, at the point (¢5°(8°P), x5 (ﬁ"pt))T. Furthermore, if there exists
a neighborhood Igop: of 3°P* in (k — 1, k| such that extremals corresponding to
parameters in this neighborhood are all optimal, the curve *~ restricted to I Bovt

LAs we show in the proof of the proposition, Prop. 6 and Prop. 19 already imply that
gmaz 18 an increasing function. Nevertheless, in order to show that ¢maqe is strictly increasing
we also require some of the properties of optimally controlled trajectories which we derived in
Sec. 5.2 and 5.3.

2with a slight abuse of notation, see Sec. 5.4.
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Figure 6.1.1: The Maximal Link Velocity Function G4z
(Left: 21722 and 23. Right: EFSJ’Q.)

will coincide with the graph of Gy,q, for t € t57 (Igorr). We want to next describe
how to exploit this relation between k'y and Gynqe to construct the graph of ¢4z
in a given time interval Iy, . := (0,tfmaz) C (0,00).

Let tfmax > 0 be an arbitrary scalar. The values of ¢y, in the interval
1g,.... can then be clearly determined by finding the set of all optimally controlled
trajectories with a final time less than or equal to t¢ 4. Note that by Prop.
7-8 and Prop. 14, each of these trajectories is necessarily equal to an extremal
(z,u) which corresponds to a parameter 5 € (0,00) such that (5.3.28)-(5.3.29)
hold. Moreover, by Prop. 15 there always exists a maximum switching number
imaz Which will be valid for all the controls of these trajectories®. Consequently,
if we construct for each k € {1,...,imas + 1} the map ¥~ according to (6.1.9),
the union of the images of the resulting maps will contain the graph of ¢4, in
I;,.... In addition, based on the way we defined the functions t$"* and %" in
Sec. 5.3.3 this union can be represented as one possibly self-intersecting curve.
Finally, it follows from Prop. 20 that we can always extract a continuous part
of this curve which will correspond to the graph of ¢,az| Tipon

Fig. 6.1.1 (Left) graphically illustrates the construction procedure described
above for the three control systems ¥;,Ys and X3 which have been already
investigated in Chapters 4 and 5. For each of the constructed graphs, the max-
imal final time ¢ 4, was set to t§"*(4) = t,in(4) and the maximal switching
number 7,,,, was found to be equal to three. Consequently, twelve curves have
been in total computed using (6.1.9). None of these curves intersect each other
and they also do not have any self-intersections. Therefore, they all uniquely

3In particular, according to Prop. 15 we will have imqs < {M—‘ + 1 with wmaz =

. [ Ky (¢)
maX(ﬁE[Oyevnam'tf,m,aw] ‘1]\/1 ’
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represent one particular part of the graphs and can be directly combined as
done in the figure. It is important to remark here that with the constructed
graphs we can now conclude that abnormal extremals terminating at ¢, (%),
with ¢ € {1,2, 3,4}, are all optimal for 3,35 and 3. Consequently, the control
strategies depicted in Fig. 4.1.1 solve both the EMP and the LVMP. In addition,
the graphs also indicate the optimality of the trajectories in Fig. 5.3.3 which
we had previously established in Sec. 5.3.3 using Fig. 5.3.4.

Unfortunately, combining the curves ¥~ with k € {1,... 4,4z + 1} does not
always directly lead to the desired graph of ¢4, as in Fig. 6.1.1 (Left). This is
exemplified in Fig. 6.1.1 (Right), where we illustrate the function ¢maelz,, . for
the control system ¥ g2 which describes a DLR FSJ with the parameters given
in Table 4.1c. The maximal time tf 4, was set this time to t§°4(3) = tnin(3)
while the maximal switching number i,,,, was found to be again equal to three.
Consequently, four curves were computed to determine the graph of ¢4, in the
interval Iy, ... As shown in the figure, by combining these four curves into one
continuous curve we do not directly obtain in this case the desired graph due
to self-intersections. Such an intersection occurs, for instance, at a time close
t0 tmin(3) where the curves 3y and %7 intersect each other. Notice that for
this particular time, there exist two different control strategies which solve the
LVMP using a different number of switchings. For higher times, on the other
hand, the optimal control strategies all require three switchings to solve the
LVMP. This is especially true for ¢ = ¢,,;,(3) and we can thus conclude that
control strategies solving the EMP do not necessarily solve the LVMP.

The four graphs depicted in Fig. 6.1.1 clearly validate our results regarding
the time dependence of the maximal link velocity function. Furthermore, they
also show how the parameters describing a control system can influence the
attained maximal link velocity as well as the optimal control strategies required
to reach this velocity. In the following section, we will take a closer look at this
influence and show in particular how to systematically analyse it by making use
of dimensionless parameters.

6.2 Parameter Dependence

In this section, we want to understand how the maximal link velocity of an
EJ depends on its parameters. For this, we will analyse the properties of the
velocity gain function (VGF) €: (0,00) x Ps; — (0, 00) defined by

e(t;p) = %‘?’”7(“’), (6.2.1)

emaa:

where ¢mqz(.;p) denotes the maximal link velocity function for the system %
corresponding to p = (M, 77,0maz). Noting that abnormal extremals always
lead to terminal link velocities which are an even multiple of the motor velocity,
we will start our discussion by clarifying the relation between their terminal

times and the parameter to which they correspond. In other words, we will first
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investigate the influence of p on the function* ¢,,:,(.;p). Our discussion will
lead to a dimensionless time function which will explain some of the differences
between the graphs in Fig. 6.1.1 (Left). In the second part of the section, we
will then similarly introduce dimensionless parameters which can be used to
simultaneously determine VGF’s corresponding to different parameters.

6.2.1 Dimensionless Time Function

Let X be a control system corresponding to an arbitrary parameter p € Ps;, and
k a positive integer. From Prop. 11, it is then known that there exists a unique
abnormal extremal such that the terminal link velocity 2k0,0 is reached at the
final time ., (k; p). Consequently, the following inequality holds for the VGF
according to (6.2.1):

€ (tmin(k; p); D) > 2k. (6.2.2)

Clearly, the inequality above will hold with equality in case the abnormal ex-
tremal terminating at t,,;,(k; p) is optimal. We have already seen in Fig. 6.1.1
(Left) that abnormal extremals can be optimal. In order to gain an insight on
the properties of ¢, we will therefore investigate in the following the relation
between t,,;, and p.

Notice first that for any given p € Py, the function ¢, (.;p) : {1,2,...} —
(0,00) is a strictly increasing function. This simply follows from the definition
of tynin in (4.2.11)-(4.2.12) and the fact that periods of mass springs systems are
always positive. In addition, according to the definition the image of ¢, (.; P)
depends on all elements of p. Indeed, the TDP determines the potential energy
function while the link mass together with the motor velocity determine the
relative energies stored along abnormal extremals. In addition, the mass and the
TDP determine the period of the corresponding mass spring system. Analysing
the influence of p on t,,;, requires us to consider all these dependences. The
following proposition shows how this can be achieved by analysing dimensionless
control systems for which both the mass and the maximum motor velocity are

equal to one’.

Proposition 21. Let p be an arbitrary element of the parameter set Ps, and

4Similar t0 Gmaz(.; ), the additional argument in t,,, is used to explicitly state its de-
pendence on the parameter p. In this section, we will adopt this same notation also for other
previously defined functions (See also Sec. 2.2).

5In Prop. 21-26 as well as in our discussions to follew, we will be using the symbols

“2” and “~” to distinguish the parameters p = (M, %J,émm) and p = (M, 77,0maz) from
p. Consistent with this notation, we use K; and K; to denote the SDP corresponding to
77 and Tj, respectively. Similarly, we use wo = ‘/K‘]f\iéo) and @y = ‘/KJT(O) to denote the
corresponding eigenfrequencies. Moreover, K ; will denote as before the SDP corresponding

to 77 and we will have wg = 4/ K#p). Finally, in Prop. 22-24 and Prop. 26 as well as in
Lemma 57 the function 7;(¢) will be given by Keg(ked) and 75(¢) by Keg(ked).
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77 : R — R the TDP defined by

Omazx
(V6 € B) |7() = ) (6.2.3)
! MWOémaz -
Then, the parameter p = (1,77,1) is an element of Ps and we have
(Vk € {1,2,...}) [wotmin(k;P) = tmin(k;D)] . (6.2.4)
Proof. See Appendix B.4.2. O

Given a parameter p € Py, Prop. 21 shows how to construct a dimension-
less parameter p = (1,77, 1) such that the dimensionless time function (DTF)
Wotmin (-3 p) is given directly by tymin(.; D). It is important to realize here that
there exist infinitely many elements of the set Py for which application of Prop.
21 results in the same dimensionless parameter and thus in the same DTF. This
is, in particular, true for elements of Ps; with linear TDP’s. Indeed, for these
elements the DTF is always given by k7 with k € {1,2,...}, see (4.2.11)-(4.2.12)
and (6.2.3)-(6.2.4). The main value of Prop. 21 is therefore that it allows us
to determine one particular function which can be used to analyse t¢,,;, for an
infinite set of control system parameters. In the following proposition, we fur-
ther exploit this property to introduce a subset of Ps; for which the DTF can
depend at most on one dimensionless variable.

Proposition 22. Let g : R — R be an element of CTIJ such that we have

g—i(O) =1 and let Ps, be the set defined as follows:

Ps = {(MaTJ70max)GPE‘(3K6>O)(E|]€6>O)

(¥ € R) [1s(6) = Keg(keo)] }- (6.25)
In addition, assume that p = (M, TJ,émM) and p = (M,%J’émmc) are both
elements of Ps, such that the following equality holds:

ke émaaﬁ _ keémax

wo (;)0
Then, we have
(Vk € {1,2,...}) [Wotmin(k; P) = Gotmin(k; P)] -

Proof. Let g,p and p satisfy the hypotheses of the proposition. Then, for each
¢ € R we have

ri(fmed) _ Keg(tlmeeg)  g(tGmeg)
Mwoémax MWOémax MM
wo
 g(emarg) 7 (lmamg) (626
% Majoémam

wo
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’ E ‘ thmin(k;p)
¥ k—1 20+1 20 pmazds
g =0 (E 1 [ ’%Laz((21+1)2752):|
; :
Zsin 22[ 0 (L;l@maw> 7@maw S (07 %)
id kr
5 _ T
k—1 K((H(ﬁo 1 ) ) 2)
Esz’nh 2 21:0
d
Cijaﬁ( )=1, Epotg fo ds,
ke{l,2,...}, Gmam: LABTES >O
Table 6.1: The Dimensionless Time Function wot, i for Xgmn, 2id, Lsins and
2y
where we have used of the fact that wg is given by Kife and @q by &7’;6

If we now apply Prop. 21 once for the parameter p and once for the parameter
P, (6.2.6) implies that the resulting parameter will in both cases be equal to
p=(1,7;,1) with 7 given by (6.2.3). Consequently, for each k € {1,2,...} we
will have wotimin(k; P) = Qotmin(k; D) = tmin(k; D) as desired. Since our choice
for g, p and p was arbitrary, this concludes our proof. O

Given an arbitrary function g € C}  with S—Z(O) = 1, we can now see with

Prop. 22 that for any element p in the set Pg_, as defined by (2.2.2), the DTF is

uniquely determined by the dimensionless ratio Oz = keii‘“ Consequently,

for any k € {1,2,...} the product wotmqn(k;p) can be expressoed as a function of
the dimensionless ratio ©,,,, when p is known to belong to Ps . This is indeed
true as shown in® Table 6.1 where we provide a mathematical expression for the
DTF depending only on g and Omag, see second row. For ease of readability,
we give the derivation of this expression in Appendix B.4.2, see Lemma 57.
Focusing now on the three control systems X.;,, 3;q and X4, described in
Table 4.1, the identity and the hyperbolic sine functions are clearly both valid
candidates for the mapping ¢ in Prop. 22. Furthermore, any element of C’l
which coincides with the sine function in a closed interval in (-5, %) is a vahd
candidate. Consequently, we can substitute these three basic functions into the
expression in the second row of Table 6.1 and find expressions for the DTF’s of

Ysin, 2id and Y as a function of k£ and O,nas- These are provided again in”

6Given a g € C}_ with 4 (0) =1, we use X4 to denote any control system which corre-

: [0,00) — [0,00) to denote the
inverse of the function Fpot,gl[0,00) With Epot,g : R — [0, 00) given by Epot,q(4) = fo g(s)d
see Section 3.1.

"Notice that for the control system Xgin, the ratio Opn,qz is allowed to take values only in

Moreover, we use E_

sponds to a parameter p € PE pot g

the bounded interval (0, %Lfl) which depends on the argument of wot,min(.;p). This is done
in order to ensure that the assumptions (A1) — (A3) from Sec. 2.1 hold. More specifically, for
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. —in, © € (0, 53%7)|
l 3 — 50,0 € (0,00)
k=3 | v Ysinn, © € (0,00)
= _/./ 3 3,0~ 0.17
§ o 1 : 5,0 x037 [
£ | k=2 |
£ ory/ L ]
S 3 :
= pe1 |
3 =1
rol 1 N P
0 ‘ ‘ ‘
0 - . L

o]

Figure 6.2.1: The Dimensionless Time Function wqt,,, for
Zsina Eid and Zsinh (Gmar = kei}%’ k S {17 2a 354})

Table 6.1 and are also graptically illusrated in Fig. 6.2.1. To better understand
how the parameter p can influence t,,;,, we will next discuss this last figure
and state two more propositions which will clarify for Xg;,, X;q and Xgpn the
dependence of t,,;, on wy and O mas- Moreover, we will show how the graphs
in Fig. 6.1.1 (Left) are related to the graphs in Fig. 6.2.1.

We had already observed that for control systems with linear TDP’s the
dimensionless time function does not depend on the parameter p. Consequently,
the eigenfrequency wy of these systems uniquely determine t,,;,. This is shown
in Fig. 6.2.1 by the straight red lines which represent for each k € {1,2,3,4} the
product wotmin (k; p) as constant function of the ratio ©,,4,. On the other hand,
if we look at the blue lines, i.e. at the DTF’s for the control systems with the
TDP 7;, we can see that regardless of the value of k the product wot.m,in(k; D)
strictly increases as the ratio O,maw increases. This means that even if we fix wy
we can still decrease in this case the time ¢,,;, (k; p) by decreasing, for instance,
the motor velocity. Conversely, for control systems with the TDP 7 the
product wotmin(k;p) is always strictly decreasing when Oymas increases. This
implies that for a given wy and k the time ¢,,,;,, (k; p) will decrease if we increase
the motor velocity or the parameter k. in the TDP.

These different possibilities regarding the dependence of t¢,,;, on p follow
actually from the energy dependence of periods of MSS’s and Prop. 22. This
is exploited in the following proposition to introduce a particular set of control
systems for which the relation between wgt,,;n» and p mainly depends on the
spring characteristics.

each k € {1,2,...} the provided upper bound for Omaz ensures that the maximal magnitude
of the deflection value, which is obtained along the abnormal extremal terminating at tyin (k),

: s
is less than She
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Proposition 23. Let g : R — R be a two times continuously differentiable
element of CﬁJ with %(0) =1andp= (M,Tj7émaw)7ﬁ = (M,%J,émaw) two
elements of the set P defined by (6.2.5). Moreover, assume that there exists
a positive integer k and a positive scalar ®,,q. > 0 such that the inequality

o (2k —1)2
Epot,g(Q(I)max) > 92( 27) (627)
holds for each © € {%7 %} and that we additionally have
d?g
(Vo € (0,2P42)) [sgn (CW(¢)> = const.} . (6.2.8)

Then, for each positive integer | € {1,..., k} we have

sgn [WOtmin(Z; p) - (Z)Otmin (la i))] =

d2 keémam ];eémam
(—1)sgn (Mf;(@maz)) sgn < - > . (6.2.9)

Proof. See Appendix B.4. O

Prop. 23 clearly justifies our observations from Fig. 6.2.1 for the control
systems Ygin, 20 and Xg;,n. More importantly, it shows that the relation be-
tween t,,;, and p, as we have discussed above for these control systems, remains
also valid for other control systems with softening and hardening springs. In-
deed, it follows from the proposition and in particular (6.2.9) that for a TDP
g, which can be obtained using a softening or a hardening spring and which

satisfies %(0) = 1, the influence of O 1oz ON timin 1S always described in terms

of the sign of the derivative g%’ if the eigenfrequency wy is kept constant and p
belongs to Ps, .

It is important to note here that when the function g corresponds to a soft-
ening or a linear spring, (6.2.9) also implies that ¢,,;, will decrease if we increase
the eigenfrequency wy while keeping the product keOmax constant. When g cor-
responds to a hardening spring, however, the influence of wg on ¢,,;, can not
be uniquely determined by (6.2.9) in this case. The reason is that wotin(k;p)
is a strictly decreasing function of O,z for each integer k > 0 and if the rate
of this decrease is sufficiently high an increase in wg might also increase® ¢,,ip.
Nevertheless, this can never occur if ¢ is given by the hyperbolic sine function.
This is shown in the following proposition which provides sufficient conditions
under which ¢,,;, always decreases with an increase in wy.

Proposition 24. Let g : R — R be an element of C! with S—Z(O) =1 1In

J

addition, let p = (M, TJ,émal-) and p = (]\Zf,i],@mw) be two elements of the

8 As discussed in Appendix B.4.2, a function g for which such a dependence exists between
wo and t,,;n can be constructed.
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set Ps 4 defined by (6.2.5) such that we have

keémax = 'I;eémam (6210)
and
wo > Wg. (6.2.11)
Morever, assume that there exists a positive integer k and a scalar @4, > 0
with
Fobmas )
1 evymaxr
Epot,g(2Pmaz) > 5 <~> (2k — 1)? (6.2.12)
2 wo

such that we have

d
(Vo) € (0,2 10z)) lEP“ ZEZ ;1¢(¢) 1] (6.2.13)
Then, the following inequality holds for each positive integer | € {1,...,k}:
tmin(l; ) < tmin(l; D). (6.2.14)
Proof. See Appendix B.4.2. O

According to Prop. 24, we can now see that for the three control systems
Yisin, Liq and X4, an abnormal extremal solving the EMP always requires less
time if the eigenfrequency wy is increased while keeping the product keOmas
constant. Moreover, if we compare these times among each other it follows from
Fig. 6.2.1 that for any given switching number they will approach each other
by such an increase in wy.

Looking now back at Fig. 6.1.1 (Left), we can see that for the control system
31 the velocity gains of 2,4,6 and 8 are all attained in a smaller amount of
time when compared with the systems Yo and 3. As the inequality in (6.2.2)
holds with equality for these gains, this means that for each k € {1,2,3,4}
the time ¢, (k; p) is smallest for the system X;. The values attained by the
dimensionless product wotmin (k; p), on the other hand, is greatest for the system
31 as we can see from Fig. 6.2.1. Consequently, the reason for the smaller time
values for ¥; follows mainly from the fact that the eigenfrequency wq is the
highest for X, see Sec. 3.1.

A closer look at Fig. 6.2.1 also shows that for ¥; the difference t,,;, (k) —
tmin(k — 1) is strictly increasing with increasing k. This follows directly from
the fact that 3; has a softening spring, see Prop. 1 and Prop. 4. Similarly,
for the system X3 the same difference is strictly decreasing with increasing k
as this system has a hardening spring. As a consequence, we can see that in
Fig. 6.1.1 (Left) the horizontal distance between the filled points is increasing
for ¥, and decreasing for ¥3. Nevertheless, these increases and decreases are
not sufficiently high so that ¥3 always requires the maximum amount of time
to reach the velocity gains mentioned above. This is especially true for the gain
€ = 8, even though X3 requires in this case the least amount of spring deflection
to store the final relative energy 3E,.; = 6.125 while ¥; requires the maximal
amount, see Sec. 3.1.
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6.2.2 Velocity Gain Function

Given a parameter p € Py, it follows from our discussions in Sec. 6.1.2 that
the velocity gain function €(.;p) must satisfy the following inequality for each
B € (0,00): .
exr .
e (151 (B; p);p) > 255 (Bip), (6.2.15)

emam

Furthermore, as already discussed there it follows from PMP that for each given
final time ¢y > O there exists at least one scalar 8 > 0 for which the final time
is equal to t&"*(3;p) and the inequality in (6.2.15) holds with equality. This
particular property has been used in Sec. 6.1.2 together with the continuity
properties of t&"" and z§% to introduce a construction procedure for the graph
of ¢maz(.; ), see Fig. 6.1.1. Focusing particularly on the systems X;,,, ;4 and
Ysinh, Wwe want to show in the following how to use this same procedure to
analyse the dependence of € on ¢ty and p.

Similar to Sec. 6.2.1, for analysing the influence of the final time and the
system parameter on the velocity gain we will make use of dimensionless control
systems in which both the mass and the maximal motor velocity are equal to
one. The following proposition provides a basis for the construction of such
systems.

Proposition 25. Let p be an arbitrary element of the parameter set Ps, and
ty > 0 an arbitrary scalar. Moreover, let ty be an arbitrary positive scalar and
77 : R — R the TDP defined by

(Vo €R) |75(¢) = 77‘](%; o) (6.2.16)
7 MOy ants ’ e
ty

Then, the parameter p = (1,75,1) is an element of Ps and we have

e(ts;p) = e(iy; D). (6.2.17)
Proof. See Appendix B.4.2. 0O

Given a parameter p € Py and final time ¢ty > 0, Prop. 25 provides a
means to construct a dimensionless parameter p = (1,7, 1) and a dimensionless
time 7; such that the two velocity gains e(t;;p) and €(f;; ) are equal to each
other. It is important to note here that in this construction, the choice of ¢
is arbitrary as long as it remains positive. More specifically, (6.2.16) will in
general describe a different TDP for each choice of #; and thus also a different
parameter. Nevertheless, the equality (6.2.17) will hold in each case.

Given a dimensionless time and a dimensionless parameter, Prop. 25 can
also be used to find different choices for the system parameter and final time
such that the same velocity gain is attained. Indeed, it follows from (6.2.16)
that for any two parameters p and p in the set Py and any positive scalar ¢¢
we will have

émaz ~
e(ty;p) = e(=—1ts;D), (6.2.18)

max
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~ ’.'2
provided 77 is equal to %T 7. Note that this particular relation implies that

max

given a control system and a desired velocity gain, the minimum time required
to reach this gain will be reduced by half if the motor velocity is doubled and
the mass is scaled down by four.

The equality (6.2.18) clearly illustrates how VGF’s corresponding to different
parameters can be closely related to each other. By focusing, as in Prop. 22, on
a particular set of parameters, this relation can be further exploited to describe
the velocity gain € as a function of only two dimensionless parameters. This is
shown in the following proposition.

Proposition 26. Let g : R — R be an element of C}  with 3—2(0) =1 and

p = (M,77,0maz),® = (M,77,0pmaz) two elements of the set Ps,, defined by
(6.2.5). Moreover, let t; and ty be two arbitrary positive scalars such that the
following two equalities hold:

k@ éma;ﬂ ];eémaw

= 6.2.19
wo (IJO ’ ( )
and
wotf = Woly. (6.2.20)
Then, we have i
e(ty,p) = e(ty, p)- (6.2.21)

Proof. Let g,p,p,ty and t~f satisfy the hypotheses of the proposition. By ap-
plying Prop. 25 once using the parameter p with ¢; and once using the param-
eter p with ff, it can then be shown that in both cases the same parameter
P will be obtained if #; is set to wot; = @ots. Consequently, we will have
e(ty;p) = e(ty; P) = e(ts; p) showing that (6.2.21) holds. O
Given a function g € CiJ, with %(0) = 1, Prop. 26 shows that for any
p € Py, and ty > 0 the velocity gain €(t; p) can depend at most on two terms,
namely the dimensionless ratio @mam and the dimensionless final time woty.
Moreover, we can use the same proposition also to systematically analyse the
influence of these two terms on e. To see this, let us first set in the proposition

both M and émw to one and let the TDP 7; satisfy

#1(6) = g((f)maw“?)] , (6.2.22)

(V¢ € R) o,

The parameter p will then only depend on Omae- In addition, the equality
(6.2.19) will hold since wy and k. are equal to one and O1maz, respectively.
Finally, it follows from (6.2.20)-(6.2.21) that for this particular parameter we
will have

e(ty;p) = e(wots; P). (6.2.23)



CHAPTER 6. MAXIMAL LINK VELOCITY 100
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Figure 6.2.2: The Velocity Gain Function € for X;,, ¥4 and Xginn

The equality above shows now clearly that the velocity gain €| o0)x Py, Can

be described as a function of ©,,4, and wot ¢. More importantly, it indicates
that the graph of this function can be constructed using our results from Sec.
6.1.2 provided woty is constrained to take values in a closed interval fmaz
(0, wot f,maz] C (0,00). Indeed, using (6.2.22) we can first determine for each
Omaz > 0 a parameter p = (1,7,1). For each of these parameters, the graph
of Gmaz(; D) = €(;P) can then be constructed in I, by determining the set
of the corresponding extremals terminating at a final time less than or equal to
wol#,maz- Finally, the union of these graphs will lead to the desired graph.

The procedure described above is graphically illustrated in Fig. 6.2.2 (Top)
for the parameter sets Py, and Ps, , and in Fig. 6.2.2 (Bottom) for the set
Ps,,. As shown there, for the first two sets we have additionally constrained the
ratio ©,,q, to take values in a closed interval. More specifically, for the set Py,
the ratio ©,,.., was constrained to take values in the interval [0.1,1.414] and for
the set Ps_, , in the interval [0.1,3]. In addition, for the sets Py, , and Ps,,
the final time wot ¢ mqr Was set to gTF. For the set Ps_, , on the other hand, the
same final time was only used for sufficiently small ratios. For larger ratios, the
final time was further decreased until it could be numerically ensured that the
final deflection value ¢, which can be attained by an extremal corresponding to
p, is always less than ﬁ We want to next conclude our discussion on VGF’s
by elaborating on the properties of the depicted functions.

Taking a closer look at Fig. 6.2.2 (Bottom), it can be first seen that for each
p € Ps,, the VGF €(.; p) can be described by the exact same function with only
the dimensionless time wot; as its argument. This property follows actually
directly from (6.2.22) and (6.2.23), as the TDP defined by the former relation
is not depending on ©,,,, when g is the identity function. Furthermore, using

sin
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L= ] (ts:p) |
Sia | 2k — 14 (=1)" cos(wots)
k= |9 woty € (0,00)

Table 6.2: The Velocity Gain Function € for ¥4

the expressions for t4"* and x¢"" in Table 5.5b and the fact that (6.2.15) always
holds with equality for linear SEA’s, an analytical expression for this function
describing the VGF can also be obtained. The corresponding expression is
provided in Table 6.2.

In Fig. 6.2.2 (Bottom), VGF’s corresponding to different parameters in the
sets Ps_,, and Py have been illustrated as a function of wgty as well. As
shown there and in the two graphs in Fig. 6.2.2 (Top), the depicted functions
all correspond to a certain ratio Omaz and do not intersect each other. Fur-
thermore, the way how ©,,4, influences these functions depends on the stiffness
characteristics of the TDP’s similar to the way how (;)maz influences DTF’s.
Indeed, it follows from Fig. 6.2.2 (Top) that for the constructed VGF’s, which
correspond to parameters in Py, , the dimensionless time required to reach a
certain velocity gain always increases with increasing Oumaz. For the VGF’s cor-
responding to parameters in Py, ,, on the other hand, the same time decreases
with increasing Omaz- Consequently, we observe that the function which is de-
picted in Fig. 6.2.2 (Bottom) to illustrate the VGF for linear SEA’s divides the
plot into two seperate parts.

We had already observed in Fig. 6.1.1 that abnormal extremals can be
optimal or non-optimal depending on their final time as well as the parameters
describing the control system. In Fig. 6.2.2 (Bottom), this dependence is also
clarified by depicting €(tmin(k;p); p), with k& € {1,2}, as a function of wot; =
wWotmin (k; p), see the dot-dashed lines. More specifically, for each of the ratios
O,maz and TDP’s used to construct the VGF’s in Fig. 6.2.2, the two lines show
the values attained by € at the final times ¢,,;,(1; p) and t,,;,(2; p), respectively.
Notice that according to the blue line, we can see that a velocity gain of 2 is
always attained at t; = t,,(1;p) regardless of the ratio O,z OF the TDP.
That is, abnormal extremals terminating at ¢,,;, (1) are always optimal for these
parameters and TDP’s. Similarly, the orange line shows that a velocity gain of
4 is always attained at ¢ty = t,,;,(2; p) when the parameter p belongs to Ps,, or
Ps,_,., . If, however, p belongs to Ps; we can see that the same gain is attained
at a time smaller than ¢,,,;,(2; p) when @maz is sufficiently high. These results
are consistent with the depicted graphs in Fig. 6.1.1.

It is important to note here that our results from Sec. 6.2.1 already implied
a similarity between the parameter dependence of the DTF and the VGF when
the velocity gain is a positive even integer and when abnormal extremals leading
to this gain provide an optimal solution. Nevertheless, Fig. 6.2.2 suggests that
for the three control systems Y;,,%;q and X4, this similarity remains valid
for any gain regardless of whether abnormal extremals are optimal or not. In

sinh

sinh
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Figure 6.3.1: Experimental Results with the DLR FSJ
(Xrsziri € {0.1,0.2,0.3,0.4})

particular, it suggests that for a control system X;, an increase in the maximal
motor velocity always leads to an increase in the final time required to reach
a given velocity gain. Conversely, for a control system X;,; the required final
time is expected to decrease in the same scenario. In the following section, we
will use the DLR FSJ to show how by increasing the motor velocity the same
velocity gain can indeed be obtained in a smaller amount of time both in theory
and in practice.

6.3 Experimental Results

The experiments were conducted with the DLR Hand Arm System [18]. More
specifically, using simple PD controllers with gravity compensation the torque
controlled arm of the system has been first constrained to move on a horizontal
plane. This ensured that the motion of the system was mainly caused by the
forces in the elastic spring of the second shoulder joint which is a DLR FSJ.
Then, the stiffness adjuster motor in this joint was set to 5 degrees in order
to have a fixed TDP which is described by a hyperbolic sine function, see [59].
The motion of the arm could then be described by the control system Ypg;;
in Table 4.1. Note that i denotes here the maximal motor velocity Omas ap-
plied by the main motor in the second joint. Choosing four different values for
Omaz € {O.l%d7 O.2%d7 0.3%‘1, 0.4%‘1}, the optimal control strategy for the mo-
tor velocity has been computed afterwards such that in each case a velocity gain
of € = 5 could be theoretically obtained. Finally, the computed strategies were
implemented on the shoulder joint using again a fairly simple motor torque con-
troller. The controller consisted of only a feed-forward term canceling the joint
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torque and a proportional gain controller accounting for the difference between
the optimal and measured motor velocity.

Figure 6.3.1 illustrates the control and state trajectories obtained during
the experiments?. More specifically, the blue lines in the first row show the
trajectories of the motor velocity for all the four experiments. The dashed red
lines, on the other hand, depict the desired optimal motor control strategies.
Similarly, the blue lines in the second and third rows depict the trajectories of
the deflection and link velocity, respectively; while the dashed red lines stand for
the optimal trajectories. Notice that based on the depicted blue and red lines,
we can easily see that the experimental results correspond very well with the
theoretical results. Clearly, unmodeled damping forces prevent the system to
attain the theoretically achievable velocity gain. This is most obvious when the
maximal motor velocity O,mae is at its lowest value. Moreover, the unmodeled
motor dynamics also has a negative influence as the desired motor velocities can
never be exactly tracked. Nevertheless, regardless of these model deficiencies
the experimentally obtained velocity gain €4y, i.e. the ratio of the terminal link
velocity as obtained by the experiments to émam, is always higher than 3 and
can even reach values as high as 4. Moreover, note that the time required to
reach these gains strictly decrease when 6,,,,, is increased. This clearly agrees
with our results from Sec. 6.2.2.

9For the trajectories of the motor and link velocity, a low pass filter with a cutoff frequency
of 15Hz has been used.



Chapter 7

Influence of Damping and
Stiffness Actuation

The purpose of this chapter is to discuss the structure of OC strategies for
EJ’s with variable impedance. In particular, we want to show how they are
related to the strategies we have so far derived for EJ’s with linear and nonlinear
impedance. Moreover, we want to show how the concept of resonance energies,
as we introduced for EJ’s with SEA’s, can also be extended to these more
complex joints. The tasks we will investigate will again be related to explosive
motion tasks, but our choice for the cost functionals will be more general. We
start our discussion with the analysis of OC strategies for EJ’s with variable
damping actuators'.

7.1 Influence of Variable Damping

In this section, we will focus on an EJ model that consists of a VDA, see Fig.
7.1.1. The TDP will be assumed to be described by the linear function 7;;
in Table 3.1a. Similarly, we will assume that the adjustable damping torque
77,0 is linear in each of its arguments and that the damping variable o4 can be
directly controlled. Finally, we will assume that the velocity of the motor can
also be directly controlled and that the system is initially at rest. Under these
assumptions, we want to discuss the structure of OC strategies minimizing a
non-trivial linear combination of the terminal link velocity and spring deflection.
We first give a mathematical formulation of this problem.

7.1.1 Problem Formulation

As in Chapter 2, we will first introduce the control system ¥ for the above
described EJ model and then formulate our desired OC problem. Notice that

LFor our discussions on EJ’s with VDA’s and VSA’s, we will make use of the references
[41] and [42, 43], respectively.

104
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Figure 7.1.1: EJ Model with a VDA

for an EJ with a VDA, the torques acting between the motor and the link are
not only due to the spring but also due to the VDA, ie. 7; = 755 + 7.

Taking the state as ¢ = (¢ Q)T € X = R? and considering the assumptions
introduced in the beginning of this section, the dynamics of ¥ can be described,
according to (2.1.1)-(2.1.2), by the function f :R? x R? — R? with

U1 — T2
f(xvu) = (Kek6 oq(uz) - )

M T + M T

U — 2
= 1.1
<w8x1 + 2ugwp(u — x2)> ’ (7.1.1)

where u = (uy UQ)T and og4(uz) = 2uswoM. Notice that the first control
uy denotes the motor velocity of the EJ whose magnitude will be bounded by
O1maz > 0. The second control ug, on the other hand, represents an adjustable
damping ratio [35]. In particular, in case the control u; is constant and wus is
continuous it follows from (7.1.1) that the deflection x; is two-times continuously
differentiable and described by the following second-order differential equation:

Z1 + 2uswody + wgml =0. (7.1.2)

Equation (7.1.2) describes a damped MSS and we will constrain the second
control to the set [Djmin, Dimaz] C [0,1), with Djmaes > Djmin, so that for
constant uo this system is either undamped or underdamped. This leads us to
the following convex control set:

U= [_émaza emam] X [DJ,min; DJ,ma:c]~ (713)

Finally, we will take PCy as the class of admissible controls U.

Our discussion so far fully describes the control system ¥ = (X, f,U,U).
Based on this system, we can now introduce the cost functional J : U X
(R?)*\{0} — R with

J(u,ky) = kyxy, (7.1.4)

where x ¢ denotes the terminal state of the trajectory & which starts from o = 0
and corresponds to the control w. Making use of this cost functional, our desired
OC problem can be formulated as follows.

Linear Terminal Cost Problem (LTCP): Given a final time ¢t; > 0 and a
non-trivial vector £y € (R?)* find the control w°?! which minimizes J(u, )
over all admissible controls u € U defined on D = [0,1/].
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7.1.2 Optimal Control Strategies

In this subsection, we will first apply PMP to derive necessary conditions which
need to be satisfied by the OC to solve the LTCP. In particular, we show that this
control must be a switching control and provide analytical expressions for the
corresponding trajectories and costates. Focusing mainly on control strategies
where the motor velocity and damping ratio do not switch simultaneously, we
then use these analytical descriptions to show the existence of certain switching
patterns for OC strategies. Finally, for one of these patterns we provide an
interpretation in terms of the energies attained by the EJ. This interpretation
will show that the concept of resonance energies can also be extended to joints
with adjustable viscous damping. In addition, it will reveal a non-trivial relation
between the derived switching patterns and the optimal switching patterns for
EJ’s with adjustable linear stiffness [39, 21].

7.1.2.1 Basic Properties

We will call the pair (x,u) an optimally controlled trajectory if there exists
a non-trivial k5 € (R?)* and a terminal time ¢t; > 0 such that w : [0,¢7] —
R? solves the corresponding LTCP, x is a trajectory corresponding to w and
xg = 0. According to PMP, we have the following necessary condition for such
trajectories.

Proposition 27. Let (x,u) be an optimally controlled trajectory defined on the
interval D = [0,ty] such that w minimizes the cost functional (7.1.4) with ky €
(R?%)*\{0}. Then, there erists a piecewise continuously differentiable costate
X D — (R?)* such that the first of the following conditions holds at every
t € D at which uy is continuous, the second and third at every t € D, and
finally the fourth condition at the final time t;:

1. Costate Dynamics

A(t) = (—wia(t)  Ar(t) + 2ua(t)woda(t)) . (7.1.5)

2. Minimum Condition

H(2(t), u(t), A(t)) = min i ((t), v, A(1)). (7.1.6)

where H : R?2 x U x (R?)* — R denotes the Hamiltonian function given by
H(z,u,A) = Af(z,u)
= /\1(u1 — 1‘2) + )\2 (wg:rl + 211,2&}0(11,1 — ZL'Q)) . (717)

3. Hamiltonian Condition
H(m(t),u(t),)\(t)) = *>\a7 (718)

where A\, € {0,1} is a constant scalar.
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4. Transversality Condition
A(ty) = vky, (7.1.9)

where v is a positive constant scalar.

Proof. The proof follows directly from applying PMP to the LTCP and is omit-
ted for brevity. O

Following the definitions we introduced in Section 5.2.1, we will call the
4—tuple A = (x,u, A )\,) consisting of an admissible controlled trajectory
(z,u), a costate A and a scalar A\, € {0, 1} for which the conditions in Prop. 27
are satisfied an extremal lift for the LTCP. Looking at the Minimum Condition
of this proposition and taking the partial derivative of the Hamiltonian H with
respect to the first control, we can see that for such an extremal lift A we always
have the following condition for u;:

. _émar ).\2(15) >0
wn(t) = {ém 0 <0 (7.1.10)

with Ag(£) = A1(t) + 2uz(t)woAa(t), see (7.1.5). Similarly, taking the partial
derivative of the Hamiltonian H with respect to uy we get

us(t) = {D"”’”" Ao(8)d1(t) > 0 (7.1.11)

DJ,maz >\2 (t)xl(t) <0 ’

with xl(t) = ul(t) — Ig(t)

It is important to remark here that the condition (7.1.10) for the motor
velocity depends, in contrary to EJ’s with SEA’s, not only on A but also on
the second control. This can be best explained if we refer to the description of
costates in terms of impulse response functions of linear systems? as described in
[40]. Indeed, if we choose an admissible control strategy for the second control
ug and substitute it into (7.1.1), the resulting system will correspond to a linear
time-varying system. The impulse response functions of this new system will
then only depend on the eigenfrequency wg and us, and A is a linear combination
of these functions. More specifically, the costates A\; and Ay give the response
of the linear combination vksx; to unit impulse functions applied to the first
and second state, respectively. The reason behind the dependence of u; on us,
as given by (7.1.10), follows finally from the fact that a jump in the control
u1 not only results in a jump in the time-derivative of the deflection but also
in a jump in the damper torque which in turn depends on us, see (7.1.1). The
following proposition clarifies the relation between w1, us and the cost functional
J(u,ky).

Proposition 28. Let (x,u) be an admissible controlled trajectory defined on
D = [0,t7] and X : D — (R?)* a solution to (7.1.5). Then, for each t € D we
have

A(b)xz(t) — Aoz = /0 Ao (s)uq(s)ds. (7.1.12)

23ee for instance [12] for the definition of impulse response functions.
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Proof. The proof directly follows from integrating the derivative d(j‘f) from 0

to t, see also Lemma 53 in Appendix B.3.4. O

Applying Prop. 28 and using in particular (7.1.12), with o = 0, t = ¢ and
Af = vKy, it is clear that (7.1.10) must hold if A is optimal. Moreover, the
same proposition can also be used to analyse the dependence of the minimal
value of kfx; on the given terminal time. To see this, let us first note that the
dynamics of the second costate is described, similar to the first state, by the
following second-order differential equation if the control uy = D is constant:

5\2 — 2DJOJ0/'\2 + o.)g)\g =0, (7.1.13)

where we have simply used (7.1.5). According to (7.1.13), A2 physically describes
the position of a MSS with an energy source modeled as a negative damper.
Moreover, both the system’s position Ao and velocity Ay will oscillate with the
damped eigenfrequency wy = /1 — D%wy provided the system is not at its
equilibrium position. This means that the zeros of Ao will in this case all be
isolated. Taking into account the transversality condition and (7.1.12), this
leads us then to the following proposition.

Proposition 29. Let k; € (R?)*\{0} be given and assume that the controls
w:[0,t7] - U and uw: [0,tf] — U solve the corresponding LTCP with t; > ty.
Moreover, let (z,u) and (x,u) be both optimally controlled trajectories. Then,
we have

krry < kyxy <O0.

Proof. See [41]. O

With Prop. 29, we can now see that the minimum value of the product
K¢y is a strictly decreasing function of the terminal time. Moreover, since
the origin is an equilibrium position of (7.1.1) when u = 0, we can follow the
same arguments as used in Sec. 5.4 to conclude that trajectories in optimal
extremal lifts are also time-optimal. This suggests us that the costates can be
again regarded, under some smoothness assumptions, as the gradient of the time
function which for a given initial state in the set Reachs, (0) gives the minimum
time required to reach the boundary of this set. The condition (7.1.11) for the
second control can then be physically explained using this interpretation and
the Minimum Condition. A detailed analysis of conditions ensuring the required
degree of smoothness for this time function, as done in Sec. 5.4, is beyond the
scope of this thesis and left out for future work.

Based on the two conditions (7.1.10)-(7.1.11), it is tempting to assume that
in an extremal lift A the value of the control u(t) is equal to one of the four
extreme points of the control set U at each time ¢t € D. However, for the case
when }\2 or A&7 remains zero on a finite time-interval these conditions are not
sufficient to uniquely determine the OC strategy. In such a case, the extremal
lift is called singular [53]. In general, when searching for OC strategies singular
lifts need to be also investigated. Nevertheless, as the following proposition
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T1tuswo “x1

z1(s +tsk) o—uwos Faq =y cos(wgs)
(s +tsk) ki _wg "mtuswo M |\ sin(wgs)
wy

0 21(t) —wi(?)
k Fla—uawg FAs
)'\2 (S + ts:k) eu2wos >\2 wq . COS(WdS)
Xa(s +tsp) ki, _w? Fao—upwy FAg sin(wgs)
wy
Al(t) )\2 (t) — QUQCUO)\Q (t)

t € Dp,s=1t—tgg,wqa =+/1—udwo,wp =

Keke
M

Table 7.1: States and Costates in Dy (i > 0,k € S;)

shows optimal extremal lifts for the LTCP are never singular. Consequently,
we can always focus on control strategies taking values from the set of extreme
points of U when searching for OC strategies.

Proposition 30. Let A = (x,u, A\, \,) be an optimal extremal lift for the LTCP
which is defined on D = [0,ts]. Then, this extremal lift is non-singular and for
each t € D we have

_ _émax _émax éma:c émax
U(t) < ert B {(DJ,mzn) ’ (DJ,ma:t> ’ <DJ,min> ’ <DJ,max> } ' (7114)
Proof. See [41]. O

According to Prop. 30, an OC strategy solving the LTCP can take only a
finite number of values. Consequently, determining such a strategy is equiva-
lent to determining the initial value and the switching times of both the motor
velocity and damping ratio. Notice that for a given constant control, the two
differential equations (7.1.2) and (7.1.13) can be analytically solved. Conse-
quently, using the corresponding solutions together with (7.1.1) and (7.1.5) we
can analytically construct & and X if we know their values at the initial time
as well as the switching times. Table 7.1 provides the expressions required for
this construction. We next show how to use these descriptions to find switching
patterns for OC strategies.

7.1.2.2 Switching Patterns

Let A be an extremal lift for the LTCP which is defined on D = [0,t7]. As
already discussed, both the dynamics of the costate and the condition (7.1.10)
for the first control u; depend on the second control us which is not necessarily
continuous. Consequently, even if we know the value of the costate at a given
time the condition (7.1.10) might, in a sufficiently small neighborhood of this
time, be simultaneously satisfied by different values of the set U, in (7.1.14).
In other words, (7.1.5) and (7.1.10) do not always uniquely determine the control
uy(t), with ¢t € D, even if the value of the costate A(t) is known. Such a case
did not occur for the LVMP we analysed in Chapter 5, as for that problem the
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control only depended on the first costate having isolated zeros. Similarly, the
condition (7.1.11) depends on the possibly discontinuous time-derivative of the
deflection and this complicates the analysis of the set of all control strategies in
extremal lifts.

In the following, we will mainly focus on those control strategies along which
the motor velocity and the damping ratio do not change simultaneously. Their
analysis is more straight-forward, as for an extremal lift containing such a control
the right-hand side of (7.1.10) or (7.1.11) must be zero at a switching time. Since
between two consecutive switching times both right-hand sides are continuous,
this suggests us to construct extremal lifts for the LTCP as follows. First, choose
an initial costate A¢ and an initial control wg, for which (7.1.10)-(7.1.11) are
satisfied. Then, construct the lift in Dy by investigating the sign changes of A,
and Aox1. Finally, if the control w has ¢ > 1 switchings, construct successively
foreach k € {1,...,4} thelift in Dy, by determining the control k4 using (7.1.10)-
(7.1.11) and by analysing again the sign changes of A2 and Aez;. Table 7.2
provides a more detailed description of this construction procedure, where we
have additionally made use of (7.1.5)-(7.1.9) to systematically determine a pair
(Ao, ug) for which (7.1.10)-(7.1.11) hold. In particular, notice that by evaluating
(7.1.8) at the initial time, where &y = 0, and using (7.1.5) we can obtain the
following relation: )

Agoulo == *Aa € {0, 1}, (7115)

with }\2() = ).\2 (0). Since according to the transversality condition the costate A
can never be equal to zero, this in turn implies by (7.1.5)- (7.1.6) the following
conditions for \og and Aog:

. 1 1 .
Ao € {——,0,—— 3} A (X0 A20) #0, (7.1.16)

emax 077lu$

in accordance with the procedure in Table 7.2.
In order to obtain switching patterns explaining the structure of the OC
strategies, we want to next make use of the proposed construction procedure
and investigate the switching times of u; and ue which result from different
choices for the pair (A9 }\20) € (R%)*\{0}. In particular, we will introduce as
in Section 5.3.3 a one-dimensional and dimensionless variable oy € R defined
by )
A2
woA20’

Qp = (7117)
and use the expressions from Table 7.1 to construct extremal lifts corresponding
to different values for ay. Depending on the sign of «g, we will then find
five different switching patterns. We start our discussion by investigating the
extremal lifts corresponding to ap = 0, i.e. abnormal extremal lifts, see (7.1.15)
and (7.1.17).

e ag = 0: In order for o to be zero, A2o = 0 must hold with g # 0. Assume
without loss of generality that Agg < 0 holds. Then, by the continuity of A,
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Data : M7 K67 kea 9ma$; DJ,min; DJ,mawa tf

Result : An Extremal Lift A for the LTCP defined on D = [0, ¢]
Initialization;

- Choose \ap € R and Ay € {—ﬁ,o, ﬁ} such that (A207}\20) #0.

- Find w19 = 410 € {—bmaw; Omaz } using (7.1.10).
- Determine usg € {Djmin, DJjmaz; using (7.1.11).
- Set k to 0.
while tg ) <t; do
- Assuming k = 4, construct Ao, ;\g,xl and &1 in [tg g, tf].
- Find the maximal time interval [ts ,ts x+1] C [tsk,tf] for which
(7.1.10)-(7.1.11) remain true.
if ts gyl =ty then
| - break.
else
- Find the control **'u which ensures that (7.1.10)-(7.1.11) are
not violated in a sufficiently small neighborhood of tg 1.
- Set k to k + 1.

end

end

Table 7.2: Construction Procedure for an Extremal Lift for the LTCP
(¢ € {0,1,...} denotes the switching number of w and depends on ty)

in Dy it follows from (7.1.13) that there exists a sufficiently small € such that
Ao (t) is positive for each ¢ € (0,e] C Dy. According to (7.1.10) this means that
Uy = fémaz, and since the joint starts from rest we also have &1y = fémam.
Based on our initial assumption on the sign of Ay together with the continuity
of A2 and & in Dy, (7.1.11) determines then uniquely the initial control:

Ou = (_ém”) ) (7.1.18)

DJ,min

Using now (7.1.18) together with Table 7.1 and A20 = 0, we can find the following
expressions for Ao and As:

D min i maxt
Ao(t) = ePrminwot yo (cos (Wamagt) — —2min®0 S (wa )> ., (7.1.19)
Wd, max

' Dy minewot WoA20 .
A2(t) = —e7min®0t == gin (Wg,maat) , (7.1.20)
Wd,max

where t € Dy and wgmaez = woy/1 — Dimm. Similarly, using the fact that
xo = 0 we have the following two expressions for x; and 4; which are valid on
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D02

sin(wg, mast)

Wd, max

zl(t) = eiDJ’mi"thQ'Clo (COS(wd,mart) —

x1(t) = e Prminwol , (7.1.21)

DJ,minWO Sin(wd,mamt) > (7 1 22)

Wd, max

To fully determine the extremal lift A in Dy, we need to still find the value
of tg1 < ty. By investigating the times at which Ao and the product Mgy
can change their signs, we show next how to determine this time under the
assumption that ¢y is sufficiently large.

Let us first take a closer look at (7.1.19)-(7.1.20) and (7.1.22). Then, as-
suming that the control remains constant both @; and A\s change their signs
simultaneously at the times

arctan(_—Fmes) Tp,
t — oL/ J,min + k J,min ; (7-1.23)
Wd, max 2
where Tp, .., = wf” and £k is a non-negative integer such that ¢t < ;.

Moreover, since both quantities change their signs simultaneously the sign of
their product remains non-negative. '
Focusing now on Ay, it follows from (7.1.20) that s will change its sign at

the times
TDJ,7nin

2 )
with & > 1 denoting this time a positive integer for which ¢t < ¢t¢. Notice that
at each of these times, the deflection z; is also zero, see (7.1.21). According to

t=k (7.1.24)

TDJ,min
2

(7.1.24), the first time A, changes its sign is equal to and based on the

construction procedure from Table 7.2 we have

Tp, .. j
ts1 = % Ay = (DGZW% ) . (7.1.25)

Notice that the change in the control as given by (7.1.25) increases @ in-
stantaneously by 26,,,, but does not influence A\y. Consequently, evaluating
(7.1.19)-(7.1.22) at tg1 we can see that 1)\o and '#; are both positive while *a;
and '\, are both equal to zero®. Assuming, as before, that the control remains
constant after ts; we can then again make use of Table 7.1 to see that the
product Ay is positive almost everywhere in D;. Furthermore, }\2 will change
its sign, for the first time after tg i, at tg2 = 2tg; and at this time wu; will
switch from émam to —émaz. The second control us, on the other hand, remains
the same. Consequently, 2\, and 24, are both negative, and 2z; and 2\, are
both equal to zero. Repeating the analysis above, we can finally conclude that

3Note that for Aog > 0 the sign of these values at ts,1 correspond exactly to the signs of
210, %10, A20 and Azo.
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k>1

kTDJ,nL'in

2
(_1)k Omax
Sgn()\zg)
DJ,min
< 0
2 Fyy — i S
1 F( TDJ,an'in 7O)

k 0 kul 7]()3',;1

(1) Feap(ts s, 0) (A(%O)

k
_QDJ,nLinwO)\QO _ZDJ,nLinWO AQ
— D jmint1+Djmaxt
Fexp(t17t2) — ewo(Dy, 1+Dy, 2)

Table 7.3: Extremal Lifts at the Switching Times (oo =0, k € {0, ...,4})

the same switching pattern repeats itself. The damping wus is therefore always
equal to its minimum value D, and (7.1.19)-(7.1.20) actually hold for each

t € D. The first control ui, on the other hand, switches at tg; = kTD’%,
with k € {1,...,7}, and the change in @ at these switchings must be accounted
for when constructing .

Table 7.3 summarizes* the values of the switching times as well as the values
of u,x and A attained at these times. They can be used together with Table
7.1 to construct the extremal lift when ag = 0. Note that if Ao is positive and
not negative as assumed in the beginning, the only difference in the resulting
control trajectory is the positive sign of the initial value uyy = 9max, while
the switching structure remains the same. Figure 7.1.2 (Left) illustrates the
described switching pattern for cg = 0 and M99 < 0 using phase plots.

We next discuss the switching patterns for gy > 0. This structure is more
complicated, since Ay and #; will not change their signs simultaneously anymore
and neither will }\2 and x.

e ag > 0: When qg is positive, the initial value Ao of the second costate has
the opposite sign as its derivative Aso. According to (7.1.10), this means that
both u19 and Ay have the same sign. Furthermore, since the joint is initially at
rest 19 = w1 the product Aqd; is positive at the beginning of the trajectory.
Assuming without loss of generality that Ay is positive, it follows then from
(7.1.10)-(7.1.11) that we have

0 _émam
u = .
(DJ,min>
In the interval Dy, the trajectory @ can thus still be described by (7.1.21)-
(7.1.22), while the costate can be obtained from Table 7.1 by considering the

(7.1.26)

4Notice that the term Fezp(tl,tg) there accounts for the exponential decrease of ® and
increase of A.
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Figure 7.1.2: Switching Patterns for EJ’s with Variable Damping
(Adapted from [41], ©2014 IEEE)
non-zero quantity Aoy = —apAag. If we now follow the steps from the construc-

tion procedure described in Table 7.2, it is possible to see that for ag > 0 the
switching order always stays the same. More specifically, let [ denote the num-
ber of times at which the deflection equals to zero in the interior of D and for
each k € S; let t; denote the corresponding time, i.e. z1(f;) = 0. Using this
notation and assuming again that ¢y is sufficiently large, we can describe for
each j € S) the resulting switching pattern as follows®:

e First, Ay changes its sign so that up switches from Djmin t0 Djmaz
(t = Ej + t;,zl(fj) = O)

e Then, #; changes its sign so that up switches from D j 44 back to D jmin

(t=1t; + 5+ t;). Since at this point the second costate is non-zero, g
has a jump discontinuity. However, its sign remains the same.

o After the switch of uso, Ao changes next its sign so that u; switches (t =
tar;,, ). This results in an increase in the magnitude of 1 by 20,,4,.

e Finally, the angular deflection x; goes to zero and the switching structure
repeats itself (t =t; + Tj11 = tj41,21(¢j41) = 0).

This switching pattern is illustrated in Figure 7.1.2 (Left).
Taking a closer look at the described structure, it can be observed that for
each k € S;_; the first control switches exactly once in the interval (¢, r,1)-

5A thorough discussion on finding the switching order of Ay — 1 — Ao —z1 —...as described
below is omitted for brevity. The existence of this order can be shown by subsequently using
the equations in Table 7.1 and taking into account the discontinuities of #; and /.\2 at the
switching times, see also Table 7.4.
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The second control, on the other hand, switches twice in the same interval and
the switchings of both controls never occur simultaneously. Finally, the sign of
A2o only influences the sign of the motor velocity but not the switching pattern
or the switching times. This can be observed from Table 7.4a which provides
analytical expressions for the switching times as well as the values of u,x and
A at these times. The used notation is clarified in Table 7.4b. In both tables,
the integer j > 0 denotes the number how many times the motor velocity wu,
switched so far.

It is important to note here that whenever x; is zero along the trajectory

for the j'th time, with j > 1, the ratio o; = —wg\i(jjt—), , obtained after the j’th
switch of u;, remains positive. More specifically, using Table 7.4, it is possible
to show that this ratio not only remains positive but also decreases with every

switch of u;. Indeed, according to Table 7.4 we have the following relations:

0 = - Aa(fjen) 1 ’
wore(tj+1)  Bi — 2D 1min
ﬂj _ i'l(fjﬂ' thJrl) = 2D min + i
wory(t; +tar,,) ’ Q;
i 2émamFexp(th+1 - fjlfj)K%(a])
Ka(oy)aa(t))]
= Q41 = 4 < aj. (7127)

20maz Feap(tar,  —15,05) K3 (oz)

1+ Ka(aj)|z1(t;)]

According to (7.1.27), the positive ratio «; is approaching zero with increased j.
This indicates that with every switch of the motor velocity the switching pattern
followed by the control strategy resembles more and more to the pattern we have
found for ag = 0.

e oy < 0: If the ratio «q is negative, the product &1 A5 is initially negative as
well® and due to (7.1.11) the damping ratio uy starts with its maximum value.
Assuming without loss of generality that Ao is positive, we then have

Oy = (_9’”‘”). (7.1.28)

DJ,maw

With this initial value, we can now again make use of Table 7.1, as done for
positive aq, and follow the procedure described in Table 7.2 to search for a
switching pattern. When deriving the switching structure for oy > 0, we found
that the order, with which 1,21, Ao, A change their signs, remained the same
regardless of the value of og. For ag < 0, on the other hand, this order depends
on the magnitude of oy as well. More specifically, assuming that ¢ is sufficiently
large the following three switching patterns can exist in the interval [0,;], where

SNote that for ap < 0, both Az20 and )\20 have the same sign and according to (7.1.10) we
have sgn(z10) = sgn(uio) = —sgn(A20).
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t, denotes as before the first time the deflection becomes zero in the interior of
D.

1. ag € (—o0, ﬁ) In this case, #; switches first so that us changes

from Djmaz 10 Djmin (t = 50). According to (7.1.5), the change in usy
also results in an instantaneous change of A2 and this quantity approaches
zero without changing its sign. Then, Ao changes its sign and u; switches
(t = ta, > to). The magnitude of & is then increased and the angular
deflection z; changes its sign before Ay does (t =T = ).

2. o € [fﬁm, fﬁm]: If ap belongs to this interval, &, switches again

before Ay and wus switches to D jmin(t = tp). This also results in an
instantaneous change in A2. Unlike the previous case, however, this change
results in a sign change of A2 as well. Consequently, u; switches its sign
simultaneously with uy (t = o = tar,). The magnitude of #; is again
increased by 20,4 and afterwards z; changes its sign (t=T1 =1t).

3. ag € (—m, 0): In this case, Ay changes its sign at first and u; switches

(t = tay). Consequently, 1 has a discontinuity at this time instant.
Since limtﬁt;u |Z1(t)| < Uimaz holds, &1 will have the opposite sign of
1

this limit. This means according to (7.1.10) that uy switches its sign at
this time instant as well (tp = tas,). The quantity, that first changes its
sign afterwards, is again z1(t = T1 = t3).

These three possible switching patterns described above are illustrated in Figure
7.1.2 (Right) using again phase plots. The two straight dashed lines depicted
there, i.e. the lines defined by the equalities oy = ~ Dy and g = _D.z,lmin
can be used to identify the patterns. Table 7.5 provides analytical expressions
for the time instants fo, tar, and £; = Ty. Notice that the sign of }\20 does again
not have any influence on these times.

Based on the last two switching patterns described above, we can now see
that the construction procedure described in Table 7.2 can, for certain negative
values of ag, lead to control strategies with simultaneous switchings at the first
switching time instant. Nevertheless, looking at the corresponding expressions
for Ao and A, it can be seen that regardless of the value of ag < 0 the signs
of Ay and ), are different at ¢ = £;. More specifically, by the time the angular
deflection x; is zero again, the second costate A2 has not changed its sign,

while ).\2 has. This means that the ratio ooy = —w;\i(f(})l) is positive for each of
2

)

the three possibilities. Consequently, the switching pattern after ¢; will be the
pattern we have found for ag > 0 and the controls u; and us will never switch
simultaneously after this time. This also means that the extremal lift can be
fully constructed using first Table 7.5, to construct the lift in [0,%;], and then
Table 7.4 with j € {1,...,1}.

Before concluding our discussion on the switching patterns, it is important
to remark here that our results so far actually consider every possible pair
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(A20  Ago) satisfying (7.1.16) except the two pairs (0 émlw) and (0 _émlw)
for which «q is not defined. Nevertheless, in accordance with the illustrated
phase plot in Fig. 7.1.2, it can be shown’ that for both of these pairs the
resulting control structure will correspond exactly to the structure for ag €
(—o0, m) More specifically, by taking the limit of the expressions provided
in the first row of Table 7.5 as ag goes to minus infinity, we can use the resulting
limits and Table 7.4 to fully construct the corresponding extremal lifts and thus
also the control strategies.

7.1.2.3 Energy Interpretation

We have so far shown the existence of five different switching patterns which are
followed by control strategies in extremal lifts, provided that the right-hand side
of (7.1.10) or (7.1.11) is equal to zero at each switching time. We have further
seen that under this assumption, control strategies along normal extremal lifts
follow the exact switching pattern once the torque in the spring equals to zero
for the first time after the start of the motion. More specifically, they all follow
the pattern we have found for oy > 0, see Fig. 7.1.2 (Left). In the remainder
of this section, we want to find a physical law describing this pattern in terms
of the relative energy of X along its extremals. Moreover, we also want to show
how this law relates to the optimal switching patterns for EJ’s with adjustable
linear stiffness.

Let A = (x,u, A, \y) be a normal extremal lift for the LTCP which is defined
on a sufficiently large interval. Moreover, assume that x; changes its sign [ > 2
times and let & € S;_1\{0}. Then, at the switching time ¢, + t; at which
the damping ratio ug switches from D jpin t0 D jimaz, the ratio of the relative
kinetic energy Fp;,(#1) of the system X to its potential energy, which we will
refer to as the energy ratio, is given by

v Erin (&1(t + 7))
: Epot (1(t + 1))
= o, (7.1.29)

where we have used Table 7.4. According to (7.1.29), we thus see that the ratio
ay > 0 of the costates at the time f; uniquely determine the energy ratio at
the first switching time after ;. Notice that after this switching time, i.e. after
t =ty + t;, the link is being pulled with the maximum damping ratio until &
and thus the damping torque changes its sign. At this time the energy ratio 7
is equal to zero and us switches again back to Djin. Afterwards, when the

_ (40D min)
==

2
energy ratio is equal to T My - the motor velocity u; switches
k

and the new energy ratio rp, ., = B3 () is obtained. Finally, the deflection
becomes zero and the same switching pattern repeats itself now with the ratio

T = m = of . Figure 7.1.3 (Right) illustrates qualitatively on

"By following again the procedure in Table 7.2 and using (7.1.10)-(7.1.11) together with
Table 7.1.
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Figure 7.1.3: Comparison of Switching Patterns for EJ’s with Variable
Impedance (Adapted from [41], (©2014 IEEE)

a phase plot the changes of the energy ratio. It is important to remark here
that knowing the value of r}, all the switching times after ¢ = &; + ¢} can
be uniquely determined by this physical law that is described in terms of the
system’s potential and relative energy. Therefore, the law provides our desired
extension of the concept of resonance energies to EJ’s with adjustable viscous
damping.

Finally, optimal control strategies for EJ’s with adjustable linear stiffness can
also be uniquely described in terms of the energy ratio® in (7.1.29), see |39, 21].
The change of this ratio, for the case when the stiffness takes its minimum value
at zero deflection, is depicted in Fig. 7.1.3 (Left) . A closer look at both systems
show now that for D, = 0, the two switching patterns follow the exact same
physical law, eventhough they significantly differ in the way how their system
properties are controlled. This clearly indicates the generality of our concept of
resonance energies.

7.2 Influence of Variable Stiffness

In this section, we will analyse OC strategies for an EJ model with a VSA
as depicted in Fig. 7.2.1. In particular, we will assume that the adjustable
TDP of the system can be directly controlled. Furthermore, the motor velocity
will be again modeled as a velocity source and the system will be assumed to
start from a given position. Nevertheless, the initial state will this time not be
necessarily the system’s equilibrium position. In addition, the cost functional
will be described by a terminal cost function which we will only require to
have a non-zero gradient. This additional generality is motivated by the fact

8For variable stiffness joints the potential energy is computed using the maximum value
K jmaz > K jmin for the stiffness, i.e. Epot(¢) = 3K Jjmac®?
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KJ(¢7US)

Iot MW M

X X

Figure 7.2.1: EJ Model with a VSA

that the concept of resonance frequency, as it exists for EJ’s with LSEA’s, is
independent of the system’s initial state and remains also valid for a large class
of cost functionals, see [40]. We next provide a mathematical formulation to the
general OC problem we just described and also clarify the assumptions on the
TDP of the investigated model as well as the cost functional.

7.2.1 Problem Formulation

Similar to an EJ with a NSEA, for an EJ with a VSA the torque between the
motor and the link is only due to the elastic elements in the VSA, ie. 75 = 7.
Nevertheless, in contrary to a NSEA this torque does not only depend on the
deflection ¢ but also on the stiffness variable o4. In other words, 7; is a function
of ¢ and o,. In our model, we will assume that this function is constrained

between two elements of Ci.], 771 and 7;2, which satisfy

(V¢ € (0,00)) [11,1(¢) < 7s2(0)] - (7.2.1)

Constraining o, to take values in the interval [—1, 1], this assumption leads us
then to the adjustable TDP 7; : R x [—1, 1] >R with

772(9) + 771(0) Y 772(8) — T71(0)
2 8 2 '

T1(,05) = (7.2.2)
Figure 7.2.2 qualitatively illustrates one possible choice for 751,752 and the
resulting 7, (., o) for a piecewise continuous o5 and ¢ > 0. Notice that the SDP
corresponding to 7, i.e. K, is given by the partial derivative %—Zj and is thus
also a function of ¢ and o5.

For the control system . describing our EJ model, we will take again & =

(¢ q)T € X = R? as the state variable and assume that both the motor
velocity and the stiffness variable can be directly controlled. The dynamics of 3

can then be described, in accordance with (2.1.4) and (7.2.2), using the function
f:R? x R? - R? with

flz,u) = (iﬁ%m,i%) : (7.2.3)
M

where u; and us denote the motor velocity and stiffness variable, respectively.
This also leads to the control set

U= [_émaz> Hma:c] X [_17 1]7
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Figure 7.2.2: Adjustable TDP 7; in the VSA
(Adapted from [42], (©)2014 IFAC)

where 0,,,, > 0 denotes the maximal motor velocity. Choosing PCy as the
class of admissible controls ¢/, we have thus fully determined the control system
Y=, f,U,U).

As already mentioned, for the OC problems we want to investigate in this
section we will allow the initial state of the system to be chosen arbitrarily.
Similarly, we will let the terminal cost function V : R2 — R to be an arbitrary
continuously differentiable function and further assume that its gradient is al-
ways non-zero. Using Cy to denote the set of all such functions?, this leads us
then to the cost functional J : PCy x R? x Cy — R with

J(u, o, V) = V(xy), (7.2.4)

where x ¢ denotes the terminal state of the trajectory & which starts from xy and
correspons to the control u. Our general OC problem can finally be formulated
as follows.

General Terminal Cost Problem (GTCP): Given a final time ¢ty > 0, an
initial state &g € R? and a continuously differentiable function V € Cy find
the control w°P* which minimizes J(u, xo,)) over all admissible controls u € U
defined on D = [0, ty].

7.2.2 Optimal Control Strategies

In this subsection, we will first make use of PMP to derive necessary condi-
tions which need to be satisfied by the OC strategies solving the GTCP. More
specifically, we will show that these strategies are all switching controls if the
corresponding trajectories are time-optimal. Moreover, we will show that the
relation between the switching times of the optimal motor velocity and the sign
of the deflection, as we have found for the LVMP, remains also valid for the
GTCP. In addition, regarding the adjustable TDP we show the existence of a
similar but less informative relation for the switching times of the second con-
trol which depends on the system’s state as well as the sign of the controlled
motor velocity. Then, we make use of our results on the construction of costate

9That is Cy is the set of all continuously differentiable functions V : R? — R such that
g—:(w) # 0 holds for each = € R2.
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trajectories from Sec. 5.2.2 to reformulate the derived conditions from PMP as
state dependent switching conditions for OC strategies. This will show how to
determine the possible switching patterns for the OC strategies and lead to an
extension of the concept of resonance energies for EJ’s with SEA’s to EJ’s with
VSA’s.

7.2.2.1 Basic Properties

In accordance with our previous definitions, we will call an admissible controlled
trajectory (x,u) an optimally controlled trajectory if there exists a terminal
time ¢ty > 0 and a function V € Cy such that w : [0,¢f] — R? solves the
corresponding GTCP with the initial state xg. For such trajectories, PMP
provides the following necessary condition.

Proposition 31. Let (x,u) be an optimally controlled trajectory defined on
the interval D = [0,t¢] such that w minimizes the cost functional (7.2.4) with
a continuously differentiable function V € Cy. Then, there exists a piecewise
continuously differentiable costate X : D — (R?)* such that the first of the
following conditions holds at every t € D at which us is continuous, the second
and third at every t € D, and finally the fourth condition at the final time ty:

1. Costate Dynamics
A(t) = (_7&(%5\?,“2@)))\2(” Al(t)>. (7.2.5)

2. Minimum Condition

H (z(t), w(t), A(t)) = E;neiﬁH (z(t),v,A(?)), (7.2.6)

where H : R?2 x U x (R?)* — R denotes the Hamiltonian function given by

H(z,u,\) = Af(xz,u)
= M(ur—a2) + AQLZ;“?). (7.2.7)
3. Hamiltonian Condition
H (x(t), u(t), A(t)) = =g, (7.2.8)
where A\, € {—1,0,1} is a constant scalar.
4. Transversality Condition
At) = 00 (), (7.2.9)

where v is a positive constant scalar.
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Proof. The proof follows directly from applying PMP to the GTCP and is omit-
ted for brevity. O

It is important to remark here that the conditions provided by Prop. 31 for
the GCTP are very similar to those provided by Prop. 7 for the LVMP. This
directly follows from the similarities between the dynamics of the corresponding
control systems as well as the fact that in our formulation for the LVMP we
only required to maximize the terminal link velocity, i.e. we had a terminal
cost function. We want to next show how these similar conditions also lead to
similar properties for the corresponding OC strategies.

Let A = (z,u, A, \;) be an extremal lift for the GCTP, i.e. a 4—tuple
consisting of an admissible controlled trajectory (x,u), a costate X and a scalar
Ao € {0,1} such that the conditions in Prop. 31 are satisfied with a terminal
cost V € Cy. Focusing first on the control u;, i.e. the velocity of the motor,
we can see that the Minimum Condition (5.2.2) implies, as for the LVMP, the

following equality:
—émm; /\1 (t) >0
t)=<. , 7.2.10
e {em o (7.210)

where t € D = [0,t¢]. According to (7.2.10), the value of u; is thus uniquely de-
termined by the sign of the first costate whenever it is non-zero. Moreover, since
the gradient of elements of Cy, and thus of V is everywhere non-zero the transver-
sality condition (7.2.9), the costate dynamics (7.2.5) and our assumptions on the
TDP 7; ensure that the sign of A = —W)\g is always non-zero whenever
A1 is equal to zero. Consequently, we can conclude that u, is a switching control
whose switching times are uniquely determined by the zeros of A\;. More gener-
ally, we have the following proposition which basically shows how to generalize
Prop. 8 to extremal lifts for the GTCP.

Proposition 32. Let A = (x,u, A\, \y) be an extremal lift for the GTCP which
is defined on the interval D = [0,tf] and let v,,, and v,,, denote the integers

- {sgn ()\1(0)) A1(0)=0 7 (7:2.11)
sgn (A1(0))  A1(0) #0

and

sgn (22 (zf)) 2 (xp) =0

, (7.2.12)
sgn (5% (xy)) 5% (wp) #0

Uulf =

both of which are necessarily non-zero. Then, uy is a switching control with its
initial value given by

Oul = _U’U,109'maflj' (7213)

In addition, tg € (0,t5) is a switching time of uy if and only if M (ts) is equal
to zero in which case we have

77 (1(ts), u2(ts)) Aa(ts)
M

= —Aa, (7.2.14)
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with Aa(tg) # 0. Finally, if the control uq has i,, > 1 switchings we have
(Vk € Si, \{0}) [sen (z1(tsk.,)) = (—1)fFiup, A, (7.2.15)
where 8k, denotes the k’th switching time of u;.

Proof. The proposition can be derived using the proof of Prop. 8 if we addition-
ally consider the new transversality condition (7.2.9) according to which Aq(ty)
is now not necessarily zero, cf. (5.2.5). O

According to Prop. 32 and in particular (7.2.15), we can see that in case A
is an abnormal extremal lift the control w; only switches when the deflection is
equal to zero. On the other hand, if A is normal the deflection is non-zero at
the switching times of u;. Moreover, the sign of the deflection always changes
between two switchings of u;. These properties suggest a switching structure for
the control u; similar to the one we have found for the solutions to the LVMP.

Regarding the second control us, we can again make use of the Minimum
Condition (7.2.6) which together with our assumptions on the adjustable TDP
yields the following relation:

. —1 Ag(t)ﬂ?l(t) >0
us(t) = {1 () 0" (7.2.16)

where t € D. The value of uy is thus uniquely determined by the sign of the
continuous product A\ox; whenever this sign is non-zero. As for the first costate
A1, the costate dynamics (7.2.5) and the transversality condition (7.2.9) ensure
that the zeros of A\ are all isolated. The same is, however, not true for the first
state z1. Indeed, according to (7.2.3) it is possible that the deflection remains
zero on a finite time interval if both the motor and the link rotate with the
same velocity, i.e. u; = xo. In such a case, (7.2.16) does not provide any
information on the control us and A becomes a singular extremal lift. This is in
accordance with the observation that at zero deflection the control us does not
have any influence on the system’s dynamics as we have 7;(0,.) = 0, see (7.2.2).
Moreover, notice that in this case the system’s relative energy becomes zero. As
the following proposition shows this is a necessary and sufficient condition for
an extremal lift for the GCTP to be singular.

Proposition 33. Let A = (z,u, A\, A\s) be an extremal lift for the GTCP which
is defined on D = [0,t¢]. Then, A is singular if and only if there exists a time
t € D such that

Epot (1(t)) + Epin (£1(f)) = 0.

Moreover, in this case A is abnormal, x is not time-optimal, and there exists a
closed and non-degenerate time interval D C D, containing t, such that

e o) o=, 0) {50 ) (Lot )}

Proof. See [43]. O
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When analysing the extremal lifts for the LVMP, we have shown that the
relative energy is always positive along their trajectories. Moreover, for optimal
extremal lifts we have observed that these trajectories are all time-optimal.
Based on these observations, we will from now on focus on non-singular extremal
lifts for the GCTP.

Assuming that A is non-singular, neither Ay nor z; can remain at zero in
a finite time-interval. Consequently, all the zeros of Aoz are isolated and this
means that us will in this case also be a switching control, see (7.2.16). More-
over, at the switching times of us the product Ayx; must be necessarily equal
to zero. However, in contrary to u; this is not a sufficient condition. In par-
ticular, if there exists a time in the interior of D, at which both Ay and x;
become simultaneously zero, the product A;x; will attain the same sign in a
deleted neighborhood!® of this time. Nevertheless, there is still a certain rela-
tion between the switching times of us and the sign of the deflection as well as
its time-derivative. The following proposition clarifies this relation and can be
regarded as an analogue of Prop. 32 for the second control.

Proposition 34. Let A = (z,u,\,\;) be a non-singular extremal lift for the
GTCP which is defined on the interval D = [0,t¢] and o : D — (R?)*,t —
(01 02) the function defined by

o(t) = A(l) (xlo(t) 28) . (7.2.17)

Moreover, let v,,, denote the integer

_ [sen(:0) @) =0
“20_{sgn(al(0)) ()40 (7.2.18)

Then, us is a switching control with its initial value given by

Ou2 _ {UHQO 0.(0) # 0 (7219)

IS

Ao a(0)=0"
In addition, ts € (0,t5) is a switching time of us if and only if we have
o1(ts) = 0 A oa(ts) # 0. (7.2.20)

Finally, in this case we have

(z1(ts) Az2(ts)) #0, (7.2.21)
and
)\Q(ts) =0= i‘l(ts) = _Al)E:S) A Sgn (df1(fs)) = sgn ()\aul(ts)) y (7.2.22)

with A(tg) # 0.
103ee for instance [62] for the definition of a deleted neighborhood.
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Proof. The proof follows from (7.2.5)-(7.2.9) and our discussion above if we
additionally note that o2 in (7.2.17) gives the time-derivative of the product
01 = Aax1 whenever this derivative exists, and similarly 2\;2; its second time-
derivative whenever this derivative exists and Ao = 7 = 0. O

Comparing Prop. 32 and Prop. 34, it can be observed that the latter
proposition does not, give a specific order on how the sign of the deflection or
its time-derivative change between the switchings of uy. It can only relate the
sign of 7 at the switchings to the sign of the motor velocity assuming that
the deflection is non-zero, see (7.2.22). Furthermore, in contrary to Prop. 32 it
does not directly show how the transversality condition influence the switching
structure of ug, cf. (7.2.15). This influence is only implied indirectly by the sign
of u;. In order to better understand the switching structure of ug, and more
generally of u, we will next provide a graphical illustration which can be used
to determine control strategies satisfying (7.2.10) and (7.2.16) depending on the
system’s state.

7.2.2.2 Switching Conditions

Let A = (z,u, A, \;) be a non-singular extremal lift for the GCTP which is
defined on D = [0,tf]. By Prop. 32 and Prop. 34, we know that in this case u
will be a switching control with ¢ > 0 switchings. Consequently, given an integer
k € S; the restriction of « to the interval Dy can be regarded as a trajectory
of an EJ with a SEA. More specifically, |p, will be a trajectory of the control
system from Sec. 2.1 with the TDP 7;(.,*uy). Moreover, substituting the
control Fusy into the costate dynamics (7.2.5) it can be seen that the restriction
Alp, will be a solution to (5.2.1) with the SDP K (., u3). Noting that along
non-singular extremal lifts the relative energy is always positive, this means that
we can make use of Prop. 9 to express A|p, as a function of x4, % bmaz and the
sign of #; as done in Sec. 5.2.2. More specifically, making use of the notation
introduced there'! together with the equality (5.2.15) and Table 5.1 we have for
each j € Sy, and t € Dy,

_ . TJ (2131(8), ku2) kvdhj k k
/\1(t) - Dklgré}—)t M k(ﬁmaz [ No,j — )\aCug (x1(8)7 ¢maz)] 9
(7.2.23)

and

Aao(t) = |¢u2|(x1.(t),k¢mw) [kno,j

k gbmaw

where J,,, : D, — R is the function given by

= Naduy (@1(8), " brmaz)] (7.2.24)

qumou 8T¢u2
T,](¢mam7 ku2) 8¢maz

HRecall that my > 0 gives the number of times the time-derivative ¢ is equal to zero in
the interior of Dj.

Juz (xa ¢maw) =

(m7¢maz); (7225)
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and the additional subscript us is used to indicate the dependence of the func-
tions |¢|, T, and C on the TDP 7;(.,uy), see (3.1.6), (3.2.7) and (5.2.23).

Focusing now on the time interval Dy, with j € Sy, , the two expressions
(7.2.23)-(7.2.24) can be used to rewrite the conditions (7.2.10) and (7.2.16) on
the control as a function of the time-varying deflection z; and the constant
parameters kvd),j, kgbmax,knw and A,. In the following, we will show how to
use the resulting functions to reveal the switching structure of the control w.
More specifically, we will show how to graphically analyse the sign of these
functions which can be used to find all the possible switching patterns for w.
It is important to remark here that we have actually already made use of the
expression (7.2.23) for the first costate when deriving conditions for the controls
solving the LVMP, see Sec. 5.2.3. There we have observed that the value
of the control and its switching patterns can be graphically determined if we
additionally distinguish between abnormal and normal extremal lifts, see Fig.
5.2.2. We will next show that this is also true for the control u. We start our
discussion by analysing controls in abnormal extremal lifts.

Abnormal Extremal Lifts Let us assume that A is an abnormal extremal
lift, i.e. A\, = 0. Following the exact same arguments as used in Sec. 5.2.3,
with the transversality condition (7.2.9) instead of (5.2.5), we can then see that
"no,; # 0. Moreover, for each t € Dy, the sign of z;(¢) is non-zero and by
definition we have |21(t)| < *@maz. If we therefore plot the possible values for
the parameter *no ; against the deflection 21, as done in Fig. 5.2.2 (Left), we
know that the horizontal curve (z1(t),*no ;) will remain in the same quadrant
for t € Dy,;. Moreover, the value of the control u; along this curve will be given
by

. k .
u1(t) = Opas SEN (kZO7], ml(t)> , (7.2.26)

0.7
where t € Dy, see (7.2.10) and (7.2.23). Similarly, according to (7.2.16) and
(7.2.24) the second control ug will be given by

us(t) = —sgn (*nojz1(t)) (7.2.27)

where t € Dy,. The two equalities (7.2.26) and (7.2.27) lead to the graphical
illustration in Fig. 7.2.3 which provides the value of the control w in Dy,
depending on the constant parameters *ny ; € R\{0},*vy,; € {—1,1} and the
strictly decreasing or increasing deflection 1 € (—*¢maz, *Dmaz)\{0}.

Fig. 7.2.3 can also be used to determine the deflection values attained at
the switching times of u. To see this, notice first that at zero deflection the
first costate is always equal to zero, see (7.2.23). Consequently, if the curve
(:z:l(t), kUO,j) intersects the vertical axis at t = tsi,,, <tf the control u; will
have a switching according to Prop. 32. Moreover, since at zero deflection the
second costate is equal to *1y ; # 0 the second control us will also switch in this
case, see Prop. 34. In other words, the controls u; and us switch simultaneously.

A switching of us and thus of u can also occur if the second costate is equal
to zero while the deflection is non-zero. Taking a closer look at (7.2.24), we
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Figure 7.2.3: Controls along Abnormal Extremal Lifts
(t € Dy, i €{0,1,... 1,k €85, 5 =my =0,"¢mas > 0)

can see that this is always the case when |x1(t5kj+1 )| = *¢maz. In other words,

there always exists a switching of us when the curve (acl(t), kno,j) intersects one
of the two vertical curves 21 = ~*@maz or 21 = "Gmas at t = ts, | <ty
Notice that this also shows that for abnormal extremal lifts we necessarily have
mp = 0.

Our discussion so far considers all the possible switchings of the control u
which can occur in Dy; = Dy,. Since our choice for k was arbitrary, we can thus
conclude that u; switches in the interior of D if and only if the deflection is equal
to zero. Similarly, us switches in the interior of D if and only if the deflection

ko

or its time-derivative is equal to zero. Defining the constant *x = sgn (,CZ;”),
27

this switching law can then be formulated in terms of the deflection and its

time-derivative as follows:

_ maz SZI1 (xl(t
u(t) = 5 (_Sgn i

where t € Dy, and k € S;. Notice that for the case when ¥x = 1 holds for each
k € S;, the switching law for the first control above has been shown to solve
the EMP for an EJ with a SEA, see Sec. 4.2. With (7.2.28), we see now the
existence of a similar law which is valid for a more general class of EJ models.

)
t))> , (7.2.28)

Normal Extremal Lifts Let us assume that A is a normal extremal lift so
that A\, € {—1,1}. Substituting the expressions (7.2.23)-(7.2.24) into (7.2.10)
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and (7.2.16), we have then the following equalities for w:

s ([“0,) — AaCus (21(5), *Simae)] 21 (5))

=6 1 . (71229
0(t) = b lim o (7.2:20)
and
us(t)=— lim sgn ([kn(),j — AaJu, (21(9), kquax)] z1(s)), (7.2.30)
ij Ss5—t

where t € Dj,. As already mentioned, the dependence of the motor velocity
on the first costate is exactly the same as for the LVMP, see Prop. 32. Conse-
quently, the value of u; can be graphically illustrated as done in Sec. 5.2.3. This
is shown in Fig. 7.2.4 with the only difference being the additional possibility
for \, to be negative. In this case the graph of —Cy, (., *®maz) needs to be used,
see (7.2.29).

Agillustrated in Fig. 7.2.4, it is possible to graphically determine the value of
us, as well. In particular, since the function J,, (., *émaz) is strictly increasing!?
the graph of A\yJu, (-, *dmaz) together with the vertical axis lead to four open
regions in the set {(:c,gbmam) e R? |\x| <k ¢maz)}. In each of these regions,
(7.2.30) yields the same value for the control us. In addition, for a given *vy ;
the value of the control u; is also constant in these regions. This follows from
the fact that the two functions J,, and C,, are related to each other by

M kd)maa:
TJ(¢; ku2>|¢u2|(¢a k¢max) ,

Cuz (¢7 k¢mam) - Jug (¢7 k¢maw) = - (7231)

123ee (3.2.7) and (7.2.25).
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for each ¢ € (—*dmaz, *Pmaz)\{0}. Based on this, we can now see that there
will always exist six open regions determined by C,,, J,, and A\, to which the
horizontal curve (w1(t),"no;) must belong in Dy, unless there exists a time
t € Dy, with z1(¢) = *no; = 0, see Fig. 7.2.4, Prop. 32 and Prop. 34. In the
case when both z; and Ay are simultaneously equal to zero, the value of the
control ug is given by A, in accordance with (7.2.30).

As with abnormal extremal lifts, Fig. 7.2.4 can be used to determine the
values of the deflection at the switching times as well. In particular, assuming
k < i —1 this can be done by investigating the intersection points of the hori-
zontal curve (z1(t),"no ;) with the graphs of C,, and J,, and the vertical axis.
Indeed, at an intersection with the graph of C,,, or its continuous extension
at |21 (t)] = *¢mae, the first costate will be zero and the first control switches.
Similarly, at an intersection with J,, the second costate will be zero and unless
the deflection is also zero, which is the case when 7y ; = 0, the second control
switches. Finally, at the vertical axis there will exist a switching of s if again
*10,; # 0.

Our discussion above accounts for all the possible switchings of the control
and shows that there never exists a simultanuous switching of the motor velocity
and adjustable TDP in contrary to abnormal extremals. Nevertheless, with
Fig. 7.2.3-7.2.4 we see that controls in non-singular extremal lifts can always be
described in terms of the system’s relative and potential energy at the switchings
times. That is, we can explain the OC strategies solving the GCTP again using
the concept of resonance energies according to which the system must attain a
certain sequence of relative energies by changing the control at also a certain
sequence of potential energies.



Chapter 8

Conclusion and Outlook

In this thesis, we have thoroughly analysed the problem of maximizing the link
velocity of EJ’s with velocity-sourced NSEA’s. In particular, we have found a
construction method for the control strategies solving this problem such that
they are described in terms of analytical expressions. Furthermore, we used
the proposed method to analyse the dependence of the maximal link velocity
of these joints on the final time as well as the system parameters such as the
maximal motor velocity, stiffness characteristics, etc. Finally, we have extended
our results on the structure of OC strategies to EJ’s with variable impedance.
Our discussions have led to various results regarding the control and design of
SEA’s, both of theoretical and practical importance. Taking also our discussions
in the two appendices into account, the main contributions of the thesis can be
summarized under the following points:

¢ Energy Maximization under a limited number of control switch-
ings (Prop. 2-4 and 11)

Before solving the LVMP, we have analysed the intuitive control strategy
of rotating the motor with its maximal velocity against the spring torque.
Assuming that the terminal spring deflection is equal to zero, our results
show that this strategy always maximizes the total energy stored in EJ’s
when there is a constraint on the switching number of the motor velocity.
Moreover, the same strategy also maximizes the link velocity under the
same constraints provided the sign of the initial control is chosen appropri-
ately. Finally, in the latter case this strategy is also a solution candidate
for the LVMP.

o Existence of Piecewise Continuous Optimal Control Strategies
(Prop. 5-6)

For control affine systems with convex and compact control sets, the reach-
able sets are also compact if the trajectories of these systems can be con-
strained to a compact set [2]. We provide such a compact set for trajecto-
ries of EJ’s depending only on the motor velocity and the final time. This

132
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enables us to use Filippov’s Theorem [11] to conclude that there always
exists a measurable control strategy maximizing the terminal link veloc-
ity. Applying Pontryagin’s Minimum Principle [44] and Sturm-Liouville
Theory [3], we then show how for each such control strategy we can also
construct a piecewise continuous control leading to the same terminal link
velocity and thus solving the LVMP.

e Link Velocity Maximization of SEA’s under limited final time
(Prop. 1 and 7-15)

For determining the controls solving the LVMP, we show how to analyti-
cally describe extremal lifts in terms of only their initial costate and the
switching number of their control. Moreover, we clarify how the stiff-
ness characteristics of SEA’s influence these extremal lifts by leading to
different conditions for the trajectories of their costates and thus to dif-
ferent switching structures for their controls. Finally, by exploiting the
dependence of extremal lifts on their initial costate we show how to pa-
rameterize the set of all extremals. This leads to a reformulation of the
LVMP as a one-dimensional NPP, which can be solved numerically as well
as graphically.

¢ Resonance Energies (Prop. 1, 10 and 16-18)

Fixing a coordinate frame to its motor, the dynamics of an EJ with a
velocity-sourced SEA can be described by a mass-spring system if the
motor velocity remains constant. Consequently, whenever such a joint is
controlled by a switching control the joint’s trajectory can be constructed
by combining trajectories of mass-spring systems with different relative
energies, see Chapter 4. Our results show that the switching times of a
strategy solving the LVMP, or more generally of a time-optimal control
strategy, are uniquely determined as soon as the system’s potential and
relative energy are known at its initial switching time. This relation is
described by the time properties of the EJ and thus depends on the spring
characteristics of the SEA, see Fig. 5.2.2 and Fig. 5.3.2. According to
the switching structures depicted there, for SEA’s with linear springs each
structure leads to a harmonic excitation with the joint’s eigenfrequency.
For SEA’s with nonlinear springs, the corresponding structures are more
complex but ensure that a switching always occurs either at zero deflection
or after a sign change in the spring torque. In this context, we extend the
concept, of resonance frequency to the concept of resonance energies.

e Influence of Final Time and System Parameters on the Maximal
Link Velocity (Prop. 19-26)

The maximal link velocity of an EJ with a velocity-sourced SEA can be
regarded as a function of both the final time and the system parameters.
For given parameters, we first show in our analysis that this function is
continuous in the final time and strictly increasing. Moreover, we also
provide a graphical construction method for the graph of this function
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based on the introduced parameterization for the set of extremals. Turning
then our attention to the role of the system parameters, we show that
graphs illustrating the dependence of the maximal link velocity on the final
time can also be used to investigate its dependence on these parameters.
More specifically, we show that using only two dimensionless parameters
we can simultaneously analyse the influence of both the final time and the
system parameters on the velocity gain, i.e. the ratio between the maximal
link and motor velocity. Regarding their influence, we have especially
observed that for a SEA with hardening springs this gain can be increased
if the maximal motor velocity is increased. For SEA’s with softening
springs, on the other hand, the same gain can be increased with decreasing
motor velocity. Finally, for SEA’s with linear springs the maximal motor
velocity does not have any influence, see Fig 6.2.1-6.2.2.

¢ Experimental Verification

Our theoretical results on optimal control strategies and on the influence
of system parameters on the maximal link velocity have been both exper-
imentally verified using the DLR FSJ [59], see Fig. 6.3.1.

e Influence of Variable Impedance on Optimal Control Strategies
(Prop. 27-34)

We have applied PMP to analyse OC strategies for two different EJ models
with variable impedance. Focusing first on EJ’s with adjustable linear
damping, we have shown the existence of switching patterns, for both the
motor velocity and damping ratio, which maximize a non-trivial linear
combination of the terminal deflection and link velocity. For one of these
patterns, we have furthermore found a physical law which under certain
assumptions on the minimal damping ratio fully agrees with the law for
EJ’s with adjustable linear stiffness. Then, we have analysed EJ’s with
adjustable nonlinear stiffness and shown how to graphically determine the
switching structure for a general class of cost functionals. For both models,
our results indicate that the introduced concept of resonance energies also
apply to EJ’s with variable impedance.

¢ Second Order Minimum Principle (Theorem 39)

When searching for a global minimum of a differentiable real-valued cost
function over a given subset of the n-dimensional real space, it is well-
known that the cost function must satisfy certain conditions at such a
minimum [62, 5]. In particular, the gradient of the cost function must be
equal to the zero vector in case the minimum is an interior point of the
given set. This condition is, however, in general not sufficient as it can
be also satisfied by local minimas and maximas. Nevertheless, if the cost
function is two-times continuously differentiable it is possible to obtain ad-
ditional conditions using the corresponding Hessian, and these conditions
can be used to distinguish between local minimas and maximas. In full
analogy, the conditions provided by PMP are only necessary for a control
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strategy to minimize a given cost functional over a given set of admissible
controlled trajectories. Nevertheless, additional conditions can be derived
if we assume that each element of the system dynamics is two-times contin-
uously differentiable with respect to the state and if we additionally have a
terminal cost function that is two-times continuously differentiable. This
is shown in Appendix A, where we make use of properties of transition
maps to derive the Second Order Minimum Principle.

There are several ways to extend our results on control strategies solving the
LVMP. First of all, since boundary trajectories starting from the origin are nec-
essarily contained in extremals, our proposed construction method for extremals
can actually be used directly to construct reachable sets of initially resting elas-
tic joints, as well. This is partially illustrated in Fig. 5.4.1 (Left), where we
focus on a particular subset of optimal extremals and further restrict them to
the same time interval. To fully understand the structure of these reachable sets,
however, we need to further study the properties of the functions from Prop. 13
to determine whether and when extremals intersect each other [53]. This is still
an open question, but can now be dealt with by making use of the analytical
expressions we derived for these functions. Clearly, knowing this structure one
can also construct the time-optimal synthesis to brake elastic joints in a time
optimal way [6]. This time-optimal synthesis can in turn be used to derive new
closed-loop control laws to control EJ robots. Noting that our results on EJ’s
with variable impedance also provide a means to construct families of extremals
terminating at a given state, these results can be used to derive control laws for
EJ robots as well.

Regarding the maximal link velocity of elastic joints, our analysis have led
to several non-intuitive results which only apply to EJ’s with nonlinear SEA’s.
Besides the dependence of the velocity gain function on the stiffness characteris-
tics as discussed above, we have for instance seen that a given maximal velocity
could be attained faster by an EJ with softening springs even though a larger
deflection was required. Focusing only on linear springs, requiring a larger de-
flection to store a given energy is equivalent to decreasing the eigenfrequency of
the joint and thus would not result in a faster motion in this case. The main
reason why a faster motion, nevertheless, occurs when EJ’s are equipped with
nonlinear springs lies in the non-trivial relation between the attained relative
energies and the corresponding periods. Our study on the maximal link velocity
of EJ’s with different spring characteristics clarifies how to exploit this relation
to increase the velocity gain of such joints and thus lead to new design criteria
for more performant SEA’s in robotic systems.

Finally, when using PMP to construct candidates for optimal control strate-
gies the resulting extremals might lead to non-optimal strategies with fairly low
performance, see for instance Fig. 6.1.1 (Right). The Second Order Minimum
Principle, which we introduce in Appendix A, provides a means to further de-
crease the set of such candidates under a practically relevant assumption on
the system dynamics and cost functional. For the EJ models and OC problems
which we have investigated in the thesis, this assumption is satisfied whenever
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the TDP is two-times continuously differentiable. This means that this new
principle can be used to further analyse, for instance, EJ models with softening
and hardening springs, and this might in turn lead to additional information
on the optimality/non-optimality of the derived switching structures along the
corresponding extremals. More generally, the proposed principle can be used
to analyse optimal control strategies for any deterministic system, both analyt-
ically and numerically, as long as the dynamics of the system can be described
in terms of sufficiently smooth first-order differential equations.



Appendix A

Minimum Principles

In the thesis, we make substantial use of Pontryagin’s Minimum Principle [44]
and in this appendix we will provide a novel proof to this principle. More
specifically, making use of the concept of parameterized families of controlled
trajectories [53] we will show how to prove this principle for a general OC
problem (GOCP) that accounts for all the three OC problems considered in
the thesis, i.e. LVMP, LTCP and GTCP. Moreover, we will also show how
using our approach we can further extend this principle assuming an additional
degree in the smoothness of the system dynamics and cost functional. This will
lead us to what we will call the Second Order Minimum Principle (SMP). Our
approach is similar to the one pursued in [28], but differs in the requirement
on the smoothness of control strategies. In particular, when deriving the SMP
we will require the optimal control strategy to be only piecewise continuous.
In addition, when deriving both PMP and SMP we will not make use of any
separation theorems on convex sets. All our results will basically follow from
investigating two types of control variations and the resulting transition maps.
We start our discussion by providing a formulation for the GOCP in terms of
transition maps and also clarifying some of the properties of these maps which
we will require for our proofs of PMP and SMP.

A.1 Problem Formulation

Let ¥ = (X, f,U,U) be a general control system which satisfies the following
assumptions:

(B1) The state-space X is a non-empty open subset of R” with n > 1 being a
positive integer.

(B2) The control set U is a non-empty subset of R™ with m > 1 being a
positive integer.

(B3) The system dynamics f : XxU — R™ is a continuous function. Moreover,
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for each (x,v) € X x U the Jacobian

a )
af T;ﬁ(a’7 U) T &{i ((B, U)
87(:1:71)) = : .
* Un(gv) - (g, v)
oxq ’ oxy, ’

exists and the corresponding function g—i : X x U — R™*™ is continuous!.
(B4) U = PCy, i.e. the class of admissible controls is the set of all piecewise
continuous functions w : [0,t¢] — U with t; > 0.

It is important to remark here that our assumptions on the system dynamics
ensure that for each piecewise continuous function w : R — U and each pair
(to,yp) C R x X of initial time and state, the initial value problem

y(t) = f (y(1),w(t), ylto) =yo € X, to €R, (A.L1)

has a unique maximal solution y : Dy (to,yy) — X, where Dy, (to,y,) denotes
the maximal interval of existence of the solution which is necesarily a non-
empty open interval containing tg, see [34]. More specifically, since the function
fw X xR — R" with

Ful@,t) = f(@,w(t)), (A12)

is locally Lipschitz with respect to its first argument, the function w gives
rise to a locally Lipschitz transition map v, : dom(v,,) — X such that
for each (to,y,) C R x X the function ,,(.,t0,yy) gives the maximal so-
lution to (A.1.1). Moreover, the domain of this map, given by dom(v,,) =
{(t.t0,yy) € R? x X[t € Dy (to,yo) }, is an open set in R"*2, see Theorem 4.29
in [34]. We will call v, the transition map of ¥ corresponding to w.

When proving PMP and SMP, we will need several properties of partial
derivatives of transition maps. Focusing on the transition map %,, introduced
above, let E,, C R denote the set of times at which w is not continuous.
Regarding the partial derivative ag—tw, it is by definition clear that this derivative
exists at each (¢,t0,yg) € (Dw(to, Yo)\Ew) X R x X with

O,y

W(t,to,yo) = f (¢t to, o), w(t)) . (A.1.3)
Moreover, according to the properties of f,,, and w the corresponding func-
tion é)g—tw : (Da(to,yo)\Ew) X R x X — R™ is continuous. In addition, intro-

ducing for each ¢t € {7 € Dy, (to,yp) |(to € RAy, € X) } the sets

H™(t) = {(7,70,&) € dom(sp,,) [T < t},

and
H+(t) = {(T7 T0’£0) € dom(w'w) |T > t}7

IThat is for each (i,35) € {1,...,n}? the function ggj:i : X x U — R is continuous.
J
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Wu . dom(ap,,) — R":

ot
Y, . 0P

t,t = | w
ot (t:t0:90) H*(t)B(T,Tol,g;)%(t,tg,yo) ot (7,70, £0)

= 7 (vultitom). T w(r))

n
while for the right time-derivative %p—t‘” : dom(vp,,) — R™ we have

Ny , o
t, to, = lim “ (1,70,
ot (10 90) H+(0)3(m70.60)— (t,t0,yg)  OF (7,70, &)

= f(¢w(t,t0,y0),w(t)).

Similar properties also hold for the partial derivatives (;/Z“’ and aww . This is
shown in the following lemma, where for each ¢ty € R we use Hy (to) and H (to)

to denote the sets

H(;(to) = {(T7 7-0)50) € d0m<,¢w) |TO < tO}’a

and
H{ (to) = {(7,70.&,) € dom(vp,,) |70 > to } .

Lemma 35. Let ¥ satisfy assumptions (B1)-(B4), w : R — U be a piecewise
continuous function and ,, : dom(,,) — X the locally Lipschitz transition
map of X corresponding to w. Moreover, let E,, denote the set of times at
which w is not continuous. Then, the partial derivative 8;’7:)“ exists at each

(t,t0,yo) € dom(vp,,) and the corresponding function 2 a : dom(,,) — R™*"

oy

is continuous. Similarly, the partial derivative e emsts at each (t,to,yy) €

dom(vp,,) for which ty ¢ E., and the corresponding function 38750 : Doy (to, yo) X
(R\FEyw) x X = R™ is continuous. Moreover, both the left initial time-derivative

05/;; with
[ . Oy
(t tOvy ) lim (7_ TO)E )
Oty O Hy )3 (rmo ) (tto.we) Ot ’
. Lo . T L
and the right initial time-derivative e with
o A
(t tOvy ) lim = (T7T07£ )a
Oty 0 Hyf (t0)3(,70.€0) = (t.to,y,)  Oto 0

exist at each (t,t9,y,) € dom(v,,), and are given by

O (10, 0) = f;"o (tto. 90) f (y lim wm), (A.1.4)

Tty
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and
o,
Oto

(tato’yo) = (t tOvyO)f<y07w<t0>)’ (A15)

Oy,
9o
respectively.

Proof. Let ¥, w,v,, and E,, satisfy the hypothesis of the lemma. Assume
first that E,, is empty. Then, both w and the function f, in (A.1.2) are
continuous. Moreover, the partial derivative of f,, with respect to its first
argument exists and is continuous for each (x,t) € X x R. It follows then from
Theorem 7.1 and 7.2 in Chapter 1 of [13] that both a(;pT:, : dom(v,,) — R™ and

%w . dom(tp,,) — R™*™ exist and are continuous. Consequently, the initial

0yq
Y,

— T w
i and

time-derivatives o, also exist. Finally, the fact that the partial

Bt

derivatives 5/;“' and ’/’"’ satisfy the same linear differential equation with the
boundary condltlons2
Oy
oy < (to, to, Yo) = La,
Yo
and
0y,
Dty — (o, t0,Yo) = —F (yo, w(to)), (A.1.6)

see for instance Theorem B.2.2 in [53], imply that (A.1.4) and (A.1.5) both hold.
This shows the truth of the lemma for E,, = 0.

In the remainder of the proof, we want to now show that the lemma is also
true when w is piecewise continuous with Fy, # (. For this, let (tf,to,yo) be
an arbitrary element of dom(,,). Assuming first that ¢y > to, let D = [to, ]
and introduce the continuous function g : D(fg, y,) — X with

g(t) = ¢w(t7 'EOa QO)

Since the image of gy|p is compact and dom(),,) is open, we can then find a
scalar € > 0 such that the set

S={(t:to.yo) € R"?[t € (I — &,1; + &) A (to, yo) € B((£,9(1)):2) }

is a subset of dom(%),,). Moreover, by choosing & > 0 sufficiently small we can
additionally ensure that the control w is contlnuous at each t € (to — &, tp) U
(ty, tf + &). Under this assumption, let ¢y = o — 5 and tf =1y + 5. Moreover,
let D = [ty, %] and introduce the necessarily ﬁmte set By = (o, 1 f) N Ey with
n > 0 elements. Set to = tso and tf = tS 7+1, and in case the set Ew is
non-empty let tg 1< < ts 7 denote its elements. Finally, construct for each

k € {0,...,n} the continuous control function wy, : R — U with
w(ls ) t <tsy
wy(t) =S w(t) t e (tsk ts ki), (A.1.7)
lim, _, =15 1 w(t) t>tsk

2J, € R"*™ denotes the identity matrix.
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together with the corresponding transition map ,,, . In addition, starting
from k = 0 iteratively define for each k € {0,.. n} the state functlon ke
B ((to,g(to)) ;é) — X with

k Yo k=0
&(to,Yg) = - 3 ) A18
(fo- o) Yo, (Esprtsp—1, " €(to,yo)) k=1 ( )

Based on our discussions in the beginning of the proof, we know that the con-
structed transition maps ,,, are all continuously differentiable. According to
(A.1.8), this implies that the state functions *¢& are also all continuously dif-
ferentiable. To simplify our discussion, we will next distinguish between three
different cases depending on whether the times ¢y and ¢; belong to E,, or not.

First Case (ty ¢ Ew Nty ¢ Ey) In this case, we can find a scalar £ < &
such that the union (tg — &,tg + &) U (ty — &ty + &) and the set E,, are disjoint.
Consequently, we can also find a sufficiently small neighborhood V C R"*2 of
(ts,t0,Yo) such that for each (¢,to,y,) € V we have

¢w(ta th yO) = '(/)w;l (ta 7?5',’717 ﬁé (th yO)) .

Since the functions v,  and "¢ are both continuously differentiable, we can

conclude that at each point of V, including (f;,%o, y,), the partial derivatives

0.,

i and Pu oxist and are continuous.

Second Case (fy ¢ Ew Aty € Ey,) In this case, t; = tg; > o and we can
find a scalar £ < £ such that the union (tg —&,to + &)U (ty —&,t5) U (t5,t5 + &)
and the set E,, are disjoint. Consequently, we can also find a sufficiently small
neighborhood V of (f7,%o,¥,) such that for each (¢,to,y,) € V we have

Yo (t,t0,Yo) = {w’”“ (12, "€ (to,wa)) £ <ty : (A.1.9)

w'wﬁ (t”?fvﬁﬁ (tO,yo)) t> tf

Notice that since the functions "€, Y., and 1, are all continuously differ-

entiable, the partial derivatives 8‘;1’7;” and ?T:)” exist again at each point of V,

including (t7,%0,Y,), with

Oy - B
%(t to yO) — 9 oY, - (t tf’ £ (to;yo)) ato (t07y0) t < tf (Allo)
ato s v wwn (t tf7 £ (1‘;07 yO)) 6:5 (to, yO) t> t_f )

and

0., - B
0., (t 10, 50) = ayn L (t,ty, S(to,yo)) (to,yo) t <ty (A11D)
. \»tosdo) = g oy, o 1.
%% Dy, (t:85,7¢ (t07y0)) ayo ( 0,Yo) t>ty
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The fact that these partial derivatives are also continuous at each point of V,
and in particular at (, %o, 9,), follows from the fact that the two expressions on
the right-hand side of (A.1.10), respectively of (A.1.11), take the same value at
t =ty since we have

Third Case (tg € F,) In this case, we have to = ts1 and we can therefore
find a sufficiently small neighborhood V' of (f,%o,9,) such that for each point
of V we have

ww(ta t07y0) = ww (ta EO) ww(f()vt()ayo)) 9 (A112)
with

d’wo ({Oa to, yo) to < {0

o _ . A.1.13
Yy (20,10, Yo, (fo,t0,¥Y0)) to =10 ( )

"bw(foath yO) = {

By our discussion on the first two cases, the function on the right-hand side of
(A.1.12) can be continuously differentiated with respect to its third argument.
Similarly, the function in (A.1.13) can be differentiated with respect to its third
argument with

aww g iny

31.1’11; (EO tO y ) _ { a(?pyoo (t07 t07 yO) o tO < tO
) »J0) w I I iny w I r

Y DYy (t0: 0, %y, (f0st0,Y0)) e (to,to,Yo) to >to

Al14
Now, both of the expressions in the right-hand side of (A.1.14) can be r(egardegl
as continuous functions of the pair (¢, y,) and they both take the same value
at tg = to since we have 1, (fo,t0,yy) = y, and ag}Twol (to,t0,yo) = I4. By
the equality (A.1.12) and chain rule [62], we can then conclude that ‘?”T‘U" exists
again and is continuous at each point of V. On the other hand, when focusing
on points of V with tq # ty we have

Oy - _
0., (o t0, yo) = {atoo (to.t0, yo) to < to
“ay 0,00, Ho) =\ 0v,,, i+ + - 0Py, -
dto Dy (t0, 0, P, (f0,%0,Y0)) it (to,to,yo)  to > to

which by an application of the chain rule implies

o oy -
P 7, o, 50) = (~1) 222 (i, 70,50) F 90, Him w(t) ), (A115)
Oty 8y0 t—t,
and
ot b,
W i1 fog) = 2P (1710, 50) F (o wlle),  (A.116)
Oto Yy,
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where we have made use of the fact that (A.1.6) also holds for w = w; and
w = ws since they are both continuous. Notice that the two expressions in
(A.1.15) and (A.1.16) will in general be different and this shows why, in contrary

to aL the partial derivative (;l;‘” might not exist in this third case.

Assurmng the inequality ¢; > o, our discussion of the three different cases
proves all the desired properties of the partial derivatives 81/;“’ and ‘%"“ . More-
over, noting that (A.1.12) actually holds in all the three cases in a sufﬁmently
small neighborhood of (tf,%,y,) we can see that the equalities (A.1.15) and
(A.1.16) also hold when ¢y > ;. To conclude the proof, we thus require to show
that our results so far are also valid when ¢; < to. This can be done analogously

by letting D = [t;, %], finding a positive scalar £ > 0 such that the set S with
S ={(t.to,y) ER" |t € (t; — &, 10 + &) A (to, yo) € B((t,y(t));€) },
is a subset of dom(v,,) and finally setting {y =ty — < and ty = {p + . O

Given an admissible control strategy w € PCy defined on D = [0,¢/], let us
now introduce the extended function u., : R — U corresponding to u with

u(0) t<0
Uer(t) = Qu(t) te(0,tf). (A.1.17)
u(ty) t=>ty

Clearly w., is then also a piecewise continuous function and will lead to the
transition map ,,_ . Using this map, we can now define the following OC
problem.

General Optimal Control Problem (GOCP): Given a final time ¢y > 0, an
initial state ¢ € X and a continuously differentiable function V : X — R find
the control u°P* which minimizes V (1/) (ty,0, aco)) over all admissible controls
u € PCy.

We want to next show how we can derive PMP for this problem by exploiting
the properties of transition maps.

Ueg

A.2 Pontryagin’s Minimum Principle

To motivate our proof for the PMP, we will start with the following lemma
which illustrates how trajectories corresponding to the same control strategy
can be related to each other.

Lemma 36. Let X be a control system satisfying assumptions (B1)-(B4). More-
over, let w : R — U be a piecewise continuous function and let E,, C R denote
the set of times at which w is discontinuous. Furthermore, let § : I, x I; —
X, (7,t) = &(7,t) be a continuous function satisfying the following conditions:

1. I, CR and I; C R are two non-empty open intervals.
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2. The partial derivative % exists at each (v,t) € I, x (I;\Ey) with

() = £ (€ 1), (1)

3. The partial derivative % exists at each (v,t) € L, x I, and is continuous.
Then, g—g satisfies at each (y,t) € Iy x (I\Ey) the following differential equa-
tion:

0 (0¢ of 0€

— | = t) = — t t)) =—(7,1)- A21

5 (5) 000 = 5L (et i) G0t (A21)
Proof. Let ¥, w, Ey,, &, I, and I, satisfy the hypothesis of the proposition. By
definition, we have then for each (v,t,to) € I, x I}

5(’73” = ¢w (t,to,é(%to))
= 5(73 tO) + \ f(’ltbw (S,to,é(’}/,to)) ,'LU(S)) ds

= &, to) + t f (&(vy,8),w(s))ds.

Since f and % are both continuous and since F,, N I; is a finite set, we can
apply Leibniz rule [61] to differentiate both sides of the equality above with
respect to v and this leads to

98 = %

t
87(% ) N

¢
of %3

t = — d
o)+ [ 5L (€00, wi) G s
which again holds for each (v,t,t9) € I, x I?. Finally, noting that this last
relation can be differentiated with respect to time ¢ when t ¢ F,, we see that
(A.3.5) must hold for each (7,t) € I, x (I}\Ey), as desired. O

Given a control system ¥ and an admissible control strategy w, we can clearly
build the extended function u., and use the corresponding transition map ,,
to construct different trajectories of 3. Lemma 36 provides a means to compare
such trajectories at any time along their domain of definition provided they can
be combined in a sufficiently smooth manner. More specifically, if these trajec-
tories can be described using a parameterized family of controlled trajectories
satisfying the three conditions of the lemma, their relation to each other can be
analysed using a linear homogeneous differential equation, see (A.2.1). In our
proof of the PMP we will introduce two types of such families. A comparison of
the trajectories in these families will then for each type lead to a different condi-
tion for a control strategy to solve the GOCP. By the differentiability properties
of the constructed families, these conditions will in turn imply the well-known
optimality conditions provided by PMP.
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Theorem 37. (Pontryagin’s Minimum Principle) Let ¥ be a control system
satisfying assumptions (B1)-(B4), and (x,u) an admissible controlled trajec-
tory which is defined on D = [0,t7]. Moreover, let E C D denote the finite
set of times at which w is not continuous. Finally, assume that the control u
solves the GOCP with the final time ty > 0, the initial state xo € X and the
continuously differentiable function V : X — R. Then, there exists a piecewise
continuously differentiable costate X : D — (R™)* such that the first of the fol-
lowing conditions holds at each t € D\E, the second and third at each t € D,
and finally the fourth condition at the final time ty:

1. Costate Dynamics

of

A(t) = “A(t) 5 (@), u(t)). (A.2.2)
2. Minimum Condition
H (2(t), u(t), A(t) = minH ((¢), v, At), (A.2.3)

where H : X x U x (R™)* — R denotes the Hamiltonian function given by
H(x,u,A) = Af(z,u). (A.2.4)

3. Hamiltonian Condition
H ((t), w(t), A(t)) = —Aa, (A.2.5)
where A\, € {—1,0,1} is a constant scalar.

4. Transversality Condition

Aip) =02 (alty)), (4.2.6)

where v is a positive constant scalar.

Proof. Let ¥, (x,u),D = [0,tf], E C D, zy € X and V satisfy the hypothesis of
the theorem. Moreover, let ue, denote the extended function corresponding to
u and v, the transition map of ¥ corresponding to wu.,. Notice that since
(z,wu) is an admissible controlled trajectory, we have for each 79 € D

Sex(10) = {(t,70,2(70)) [t € D} C dom(4p,,_ ). (A.2.7)

Consequently, since Se, (7o) is a compact subset of R™*2 we can always find a
scalar €,, > 0 such that the set S,;(79,e-,) given by

SGI(T(%ETO) = {(t77-07@0) |t € (_5707tf + ETO) A (710’@0) €B ((7—0717(7-0)) ;ETO)}

is a subset of dom(p,, ), i.e.

Sex(T0,67,) C dom(wp,,, ). (A.2.9)

We will now prove the theorem in seven steps.
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1. Construction of £,: A family of controlled trajectories described by a shift
in the time along the applied control strategy

Let tg € (0,2)\E and £;, > 0 be a scalar for which the set Sen(ts, €t,) defined
by (A.2.8) is a subset of dom(},, ). There exists then a ds € (0,&,] such that
Ig = (tg — 0s,tp + d5) is a subset of D\ E and we have

Sty ={(t, B,2(tp)) [t € (—0s,ty +0s) ANBE I} C Seultp,er,).  (A2.10)
Choosing now a § € Ig and constructing the admissible control strategy s :
D — U with

t te |0,t
an(t) = { ) €l0,ts) (A.2.11)
Uer(t + 0 —tp) € [tg, ty]

it follows then from (A.2.9) and (A.2.10) that there exists a unique trajectory
Zs : D — X which starts from xy and corresponds to ws;. Moreover, this
trajectory can be described in terms of the transition map 1, as follows:

By(t) = { e (20 20) rellts) (A2.12)
Vo, (t+ B8 —ts,B,2(ts)) t€listf]

Since (Zs,us) is an admissible controlled trajectory, the optimality of (x,u)
results then to the following condition:

V(z(ty)) <V(xs(ty)). (A.2.13)

Notice that our choice for 3 € Ig was arbitrary and the condition above should
therefore hold for any such choice. Based on this observation, let us introduce
the map &, : Ig x (—0s,t5 + 65) — X with

£.(Bt) = by, (5 z(tp)) (A.2.14)
m(tﬂ)‘f‘/ﬁ f (Y., (5,8, 2(t5)) , ues(s)) ds, (A.2.15)

which for 8 = tg and t = t; takes the value x(ty). With the mapping &,,
(A.2.12) and (A.2.13), we can finally arrive at the condition

(VB € (tp = 0s,tp +05)) [V (&s(ts, 7)) < V(&(Bty + 8 —1tp))],  (A.2.16)

which needs to be satisfied in order for (,u) to be an optimally controlled
trajectory. In the sixth step of the proof, we will show how to exploit this last
condition and the differentiability properties of &, to derive the Hamiltonian
Condition.
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2. Construction of £.: A family of controlled trajectories described by a
change in the value of the applied control strategy

Let v € U be an arbitrary element of the control set, w : R — U the constant
function with w = v and ¥,, : dom(v,,) — X the transition map of ¥ cor-
responding to w. Moreover, let ¢, € [0,t7)\E. Focusing on the initial value
problem (A.1.1), with ¢y = t, and y, = x(t,), the corresponding maximal solu-
tion Y : Doy (Lo, (ta)) — R™ will then be defined in an open interval containing
to. Moreover, if £;, > 0 denotes a positive scalar for which (A.2.8)-(A.2.9) hold
with 79 = ¢, and &, = €, it follows from the continuity of the solution y that
we can find a sufficiently small d,, € (0,e;_] such that

Lo = (ta — Guws ta + 0u) C (—00,17) N Dy (ta, T(ta)) \E, (A.2.17)

and
(Vt € Iy) [(t,y(t)) € B ((ta, z(ta)) ;€. )] - (A.2.18)

Let us now first choose an element « of the interval I, with o > ¢,. According
to (A.2.8)-(A.2.9) and (A.2.17)-(A.2.18), the set

Sw(a) ={(t,a,y(a))|t € D} (A.2.19)

will be a subset of dom(v),, ). Consequently, once the state x(t,) is reached it

ex

is possible to apply the constant control strategy w in the time-interval [t,, ) C
I, and then again the control strategy w in [a,t¢] C D. This can be regarded
as a spatial control perturbation as discussed in [32] and leads to the control
strategy u. : D — U with

u(t) teo,ty)
u.(t) =< v t € [ta, ). (A.2.20)
u(t) te€[a,ty]
It is important to realize here that the control @, as defined above is an admis-

sible control strategy. Moreover, the trajectory . : D — X described by the
transition maps v, and v, with

¢ucz (ta vaO) te [O,ta)
Zo(t) = S Py, (b ta, z(ta)) t € [ta,q], (A.2.21)
Yu,, (b, Py, (@ ta, 2(a))) 1t € ()]

is the unique trajectory which starts from axy and corresponds to u.. Conse-
quently, (Z.,u.) is an admissible controlled trajectory and in order for (x,u)
to be optimal we must have

V(z(t) <V (@elty)). (A.2.22)

Notice now that our choice for o € (tq, to+ 04 ) Was arbitrary and the inequality
in (A.2.22) must actually hold for each trajectory &. arising from such a choice.
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This suggests us to define the continuous map &, : Iy X (—0w,t5 + 6w) = X
with

E(ayt) = wuez (t, o, Py, (, ta, 2(ts))) (A.2.23)
= / F(y, (s,ta,x(ty)),v)ds (A.2.24)

+ /f(%w (8,0, Py (@ ta, @(ta))) s Uea(s)) ds, (A.2.25)

which for o = t, and ¢t = t; takes the value x(ty). With the map £, and
(A.2.21)-(A.2.22), we can arrive, similar to (A.2.16), at the condition

(Va € [tas ta + 0uw)) [V (Ec(tar ) <V (Ec(astf))], (A.2.26)

which needs to be satisfied in order for (,u) to be an optimally controlled
trajectory. In the final step of the proof, we will show how to exploit this relation
and the differentiability properties of £, to derive the Minimum Condition.

3. Computation of %% 2 Ig X (=ds,t5 +05) =+ X

By Lemma 35, we know that the partial derivative aﬁt (t,t0,yg) exists and is
continuous at each (t,to,y,) € {(7,5,x(tg)) | € (— 65,tf +d5) A B € Iz} since
Is N E = ( holds by construction. Similarly, since u., is continuous at each
B € Iz and since the set (—ds,tf + d,) N E is finite, we can use Leibniz rule to
differentiate the rlght and side of (A.2.15) with respect to 5 and this leads to

the continuous map 86 :Ig X (=ds,t5 + 05) — X with

o€,
op

(ﬁ t) = _f (’l?buem (ﬁvﬁvw(tﬁ))’uez(ﬁ))

ta 8
# [ b, (55 (0) o) T (5 205)) s

= *f( (tg), ez ()

[ et

9€
op

2 (3, 5)ds (A.2.27)

According to (A.2.27), %%‘ (8, .) is differentiable with respect
to time at each ¢t € (—d,,¢; +J,)\E. More specifically, it solves the initial value
problem

o (06N, . 0Of o€,
5 () 00 = GL (€500t G 0.0 (42.8)
with the boundary condition
%8s (8,8) = —F ((ts), uea(8). (A.2.29)

op
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Notice that the initial value problem (A.2.28)-(A.2.29) is described by a home-
geneous linear differential equation. Therefore, its solution can be explicitly for-
mulated using the transition matrix function generated by % (&,(8,.), uex (1)),
see [34]. Let @, : Iz x (=05, tf + d5)% — R™ ™ be the matrix-valued function
such that ®4(f,.,.) is equal to this transition matrix function for each g € I.
We have then for each (3,t,t0) € Ig x (—0s,t5 + 5)?

o€, _ 23
66 (ﬂvt) - (I)s(ﬁvt»tO)%(thO)

= —0,(8,t,8)f (x(ts), uex(B)), (A.2.30)

where for the last inequality we have set to = 3, see (A.2.29).

4. Computation of %‘EC t T X (=0, ty + 0w) = X

(6%

Following the same arguments as used in the third step and noting by Lemma 35
that 1, is continuously differentiable since w is continuous, we can differentiate

the right-and side of (A.2.24)-(A.2.25) with respect to o and this leads to the

%ic t Ty X (—0w, tf + 0y) — X with

continuous map

o€,
Oa

(@,t) = f (Pop (@, ta; ®(ta)) ;) = F (o (e, 2(ta)) s Uea ()

ta 8
[, o)) ) {52 g () +

| g (el 8),uea(s)) 5=(a;, 5)ds. (A.2.31)

According to (A.2.31), we now see that %ij (e, .) is also differentiable with re-

spect to time at each t € (—0u,ts + J4w)\E and solves the initial value problem

% ( aic) (Oé,t) = 8% (Ec(avt)7 uea:(t)) 8% (Oé, t), (A232)
with the boundary condition
%(a,a) = f (€. (a,0),v) = f(E(a, @), Uep()) . (A.2.33)

As done in the third step for %‘i;, let us introduce the matrix-valued function
. i Iy X (=6, tf + 04p)* — R™ ™ such that ®.(a,.,.) gives for each a € I,
the transition matrix function generated by g—’; (&.(a,.), uez(.)). We have then
for each (a,t) € Ly X (—0w,tf + 0uw)

aaic (047t) = Q. (a,t, a) [.f ({C(Oz, a)7 v) - f (éc(a7 a)a uez(a))] . (A.2.34)




APPENDIX A. MINIMUM PRINCIPLES 150

5. Construction of n, and n,: A family of solutions to adjoint equations

In this fifth step, we will simply introduce two functions 1, and n, which can be
used to refer to solutions of the differential equations that are adjoint to (A.2.28)
and (A.2.32). More specifically, we define n, : Ig x (—ds,t; + ) x (R")* —
(R™)*,(B,t,m;) — m,(B,t,n;) such that for each (8,m;) € Iz x (R")* the
function (83, ., ;) satisfies at each t € (—ds,t;+05)\E the differential equation

on, _ af
ap Bsting) = = (B.t,mp) 5o (€4(5,1) uea (1), (A.2.35)
with the boundary condition
n,(B,tr.my) = my. (A.2.36)

Similarly, we define 1, : Iy X (=0w,ty + 0w) x (R™")* — (R™)*, (a,t,n;) —
n.(a,t,m;) such that for each (a,n;) € L, x (R™)* the function n.(a,.,n;)
satisfies at each ¢ € (—duw,ts + 0u)\E the differential equation

of
“(aut,my) = —m.(a, t,nf)a—rv (€. (a,t), uer (1)), (A.2.37)
with the boundary condition
n.(aty,my) =ny. (A.2.38)

Notice that since g—i,ﬁs and &, are all continuous functions and wu., is piece-
wise continuous, solutions to the initial value problems (A.2.35)-(A.2.36) and
(A.2.37)-(A.2.38) uniquely exist. In particular, since (A.2.35) is adjoint to
(A.2.28) n, is given by

ns(B,t,mp) =0 Ps(B,15,1), (A.2.39)
while 7, is given by
n(at,ng) = npPc(a,ty, t), (A.2.40)

since (A.2.37) is adjoint to (A.2.32), see [34]. Finally, by setting 8 = t3 and
a = t, it is possible to relate these solutions to the function A : D — (R™)*
solving (A.2.2) with (A.2.6). Indeed, according to (A.2.14) and (A.2.23) we
have for each t € D

A0 = (105 @(e)
— (ta,t,vgz(m(tf))>. (A.2.41)

This shows the existence of A for each possible value of v > 0 in (A.2.6). We
will next prove the Hamiltonian Condition and also specify the scalar v > 0.
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6. Proving the Hamiltonian Condition

We have already shown that &, : Ig x (—ds,tf + d5) — X is continuously
differentiable with respect to its first argument. Similarly, at each (8,¢) €
Ig x (—ds,t; + 65)\E it is also continuously differentiable with respect to its
second argument with

5(96: (B,t) = f(§5(B, 1), wex(t)) (A.2.42)

see (A.2.14)-(A.2.15). Notice now that by definition, u., € PCy must be con-
tinuous at ty. Consequently, we can find a sufficiently small interval Iz =
(tg — 0s,t5 + 05) C Ig, with d5 € (0,85, such that the function &1z =X
with

is continuously differentiable with the derivative dszf : I3 — X given by
dg, _ 0& 08,
W(ﬁ) Y (Byty +B—1tg) + 9t (B,ty+B—1tp)

= _(Ps(/B;tf +ﬁ - tﬁ75)f (w(tﬁ)auez(ﬂ))
+ FEBtr+ 6 —1p)uealty +5—1p)),  (A.244)

see (A.2.30) and (A.2.42). Since V is also continuously differentiable, the con-
dition (A.2.16) implies by the fundemental theorem of calculus the following
relation:
P oy d¢
A4 I3 — . 2258 (6ds > 0] . A.2.45
(v € g)[/; T (60s(9) L (5)ds > (A.2.45)
As tg belongs to the interior of I3 a necessary condition for (A.2.45) to be true

is now that the integrand is equal to zero at s = ¢g. According to (A.2.43)-
(A.2.44), this leads to

d d
0% (0 1) S5 1) = O lt) S5 1)

= % (@(ty)) f (@(ty), ulty))
- % (@(tf)) Ps(tp, s, o) f (x(t5), ults))
L0

= % (@(ty)) f((ty), ulty)) = % (@(t7)) Ps(ts, ty, tp) f (®(ts), u(ts))-

(A.2.46)

Let us now define the scalar v as follows:

Wv. 2 (@ity)

1 v
e feiacy] o @)
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Multiplying both sides of the equality (A.2.46) with this positive scalar v, we
get then using (A.2.39) and (A.2.41)

Altp)f ((tr), ulty)) = Atp) f (®(t), u(ts)) = —Aa, (A.2.47)

with A, € {—1,0,1}. Since our choice for tg € (0,t5)\F was arbitrary, we
can finally conclude that the Hamiltonian H (x(t), u(t), A(t)) takes the same
value for each such tg. The fact that the Hamiltonian H also takes the same
value at {0,¢;} U E follows from the continuity of , A and f, and the piecewise
continuity of w.

7. Proving the Minimum Condition

In the fourth step of the proof, we have shown that the function £,., which
arises by a spatial control perturbation at t, ¢ F, is differentiable with respect
to o at each t € (—dw,ts + 0y) and thus also at the terminal time. Since V
is also continuously differentiable, it follows then from the Chain rule and the
fundamental theorem of calculus that the condition (A.2.26) can be equivalently
written as

LoV o€
w s ; ° (s, >0, A24
(o € focta+ ) | [ 2t Gotds = 0] (a2a)
or using the expressions for %on (a,t) and (o, t,mp) in (A.2.34) and (A.2.40)

as

/ e (505 G (6500 ) 1 (€(5:80,0) = £ €5 9) ()] ds =0

(A.2.49)
which must hold for each « € [tn,ta + 0w). A necessary condition for (A.2.49)
to hold is that the continuous integrand on the left-hand side of the inequality
is non-negative at s = t,. Multiplying the resulting term with v > 0, this leads
then according to (A.2.37)-(A.2.38) and (A.2.41) to the inequality

Alta) [f (z(ta), ulta)) — f (z(ta),v)] < 0,
and thus by (A.2.4) to
H(z(ta), u(ta), Ata)) <H(x(ta), v, A(ta)) - (A.2.50)

Since our choice for to € [0,t7)\E and v was arbitrary we have actually shown
the truth of the following relation:

(Vt € [0,,)\E) [H(m(t),u(t),x(t)):minH(m(t),v,A(t)) . (A251)

vel

To prove that the relation above also holds for ¢ € {t;} U E, assume by con-
tradiction that there exists a time® tg € E such that H (z(ts), u(ts), A(ts)) >

3The case with tg = tf can be proved very similarly by noting that
limpsee, H(z(),u(),A()) =H {m(tf),u(tf),k(tf)) since w is continuous at ty.
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min, ey H (z(t), v, A(t)) . Since &, A and f are continuous and since the control
u is left-continuous, there exists then a control © € U and a sufficiently small
time-interval [tg,ts + €5) C D in which the difference H (x(¢), w(t), A(t)) —
H (x(t), v, A(t)) remains positive. As the union {t;} U E is finite, we can then
find a time ¢, € (ts,tg+¢eg) in this interval which also belongs to [0,t;)\E and
this in turn contradicts (A.2.51). O

The main advantage of our proposed proof of Theorem 37 is that it clearly
illustrates why PMP in general only provides sufficient conditions for optimal
control strategies. Indeed, the Hamiltonian Condition (A.2.5) in the theorem is
derived by first constructing, for each time t5 € (0,t;) at which w is continuous,
a parameterized family of controlled trajectories using the map &,. This leads
then to a continuously differentiable curve which is defined on an open set
and which must have a global minimum at tg for (z,u) to be an optimally
controlled trajectory, see (A.2.45). Nevertheless, for the derivation of (A.2.5)
we only require the fact that the derivative of this curve must be zero at tg, a
necessary condition which can also be satisfied by local maximas. Similarly, to
prove the Minimizing Condition (A.2.3) a continuously differentiable curve is
constructed which must attain its global minimum at the boundary of a half-
open interval, see (A.2.48). However, the inequality (A.2.50) can only ensure
that this boundary is a local minimum if the inequality is strict.

Our discussion above suggests that we can attain additional necessary con-
ditions for optimal control strategies in case the two curves described above
have additional smoothness properties. In the following, we show how to ensure
such properties by providing additional assumptions on the system dynamics f
and the terminal cost function V. This will lead to the SMP which under these
assumptions extends PMP for the GOCP.

A.3 Second Order Minimum Principle

Let ¥ = (X, f,U,U) be a general control system which satisfies, in addition to
assumptions (B1)-(B4), the following assumption:

(B5) For each k € {1,...,n}, the Hessian

% fr 0 f

9 ot (@0) o g (@)
k .
Ox2 (z,v) = : :
5 i
a%'g;] (ma 'v) ax]% (w7 'U)

exists at each (,v) € XxU and the corresponding function %2“{2’“ : XxU —
R™ ™ is continuous.

Clearly, the properties of transition maps as we discussed in the beginning of this
appendix still holds for the control system Y. In particular, given a piecewise
continuous function w : R — U there exists a transition map ),, which can be
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used to construct trajectories of ¥ which correspond to controls u = w|p, where
D = [0,tf] denotes a closed interval with ¢y > 0. Let y : D — X be such a
trajectory and assume that ¢ € D is a time at which w is continuous. Moreover,
let E,, denote the set of times at which w is discontinuous and 6 > 0 a scalar
such that the interval I, = (=0 + £, + §) and F,, are disjoint. We can then
construct, as done in our proof of PMP, a parameterized family of trajectories
€: 1, x It — X, with I; = (=8,t; + J), such that for each v € I, the function
&(y, ) solves the initial value problem
€ = _
() =F (€0, wt), €0r,7) = 20(7) €X, (A3.1)

where z : IiY — X is a continuously differentiable function which can be chosen

arbitrarily. Using the properties of transition maps and Leibniz rule, we can

then see that the partial derivative g—g is continuous and solves the initial value

problem? v )
0 o _ 9
ot <6£> (v,t) = ai (E(v, 1), w(t)) afj(%t), (A.3.2)
with
OE dz OE
6*5(%@ = d%()(v) af (7,7)
dzo

= a(v) — £ (&(v,7),w(v)) -

Finally, since (A.3.2) is a linear homogeneous differential equation, the derivative

3—5 can be explicitly described using the matrix-valued function & : 1:7 x I2 —
Y

R™*™ with

%(W»t) = @(%m)%(%v)
dZO =
= 80.00) (20 - € w)) (433

where ®(v, .,.) denotes for each v € f7 the transition matrix function generated

DF 1=
by 9L (€(7,.),w(.)). 7

Taking now a closer look at this last expression for %57 it is clear that we can
not ensure that this term is differentiable with respect to v unless we introduce
additional assumptions on the control strategy w, the dependence of f on its
second argument and the function Zy. Nevertheless, being generated by a set of
piecewise continuous functions we know for certain that the partial derivative
%‘f exists at each point (v,t,t9) € I, x (I;\Ey) x I, with

od of (

8t (’V?t tO) (9:13 E(’y,t%m(t)) 6(77t7t0)' (A34)

4See the third and fourth step in the proof of Theorem 37.
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Similarly, noting that for each pair (v,t9) € I, x I; the matrix-valued function

(v, .,to) solves the initial value problem (A.3.4) with

(I)(’y’ thtO) = Id7

we can apply Lemma 35, with an appropriate choice for the control system, to
see that g—z exists at each (v,t,t0) € I, x I; X (It\Ew). Finally, using the
relation - o -

(V(v,t,t0) € Iy x I7) [®(7, 0, 1)@ (v, t,t0) = La] ,

and the chain rule we can see that the corresponding function g—g: : f7 x I x

(I;\Ew) — R™ ™ is given by

0P - of =
——(y, t,tg) = —B(v, t, ty) =— o), w(to)) -
Ity (7, t,t0) (7t 0)833 (5(7 0), w( 0))

It is important to remark here that to establish the differentiability proper-
ties of @ discussed so far we did not make use of our additional assumption (B5).
The following lemma shows that this assumption ensures that ® is continuously
differentiable with respect to its first argument at each point of I, x I?.

Lemma 38. Let X be a control system satisfying assumptions (B1)-(B5). More-
over, let w : R — U be a piecewise continuous function and let E,, C R denote
the set of times at which w is discontinuous. Furthermore, let § : I, x I, —
X, (v,t) = &(7,t) be a continuous function satisfying the following conditions:

1. I, C R and I; C R are two non-empty open intervals.

2. The partial derivative % ezists at each (7,t) € Iy x (I;\Ey) with

(1) = £ (€ 1), (1)

3. The partial derivative %5 ezists at each (v,t) € I, x I; and is continuous

s0 that at each (7v,t) € I, x (I;\Ey) it satisfies the differential equation

5 (5) 00 =€ Fon. @

Finally, let ® : I, x I — R" " (v,t,t9) — ®(v,t,to) denote the matriz-
valued function with ®(v,.,.) being the transition matriz function generated by
% (&(v,.),w(.)) so that we have

0 0
(%(%b) = q’(%bil)%(%h), (A.3.6)
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for each (v,ta,t1) € I, x I2. Then, the partial derivative % I, x I} — R
ezists at each (7,to,t) € I X I? and is given by the continuous function

od ¢ (%(%S)f O (&(v, ), w(s))
a(%t,to)z/ D(v,t, ) By 5. to)ds.

to

(A.3.7)

Proof. Let ¥, w, E,,&, I, I; and ® satisfy the hypothesis of the lemma. Notice
that the fact that (A.3.5) holds has been already established in Lemma 36. To
prove the current lemma, we will first show the existence of the partial derivative
g—f by making use of Lemma 35. Then, we will use Leibniz rule to show the
truth of (A.3.7).

For each k € {1,...,n}, introduce the column vector e;, = (e;%l cee ek,n)T
given by
0 j#k

(Vie{l,...,n}) lek,j = {1 J=k

Moreover, let X =X x I, and introduce the function g : X x I, — R with

gl(ii,t) .’1~31
. Af (¢(n _
g(:i:,t) — . — ox (£(xn+17t)aw(t)) ~: , (A38)
(:c t) Zn
gnJrl( t) 0
where & = (Z1 - inH)T. Finally, let x,, : dom(x,,) — X denote the

transition map such that for each (to,9,) € Iy x X, the function X, (-, %0, ¥o)
provides the maximal solution ¥ : D, (to, §) — X to the initial value problem

y(t) =g(@(t),t), 9(0) =y € X, to € I. (A.3.9)

A closer look at (A.3.8) shows then that D,,(to, Yy) must always be equal to I;
since the n + 1’th state remains constant and the remaining n states satisfy a
linear differential equation. Consequently, we have dom(x,,) = I}? x X.

Let us now choose an arbitrary integer k € {1,...,n} and a parameter v €
I,. Evaluating the transition map x,, at an arbitrary pair of times (t,tg) € I?

and at the initial state g, = (eg fy)T, we have then according to (A.3.5)-
(A.3.6) and (A.3.8)-(A.3.9)

Xeo 1o, (6) ) = (200 L t0)er). (A.3.10)
(v (7)) = ("75)

Since our choice for k£ was arbitrary, this shows that each column of ® can
be related to the first n elements of the transition map x,, if to and g, are
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appropriately chosen. It is important to notice here that by assumption (B5)
the partial derivative of g with respect to its first argument is described by a
continuous function g—g : X x I, = ROv+Dx(n+1) - Gince w has a finite number of
discontinuities in I, this in turn means that g is locally Lipschitz with respect to
its first argument and that the transition map x,, is continuously differentiable
with respect to the initial state g,, see Lemma 35. This finally implies by
(A.3.10) that the partial derivative of ® with respect to 7 always exists and is
described by a continuous function which we denote by g—f c L, x I} — R,
We will next show how to derive an expression for this function in terms of &, f
and .

As we can see from our discussion above, for each given (v,ty) € I, X
I; the columns of the transition matrix ®(v,.,%o) solve the linear differential
equation given by (A.3.5), see (A.3.8)-(A.3.10). Consequently, by integrating
this equation and making use of the different initial states described by the
vectors ey, with k € {1,...,n}, we can see that for each (v,t,t0) € I, x I? we
have

btt0) = Lo+ [ 5T (€09, w(e) 20,5 t0)s.

Since the product in the above integral is continuously differentiable with respect
to v at each (v,s,tg) € Iy X (I\Eyw) X I; and since I; N E,, is finite, we can
then apply Leibniz rule to obtain the following relation:

(%0r5) 2 (€. 5). w(s)
0P t

a(%t,to) = f B, . 10)ds
(%(%5)) 88255 (&(v,8), w(s))
t
+ togi(5(%8)710(8))gi)(%s,to)ds, (A.3.11)

where (v,t,t0) € I, x I?. Differentiating the expression above with respect to
time, we can now see that g—‘,l; (7, -, to) solves an inhomogeneous linear differential

equation with the boundary condition g%(% to,to) = 0. Furthermore, the solu-
tion to this differential equation can be explicitly described using the transition
matrix function ®(v,.,.) generated by % (&(7,.), w(.)) and this finally leads to
the equality (A.3.7), as desired®. O

Making use of Lemma 38 we can finally extend PMP as follows.

Theorem 39. (Second Order Minimum Principle) Let ¥ be a control system
satisfying assumptions (B1)-(B5), and (x,u) an admissible controlled trajectory
which is defined on D = [0,t¢]. Moreover, assume that the control u solves the
GOCP with the final time ty > 0, the initial state xo € X and the two-times

5See for instance Theorem 2.15 in [34] for the description of solutions to inhomogeneous
linear differential equations in terms of transition matrix functions.
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continuously differentiable function V : X — R. In addition, let X\ : D — (R™)*
be the piecewise continuously differentiable function which solves the initial value
problem

A(t) = —A(t)g—i (x(t), u(t)), (A.3.12)
with the boundary condition
Alty) = g—z (z(ty)). (A.3.13)

Furthermore, let p, : D x D — R™, (tg,t) — p,(ts,t) be the variational vector
solving the initial value problem

s t,1) = 92 (0), wlt)) (13, ),

with the boundary condition
st tg) = —f (®(tp), ults)),
and pg ;2 D — R™ the function given by

M () = ps(tp,ty) + f (x(ty), ulty)).

Similarly, let p, : D x Ux D — R", (tq,v,t) = w.(ta,v,t) be the variational
vector solving the initial value problem

e _of
ot (twva t) = a; (w(t)au(t)) ,J’c(taa'uat)7

with the boundary condition

Beta,v,ta) = f(x(ta),v) = f (2(ta), ulta)) -

Finally, let H : X x U x (R")* — R denote the Hamiltonian function given by
(A.2.4) and Ey : U = D the set-valued function given by

Ey(v) ={t € [0,t)|H (x(t), w(t), A(t)) = H(x(t), v, A(t))}. (A.3.14)
Then, the following four conditions hold.

1. First Minimum Condition: For each t € D, we have

H (2(t), u(t), A(t)) = min H (2(t), v, A(1)) (A.3.15)

2. Second Minimum Condition: For each v € U and each t, € Eg(v) we
have

ty 2
0,5 5 (@5), 0l A9 el . 515+

@

T (10, 19) 5 (2(01) Bl 0,8)+
At | 2 (@lta).0) = 257 (@lta).ulta)] £ @lta) o)+
of

Ata) 5 (@(ta), ulta)) F (2(ta), ulte) > 0. (A.3.16)
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3. First Hamiltonian Condition: For each t € D, we have
H (2(t), u(t), A(H) = —\a, (A3.17)
where A\, € R is a constant scalar.
4. Second Hamiltonian Condition: For each tg € D, we have
o 0*H
[ HE 09 55 (), w9) M) 5, 5)ds+
s
0%y
Hif(tb’)@ (x(ty)) s, ¢ (tp)+

(o(t), wty)) + 5L @(ts), ults) | ma (i, )+

of
ox

Alty) [gi

Altg) 7= (®(tp), ultp)) f (@(ts), u(ts))+
A(tf)% (@(ty), ulty)) f(z(ty),ulty)) = 0. (A.3.18)

Proof. Let X, (z,u), D,V, A, pig, pg s, ., H and Ep satisfy the hypotheses of the
theorem. Moreover, let £ C D denote the finite set of times at which u is not
continuous. According to Theorem 37, there exists then a costate A : D — (R™)*
which solves the initial value problem (A.3.12) with the boundary condition

Aty) =5 (aliy),

where v > 0 is a positive scalar. Moreover, according to (A.2.3) and (A.2.5) we
have for each t € D

H (:c(t),u(t), J\(t)) — minH (ac(t), v, :\(t)) = A, (A.3.19)

velU

where \, € {—1,0,1} is a constant scalar. Notice that due to the linearity
of the differential equation in (A.3.12) and the boundary condition (A.3.13),
we have the equality A = %5\ Consequently, by (A.3.19), the linearity of the
Hamiltonian function H in its third argument and the positivity of v, the two
conditions (A.3.15) and (A.3.17) both hold for each ¢ € D if we set A\, = 2= € R.
To conclude the proof, we will next derive, in two steps, the remaining conditions
(A.3.16) and (A.3.18).

1. Proving the Second Minimum Condition

We will first show that the inequality in (A.3.16) must hold for each v € U and
each t, € Ey(v). For this, let v be an arbitrary element of U and ¢, an element
of the set Fy(v). Moreover, assume first that the control w is continuous at ¢,
i.e. t, ¢ E. Following the second step of the proof of Theorem 37, we can then
construct, using (A.2.23), the function &, : I, X (—0w,t; + 0,) — X for which



APPENDIX A. MINIMUM PRINCIPLES 160

the inequality (A.2.48) must hold if (x,w) is an optimally controlled trajectory.
Based on this last inequality, let us introduce the continuously differentiable
function g, : I, — R with

oV 0
wlo)= [ G stn) e (s, 17)ds. (A.3.20)

According to (A.2.32)-(A.2.34), the derivative % : I, — R of this function is
then given by

dg. oV 0¢€,
da (Oé) - 87.’13 (ﬁc(aatf)) %(a7tf)
oV 0¢,
= (& (a,ty)) e ty, a)%(a, a), (A.3.21)
where
9,
=2 (0,0) = £ (€(0,0),0) — F (€l ), () (A.3.22)
Moreover, by construction we have for each t € D
oV
x(t) = E.(ta,t) NA(t) = 2 (Ee(tasty)) Pe(ta,ts,t). (A.3.23)
Now, since t, € Eg(v) it follows from (A.3.14) and (A.3.21)-(A.3.23) that the

derivative ‘ff; is equal to zero at a = t,, i.e. C(iff; (to) = 0. Consequently,

provided that g. is two times differentiable at o = ¢, the condition (A.2.48)
implies the following second-order condition:

d?g.
da?

(ta) > 0. (A.3.24)

In the following, we will make use of the Hamiltonian Condition (A.3.17),
Lemma 38 and properties of transition matrix functions to show that the deriva-
tive in (A.3.24) indeed exists. This will also directly lead to the condition in
(A.3.16).

In order to show that the derivative $9¢ exists at a = to, we need to show

da?
dge _dgc
%(t‘ﬁh}z da(te) oxists. For this, notice first that for each

that the limit limj,_,¢
t € (—0w,ts + 0) we have

oy
ox

Indeed, for ¢t € D this follows directly from the Hamiltonian Condition (A.3.17).
For t € (—0w,0) and t € (tf,ty + dw), on the other hand, it follows from
the fact that w., remains constant on these intervals with we,(f) = u(0) and
Uy (t) = u(ty), respectively. More specifically, taking the time-derivative of the
left-hand side of (A.3.25) it can be seen that this term must remain constant

(Eeltastr)) Peltasty, ) f (Ec(tart) Ues(t)) = =X (A.3.25)



APPENDIX A. MINIMUM PRINCIPLES 161

in these intervals. The provided equality follows then from the fact that the
left-hand side of (A.3.25) must be continuous at ¢t = 0 and t = ¢y.

Let now I.j denote the set (—dy,d,) and introduce the six real-valued
continuous functions K1, K¢ 2, K¢ 3, Kc 4, K. 5 and K. defined on I, with

oV
K.1(h) = P (& (ta + h,ty)) Pe(ta + hity, ta + D),
aV
KC,2(h’) = 87113 (Ec(toutf)) (pc(tavtfvta + h)v
€.
KC73(h) - aa (tOl + h‘7t0¢ + h)7

KCA(h‘) = -f (éc(toé + hvta + h)7v) b
KC,5(h> = f (sc(ta +h,to + h)’uea:(toz + h)) s

and
Kcﬁ(h) = f (Sc(tavta + h)7uem(ta + h)) .

According to (A.3.25), we have then by definition
(Vh e I.p) [Keo(h)Kes(h) = Kq1(0)K.5(0)]. (A.3.26)

Noting that we also have the equality K. 1(0) = K. 2(0) and K, 3(h) = K. 4(h)—
K. 5(h), we obtain the following expression for the desired limit:

= h = ;
= Jim | FetB e O gy )
+ Kc,l(o)w
= :M&m
+ Kei(0) Kea(h) ; Kea(0) | Kor(0) K.5(0) ; Kos(h)
i [Fer K@) e
+ Kc,l(-O) Keulh) - Kea®) Kc,z(h)w
o Reall) = Ko g ). (A.3.27)

h

By the smoothness properties of €., ®., f and V, we can take the limit of each
of the four terms in the last equality as h — 0. More specifically, for the first
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term we have

lim Kc(h) — Ke,1(0)
h—0 h

oe, T 82V
Kes(h) = €. (ta,ty W(a;(tf))<1>c(ta,tf,ta)lr(c,g(o)

Ja
D,
(tou tfyta)Kc,ii(O)

* 9w (®(ty)) o

<I>
o (ta,ty,ta)Kc 3(0)

T 2
= % oty (e(ty)

(Le(a,9)" %Jl (600 5), ea(s)) 265 (ta, o)

(toutf)

. :
(% (0, 9))" 2Lz (60 5), ten (s)) % (ta, 5)
of (2(ta), Uex(ta)) %(ta,ta), (A.3.28)
ox (oo’
where we have used of Lemma 38 when computing the partial derivative of ®.
with respect to its first argument. Similarly, for the other three terms we have

= Alta)

,ILILH KCI(O)KcA(h);KCA(O) gz( (t)) Do (toutfytoz)gi( (ta), v )35 © (f,ta)
S @(t) Peltar b, ta) L (), 0) S (1 t0)
of o€

= Alto) g2 (@(t0) v) Gt L)

+ At )gi( (ta),v) f (x(ta), ez (ta)),  (A.3.29)
, Kog(h) — Kos(h) 0V
tim K () e Bes O OV ) 1, 1 10)
0 0
L (@lt0), s (1) et )
0 0
= () g (@), ea () o (f ),
(A.3.30)
and
Kco(h) — K.2(0 oV 0P,
lim 2 )h 2( )Kc,g)(h):a—m(w(tf))a—to(ta,tf,ta)f(:c(ta),uw(ta)),
0
= () (@t0), e (1)) F (), e (1)
(A.3.31)

Summing now all the four limits (A.3.28)-(A.3.31) and taking into account the
definition of u.,, H and p,, we can see that the condition (A.3.16) is equivalent
o (A.3.24). Moreover, since our choice for ¢, € Ey(v)\F was arbitrary, we can
conclude that (A.3.16) must hold whenever u is continuous at t.
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To show that (A.3.16) also holds when ¢, € E, we can make use of the fact
that w is left-continuous at t,. More specifically, let us introduce the control
strategy Ueq,r, : R = U with

i _ uew(ta) tE(—OO,ta)
Ol T ) wn(t) t >t

which is clearly continuous at .. Noting that the corresponding transition map
wﬁ”’ta will also lead to trajectories of 3, we can use this map, instead of v,,__,
to construct the parameterized family of controlled trajectories .. Following
the steps above, we will then obtain the exactly same condition. Noting finally
that our choice for v € U was arbitrary, this shows the truth of the Second
Minimum Condition.

2. Proving the Second Hamiltonian Condition

To conclude the proof of the theorem, we will show that (A.3.18) holds for
each tg € D. For this, let us first assume that tg3 € (0,¢7)\E. Following
the first and sixth steps of Theorem 37, we can then construct the functions
&, Igx (—0s,t5+05) - Xand és,f : IB — X, with Iz = (ts —Ss,t5+55) C Ig,
which will in turn lead to the optimality condition (A.2.45). Based on this
condition, let us introduce the continuously differentiable function g : Iz — R

with
dés,f
dg

According to (A.2.44), the derivative %% : I 5 — R of this function is given by

B
5:0)= [ G (€0(s) 5 ). (A3

dag -
dgs B oV d58,f
a8 (B) = 9z (fs,f(s)) W(S)
19)%

= % (gs,f(s)) f(ss (57tf +B _tlg) ,Uex(tf +B_tﬁ))

oV
- % (ss,f(s)) (I)s<ﬁ7tf + 5 - tﬁ»ﬁ)f (w(tﬁ)vuex(ﬁ)) ) (A333)
and is equal to zero at tg, see (A.2.46). Consequently, provided that g, is
two times differentiable at this time (A.2.45) implies the following second-order
condition:
d?gs
dp?
We will next show that the derivative in (A.3.34) indeed exists. This will in
turn lead to our desired condition (A.3.18).
Notice that by construction we have, as with £, and ®., for each t € D

(t3) > 0. (A.3.34)

B(t) = (13 ) AND) = 92 (€t 1) Bslts b, 0).
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Consequently, following the arguments used in the first step of the current proof
we get, similar to (A.3.25), the equality

g%; (fs(tﬁ,tf)) (I)C(tﬂvtfvt)f (fc(tg,t)7uew(t)) = —Aas (A-3-35)

which holds for each t € (—d5,t¢+05). Let now I ;, denote the set (—d5, d5) and
introduce the six real-valued continuous functions K, 1, K2, Ks3, Ks 4, Ks5
and K¢ defined on I j, with

0
Ks,l(h) = a% (gs,f(tﬁ + h)) ’

Ks,Q(h) q)s(tﬁ +h tf +h stg + h)f (w(tﬁ)auew(tﬂ + h))7
6,3(h) ( (tﬂ+h,tf+h),uw(tf—|—h)),
s(t tfatﬁ + h)f (£S(t57t5 + h)auem(tﬂ + h))a
(

K4 =&
Ks,S(h) (I)s tﬁvtfatf +h)f (gs(t57tf +h)7u6x(tf +h))7

—
S

and
K, 6(h) = K, 3(h) — Ks2(h).

It follows then from (A.3.35) and our definitions above that we have
K,1(0) K, 4(h) = Ks1(0)Ks 5(h) =
K;51(0) K5 3(0) = K;,1(0) K5 2(0), (A.3.36)

for each h € I; ;. Exploiting the relation above, we can then obtain the following
expression for the desired limit:

lim d (s + 1) = G ts) _ i Kot () Ess(h) = Ks1(0) Ks,6(0)
h—0 h - h1~>InO h
o [ Ksa(h) — Ke1(0)
o flllg%) | h Ks6(h)
+ Ko (0) Keel) - Kos0)
— 1; stl(h) - Ks,l(o)
dm | h Ks6(h)
+ Ko (0) Kes() ;Kes(o) Ko (0) Kr2(h) - KSQ(())]
i Ks l(h) Ks 1(0)
o fILIHB | h Ks6(h)
+ Koo Kot 2 Hesll) e () el KsA(h)]
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By the smoothness properties of §,&; ¢, @5, f and V, we can take the limit of
each of the three terms in the last equality as & — 0. Indeed, for the first term
we have

. s,1 - s,1 d s T 82

p o2 Hea O e gy = ot 1) 7 ()
[f (@(tr), wea(ty)) — Ps(ts, s, ts) f (x(ts), Uea(tp))]
_ dﬁs,fT 0%y dg; ;

L )5 @) (1) (4.3.38)

Similarly, for the ratio in the second term we have
o Kss(h) — Ks5(h) Ds(tp,ty +hity +h)f (Es(ts + h ity + h), uex(ty +h))

dp

li = lim
h—0 h h—0 h
_ Qsltgityity +h)F (§s(ts, bty + h), tex(ty + 1))
h
oo,
= W(tﬁvtfvtf)f (a:(tf)v ueﬁf(tf))
o o
B, 1) 5 (@lt) wen(t) (05, )
d dg,
= (alty) uealt) S ), (A.3.39)

and for the ratio in the third term we have
liy Be2(h) = Ksa(h) _ Ps(tg +hity +htg+h)f(E(ts, ts), Uea(ts + R))
h—0 h T hSo0 h
_ Pslptystp + ) F (€:(p,ts + R)s uea(ts + h))}
h

9]
= (1, 10) T (@15, e (1)) F (@(03), e (1))
0D,
+ g (s trts) £ (2(ts), vea(ts))
0P,
2 Gt 1 t8) F (@(08), o (89))
0
= (bt t) S (@10 e (1)) F (9(00), e (1))

E) T 52 E)
(B (ts,9) TH (€.(ts,9) wea(s) Bt (25, 9)
t
_/f(bs(tﬂatfvs) . ds
t

, :
(%55 (t5,9) " Dl (6,15, 5), wew () %5 (15, 9)

+ % (@(tg), wew(tp)) s(ts, tr.te)f (@(tp), wen(ts)) (A.3.40)

where we have again made use of Lemma 38 when computing the derivative 88%9 .

Noting that K 1(0) is equal to % (x(tr)) = A(ty), we can finally substitute the
three limits (A.3.38)-(A.3.40) into (A.3.37) and this will lead to the desired
condition (A.3.18) for tz € (0,ty)\E if we additionally take account of the
definitions of we,, H, py and p, ;. The fact that the condition also holds for
tg € {0,¢;} U E follows from the fact that the left-hand side of (A.3.18) is, as a
function of ¢g, left continuous at each point of the finite set {0} U E and right
continuous at t;. O




Appendix B

Proofs

In this appendix, we will show how to derive the propositions which are stated
in Chapters 3-6 without proof.

B.1 Mass-Spring Systems

In this part of the appendix, we will prove Prop. 1 by mainly using (3.2.14). Be-
fore starting with the proof, however, we want to reformulate this equation such
that the influence of the TDP on the sign of d> becomes more evident. For
this, we start by making a change of variables in the two integrals on the right-
hand side of (3.2.14) such that integration is done with respect to the torque

in the spring. Since dgTP - is only a function of ¢4, the resulting expression

becomes independent of the value of 75, = 7;(¢s) € (0,7 (¢dmaz)). Taking the
limit of this expression as 7;, — 07 leads then to the desired reformulation:

-1
A

dTy,
T (Gmas) _

= lim
47J(¢maw) Tgs—0F [¢| (TJ ( )a¢ma:c)

7.7(¢ma1) —
/ — “ds ] : (B.1.1)
TJs ‘¢| (TJ (5)7 ¢max)

where 7; ! denotes the continously differentiable inverse of 7;. We will next
show how to prove Prop. 1 using (B.1.1).

Proof of Prop. 1. Let 7; be a TDP which satisfies the hypotheses of the propo-
sition and choose a MSS having this TDP with an arbitrary mass M > 0. In
order to prove the proposition, we need to consider three different cases depend-

ing on the sign of (112;2" .

dT]

Let us first assume that <774 (¢) is equal to zero for each ¢ € (0, ¢maz). By
(A1) — (A3), 75(¢) will then for each ¢ in the interval (—@mmaz, Pmaz) be equal
to 751(¢) = ke with k. = K ;(0) > 0. Substituting this expression for 7; into

166
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(B.1.1) and using (3.1.6), we can conclude that for each ¢maez € (0, Pimaz) We
have

dT, _1
(wﬁ((bmax) _ lim TJ, (T3(¢maz) — 7‘35) 2
47—J(¢maz) VkeM Ty, —0F 7-3 (¢max)
p— ()7
and thus 3 ¢ ((;SWH) = 0 as expected from Table 3.1d.

Looking now at the case where ‘Z(ZQJ (¢) is negative for each ¢ € (0, pmaz),

we can not directly evaluate the limit in (B.1.1) as in the previous case. Never-
theless, in order to prove the proposition we only need to determine the sign of
this limit for ¢maez € (0, Ymaz)- To achieve this, we will next construct for an

arbitrary ¢,,q. in that interval a linear TDP 7 satisfying 7 (¢maz) = 77 (dmaz)-

In addition, we will build the product % dZZ:M (¢pmaz) once for the chosen

MSS and once for a MSS having the same mass as the chosen system but the
linear TDP 7;. The sign of the limit in (B.1.1) will then directly follow from

comparing the resulting two products and using the sign of ‘i;:{ (¢) together
with the fact that the product for the second MSS is equal to zero due to the
linearity of 7.

Let us first fix a ¢maz € (0, Prmaz) and construct the linear TDP 7 as just
described. Moreover, construct a second MSS with the TDP 7; and the mass
M. Using a bar to denote the various variables corresponding to this second

MSS, let us also introduce the function H : (0,7 (¢maz)) — R given by

(ﬁmaw éma:v
H(s)= ——— - — n . (B.1.2)
O = T 5 b)), )

Note that the first term in the right-hand side of (B.1.2) gives for the chosen
MSS the ratio between the maximum velocity and the magnitude of the attained
velocity at the torque value s. Similarly, the second term there gives the same
ratio for the second MSS with the linear TDP. In both terms, the maximum
deflection value is equal to ¢,,., and at this deflection both systems have the
same torque in their springs. Comparing now the aforementioned products
corresponding to these systems shows that H (s) and 3 are related as follows:

(Z.Smaz ddTp (¢mam) ¢mam ddTp (¢maz) ,_, )
47—J(¢maz)
TJ(¢'77L(L:L~)
lim [H(TJS) 7/ H(;)ds]
77, —0+ TJ, . S

dr, 7 (@mas) 47 1 (Gmae) H(s)ds
maz) = — i . s B.1.3
d¢maz (¢ ) TJSILn0+ TJs ¢ma152 ( )

H(TJS) =0

where we have applied L’Hospital’s rule to conclude that lim,, o+ -
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holds®. Moreover, we have also used the fact that dg%}; (¢maz) = 0 holds since
Ty is a linear TDP.

It is important to notice here that the equality in (B.1.3) holds for any 7
which satisfy the assumptions (A1) — (A3). Indeed, in deriving this relation we
have only used (B.1.1) and not considered any of the properties of the derivative

2 . . . . . .
‘;(;é’ . For the current case we are investigating, this derivative is known to be

negative for each ¢ € (0, dmaz). As we next show, this property can be used
together with (B.1.3) to find the sign of d;:iz'

Let us fix a s € (0,77(pmaz)) and focus on the first term of H(s). From
the negativity of % it follows that Ky is strictly decreasing on [0, ¢yaz]. By
making use of this monoticity of K together with (3.1.4) and (3.1.6), we can
see that the first term of H(s) satisfies

_ (Z.Smarc _ \/1 + Epot (TJ_I(S))
‘¢| (751(5)7 (bmax) EPOt(¢mam) _ Epot (le(s))
fs _ gdg
0 Ky(7;'(©)
77 (Pmaz) . &de
Js Ki(75(9)

82
<41+ —
TJ(¢maa:)2 — 52
ngax

10 (7S, dman)

where the last equality follows from Table 3.1b with 77 (¢maz) = 77 (Pmaz). From

the inequality above it follows that the function H(s) and thus the integrand

in (B.1.3) are always negative when s € (0,77(¢maz)).- Consequently, we can
conclude that dg:’;z (Pmax) is positive.
2

Looking finally at the case where dd(;ii (¢) is positive for each ¢ € (0, Ymaz),

2
o5
Omaz € (0, ©maz) the resulting function H takes positive values in its domain of

definition. This will then imply that dgT‘" (dmaz) is negative for each @par €

(0, Ymaz), as desired. -

to show that for each

we can use again (B.1.3) together with the sign of

B.2 Switching Control Strategies

The main aim of this appendix is to provide the proofs of Prop. 2 and 4.
Note that in both propositions switching control strategies satisfying the two
conditions (4.2.6) and (4.2.7) play an important role. For that reason, we want
to first clarify the implications of these two conditions on control strategies as

!Notice that we have lim, o+ H(s) = lim,_ o+ 4L (s) = 0.



APPENDIX B. PROOFS 169

well as on the corresponding trajectories. This is done by the following two
lemmas.

Lemma 40. Let ¢ > 0 be a non-negative integer and us,; : Ds; — U an
admissible switching control with |"ug;| = Opmaz and Dg; = [0,tmin(i +1)].
Moreover, assume that us; has i switchings and that in case i # 0 holds we
have both

tS,k = tmin(k); (B.Q.].)

and
Fugs = (=1)* Cugy;, (B.2.2)
foreach k € {1,...,i}. Then, along the trajectory xs; which corresponds to us ;

and which starts from the origin, i.e. xg,(0) =0, we have for each k € S; 41

Frs, = (—1)F 12k <0u05»>' (B.2.3)

Proof. To prove this lemma, we will use the principle of mathematical induction.

Base Case (i =0) For i =0, the control ug; satisfying the hypotheses of the
lemma will be a constant function defined on [0, ¢, (1)] such that it is either
equal to —émam or 9max. In both cases, along the trajectory « which corresponds
to this control with &g = 0 we will have z1(0) = 0 and &, (0) = sgn(us ; )0mas =
sgn(“us;) ®Pmax leading to the relative energy OF,.; = iM 62, ... Note that by

definition the period T}, related to this energy is given exactly by 2¢,,:,(1), see
(4.2.11)-(4.2.12). Using our results on trajectories of EJ’s in Sec. 4.1, we can

then see that x ¢ will be equal to sgn(“ug ;) (O 29maw)T. Comparing the initial
and terminal values of & with the values provided by (B.2.3), we can finally
conclude that the lemma holds for i = 0.

Inductive Step (i € {0,1,...}) Let i be any non-negative integer and assume
that Lemma 40 holds for this integer. We want to show that the same lemma
holds for i + 1, as well. For this assume now that ug;y1 : Ds;+1 — U is an
admissible switching control satisfying the hypotheses of the lemma. Then, since
i+1 > 0 we know that for each k € {1,...,i 4 1} the two conditions (B.2.1)
and (B.2.2) will hold. Let us now introduce the function @g; : [0, tymin(i)] = U

with
asa(t) = | i) £ E 0tmin(D). (B.2.4)
—'ugit1  t=tmin()

It can then be seen that the control g ; defined above satisfies the hypotheses
of the lemma. Moreover, due to this definition the restriction of both controls
ug,i+1 and @g; to the time interval [0, ¢, (¢)) are equal to each other. From
our induction hypothesis and from the continuity of the states it then follows
that along the trajectory « corresponding to ug ;+1 with o = 0, (B.2.3) holds
for each k£ € S;;1. In order to prove the lemma, we need to now show that
(B.2.3) also holds for k =i + 2.
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Noting that ‘ug;+1 equals to (—1)" %ug,;, we have ‘xy = 0 and ‘i; =
(—1)1(2i+1) “ug; along the trajectory x, see (B.2.3). Consequently, the relative
energy 'E,., which is constant in the time interval [t,,in (i), tmin (i + 1)], equals
to $M(2i + 1)%62,,,. According to (4.2.11)-(4.2.12) the period T}, related to
this energy is now given by 2 (tyin (i + 1) — €min(4)). Using again our results on
trajectories of EJ’s in Sec. 4.1 we can finally conclude that (B.2.3) also holds

for k =i+ 2 as desired.
O

Lemma 41. Let (x,u) be an admissible controlled trajectory such that xo equals
to 0 and u satisfies the two conditions (4.2.6) and (4.2.7). Then u € Sy is a
switching control with the switching number i given by

i = min{k e{1,2,.. Yty < tmm(k)} .y (B.2.5)

Moreover, for each k € S; *u and *x are given by the right-hand sides of (B.2.2)
and (B.2.3) with "ug; = %u, respectively. Finally, if i > 1 holds then for each
ke {1,...,i} the switching time tgy, is given by (B.2.1).

Proof. Let us note here first that the set of admissible controlled trajectories
satisying the hypothesis of the lemma are not empty. This follows directly from
Lemma 40 as for each non-negative integer ¢ the controlled trajectory (xs,;, us,;)
with xg,(0) = 0 satisfies both (4.2.6) and (4.2.7), see Sec. 4.1. It is clear that
these trajectories also satisfy the conclusions of the lemma.

Choose now any admissible controlled trajectory (x, u) satisfying the hypoth-
esis of the lemma. Since u € PCy, condition (4.2.6) together with the initial
condition &y = 0 implies that we can always find a sufficiently small time ¢, o
such that sgn (z1(t)) = sgn (u(0)) # 0 holds for each t € (0, 0] C (0,%7]. More-
over, due to (4.2.7) u(t) will then be equal to u(0) in [0, . o] with [1(0)| = fmas-
Depending on the value of the final time ¢; we look at two different cases.

Case 1 (t; € (0,tmin(1)]) We want to show that for this case u(t) must be
equal to u(0) for each t € [0,tf]. Since u is an element of PCy, it suffices to
show that u(¢) = u(0) holds for each ¢t € [0,¢;). Assume now by contradiction
that there exists at least one ¢ € [0, ) such that u(f) # u(0) and let Sz ; denote
the non-empty set of all such times, i.e.

Sey = {t > Olu(t) # u(0) At < ts}. (B.2.6)

By our discussion above, this set is then bounded below by t. o > 0 and its
infimum exists. Let #; € [t ,tf) denote this infimum. From (4.2.7) and from
the continuity of x, it then follows that z;(#;) must be equal to 0. Moreover,
since £, is the infimum of the set Sz the control u is constant and equals to
u(0) in t € [0,1). This means that the relative energy along (x,u) is equal to
%M&?mz in this time interval. However, since z1(0) = 0 and #1(0) = u(0) # 0

hold i (1) is then the first time z; equals to zero after ¢ = 0 and therefore
we must have t1 > t;,(1), see (4.2.11)-(4.2.12) and Chapter 3. This leads to a
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contradiction since %, is less than ¢ 7 and we conclude that the set Si; must be
empty.

We have thus shown that for any t; € (0, ¢ (1)] w is a switching control
with ¢ = 0 switchings consistent with (B.2.5). Moreover, for k € S; it follows
directly from the initial conditions on the state and controls that the values
for ¥z and Fu are given by the right-hand sides of (B.2.2) and (B.2.3) with

Oug; = Ou, respectively.

Case 2 (tf > tmin(1)) For this case we will first use induction to show that
ts being greater than t,,,, (¢ — 1) implies for any i € {2, ...} that the controlled
trajectory (g, us,;) defined in Lemma 40 and the trajectory (z,u) are equal
to each other if they are restricted to the time interval [0, £yin (i — 1)] and if we
have ug;(0) = u(0).

Let us first set i to 2 and show that ¢ > ¢y, (1) implies that (z(t), u(t)) =
(zs,2(t), us2(t)) holds for each t € [0, ¢, (1)]. Recall that there always exists
a teo > 0, such that the control u is equal to u(0) for all ¢ € [0,¢.9] C D.
The value of t. o must, however, in this case be less than ¢, since otherwise
we would have z1(tmin(1)) = 0 and &1 (tmin(1)) = —u(0) and there would
then exist a time tc1 > tmin(1) such that sgn (z1(¢)) = —sgn (v(0)) holds for
t € (tmin(1),te1] C (tmin(1),ty]. This contradicts the condition (4.2.7).

We have thus just shown that the set Sz, as defined in (B.2.6) is not empty.
Following the same arguments used for the first case, we can also conclude that
t1 > tmin(1) must hold for the infimum of this set. We want to next, show that £;
is equal to ¢4, (1) and that it is an element of Sz ;. For this, note that the control
u(t) must be equal to u(0) for each t € [0, tin(1)) C [0,%y). From the continuity
of the states, it then follows that @ (i, (1)) equals to (0 2u(0))T. Since u
is an admissible control, we know that at ¢t = t:,(1) u(t) € [—émw,émm]
must hold. This means that regardless of the value of the control the sign of
1 (tmin(1)) = u (Emin (1)) — T2 (Emin (1)) will always be equal to —sgn (u(0)), as
we have |u(0)] = Ormac- Consequently, we can find a time tc 1 > tmnin(1) such
that sgn (z1(t)) = —sgn (u(0)) holds for each ¢t € (tmin(1),te1] C (tmin(1), 5]
From condition (4.2.7) and from the continuity properties of elements of PCy it
finally follows that at u (¢,,:,(1)) must be equal to —u(0) so that t,,:,(1) is the
infimum of the set S; ;. We have thus shown that the restriction of u to the time
interval [0, t,,in(1)] is equal to the restriction of ug 2 to the same time-interval if
u(0) = ug,2(0). The restriction of the two trajectories @ and xg; to [0, tmin(1)]
will then also be equal to each other and this proves the desired implication for
the base case with ¢ = 2.

Let us now choose any ¢ € {2,3,...} and assume that t; > t,,n(i — 1)
implies that (x(t),u(t)) = (xs,i(t),us:(t)) holds for each ¢t € [0, ¢min(i — 1)]
if w(0) = ug;(0). We want to now show that if ¢ty > ¢,,;,(¢) holds then
(z(t),u(t)) = (xs,i+1(t), us,i+1(t)) will also hold at each ¢ € [0, £y (7)] pro-
vided u(0) equals to ug ;4+1(0). For this, first note that ¢,,:,(¢) is greater than
tmin(i—1). By the induction hypothesis we have then for each t € [0, t,n (1 —1)]
that ((t), u(t)) is equal to (xs,;(t), us,(t)) and thus also to (zg 41 (), usi+1(t))
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if u(0) = ug,(0) = us,+1(0). By Lemma 40, we have then z1(ts;—1) = 0 and
i1(tsi—1) = (=1)""'u(0)(2¢ — 1) # 0. Introduce now the set Sp, 1 = {t >
tmin(t — 1)|u(t) # u (tmin(i — 1)) At < t;}. Following analogous arguments as
done for the base case, it can be shown that the set S;;_; is not empty and
that its infimum #;_; is equal to t,,4, (i) and thus an element of St,i—1. Finally,
noting that a sign change of u must occur at ¢ = t,,;,,(7), we arrive at the desired
implication. This concludes the inductive step.

Note that as ¢ goes to infinity, the magnitude of g, at t,m, (i + 1) goes
to infinity. Using the fact that the state & defined on D must be bounded
and the relation we have just shown to exist between (x,u) and the controlled
trajectories described by Lemma 40, we can conclude that there must exist a
positive integer [ > 2 such that t§ € (tmin(l—1), tmin(l)] holds. The proof of the
lemma for ¢t > .., (1) follows now from the equalities (B.2.1)-(B.2.3) in Lemma
40 and that the sign of x1(¢) must remain constant in ¢ € (¢t (I —1),¢7]. O

With Lemmas 40-41, Prop. 2 and 4 can easily be proved as we next show.

Proof of Prop. 2. We will again make use of mathematical induction.

Base case (i =0) Let u € Sy be a control with 0 switchings. Moreover, let
be the trajectory corresponding to u with g = 0. By definition, u is a constant
function with u = %u and it follows from (2.1.5) and (4.1.2) together with the
condition on the initial state that the following relation holds for OF,

1 1 .
OB = M 0% < 5Mefm. (B.2.7)
Assume now that both (4.2.6) and (4.2.7) hold for the control v as stated in
the proposition. Then, %u is either equal t0 —0pnaz O Umas. Moreover, we have
£ < AT, maz) With Epo(*hmas) = $MO2,,,, since for larger final times z;

and thus v will change its sign. Regardless of these values we easily see from
(B.2.7) that the inequality (4.2.5) holds with equality in this case.

Inductive step (i € {0,1,...}) Let i be any non-negative integer and assume
that Prop. 2 holds for this integer. We want to show that the same proposition
holds for i + 1, as well. Let X be, as before, a given control system and u € Sy
now a control with ¢ + 1 switchings. Moreover, let & denote the trajectory
corresponding to u with @y = 0. According to (3.1.3) and (4.1.2)-(4.1.4), the
two relative energies iF,. and “T1E,., along this trajectory are then related to
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each other as follows:

i+1Erel = Epot(iJrlxl) +
FErin ity — iy + lim j?l(t)
t—)t;yi_*_l
= "Bog+ lim @ ()M u—u) +
t=tg i1

1. .

5M(”lu — fy)? (B.2.8)
S iErel + 2]\4-0.7naz (Z‘Q.Smax + émaz) s (B29)

where we used the fact that *E,,; remains constant for ¢t € D; together with
the continuity of Ej;p, Epor and @. Clearly, the control u restricted to the time-
interval [0, ts ;+1) is a switching control with ¢ switchings and from our induction

hypothesis it follows that *E,.; < MM 62 for each k € S;. Note that this

also implies that i(ﬁmam < (20 + l)émax. Using these two inequalities in (B.2.9),
we have now
M6?

max’

; 2
g < 2i3)°
2
showing that (4.2.5) holds for each k € S;11.

Assume now that both (4.2.6) and (4.2.7) hold for the control v as stated
in the proposition. From Lemma 40 it follows then that ¢; must be an element
of the interval (¢min(i + 1), tmin(i +2)]. More importantly, according to this
lemma (B.2.2)-(B.2.3) hold for each k € S;y1. Consequently, for each k € S; 41

2 .
FE,e equals to By, (Fiy) = CRED” Arg2 g desired. O

2 mazx

Proof of Prop. 4. Let (x,u) be any admissible controlled trajectory satisfying
the hypothesis of the lemma. Since Eg;(u,ts) equals to Ey,q. (%) it follows from
(4.2.4)-(4.2.5) directly that ‘E,., must be equal to E, 4. (i). We want to first
show that this is only possible if for each k € S; the deflection at tg is equal
to zero and the relative energy at that time equals to E, q:(k). For this we
will make use of the following inequality for the relative energy ‘E,..;:

i—1

! rel — OErel = Z k+1Erel - kErel
k=0
1—1
= Z Ekin(k+lﬂ.§1) — Ekin < hm l‘l(t)>
k=0 t—>t;k+1
PRI I
(4.14) §MZ(k+1u ku)2+
k=0
1—1
MY (Flu—Fu) lim & (t) (B.2.10)
=0 t—>t§1k+1
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= zE"rel S §M O¢3naz + 2M€ma:1:

i—1
i+ Zk‘i’mw] , (B.2.11)

keo

where the last inequality can hold with equality only if ¥z; = 0 holds for each
ke {l,...,i}, see the second summation in (B.2.10). )

Assume now by contradiction that there either exists a k € S; with *z1 # 0
and thus |*i1| < *@pas or with ¥E,o; # Ey e (k). In the first case, k& must
be greater than 0 since we have g = 0. Consequently, (B.2.11) will hold with
inequality. Noting from Prop. 2 that for each k£ € S; the maximum value for
kci)mar is equal to (2k + 1)éma$, we conclude then that *E,., must be less than
E, maz (7). In the second case, i.e. k.o # Er’maz(l_c), k must clearly be less
than i. Assuming that k € S;_1, we know from Prop. 2 that *@,,., must be
less than (2k + 1)f,4, and the inequality (B.2.11) will then again imply that
Erer is less than B, 0. (7).

Based on our discussion so far, we now know that for each k € S; we must
have *z1 = 0 and *E,; = E; maz (k) > 0. Moreover, as already discussed in Sec.
4.2 it follows from (4.2.3)-(4.2.4) that “*'z; = z1(t;) must be equal to zero in
order for Eg;(u,ts) to be equal to E,q,(i). Note now that a MSS with the

k
energy ¥E,.; > 0 and with zero initial deflection requires at least M to

reach a deflection of zero for the second time, see Chapter 3. This proves the
inequality (4.2.11).

Finally, using the exact same arguments just used to prove (4.2.11) we can
show that in case this inequality holds with equality for k£ = 741 it must also hold
with equality for each k£ € S;\{0} . From Lemma 40 and the properties of the
trajectories of EJ’s as discussed in Sec. 4.1 it follows then that in this case both
(4.2.6) and (4.2.7) will hold in ¢ € [0,f] with x1(¢y) = 0 and t§ = t;in(i + 1).
The fact that the three conditions (4.2.6), (4.2.7) and (4.2.9) are sufficient for
the inequality (4.2.11) to hold with equality for each k € {1,...,i + 1} follows
from Lemma, 41. U

B.3 Optimal Control Strategies

B.3.1 Existence

In this part of the appendix, we will first prove Prop. 5 by making use of the
inequality (5.1.2). Then, making use of this proposition we establish the exis-
tence and uniqueness of solutions of (2.1.4) when an initial state is given together
with an admissible control. Finally, using Filippov’s Theorem, PMP and Sturm
Comparison Theorem we prove Prop. 6. In order to simplify our discussions,
we first give the following straightforward lemma clarifying the relation between
the deflection x; and 4, along trajectories of 3.

Lemma 42. Let x be a trajectory of ¥ defined on D and assume that along
this trajectory |x1(t)| and Y¥pmq.(t) are equal to each other in a non-empty open
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time interval D C D. Then, for each t € D we have
x(t) = 0. (B.3.1)

Proof. Let x be an admissible controlled trajectory defined on D and D a time
interval satisfying the hypothesis of the lemma. Notice that, according to (4.2.1)
and (5.1.1) we must then have x2(t) = 0 and thus @2(t) = w = 0 for each
t € D. This shows that x(t) = &(t) = 0 must hold for each ¢t € D. O

With Lemma 42, we can now see that along a trajectory of ¥ with positive
Epg; the inequality (5.1.2) can never hold with equality in a finite time-interval.
Using this property and rewriting (5.1.2) in terms of 1,4, we can then prove
Prop. 5 as follows.

Proof of Prop. 5. Let (x,u) be an admissible controlled trajectory defined on
D = [0,ts]. Depending on the value of 1,4, along (x,u), we will first discuss
two different cases to prove (5.1.3).

Case 1 (Vt € D) [mae(t) # 0] In this case the maximal deflection ¢, is al-
ways positive. Moreover, using (4.2.2) and (5.1.1) we can see that this deflection
is differentiable almost everywhere with its derivative given by

dwmam

7y (21(1))
57 J u(t), (B.3.2)

TJ (djmam (t))

at each ¢ € D where this derivative exists. Note that both the magnitude of u
and x; are bounded by 60,4, and 1,4z, respectively. The relation (5.1.3) follows
then from integrating (B.3.2) and using Lemma 42 together with the continuity
of 9.

(t) =

Case 2 (3t € D) [{;maz(t) = 0] By contradiction, assume that there exists a
t e (Ovtf] such that W)maw(f) - wmaw(oﬂ > emawf and define the set Sp :=
{t € [0,%][thmaz(t) = 0}. Notice that if this set is empty, we can directly apply
our results from the first case above to show that [{mae(t) — Ymaz(0)| must
be less than émamf leading to a contradiction. Assuming therefore additionally
that the set S; is non-empty, let ¢;,5 and t,;, denote its infimum and supre-
mum, respectively. Our initial assumption on ¢, implies that we have either
Umaz () > Ymaz(0) + Omast oF Ymaz(t) < Yimaz(0) = Omaat. We want to next
show that none of these two possibilities can actually occur.

Focusing on the first possibility, it follows from the continuity of ¢4, that
we must have Va0 (fsup) = 0, i.e. Loy € Sy Furthermore, since vz (f) is
pOSitive ,,q.(t) will be positive at each t € (fsup,l,ﬂ and thus also differentiable
almost everywhere in this interval. Consequently, using again our results from
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the first case and in particular (B.3.2) we get

¢max(£sup) - wmax(f)+/fsup mu(s)ds

> wmam (E) - éma;ﬂ( - Esup)
= wmaw (fsup> > wmaa: (0) + émazfsup Z 07

which is a contradiction.
For the second possibility, it follows from the non-negativity of .4, that
t must be less than or equal to min{w’gf;ﬂ“%zim,tf}. Moreover, ¥,q,(0) must be

positive, as ¢ is positive, which implies together with the continuity of 4z
that the infimum ¢;,, s will be an element of (0, %] with ¥mae (ting) = 0. It follows
then that 9,44 (t) is positive in [0,%;,f,) and thus also differentiable almost
everywhere in this interval. Consequently, we have ¥paz(tinf) = VYmaz(0) +

foti"f %u(s)ds > Ymaz (t) which leads again to a contradiction.

Our discussion above proves the relation (5.1.3). To prove the remaining
part of the proposition, notice first that (5.1.3) together with the definitions
(5.1.4)-(5.1.5) imply that ¥maes(t) € [Yip, Yup] holds, with ¥, > ¥ > 0, at
each ¢t € D. With (3.1.2)-(3.1.4) and (4.2.1), this then directly implies (5.1.7)
with the set Sg, given by (5.1.6). Note that the compactness of Sg, follows from
the fact that the function Ej;gs is continuous and radially unbounded. O

When discussing the construction of trajectories corresponding to switching
controls, we have seen in Sec. 4.1 that for each initial state and admissible
switching control, there exists a unique trajectory of ¥ which starts from this
initial state and corresponds to that control. With Prop. 5, we can now show
that this existence and uniqueness result actually holds for any admissible con-
trol. This is illustrated in the following lemma.

Lemma 43. For each initial state £, € R? and control v € PCy, there exists a
unique trajectory x € Traj(X) starting from xo and corresponding to u.

Proof. Let the initial state €p € R?* and the admissible control w : [0,t;] — U
be given. Moreover, define the function f(t,z) : [0,tf] x R? — R? with

- 7 0 -1

f(t,x) = f(x,u(t)). Then, each term in the gradient g—i(t, x) = (KJ(M) 0 >
_ M

is continuous in @ implying that f is locally Lipschitz with respect to its second

argument. Moreover, since u is piecewise continuous the function t — f(¢, y(t))

is also piecewise continuous for each continuous function y : D — R2. Conse-

quently, we can first apply Theorem 4.22 from [34] to conclude that there exists

a unique maximal solution & : I — R? to the initial value problem

z(t) = f(t,2(t)),z(0) = xo, (B.3.3)

where I C [0,tf] is the maximal interval of existence containing the origin.
Moreover, making use of Prop. 5 it can be also shown that this interval must
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be exactly equal to D. Indeed, by contradiction assume that the necessarily
bounded interval I is not equal to D and set w = sup I. Then, for each compact
set S there must exist a scalar o € I with o < w such that x(t) ¢ S for each
t € (0,w), see Theorem 4.25 in [34]. Choose now as a compact set the set Sg,
in (5.1.6) with ¢y, = 0 and ¥y = Omaaty. In addition, fix the scalar o € I and
choose an arbitrary time ¢ € (o,w). Then, the restriction of x to the interval
[0,7] is a trajectory of 3. This, however, leads to a contradiction since we have
x(t) € Sg, by (5.1.7). Consequently, I = [0,t¢] and « is the unique trajectory
of ¥ which starts from xg and corresponds to w. O

Prop. 5 remains also valid, if we define admissible controls as Lebesgue mea-
surable functions taking values in U almost everywhere (a.e.) and if we further
define the corresponding trajectories as absolutely continuous functions satisfy-
ing a.e. the differential equation (2.1.4). Indeed, the proof of the proposition
can also be used for this more general case if the integrals there are regarded
as Lebesgue integrals. Consequently, based on our discussion in Sec. 5.1 we
can apply Filippov’s Theorem to conclude that for each t; > 0 there exists an
optimal measurable control minimizing the cost functional (2.3.1). In the fol-
lowing, we want to show how to use this fact together with PMP to prove Prop.
6. The proof will require the following lemma which is mainly an application of
the Sturm Comparison Theorem and which can be used to find a lower and an
upper bound for the number of times at which optimal controls must necessarily
switch. The lemma will also be of importance in Appendix B.3.3 when we prove
Prop. 15.

Lemma 44. Let t; be a positive scalar, Q : [0,t;] — (0,00) a continuous
function and X : [0,t7] — (R?)* the unique solution to the initial value problem

A(t) = M) (_Q% @ (1)) L A®0) = Ao, (B.3.4)

with Ao € (R?)*\{0}. Moreover, let Qyin and Qpq. denote the minimal and

mazimal values of ), respectively; i.e.

Qmin = min Q(t) /\Qmax = max Q(t) (B35)
te(0,ty] te[0,ty]

Finally, let S;, denote the set
Sis = {t € (0,¢5)[M1(2) = 0}

Then, Sis is finite. Moreover, using i > 0 to denote the number of elements of
Sts and introducing the scalars

Qmint
iy = max{(), { min f} - 2} , (B.3.6)

and

iub _ ’VQmamtf-‘ + 1’ (B37)
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we have
wp <1< lyp- (B.3.8)

Proof. Let 2 and A be two given functions satisfying the hypothesis of the
proposition with t; > 0 and A¢g # 0. Note that being a continuous function
defined on a compact interval, the minimum and maximum values of 2, i.e.
Qin and Q,4., both exist and they will also be positive since 2 only takes
positive values. We will prove the proposition in five steps. Our arguments will
resemble to those used in Chapter 2.2 of [3] where the zeros of functions solving
a homogeneous second-order differential equation are analysed.

1. Zeros of A\ and Ao are isolated.

Let us first note that since the differential equation in (B.3.4) is linear and since
A is non-zero, we have the following relation for A:

(Vt € [0,4/]) [A(t) £ 0]. (B.3.9)

Assume now that there exists a t € [0,¢7] such that \;(f) = 0. Then, by
(B.3.4) A (%) is equal to —Q?()A2(#) and this product is non-zero since Q(f) is
positive by definition and A2(f) # 0 by (B.3.9). Noting that both Q and A
are continuous, this also means that there exists a sufficiently small € > 0 such
that sgn </\1) is constant and non-zero on the interval (t —e,¢ + ¢) N [0,¢f].
Consequently, on this interval A\; will be strictly monotone and thus be equal
to zero only at ¢t = t. This shows that the zeros of \; are all isolated.

Similarly, assume that there exists a ¢ € [0,¢s] such that A\y(f) = 0. Then,
by (B.3.4) and (B.3.9) we have Ay(f) = A;(f) # 0. Since \; is continuous, this
implies as above that £ is an isolated zero of \5. Consequently, we conclude that
the zeros of Ao are also all isolated.

2. The set of zeros of Ao is finite.

We want to show that the set S;, given by
Srg = {t € [O’tf]p‘?(t) = O}’

is finite. For this, let us first take the time-derivative of the second column of
(B.3.4) which according to its first column leads to the following second-order
differential equation for As:

Ao (t) + Q3(t) Ao (t) = 0. (B.3.10)

We will next compare the location of the zeros of Ay with the location of the
zeros of the function Y 1 [0,17] = R, t = Ymaaz(t) = sin(Qaet), which is a
solution to the differential equation

Ymaz (t) + Q?naacymax (t) =0. (B'3'11)
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Using the zeros of ymaqe, let us introduce a partition of the set [0,t7) =

Uhmas I g with

kmaz := Pm‘”ﬂ > 1, (B.3.12)
™

and
i o [QT;ME (] - 1)7 Qr:raz]) ] < kmam
I = .
e [%(J - 1)7tf) Jj= kmax

Fixing now a positive integer j € Sj_ . \{0}, we can see that the restriction of
Ao to the interval 7 1,,,,, can not have more than one zero in that interval. Indeed,
this clearly holds if this restriction is equal to a non-zero multiple of ypazir,,, . -
More specifically, in this case A2|i7,, .. has exactly one zero at t = Zmaz (j — 1)
Similarly, in case Ay is not a non-zero multiple of ¥mae in 7 Ipas, A2 can still not
have more than one zero in 71,,,,. To see this, assume first by contradiction
that there exist two consecutive? zeros 7 and 7 of Ay in 71,4, with ¥ < 7 and
A2(7) = A2(T) = 0. Then, since A; is a non-trivial solution to (B.3.10) and since
Qnaz is the maximum value of Q, it follows from Sturm Comparison Theorem?
that ymq, must have at least one zero in (7,7) C (Q*;”T’“'“ (G-1), Q*jr”j). This is,
however, not possible by the definition of y,,., and leads to a contradiction.

Our discussion above shows that for each j € S, . \{0}, there can exist at
most one zero of Ay in the interval 71,4, Noting that the union of all such
intervals is equal to [0,t¢), we can thus conclude that the number of elements
of S, is bounded above by k4 + 1 and that this set is finite.

3. The set Sy, is finite.

By contradiction, assume that the set S;, is not finite and let t1 denote the
infimum of this set, i.e. #; = infS;,. Since )\; is continuous and since the
zeros of A\; are isolated, #; is then necessarily an element of S;.. Similarly, since
Sis has infinitely many elements we can inductively build a strictly increasing
sequence ({k)k21 in S;, using the following relation:

thy1 = inf{t € Sy |t > 11} (B.3.13)

Fixing now a k > 1, let us note that by the continuity of A\; and by the definition
in (B.3.13), the sign of \; must remain constant and non-zero on (fx,%g1).
Moreover, according to (B.3.4) and (B.3.9) both A;(f) and A;(fx41) will be
non-zero and must therefore diffgr in their signs. This also means that Ay = —%
will have at least one zero in (tg,tg+1), since Ao is continuous. In fact, there
exists exactly one zero of Ay in this interval. This follows directly from the fact
that the sign of }\2 = )\ is always non-zero and constant on ({k,{k+1) so that
A is strictly monotone on [fy, 1 1].

Noting that there exists exactly one zero of Ay in (£, )4 1), our assumption
on the set S;, being infinite implies that the set of zeros of A\, is also infinite.
We have thus reached a contradiction showing that the set S;, must be finite.

2Note that the zeros of Ao are all isolated as shown in the first step.
3See Theorem 2.10 in [3].
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4. Between two consecutive zeros of Ao there exists exactly one zero of Ay

Assume that t; and %, are two consecutive zeros of Ao with ¢; < t5. Then,
the sign of A; = —0Q2\, will remain constant on (t1,%) and A; will be strictly
monotone on [f1,%2]. Moreover, the sign of Ay = A; will be non-zero both at
t; and t5 according to (5.3.1). Consequently, the sign of A2, and thus of A1, at
these two times must be different in order for the sign of Ay to remain constant
on (t1,%2). This implies that A; indeed has exactly one zero in (f1,%2).

5. The number of elements of Si, is bounded by ij, and iyp.

Let ¢ > 0 denote the number of elements of the set S;,, which we know is finite.
Moreover, let i and i, be defined as in (B.3.6) and (B.3.7). We want to first
show that 7 < i,,.

If i € {0,1}, the inequality ¢ < 4,5 clearly holds since we have i,, > 2
according to (B.3.7). Let us now assume that ¢ > 2 and set #; to inf S,.
Furthermore, use (B.3.13), with k € {1,...,i — 1}, to determine all the other
elements of the set S;,. Following the arguments used in the third step, we can
then see that for each k € {1,...,7—1} there exists exactly one zero of Az in the
interior of the interval [fy, 5, 1]. Consequently, there exists exactly i — 1 zeros of
A2 in the interior of the interval [f;,#;] which is a strict subset of (0,). Recall
now that in our discussion in the second step we have shown that the number
of zeros of A, in the interval [0,¢;) is bounded above by kj,qs. This leads then
as desired to the inequality ¢ < kyae + 1 = typ.

In order to show that i > iy, let us note that for t; € (0, 52*] this inequality

? Qomin

is always satisfied as in this case we have i, = 0, see (B.3.6). Assume now
that ¢y > 52— and introduce the function ypin : [0,25] = Rt = Ymin(t) =
sin(Qmint) which solves the differential equation

§(t) + Qny(t) = 0.

Furthermore, introduce the partition of the interval [0,t7) = Ufmj"j Lnin with

Qmint
Epin = {ﬂ >3, (B.3.14)

s

and

ir . o.— [Qw%(j - 1)7 97;”7.]) Jj< Emin )
min [LQmin (j — 1), 87) G = kmin

Fixing now, as in the second step, the integer j € Si,... \{0, kmin} we can see
that the restriction of Ao to the interval 71,,;, must have at least one zero in
that interval. Indeed, this clearly holds if this restriction is equal to a non-zero
multiple of Ypminlis,,, . More specifically, in this case Ao|i; . has exactly one
zero at t = QT" ( —1). Similarly, in case Ag is not a non-zero multiple of ¥in
in 71,in, Ao must still have at least one zero in 71,,;,. This follows from Sturm
Comparison Theorem, since A2 is a non-trivial solution to (B.3.10) and since

Qin 18 the minimum value of . Based on our discussion, we can thus now see




APPENDIX B. PROOFS 181

that the zeros of A\ in [O,tf] must be greater than or equal to k,,;, — 1 which
under our assumption on ty is equal to i, + 1, see (B.3.6). Since there is a zero
of \1 between every two consecutive zeros of Ay, as we have shown in the fourth
step, this then leads to the inequality ¢ > i;;, as desired. O

Using Lemma 44, we can now prove Prop. 6 as follows.

Proof of Prop. 6. Let t; > 0 be an arbitrary scalar, D = [0,¢7] and v : D — U
be the measurable control which minimizes the cost functional in (2.3.1) and
whose existence is ensured by Filippov’s Theorem. Moreover, let & be the
absolutely continuous function defined on D such that xg is the origin and the
pair (x,u) satisfies a.e. the differential equation (2.1.4). Since w is an optimal
control, it follows then from PMP that Prop. 7 still remains valid for (z, u), if we
relax the second and third conditions, i.e. (5.2.2) and (5.2.4), such that they hold
a.e. in D. Let A denote the corresponding continuously differentiable costate
from Prop. 7 which satisfies the differential equation (5.2.1). By introducing

the continuous function Q : D — (0,00),t — Q(t) = W and noting

further that A(ty) # 0 holds due to (5.2.5), we can then see that A will solve
the initial value problem in (B.3.4) with Ag # 0. Consequently, we can apply
the results from Lemma 44.

According to Lemma 44, the set of zeros of A\; in D, which we will denote
by FE, is finite. This means that the relation in (5.2.6) will uniquely determine
a control upc : D — U in the space PCy. Furthermore, from the properties of
the set E and the condition (5.2.2) it follows that u(t) and upc(t) are equal to
each other a.e. in D. Therefore, (z,upc) is an admissible controlled trajectory
of ¥ and upc is a solution to the LVMP as defined in Sec. 2.3. O

B.3.2 Basic Properties
Minimum Principle

Proof of Prop. 8. Let A = (x,u, A, \,) be an extremal lift satisfying the hy-
pothesis of the lemma. We want to first show that the first costate A\; can never
be equal to zero in a finite time interval. To show this, we will prove that the
time-derivative of \; is non-zero whenever A\ equals to zero.

Assume that tg is an element of D such that A\i(ts) = 0. According to
(5.2.1), A(ts) is then given by the product —Wkg(ts). Due to our
assumption on the SDP K ; the first term of this product is always negative.
Moreover, Az(ts) must be non-zero since otherwise we would have A = 0 due to
the linearity of the costate dynamics in (5.2.1) which in turn would contradict
the transversality condition (5.2.5) and thus the fact that A is an extremal lift.
Being a product of a negative and a non-zero term, we can finally conclude that
A1(ts) # 0 holds.

Based on our discussion above, it follows now from (5.2.6) that u is a switch-
ing control and satisfies (5.2.8) with A1(0) # 0 in case A\;(0) = 0. Moreover, if
ts € (0,ty) is a switching time of u it follows from that same relation that A, (¢s)
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must be equal to zero. Conversely, if A;(tg) is equal to zero it follows from the
inequality A;(tg) # 0 that u will have a switching at tg. The equality (5.2.9)
follows then from (5.2.3)-(5.2.4) if we additionally use the relation between A;
and Az in (5.2.1) together with the fact that K is always positive.

In order to prove the last statement of the proposition, i.e. (5.2.10), let us
first assume that ¢ is an arbitrary non-negative integer. Then, by evaluating the
Hamiltonian function in (5.2.4) at the final time ¢y = tg;4; and using (5.2.5)
we can arrive at the following relation for *1z;:

: M
(") = —Aa 20, (B.3.15)

This shows that the sign of “*1z; is equal to A\, € {0, 1} and also proves (5.2.10)
for the case when ¢ = 0. Let us now assume that ¢ > 0. If A, = 0, it follows
directly from (5.2.9) and (B.3.15) that (5.2.10) is true. We will conclude the
proof of the proposition by using the principle of mathematical induction to
show that (5.2.10) also holds when A, = 1. ) )

Let k € S;11\{0} and assume that we have sgn(*z;) = (—1)**+i*1. Moreover,
by contradiction assume that sgn(*~'z;) # 0 has the same sign as sgn(¥z;).
Evaluating (5.2.9) once at tg ;_; and once at t gz, we will then have sgn(F1A;) =
sgn(k}\l) # 0. This, however, leads to a contradiction since A\; never changes
its sign in (tgz_;,tgz) and is always non-zero. Consequently, sgn(*~1z1)
(—1)**% and since we also have (B.3.15) it follows from induction that (5.2.10
is true when A\, = 1.

o=

Costates with v € Sy In this part of the appendix, we will show how to
derive Prop. 9 which establishes a link between the solutions to the ordinary
differential equation (5.2.1) and the solutions to the partial differential equation
(5.2.12). For this, we will first state two lemmas which clarify the properties
of solutions of (5.2.12). The mathematical expressions provided there are also
made use of in Sec. 5.2.2 when constructing the trajectories of the costates, see
Table 5.1.

Lemma 45. Let 1(x, ¢mae) : D1, — R be a solution to the partial differential
equation (5.2.12). Then, we have

191(2, Gma)
¢ma1:

e T.](¢mam) a(bmam

(2, Pmaz) |j7(Q Pmaz) +

(z, ¢max)] , (B.3.16)

for each (z, pmaz) € D1,

Proof. Assume that 7 is a solution to (5.2._12). Fixing an arbitrary J)mm S
(0,00), we can then define a function 7 : (—¢maz, Pmaz) — R such that 7(z) =
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0(Z, maz) holds at each 2 € (—Pmazs Pmaz). According to (5.2.12), this func-
tion satisfies the following first-order linear differential equation:

di _

£ +a(x)ii — b(z) = 0, (B.3.17)

where @ : (—émaz, J)max) —SRandb: (—(i_)maz, Q_Smaa:) — R are given by

_ 7 (@)
a(z) = —L (B.3.18)
2fw¢m” 77(s)ds
and
ba) = —— e (B.3.19)

(181 Gas))

respectively. It is important to note here that @ and b are both continuous
functions. Consequently, we can solve (B.3.17) to express 7 in terms of these
two functions together with the value of 77 at © = 0, i.e. 7(0). Indeed, making
use of the integrating factor fi : (—®mazs Pmaz) — (0,00) with

fi(x) = elo as)ds, (B.3.20)

we can show that 7 is given by [8]:

_0(0) + J3 fls)B(s)ds
l)

ii(x) : (B.3.21)

where = € (—@maz, Pmaz)- ) )
Based on our discussion so far, we now know that for each = € (~dmaz, Pmaz),

fj(z) and thus n(z, pmas) are given by the expression on the right-hand side of
(B.3.21). In order to prove the lemma, we next show that this expression is
exactly equal to the expression on the right-hand side of (B.3.16) if ¢yq. is set
tO (b'maz-

~ Let us introduce the function 7 : (=@maz; Pmaz) — (0,00) with g(z) =
ffm‘” 77(¢)d¢. Using this function, we can apply a change of variables when
evaluating the integral in (B.3.20) which in turn leads to a simplified expression
for the integrating factor i as follows:

a(r) = T S ds _ - I &
g(o) = 7Mégnaw
g(l‘) 2 fz¢maz TJ(¢)d¢
T (B.3.22)
91(z; Pmaz)

where = € (—¢maz, Pmaz) and émaw := |3(0, pmaz). If we now substitute this
new expression for f into (B.3.21) and use (B.3.18)-(B.3.19), we can find a
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new expression for 77 as well. It is easily seen that this expression is, as desired,
exactly equal to the expression on the right-hand side of (B.3.16) if ¢hae = Pmax
holds in the latter expression. Noting that our choice for ¢,,,, was arbitrary,
we can finally conclude from the definition of 7 that (B.3.16) holds for each
(z7¢max) S DT¢~ O

Having shown how to describe the solution of (5.2.12) in terms of physical
quantities, we discuss in the following lemma the behaviour of this solution at
the boundaries of its domain.

Lemma 46. Let 1 : D1, — R be a solution of (5.2.12) and ¢rae an arbi-
trary positive scalar. Moreover, let ¢, a boundary point of the interval Dy =
(—bmaz, Pmaz)- Then, the following equalities hold*:

Mn.
li maz) = — ———r B.3.23
Dﬁl;g%n(w@ ) Sgn(qbb)”(%m) ( )
and
9 (2, dmac) dT,
lim Gz rmar/ e p X
quaﬂ—ﬂi)b m 4 d¢mam (¢ma1)
0, dmax
- sgn(d)b)%. (B.3.24)
TJ(¢77LQ1')

Proof. Let 1, $maz, Dy and ¢y all satisfy the hypotheses of the lemma. Since
n is a solution to (5.2.12), we know by Lemma 45 that n(x, ¢pq.) satisfies the
equality in (B.3.16) for each x € Dy. Taking the limit of both sides of this
equality as Dy > ¢ — ¢, we then get

Mn. ) .
li max) — 7, 1 s Pmax )
Dﬁggmn(x,cb ) P F— Dﬁlﬂ{g%{lqﬁ(lxl Pmaz)

sgn(z) 018 <|x|,¢mam>}

a¢maw
(210 Mnosgn(@) . 7(bmas)
TJ(Qbmaw) T Pmaz TJ(I)
Mn.
= —sgu(dp) ———
( )TJ(¢7rLax)
where we have made use of the symmetry properties of |¢| and azT"’ to-
gether with the fact that in (3.2.14) both ¢, and ¢, can take arbitrary val-
ues as long as they are positive and satisfy Enrss(@s, 0s) = Epot(Pmaz) and

bs = |®|(ds, Pmaz). This proves the equality (B.3.23).

4Given a nonempty subset E C R and a function g : £ — R, limpgss—y g(x) denotes the
limit of this function as = goes to y in the set E, see [62].
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In order to prove the equality (B.3.24), let us first note that n is a solution

o

to (5.2.12) so that the following relation holds for the ratio M at each
[91(z,dmaz)

xr € D¢2

7 (x)
@(I,(b ) n(x7¢ma:z) J]\/[ +7’]c
B— — :—[ ; } (B.3.25)
|<2'5|($,¢mam) ‘¢|($7¢max)

If we now substitute the expression in (B.3.16) for 7 into (B.3.25) and make

use of the symmetry properties of \¢|, azi and 77, we can rewrite (B.3.25) as
follows: "

S Omaz) _ 7(leDn K
oz \" c ®
- : (2], Pmaz)+
m TJ((bmaT) 8¢mam
TJ((.z)mam) :| _ SgH(I)M. (B326)
Ts([z]) - |9[(|], pmaz) Mipee

Finally, taking the limit of (B.3.26) as Dy > * — ¢ and using (3.2.14), we can
see that (B.3.24) holds as desired. O

With Lemmas 45-46, we can now finally prove Prop. 9.

Proof of Prop. 9. Let @, u,i, A\, 1,1, k, vy and Dy = ({1.0,%k, ) C Dy all satisfy
the hypotheses of the proposition and assume further that there exists a £ € Dy,
such that both A2(f) = 1 (21(£), *dmaz) and H (z(t),u(t), A(f)) = —n. hold.
From our results in Chapter 4, we know first of all that #; will be continuous
in Dy. Moreover, according to (5.2.13) the sign of #; will remain constant and
non-zero in that time interval. Consequently, the restriction of the first state on
Dy, ie. r1|p,, will be a C!'—diffeomorphism with a well-defined interse 1’1|Z—)i.

Finally, since 4 is non-zero the system’s relative energy in Dy and thus ¥¢,,q.
will be positive.

In order to prove the proposition, we want to first show that the Hamiltonian
H (z(t), u(t), A(t)) is constant in the time interval Dy. For this, let us introduce
the function h(t) : Dy — R with

hio(t) = H (z(2), "u, A(t)) = X(t) F(2(t), Fu). (B.3.27)
Taking the time-derivative of this function, it follows then from (2.1.4),(5.2.1)
and (5.2.3) that we have for each ¢t € Dy,

hi(t) = g% (z(t), "u, A(t)) £ (2(t), ")

o 2B o, 0) AT (al0). A0)
of

= )\(t)a—m (z(t), "u) f ((t),"u)

— T (z(t), ") o (z(t), Fu) AT (1)
= 0. (B.3.28)
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According to (B.3.28), we can now see that the Hamiltonian is indeed constant
on Dy. Consequently, our assumption on the value of the Hamiltonian at t
implies that the following equality holds at each ¢ € Dy:

M)+ 20 O g, (B.3.20)

In the following, we will make use of this last equality to show that A and 7 are
related to each other as given by (5.2.15).

Without loss of generality, let us assume that x; is strictly increasing® on
Dy, i.e. 21(t) > 0 for each t € Dj,. We can then define a function 7 : £, — R
with Ey, := (21(tk,0), z1(tk,r)) and

n(x) = Az (x1|;-,; (m)) . (B.3.30)

From the inverse function theorem and the chain rule, it follows that this func-
tion is differentiable with its derivative e : B, — R given by

ExlD’“ 3 (B.3.31)
1|5

Notice that using the equalities t = x4 |gk (z) and &1 (t) = |@|(2,* Pmaz) together
with (B.3.30)-(B.3.31), (B.3.29) can now be rewritten such that it becomes an
equality depending only on x. More specifically, the resulting expression will be
a differential equation for the function 77 which is given by

(Ié)l(x,’“ ¢max)) jn A; )17 + 1. =0, (B.3.32)

with x € Ek.

It is important to remark here that the condition (5.2.13) ensures that Ej
is a subset of (—* ¢4z, *dmaz). Consequently, the coefficient of % in (B.3.32)
remains non-zero. Being a first-order linear differential equation with coefficients
that are continuous in z, 7j(x) is therefore the unique solution of (B.3.32) which
attains the value \y(f) at 21 () € Ey, see (B.3.30). Comparing now (5.2.12) and
(B.3.32), we can see that 17(z,"d,qz) is also uniquely determined by the value
of \a2(f) and equals to 7j(z) for each 2 € Ej. The equality in (5.2.15) follows
finally from this relation between 7 and 7, (B.3.30)-(B.3.32) and the equality
1(t) = vg - [](21 (1), maa)- .

To prove the remaining part of the proposition, let ¢, be a boundary point
of Dy. Tt follows then from the continuity of A that A(f;) is given by the
limit of the right-hand side of (5.2.15) as t goes to #, in the set Dy. More-
over, if limp, 5, 7, %1(tp) is non-zero it follows from the continuity proper-
ties of x1,41,7; and n that this limit can be directly obtained by evaluating

5The proof for the other case, where 1 is strictly decreasing, can be done using the exact
same arguments, if we define Ej as the interval (xl(tk 1), @1 (tk,0) ) and note that @1(t) is

given this time by the negative of \¢| (a:1 (;Smm) for each t € Dy,.
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(5.2.15) at t = t,. Let us now assume that limp 5, .7 #1(fy) = 0 and let
T1p € {—*bmaz, *dmaz} denote the deflection value attained at #,. Making use

of (B.3.30)-(B.3.31) together with 2 = x1|p, (t) and t = x1|;—;k (x), the desired
limit can then be rewritten in this case as follows:

(gZ(xl (t)v k(bmax)j:l (t)> !
77(371(t)a k(bmam)

T
v 22 omaz)
. o__ 1T
= lim 191G F omaa)

Eksz*}ilb n(l'v ¢maz)

lim  A(t) _ lim

Dpot—t, Dy ot—ty,

Finally, it follows from Lemma 46 that the last limit above is equal to (5.2.16).
O

Switching and Terminal State Conditions

Lemma 47. Let A = (x,u, A\, \,) be an extremal lift for the LVMP and u a
control with i > 0 switchings. Moreover, let k € S; such that *E,.; > 0 and
J € Sm,- Then, for each t € [tsk;,tsk;,,] we have

>\aC ;k max) k i
Ai(t) = lim 2O, Fmaz) . 1o4] 7(2)
Dy \{0} 3221 (1) kg, i M Fmaz

where Dk¢ - (*kgbmaza k¢maz)-

Proof. Let A,i,k,*E,.; and j all satisfy the hypotheses of the lemma. Further-
more, let t € [tsk,;,tsk,,,]. Since kE, is positive, #é,,q4 is also positive and we
have |21 (t)| < *¢maz. Moreover, the sign of 4; in Dy, is non-zero and constant
so that we can always find a non-empty open time interval ij C Dy, such that
t is a boundary point of Dy, and the following relation holds:

(Vi € Dy,) [|21(D)] < *dmas A 21() # 0] .

The set {x1(t)|t € Dy, } C Drg will then also be a non-empty open interval with
x1(t) being one of its boundary points. Using now (5.2.15) in Prop. 9 together
with the expression for the function n in Table 5.1a we can see that the following
equality will hold for each £ € Dk].:

, (B.3.33)

M) = [)\aC' (961(5),:¢maz) k_'kno,j] Tz (ml(t)) '
U¢,jM Dmac

Notice that if on the right-hand side of (B.3.34) we set z1(f) to x, the re-
sulting expression becomes a continuous function of x which is defined on the
set Diy\{0}. Furthermore, for each boundary point ¢; of this set, i.e. for
& € {~*bmaz,0,*Pmax}, the limit of the function as = approaches ¢; exists
and is finiteS. Clearly, since \; is a continuous function A;(¢) will be equal to

(B.3.34)

6This directly follows from the definition of the function C and its properties, see (5.2.23),
(5.2.27) and (5.2.30).
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the limit limp, o7, A1(f). It follows then from the equality in (B.3.34), the
J

properties of its right-hand side just discussed and the continuity of zi, that
this limit is equal to the limit on the right-hand side of (B.3.33) as desired. O

Proof of Prop. 10. Let A,i, k,*E,¢, j,t,¢ and Sy, all satisfy the hypotheses of
the proposition. We will only prove the part of the proposition which gives a
sufficient and necessary condition for tsk; to be a switching time and which
further provides the deflection value attained at such a time. The remaining
part of the proposition can be proved very similarly and is omitted for brevity”.

Let us first assume that {s, is the k’th switching time. By definition, we
have then k > 0,21(ts,) = Fz1 and sgn(¢ — F21) = Fuvg ;. We will next
show that *z; is an element of Sg. First of all, notice that *21] < Fdmae
always holds. Furthermore, by Prop. 8 the first costate A is zero at tgy;-
Consequently, applying Lemma 47 and using the fact that lim Dy, \{0}32—s %(S)

is positive for each s € [—kqﬁmam, kd)mam], we can arrive at the following relation:

Fno,; — AaC(2, * dpmas)] © = 0. (B.3.35)

lim
D, \{0}Dz—Fa,

With (B.3.35) we can finally conclude that ¥z, € S,.

Conversely, assume that £ > 0 and that there exists a ¢, € Sy, such that
sgn(op—dp) = kv¢7j. By contradiction, assume further that tg s, is not a switch-
ing time. Then, A;(f) must be non-zero for each t € [tsx;,t] and x1(ts,) must
be equal to —kvd,,j kgbmaz. Moreover, since we have |¢p| < k(bmam and since
xl‘[ts,kj,t] is a strictly monotone and continuous function, there must exist a
time t, € [tsx,;,t) such that x(t;) = ¢p. This, however, implies according to
(5.2.24) and Lemma 47 that A;(t;) must be equal to zero and thus leads to a
contradiction.

To conclude the proof, we need to now show that (5.2.25) holds if tg 4, is
a switching time. For this, let us first note that A\; is always non-zero in Dy;.
Consequently, following the arguments we used to derive (B.3.35) we obtain the
following inequality which holds at each ¢ € Dy,

lim k105 — AaC(2, * bz )| z # 0. B.3.36
D \{0}32 a1 (D) 0. ( )] ( )

Assuming from now on that ts s, is a switching time, recall that in this case kay
is an element of Sy. If now kvqb_j = —1, the non-empty open interval (¢,*z;)
will be a subset of the image of x1|ij. According to (5.2.24) and (B.3.36),
Fr1 € Sy, will then be the minimum of the set {¢, € Sy, | > ¢}. Similarly,
if *v4 ; = 1 the non-empty open interval (*x1,¢) will be a subset of the image
of x1|ij, and Fz; will be the maximum of {¢, € Sg,|¢p» < ¢}. This proves
(5.2.25) as desired. O

"Notice that the first costate is equal to zero both at the switching times and at the terminal
time, see (5.2.5) and Prop. 8.
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B.3.3 Extremals for the LVMP

In this part of the appendix, we will first state three straight-forward lemmas
and one corollary which are all related to extremal lifts for the LVMP. The
lemmas follow mainly from the linearity of the costate dynamics, the fact that
the system’s admissible trajectories can always be constrained to a compact set
and are uniquely determined by their control and initial state, see Prop. 5 and
Lemma 43, and finally from the properties of the zeros of the first costate, see
Prop. 44. They have been already used in our discussions in Sec. 5.3 and will
also be used when proving Prop. 13.

Lemma 48. Let A = (z,u, A\, \,) be a four-tuple such that (x,u) is an ad-
missible controlled trajectory defined on D = [0,t¢], X : D — (R*)* is the
unique solution to (5.2.1) with the initial condition Ao € (R?)*\{0} and \, =
—Xof (xo,u(0)). Moreover, assume that the Minimum Condition (5.2.2) is sat-
isfied. Then, u is a switching control. Moreover, for each scalar ks the pair
(&,1) = (sgn(ks)e,sgn(ks)u) is an admissible controlled trajectory, X = K A
solves the differential equation (5.2.1) with Xo = KsAo and for each t € D we
have

H(&(t), a(t), A(t)) = min H(&(t), v, A1) = —[rs| Aa-

Lemma 49. Let o € R%, Ay € (R?)*\{0} be given and introduce the following
three variables:

_amaa: Sgn(/\l()) A10 7é 0 ’

Pmaxr = Ep_olt (Ekzn (UO - x20) + Epot (Ilﬂ)) )

o {émaa: Sgn()‘QO) Ao =10
Vo =

and
ST K;(9) .

min

[Ov‘Pma-’E] M

Then, there exzists a unique four-tuple A = (x,u, A\, \o) such that the following
three conditions hold:

(1) (z,u) is an admissible controlled trajectory which starts from xy and is
defined on D = [0,ty].

(2) XA: D — (R?)* solves (5.2.1), starts from Xo, satisfies \1(t) # O for each
t € (0,t5) and terminates at Ay = (0 Azf) € (R?)*\{0}.

(8) For each t € D, we have

H(w(t), u(t), A(t)) = minH(z(t), v, A1) = Aof (o, v0).

Moreover, we have the following upper bound on the terminal time ty:
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Lemma 50. For each ty > 0,zy € R? and Ao € (R?)*\{0}, there exists a
unique four-tuple A = (x,u, A\, \,) for which the following three conditions hold:

(1) (xz,u) is an admissible controlled trajectory which starts from xoy and is
defined on D = [0, ty].

(2) X: D — (R?)* solves (5.2.1) and starts from Ao.
(8) For each t € D, we have

H(a(1), u(t), A(t)) = min H(a(t), v, A1) = ~Aa,
with
>\a = —>\0f (:130711,0) .

Similarly, for each i > 0, zo € R? and Ao € (R?)*\{0} there exists a unique
four-tuple A = (x,u, X\, \,) for which the three conditions from above hold with
the additional conditions that u switches i times and A1 (t5) = 0.

Corollary 51. For each i > 0 and Ao € (R?)*\{0}, for which the conditions
(5.8.1)-(5.3.2) and (5.3.4)-(5.8.5) are satisfied, there exists a unique extremal
lift A = (z,u, A\, \,) for the LVMP such that A starts from Ao and the control
u switches i times.

Having clarified the properties of extremal lifts regarding their dependence
on the initial costate, the final time and the switching number of their controls,
we will next, provide the proofs of Prop. 11-15.

Abnormal Extremal Lifts

Proof of Prop. 11. Let (x,u) satisfy the hypothesis of the proposition and as-
sume first that (x, ) is an abnormal extremal. Then, there exists an abnormal
extremal lift A = (x,u, A\, \;) containing this extremal with A\jp = A\, = 0 and
A20 # 0, see (5.3.1)-(5.3.2). Moreover, by Prop. 8 the control u is a switching
control with ¢ > 0 switchings and according to (5.3.3) the initial control is given
by %u = (—=1)*0,naz. Our discussion in Sec. 5.3.1 already shows that u will solve
the EMP if i = 0. We want to next show that u will also solve the EMP if ¢ > 0.
For this, we will use complete induction to show that for each positive integer i

and k € S, the following relations always hold:

FBrey > 0N zy =g =0, (B.3.37)

k k

70,0 V4,0 k
- — (=1)F, B.3.38
A0 sgn(Az) - ( )
tS,k-‘rl - tmzn(k + 1)7 (B339)
and
u(t)

(Vt € (tsk,ts k1)) | —— =sgu(z1(t)) #0] . (B.3.40)

max
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Let ¢ > 0 be fixed. Since the truth of (B.3.37)-(B.3.40) for k£ = 0 has already
been established in the beginning of Sec. 5.3.1, it is sufficient to show the
inductive step. Let & € S;_; and assume that (B.3.37)-(B.3.40) hold for each
k € Sp. According to Table 5.2a, (5.2.4), (5.2.17) and (5.2.20) we then have
myp = 1, kv¢,1 = fkvqw and knOJ = fkno,o. Moreover, by applying Prop. 9
and using (B.3.37)-(B.3.38) we can find the following equality for the costate A
at tg i1 ) )

FRX = (=11 (0 Ag). (B.3.41)
In addition, if we use & to denote $|[0,t,,”-"(1}+1)] and u to denote the continuous
extension of ulj, i)y to the interval [0, trnin(k + 1)], the pair (&,a) will
be an admissible controlled trajectory which according to (B.3.39) will satisfy

the hypothesis of Lemma 40. Therefore, using (B.2.3) we can also arrive at the
following condition for the state x at tg .1 = timin(k + 1)

emaz

Rl _ (_1)E+i2(E+ 1) ( 0 ) . (B.3.42)

According to (5.3.3), this last equality implies that we have

lm 21 (¢) = (=1)"F 12k + 1)bmas, (B.3.43)
tﬁt;EH
and ~ ) o B )
Ftlg = kLG = (1) (2K + 3)0,m00.- (B.3.44)

Since k > 0, both terms above are non-zero and share the same sign. Conse-

quently, we have ~
1R >0, (B.3.45)

and

k+

1 k+1 _
Vg0 Moo _ E+1

- — (—1)F+1, B.3.46

Sgn(/\go) )\20 ( ) ( )

where we have also used (B.3.38), Prop. 9 and (B.3.41)-(B.3.42). Since **1E,,
is positive, we can now use, as above, Table 5.2a, (5.2.4), (5.2.17) and (5.2.20)
to conclude that we have mj_, = 1,5 v, = —Ftly, o Frlpg = kg,
and

k22 =0. (B.3.47)

Moreover, according to (B.3.39) and (B.3.44) we can additionally arrive at the
following equality: -
ts sz = tmin(k +2). (B.3.48)

Note that (B.3.42) and (B.3.45)-(B.3.48) show that the relations (B.3.37)-(B.3.39)
all hold for k = k+ 1. Furthermore, if we evaluate (5.2.22) in Dy, and D,

using the derived values for **1ng o, ¥+1ng 1, ¥ 10, o and ¥+1v, | we can see that
(B.3.40) also holds for k = k1 since both u and the sign of ; remains constant

in (tgg11,tsf+1)- This finally proves the inductive step. Since our choice for i
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was arbitrary, we can now see that (x,u) will always satisfy the three conditions
(4.2.6), (4.2.7) and (4.2.9) regardless of the value of ¢ > 0. According to Prop.
3-4 this means that the control u always solves the EMP.

Conversely, assume now that the control v in the given admissible controlled
trajectory (x,w) is a switching control with ¢ > 0 switchings, solves the EMP and
satisfies Ou = (—1)i9mam. By Prop. 3-4 and Lemma 40, we then know that both
(B.2.1) and (B.2.3) hold® for each k € S;11\{0}. Consequently, for each k € S;
we have my = 1 and Fvy 1 = —Fvyo = (—1)"TF+L Let A : D — (R?)* denote
now a solution of (5.2.1) such that Ajp = 0, Ayg € R and sgn(Ay) = (—1)".
Since the relative energy along @« is always positive, we can make use of Prop. 9
to construct this costate A as discussed in Sec. 5.2.2. In particular, noting that
k21 is equal to zero for each k € S; we can use Prop. 9, (5.2.17), (5.2.20) and
the principle of mathematical induction to show that we have®

(Vk € S;) [Fne = 0,%n0.1 = —Fnoo = (—1)F T Ag] (B.3.49)

and
(Vk € Siz1) [FA = (=1)%(0, A20)] - (B.3.50)

With (B.3.49)-(B.3.50) we can now easily see that for the 4-tuple A = (@, u, X, \y)
with A\, = 0 all the three conditions (5.2.1), (5.2.4) and (5.2.5) are satis-
fied. Moreover, the condition (5.2.2) is satisfied as well. To see this, let k
be an arbitrary element of S; and let j € S,,, . Substituting the values for
Fvg.; and Frg ; into the ratio on the left hand side of (5.2.22) and noting that
sgn(z1(t)) = "vg,0 holds for each ¢t € Dy, we can then see that this expres-

sion is equal to (—1)"*t* = - That is the equality in (5.2.22) holds at each
t € Dy,. Since our choice for k and j was arbitrary, it follows then from the
continuity properties of the control v and from Prop. 9 that v indeed minimizes
the Hamiltonian function in (5.2.2) at each t € D. Therefore, we can conclude
that A is an abnormal extremal lift and that (x,u) is an abnormal extremal.
Finally, to conclude the proof of the proposition we need to show that for an
abnormal extremal (z,u) both (5.3.8) and (5.3.9) hold for each k € S;+1\{0}.
This directly follows from (B.3.39), which we have shown to hold for each k& € S;,

and from Lemma 40. O

Proof of Prop. 12. Let A = (x,u, A, \;) be an abnormal extremal such that w is
a control with 4 > 0 switchings. It follows then from our discussion in Sec. 5.3.1
and from the proof of Prop. 11, that for each k € S; we will have ¥E,..; > 0,
mi =1, Fno1 = —Fnoo = (=1)* g0 and Fug 1 = —Fug o = (—1)F sgn(Az)
regardless of the value of i. If we now choose an arbitrary k € S; and t € Dy,
t will either be an element of Dy, U Dj, or a boundary point of this union.
Consequently, using Prop. 9 and noting that we have kno’o-kv(z,’o = k770,1 -kvqs,l =
[A20] we can conclude that A(t) will be given by
| A20] .
A(t) = " <_n<ﬁ(t>> xl(t)) . (B.3.51)
max
Swith Oug,,- = (71)i0.maz and kws’i = kg,
9This step is omitted for brevity.
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This proves the proposition, since our choice for k € S; and t € Dy, was arbitrary.
O

Parameterization of Extremals When proving Prop. 13, we will make use
of the following lemma which for a constant control strategy shows that state
and costate trajectories always depend continuously on their initial conditions.
In addition, the lemma implies that the zeros of the first costate depend also
continuously on these conditions when the initial costate is non-trivial.

Lemma 52. Let D = [0,ty] and I, C R be two given non-degenerate intervals
and v € U a constant scalar. Moreover, let °¢ : I, — R? and °n : I, — (R?)* be
two continuous functions and assume that °¢ is bounded. Finally, consider the
following four conditions for the functions € : I, x D — R? and n : I, x D —
(R?)*:

(1) For each o € 1, &(v,.) is the unique solution to the initial value problem

%(a,t) = f (&l 1),0), &(,0) = "¢(). (B.3.52)

(2) For each o € I, n(c,.) is the unique solution to the initial value problem

on 0

Tt =non) (_sbon o). 700 ="ne). (B35

(8) There exists a scalar k € {—1,1} and an open set U, C I, such that for
each o € U, we have

“n(a) #0, (B.3.54)
and either o
sgn Pm(e) _ (B.3.55)
K
or

sgn (Ong(a))

sgn (“ni(a)) =0 A - =-1 (B.3.56)
In addition, for each o € U, the set
Sra(0) = {m (e, )]t € (0,5)}, (B.3.57)

1§ non-empty.

(4) The functions °¢ and °n are both continuously differentiable and the TDP
Ty 18 two-times continuously differentiable.

Then, if the conditions (1)-(2) are satisfied & and n are both continuous func-
tions. In addition, if the conditions (1)-(3) are satisfied the function tg : U, —
(0, tf) with

ts(a) = inf S¢, (), (B.3.58)
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is continuous and we have

(va € ) | Bl ts(@) 1} . (B.3.59)

K

Finally, if the conditions (1), (2) and (4) are satisfied, then & and n are continu-
ously differentiable and if all the four conditions are satisfied tg is a continuously
differentiable function.

Proof. Let D, I,,v,%,%n satisfy the hypothesis of the proposition and define
the function f : R? — R? with f(z) = f(x,v) = (v — T %) . From our
discussions in Sec. 3.1 and 4.1, we know that for each g € R? there exists a
unique maximal solution x : R — R? to the initial value problem

x(t) = f (z(t)), =(0) = o € R (B.3.60)

Consequently, we can define a flow £, : R x R? — R? with the condition
that for each &, € R? the function €p(.,&,) gives the solution of (B.3.60) with
xo = §,- Notice that due to our assumption on the TDP 7; being continuously
differentiable, the function f is also continuously differentiable. Consequently,
both f and & are locally Lipschitz which implies that & is continuous [34].

Assume first that the conditions (1)-(2) both hold. Based on the definitions
of ¢ and &, we have then &(a,t) = €p(t,°(a)) for each o € I, and t € D.
Since both °¢ and & are continuous, this shows that £ is continuous. Moreover,
notice that the boundedness of °¢ and D imply by Prop. 5 that & is bounded.
To show the continuity of 7, let us fix an arbitrary pair (a,t) € I, X D and
assume that ((o,tr)),>; is a sequence in I, x D which converges to (a,t).
Moreover, for each k € {1,2,...} introduce the following initial value problem
for the continuously differentiable function Ay, : D — (R?)*:

Ae(t) = Ae()) Ar(), Ae(0) = n(ax) € (R?)", (B.3.61)

where Ay : D — R2%2 is the matrix-valued function given by

0 1
Ag(t) = <_K<é<at>> 0) : (B.3.62)
M

Comparing the two problems (B.3.53) and (B.3.61), one can see that for each
k> 1landt € D wehave Ag(t) = n(ayg,t). In order to prove that 7 is continuous
at (&,1), we need to therefore show that the sequence (Ay(tx)),~, converges to
1(&,t). This can be done by exploiting the continuous parameter dependence
of linear systems of differential equations as discussed in [38]. More specifically,
the first theorem there can be applied for the introduced sequence of initial
value problems in (B.3.61) since &, K; and % are all continuous and since £ is
bounded. This leads us then to the fact that the sequence (A (t)),~, converges
to n(ag,t). Using also the fact that solutions to (B.3.61) are always continuous
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in D we then get'0

lim [ A (tr) —n(a, 2] Hm | Ag(te) — A ()|
k—o0 k—o0

<

+ lim [[Ag(?) — n(a, )|
k—o0

= lm [Ae(t) =@ D] = 0. (B.3.63)
—00

Equation (B.3.63) shows now that n is continuous at the pair (@,?) € I, x D.

Since our choice for this pair was arbitrary, we conclude that n is continuous.
Let us now assume that the conditions (7)-(3) hold with the scalar xk €

{-1,1} and the sets U, and S,,. Following the proof of Prop. 44 with Q :

D — (0,00),t — 4/ w, Ao = "n(a) and A = n(a,.), it can then be seen
that for each a € U, the zeros of n(«,.) will be isolated. Consequently, the
conditions (7)-(8) ensure that the function tg : Uy, — (0,t¢) is well-defined by
the relation (B.3.58). We want to show that this function is also continuous and
that (B.3.59) holds. For this, choose an arbitrary & € U, and notice first that
the following relation holds by the definition of ¢g:

m (@, ts(@)) =0. (B.3.64)

In the following, we will use the implicit function theorem!! in [29] together with
the continuity of 7 and (B.3.53) to construct an open neighborhood V C U,
of & and an open neighborhood Vi) C D of g := tg(a) such that for all & € V}
the equality

m (d7 t) =0,

has a unique solution ¢ in V) given by the continuous function 75 : V* — VJ
with
7s(a) =1,
and
(@) = ts(@).

Without loss of generality, assume that x = 1. Then, either % (&) is posi-
tive or "n; (@) is equal to zero and the time-derivative %(d, t) is positive, see
(B.3.53) and (B.3.55)-(B.3.56). Moreover, since tg is the first time 7;(@,.) is
equal to zero in (0,t¢), n1(@,.) is positive on (0,%¢g). Finally, since n(a,0) # 0
it follows from (B.3.53) that (B.3.59) holds, as desired, and that the derivative

9m (4,1g) is negative. Notice that this derivative is continuous. Therefore, we

ot

can find a sufficiently small eg > 0 such that %(a,t) takes negative values
for each pair (a,t) € (@ —eg,a +¢€g5) X (s — €5,t5 +€5) C Uy x D. For
each a € (@ — eg,@ + €g) the function 71 (e, .) will then be strictly decreasing
on (ts —es,ts + €5). This means that we have found an open neighborhood
Vi = (@ —eg,a+eg) of @ and an open neighborhood V5 = (ts — eg,t5 + €5)
of tg such that for each a € V; the function 7; (e, .) is locally one-to-one. This

10We use ||.||” to denote the norm in R?, see for instance [62].
13ee also [27].
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shows according to Theorem 2.1 in [29] the existence of the two sets V}° and V3
and the continuous function 7g as described above.

Using the function 7g it is now possible to show that tg is continuous at
@. To see this more clearly, we will construct an open neighborhood V5 C V¥
of & such that tg|y, = 7g|v,. Notice first that we can use, similar to our
discussion above, the continuity of n, (B.3.53) and (B.3.55)-(B.3.56) to find a
sufficiently small £y such that 7, is positive on Iy = (@ — g, @ + &¢) x (0,&0] C
U, x D with the inequality £9 < 7s(«) holding for each o € (& — &g, @ + &p).
Similarly, since 7g(&) = tg(@) is the first time 71 (&, .) equals to zero in (0,ty) it
follows from the continuity and non-triviality of n(a,.) that 7 (&, 7s(@)) must
be positive, see (B.3.53). Using the continuity of K, &, n and 75, we can then
find a sufficiently small € such that the continuous derivative % is negative on
Iy = {(o,t) e VP x Do — a| < ey, t € [rs(a) — ef,75(a)] }. Finally, assume
without loss of generality that we have €9 4+ ¢y < ¢ty and build an open cover of
the compact set {(&,t) € Uy x D[t € [eo,ty —ey]} by first choosing for each pair
(@,1) of this set an open neighborhood I = (a@—¢&,a+¢&) x (f—&,{+&) C Uy x D,
with € > 0, such that 7; is non-zero in this neighborhood and then building the
union of the resulting neighborhoods. By extracting a finite subcover and taking
the two sets Iy and Iy into account, we can then find a sufficiently small scalar
€ > 0 such that for each o € V5 = (@ — ¢, @ + €) the following relation holds:

(Vt € (0, 7s(a))) [m (e, t) > 0]. (B.3.65)

According to (B.3.65), we now see that for each a € V the function 7, («, .) will
be equal to zero at 7g(c) for the first time in (0,¢). In other words, we have
shown that tg|y, is equal to 7g|y,. Since 7g is continuous, this also means that
ts will be continuous at @. Finally, since our choice for @ € U, was arbitrary
we conclude that tg is a continuous function.

Assume now that conditions (1)-(2) and (4) are satisfied and consider the
following initial value problem for the continuously differentiable function = :
R — R*:

A(t) = U~ (1), 7(0) =, € RY, (B.3.66)

where 1 : R* — R* is the function which at each = € R* satisfies

vV — X9
Ts(®1)
l((lf) = 77(21) _MKJ(ffl)x (B367)
M M 4
x3

The existence and uniqueness of a solution v : R — R* to this problem follows
from the uniqueness of solutions to the IVP’s in (B.3.60)-(B.3.61). Moreover,
based on this property we can again define a flow v : R x R* with v,(.,7,)
giving the solution to (B.3.66). As in this case 7; is two-times continuously dif-
ferentiable, the function ! in (B.3.67) is continuously differentiable and therefore
also the flow v is continuously differentiable [52]. Finally, according to the def-
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initions of &, n and « we have for each (a,t) € I, x D

) ()

and since both °¢ and °n are continuously differentiable this shows, as desired,
that & and 7 are also continuously differentiable.

Finally, assume that the conditions (1)-(4) all hold so that & and n are
continuously differentiable. We want to show that tg is also continuously differ-
entiable. Recall that conditions (1)-(3) already ensure that ¢g is a continuous
function. Moreover, by its definition, the positiveness of K; and the nontrivi-
ality of n we have the following two conditions:

0
M (e ts(@) = 0A S (ats(a)) #0,
which hold for each a € Uy, see (B.3.53) and (B.3.58). Since 7 is continuously
differentiable, we can then apply the classical implicit function theorem [62] to
conclude that tg is indeed continuously differentiable with its derivative %f :

U, — R given by

dis MG (ots(a)
da "7 K (@ants(@) mfasts@)

Using Lemma 52, we can now prove Prop. 13 as follows.

Proof of Prop. 13. Let us first note that for any extremal lift A = (@, u, A, Ag)
for the LVMP, the pair (—a, —u) will be an admissible controlled trajectory and
the four-tuple A = (—a, —u, —X, \,) will satisfy all the first three conditions in
Prop. 7, see Lemma 48. Moreover, using ¢ > 0 to denote the switching number
of the control u there will exist a unique extremal lift A = (Z,a, A, \,) for the
LVMP such that % is a switching control with i + 1 switchings and Ag = — Mo,
see Corollary 51. Finally, if ¢; denotes the terminal time of u it follows from
Lemma 50 that & = —xljg,] and A = —|[o4,] must hold. Consequently, the
terminal time of A and the i + 1’th switching time of A will be equal to each
other. Furthermore, the states reached at these times, i.e. x(t;) and Z(ts), will
only differ in their signs. Noting that our choice for A was arbitrary and that
the function )\8” is symmetric with respect to the origin, this implies by the
definition of the functions *t¢** : D, — R and *z&* : D, — R? in Sec. 5.3.3
that the equalities (5.3.17) and (5.3.18) hold for each k& € {1,2,...} and « € D,.

We want to next make use of mathematical induction to show that for each
k € {1,2,...} the functions *t&** and *x%"' are continuous and satisfy the
equalities (5.3.19)-(5.3.22).
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Base Case (k = 1) In view of Lemma 52, introduce the variables I, =
(0,27],v = Opnae and the continuous and bounded functions % : I, — (R?)*
and °¢ : I, — R? given by

“n(y) = , (B.3.69)
0 1)

and
%(y) =0,

respectively. Moreover, let D = [0,¢;] be a non-degenerate interval and £ :
I, xD — R?and n: I, x D — R? functions defined by the first two conditions
of Lemma 52, see (B.3.52) and (B.3.53). Finally, assume that for each a € I,, the
set Siq () in (B.3.57) is non-empty which according to Lemma 49 can always
be ensured if ¢; is chosen sufficiently large. With the introduced variables and
functions we can now directly apply Lemma 52. More specifically, since the first
three conditions of this lemma are satisfied with k = —1 and U, = (0, 27), we
can conclude that £,7m and tg are continuous where tg : Uy, — (0,%5) is the
function given by (B.3.58).

Let us now choose an arbitrary parameter @ € (0,1) C D, and introduce
the scalar 4 € (0, 7) with

3 = atan2 (—5¢H(@), —A{GH (@) - (B.3.70)

Moreover, define the functions & : D — R?,%: D — U and X : D — (R?)*, with
D = [0,ts(%)], such that for each ¢t € D we have

2(t) = £(7.1) Aa(t) = v A A(E) = n(3.1). (B3.71)

Then, by setting A, = vsin¥ > 0 we can see that the four tuple A = (z, @, A, \,)
satisfies the hypothesis of Lemma 48. Consequently, choosing ks = as a

[

> vsiny
scaling factor we can see that A = (Z,u, kA, 1) will be an extremal lift for
the LVMP with Ag = ksXo = A;* (@), see (B.3.69)-(B.3.71). This implies the
following equalities for '¢¢"* and 'z &

gt a) = ts(9), (B.3.72)
and
teg (@) = Z(ts (7))
= &(ts(7),7)- (B.3.73)

Noting that our choice for & € (0, 1) was arbitrary, that the relation in (B.3.70)
defines a continuous mapping from (0, 1) to (0,7), and finally that both tg and
€ are continuous, the two equalities (B.3.72) and (B.3.73) show that t&** and
lz&* are continuous on (0,1). More generally, since 't is an even function

and 'z%"" an odd function, these two functions are both continuous on D,,.
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Taking the limit of the mapping described by (B.3.70) as & goes to 1~ one
can see that 4 converges to 7 and thus Ag to (0 1), see (B.3.69). Noting that
this initial costate leads to an abnormal extremal it follows then from (B.3.72)-
(B.3.73) and Prop. 11 that the two equalities in (5.3.20) and (5.3.22) indeed
hold for k = 1. The fact that the two equalities in (5.3.19) and (5.3.21) also
hold for £ = 1, can be seen from Table 5.3 if we set there i to zero and take
the limit of the provided expressions as Aoy goes to minus infinity, see also the
function A§*" in Table 5.5a and 'z&* in (5.3.11).

Inductive Step (k € {1,2,...}) Let us assume that *¢&** and *z&* are both
continuous and that the equalities in (5.3.19)-(5.3.22) all hold for k¥ = k. Similar
to our discussion in the base case, we will make use of Lemma 52. For this,
introduce the variables I, = (—1,2),v = (=1)*,,4, and the continuous and
bounded!? functions 7 : I, — (R?)* and °¢ : I, — R? given by

na)=(0 (-1, (B.3.74)
and
lim,_,o+ Fx& () € (—1,0]
%(a) = Fxgt(a) a€(0,1) (B.3.75)
lim, ;- "z& () a€[1,2)
respectively. Moreover, let D = [0,t¢] be a non-degenerate interval and & :

I, xD — R?and n: I, x D — R? functions defined by the first two conditions
of Lemma 52. Finally, assume that ¢ is sufficiently large so that for each a € I,
the set S;.(a) in (B.3.57) is non-empty. It follows then from Lemma 52, with
k= (=1)*"Land U, = I,, that &, and tg are continuous with ts : U, — (0,¢)
being the function defined by (B.3.58).

Let us now choose an arbitrary scalar @ € (0,1) and define the functions
2:D—-R%a:D—Uand XA: D — (R?)*, with D = [0,t5(@)], such that for
each t € D we have

z(t) = &(a,t) Au(t) =v AXE) = n(a,t). (B.3.76)

_ T kxe:ct a
Then, by setting'® A\, = (—1)’““% > 0 we can see that the four tuple
A = (&, 1, A\, \,) satisfies the hypothesis of Lemma 48. Consequently, choosing
M

Ks = W as a scaling factor and using additionally Lemma 50 by
TJ ¢ (a

setting i, xo and Ao once to k, 0 and A5 (&) and once to 0, Z(0), ks A(0) we get
the following relations for #*1¢¢*¢ and *+1gget:

E+1t§xt(a) _ Etgmt(o—[) +tg(a), (B.3.77)
and
eyt (@) = z(ts(@)
= &(ats(@)). (B.3.78)

12Notice that the boundedness of 0¢ follows from Prop. 3.
I3Notice that the positivity of A, follows from Prop. 8 and in particular (5.2.10).
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Noting that our choice for @ € (0,1) was arbitrary, the two equalities (B.3.77)
and (B.3.78) show, similar to the base case, the continuity of the functions
E+1text and 15+1meact_

S s

Finally, since the functions ¢ts and & are continuous on I, and on I, x D,
respectively, it follows from (B.3.77)-(B.3.78) that the limits of **1¢¢*! and
FHlgert asa — 01 and as a — 17 exist. Moreover, these limits can be computed
by analysing the pair (Z, A) defined by (B.3.76) if we set & once to 0 and once to
1. Noting the relation between abnormal extremal lifts and the initial conditions
determined by (B.3.74)-(B.3.75), it follows then from Prop. 11 that all the
equalities in (5.3.19)-(5.3.22) indeed hold for k = k + 1.

In order to conclude the proof of the proposition, we need to show that for
each k € {1,2,...} the functions ktfg"” and k$gxt are not, only continuous but
also continuously differentiable in case the TDP 7; is two-times continuously
differentiable. This can be done, as above, using Lemma 52 and mathematical
induction if we additionally note that AS*" is continuously differentiable, see
(5.3.11) and Table 5.5a. The proof is very similar and omitted for brevity. [

We conclude this part of the appendix with the proof of Prop. 15.

Proof of Prop. 15. Let ty > 0,3°"" € (0,00) and assume that t; = t§"*(3"")
holds. Moreover, let wyin and wpqe,: be given by (5.3.30) and (5.3.31), re-
spectively. Finally, let a®®® = (—1)%(8** — i) with i = [3°**] — 1. Then, by
definition there exists an extremal lift A = (&, u, A, A,) for the LVMP, defined on
D = [0,t], such that u has i switchings and Ao = A5** (a**). Now, according to
Prop. 8 the first costate A; in this lift has exactly ¢ zeros in the interval (0,¢¢).

Consequently, applying Lemma 44 with  : D — (0,00),t — Q(t) = \/w,
we can see that the variables Q,;, and Q4. in (B.3.5) provide a lower and
an upper bound for the integer ¢, see (B.3.6)-(B.3.8). The desired relation
(5.3.34) for 3¢** follows then directly from these bounds by noting that we have
Winin < Qmin and wWpaze = Qmae due to Prop. 5.

Let us now assume that 3%°* solves the NPP described by (5.3.24)-(5.3.26)
so that (x,u) is an optimal extremal and za(ty) = z§**(8°**). Then, as we
have already discussed in Sec. 5.1 it follows from Prop. 5 that the maximal

energy attained by the extremal (x,u) will be bounded above by Epot(0mazts)-

: : ex ex 2FEpot Ormant
Consequently, in accordance with (5.3.35) we have 25t (3%*) < 4/ %

Finally, since u solves the LVMP z$%(3°“*) must be greater than or equal to
the terminal link velocity of each admissible controlled trajectory (Z,u) which
is defined on D if &y = 0. Noting that the control u : D — U with
t t
0 tn’uﬂn(l) < "tmwjj(l)—‘ o 1
ﬂ(t) = )

. ¢ t
Omasx tmin (1) > lrtmivf(l)—‘ -1

always leads to a positive velocity Z2(ty) > 0, see (2.1.4) and (5.3.11), we can
conclude that z$% (5**) is positive. O
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B.3.4 Resonance Energies

In this part of the appendix, we will first provide the proof of Prop. 16 and
then the proofs of Prop. 17-18. For the first proof, we will require the following
lemma which clarifies for control systems with linear TDP’s the relation between
applied control strategies and the resulting inner products of state and costate
trauectorles14

Lemma 53. Let 75 be a linear TDP and (x,u) an admissible controlled trajec-
tory which is defined on D = [0,ts]. Moreover, let X : D — (R?)* be a continu-
ously differentiable function solving the differential equation (5.2.1). Then, for
each t € D we have

A(D)2(E) — Aowo = /O A (s)u(s)ds, (B.3.79)

Proof. Let 7, (x,u) and A satisfy the hypothesis of the lemma and let E denote

the set of times at which u is discontinuous. Then, taking the time-derivative

of the product Az and noting that the terms gf and g—i are constant we obtain

the following equality which holds at each s € D\ E:

d(Ax) B
25 = Alskels) + Als)(s)

= s)a—f (w(s), u(s)) ()
of

N <a () 2(s) + 52 ((s), u(s))u(s)>
Yu(s). (B.3.80)

The relation (B.3.79) follows now directly from integrating (B.3.80) from 0 to
t. O

With Lemma 53, we can now prove Prop. 16 as follows.

Proof of Prop. 16. Let 7; be a linear TDP and A = (x,u, A, \;) an extremal
lift for the LVMP which is defined on D = [0,t;]. Similarly, assume that (&, a)
is an admissible controlled trajectory, defined on D = [0,7;] C D, such that
Zo = 0. Let us first note that due to the linearity of 7; the differential equation
(5.2.1) does not depend on the state trajectory. Consequently, we can apply
Lemma 53 by choosing (Z,w) as the admissible controlled trajectory and A|p
as the solution to (5.2.1). According to (B.3.79) this leads us to the following
relations for the product A(tf)&(ty):

AEp)a(iy) / M (s)a(s

v

7/0 IA1(8)|0mazds. (B.3.81)

143ee also the discussion on the reachable sets of linear systems in [30].



APPENDIX B. PROOFS 202

Since our choice for (Z,u) was arbitrary, (B.3.81) shows that the product
A(ty)x ¢ is bounded below for any trajectory & of ¥ which starts from the origin
and terminates at ¢ € (0,¢]. Notice now that the pair (x|p, @) is an admissible
controlled trajectory containing such a trajectory if the control @ is given by
the relation (5.4.1). Moreover, by definition the control @ and A; always take
opposite signs whenever A; is non-zero, see (5.2.6). As the magnitude of @ is
always equal to émm, it follows then from (B.3.81) that 4 indeed minimizes the
cost functional J in (5.4.2). The fact that @ is the unique control follows from
the fact that A\; never remains at zero in a finite time-interval, see the proof of
Prop. 8.

Noting that our choice for t; € (0,t] was arbitrary, let us set now ¢y to ty.
Then, u = % is the unique control minimizing the cost functional J = — 1, see
(5.2.5). Consequently, A is optimal and moreover ¢ belongs to the boundary of
the time-t y-reachable set Reachy ;,(0). Since the origin is an equilibrium point
of X, this also means that'® 2y € OReachs <¢,(0). We conclude the proof of the
proposition by showing that « is a time-optimal trajectory. In view of Lemma
7.1.1 in [53] this will also show that (z,u) is a boundary trajectory.

By contradiction, assume that « is not a time-optimal trajectory so that
there exists an admissible controlled trajectory (&,u), as defined above, such
that £; < t; and &y = xy. Moreover, let XA : D — (R?)* be a solution to the
differential equation (5.2.1) such that Xf = Ay. Applying then Lemma 53 and
making use of the fact that the linear differential equation described by (5.2.1)
is time-independent, we can obtain the following relations:

ty

AEp)a(ty) = /O A (s)u(s)ds

b
= / A (s+ty —tp)u(s)ds
0

. ty _
> _emam/ |)‘1(8+tf _tf)|ds
0
. ty
= 797}7,(1%/ |)‘1(5)|d5
ty—ts
= Taf > i‘gf, (B382)

where for the last inequality we have again made use of the properties of the
control u as well as the fact that A\; never remains at zero in a finite time-
interval. Clearly, (B.3.82) contradicts the condition Z; = x; and we conclude
that = is a time-optimal trajectory. O

Proof of Prop. 17. Let (x,u) be an optimally controlled trajectory, defined on
D = [0,ty], so that u minimizes the cost functional J in (2.3.1). As we have
discussed in the proof of Prop. 16 above, the terminal state x; is then an
element of OReachs <;,(0). Consequently, in order to prove the proposition it
is sufficient to show that @ is a time-optimal trajectory, see Lemma 7.1.1 in [53].

15Notice that we have Reachy <;,(0) = Ute[oytf]Reachg,t(O).
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By contradiction assume that x is not time-optimal. There exists then a
trajectory & € Traj(X) with &y = xy and ¢ty = T(z) < t;. Noting that the
origin is an equilibrium point of ¥, this implies that for each y € Traj(X2) we
have

T(y) € [ty,ts] = yor < 2y (B.3.83)

Without loss of generality, assume now that A = (Z,u, A, \,) is an optimal
extremal for the LVMP. Then, according to (B.3.83) the terminal link velocity
Zo¢ must be equal to x2¢. Depending on the value of Ao, We consider next two
different cases.

Case 1 (\, = 1) In this case, we know from Prop. 8 and in particular (5.2.10)
that Z1; > 0 must hold. According to (2.1.3), this means that the acceleration
Tog at the final time will also be positive. Consequently, by keeping the control
constant after ¢y we can always construct an admissible controlled trajectory
(z,@) with a final time t; € (f,t7] and with a link velocity Z25 > Toy = @ay.
This contradicts (B.3.83).

Case 2 (\, = 0) In this case, we can find a positive integer i > 1 such
that £f = t,in (i), see Prop. 11. Let us choose a final time ¢y € (Z;,], with
ty < tmin(i+1), and let (Z, @) denote the optimal extremal for the LVMP defined
on D = [0,%;]. According to (B.3.83), we have then #2; = xo;. Moreover,
by Prop. 11 the pair (&,4) is a normal extremal due to our choice for t~f.
Consequently, based on our discussion for the first case above a;cgf is positive
and this leads again to a contradiction with (B.3.83).

Having shown the existence of a contradiction for each possibility for A\,, we
can conclude that x is a time-optimal trajectory and that (x,u) is a boundary
trajectory. O

To prove Prop. 18, i.e. the last proposition of Sec. 5.4, we will make use of
the following two lemmas.

Lemma 54. Let n > 2 be a positive integer and A : R — R™ "™ a matriz-
valued function with continuous entries. Moreover, for each k € S,\{0} let
k¢ R — R™ be a continuously differentiable function such that we have

FE(t) = A(t) *Fe(t), (B.3.84)

for each t € R. Similarly, let n : R — (R™)*be a continuously differentiable
function which satisfies

0(t) = ~n(HA(), (B.3.85)
for each t € R. Finally, let F : R — R™*"™ be the matriz-valued function given
by

F(t) = ("¢t) ... "€().
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Then, for each t € R we have
t
det (F()) = det (F(0)) + / ir(A(s)) det (F(s)) ds, (B.3.86)
0

and
n(t)F(t) = n(0)F(0). (B.3.87)

Proof. Let n, A,*¢, with k € S,\{0}, n and F satisfy the hypothesis of the
proposition. Moreover, let us introduce the functions a; : R — R, ¢ — a1(t) =
det (F(t)) and az : R — (R")*,t — az(t) = n(t)F(t). Focusing first on the
function a;, we can use Jacobi’s formula to take its time-derivative which leads
to

%(3) = tr (adj (F(s)) df(s))
GBI 1 (adj (F(s)) A(s)F(s))
= tr(F(s)adj(F(s)) A(s))

= det (F(s))tr (A(s)) = a1(s)tr (A(s)),

where s € R. This shows that (B.3.86) holds.

Similarly, the truth of (B.3.87) can be shown by taking the time-derivative
of as. Indeed, by making use of (B.3.84) and (B.3.85) we get the following
equality which holds at each t € R and shows that as is constant:

%@) = AFt)+nt)F(t)

— nOADF() (~1+1)
= 0.
O

Lemma 55. Let i > 1 be a positive integer and I, € D, be an open interval.
Moreover, assume that for each k € S;\{0} the functions *t&** and *x&* are
continuously differentiable on I,. Finally, let Dgeat denote the set'®

Dgest 1= {(a,t) |a € Inest Nt € Uj—g (Ft5 (@), FT1E () }

Then, ¢t is continuously differentiable on Dmezt. Moreover, for each (a,t) €
Tnet x (0,1 ¢4 (V) we have

awemt
Jda

(a,t) = 0. (B.3.88)

16 Notice that ﬁmezt contains in this lemma, in contrary to Prop. 18, also the elements of
the open set I eer X (0,157 (a)).
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In addition, if i > 2 we have for each k € S;\{0} and o € I,

im —w(a t) = lim a—w(a t)
ikt ()t O sktgrt(a)- D
29 axd Ztg” (Oz) 1
m @
t e (0) : (B.3.89)
Finally, for each (o, t) € Dgext we have
6 ext
ot (o0 ) XX (a,t) = 0. B.3.90
A t

Oa

Proof. Let k € S; and introduce the set ¥ Dyeer = I, x (Ft5(a), *115 ().
Notice that for any extremal lift corresponding to the pair (a, %), with « € I,
the control will be constant on the interval (*t&"(a),*™1¢¢"(a)) and equal

to by = (—1)Sg“(“)+k9maz, see Prop. 8 and Table 5.5a. Following then the
arguments used in the proof of Lemma 52 and noting that 77, *¢%** and *2&** are
all continuously differentiable, we can conclude that the restriction ***|

ext

is continuously differentiable. Consequently, we can differentiate (5.4.3) with
respect to a which leads to

61:63615 d kwesxt b ent X d ktesxt
9 (@t =—3 (@ — f ("2 (a), *u) 1o (@)
' 8-f ext 8wext
+ /ctgzt(a) 87:]3 (w (a’ S)) aOé (a’ S)d87 (B391)

for each (a,t) € kbmm. Moreover, at each such pair the expression above can
also be differentiated with respect to time so that we have

0 awea:t o ot Hxert
at< da (O"t)> = 5 (@ (@) ——(at). (B.3.92)

Notice that since our choice for k € S; was arbitrary, the two equations (B.3.91)
and (B.3.92) are valid for each (k,(,t)) € S; X ¥Dgeat. Moreover, noting
that the sets kﬁwm, with k € S;, are all open our discussion also shows that
x| is continuously differentiable.

Assume now that k& = 0 and recall that in this case we have, by definition,
x%"' = 0 and ¥t¢"* = 0. Consequently, given an arbitrary a € I, we have
according to (B.3.91)

k

awea:t
li 1) = 0,
A e (@)

and this in turn implies by the linear differential equation (B.3.92) the relation

ext
aga (a,1) = 0} . (B.3.93)

(vt € (0,1 45(a))) {
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Since our choice for @ € I, was arbitrary, we can conclude by (B.3.93) that
(B.3.88) indeed holds.

Let us now assume that ¢ > 2 and choose an arbitrary k € S;\{0}. Moreover,
let & be again an arbitrary element of I,. According to (B.3.91) the limit of

amezt

z—(a,t) as t approaches *tZ"*(a) from the right will then be given by

ext k n.ext
ozt _ o d "zg

) _ _
t—>’“t‘1§1’}”1(6z)+ Oa (@) da (@
- f (*zg"(a), Fu)

To take the limit of a%:: (@,t) as t approaches *t&"! (&) from the left, let us first
note that according to (5.4.3) we have

d ktgzt
da

(). (B.3.94)

L4574 (o)
wea:t(a t) k eszt(a) o f(a:”t(a,s),k*lu)ds,
t

for each (a,t) € ﬁwm Consequently, taking the derivative of this expression
with respect to o we can, as above, use the resulting expression to compute the
limit of 8m “(a,t) as t approaches Ftert (@) from the left. This leads to

awe;ct d kwext
li _ _ S _
t—>’“tég‘l(o?)* da (@%) da
d ktezt
— f (P& (@), ") —2—(a). (B.3.95)

da

The equality in (B.3.89) follows now from (B.3.94), (B.3.95) and the equality
u=—F"ly.

_ To conclude the proof we want to show that (B.3.90) holds for each («,t) €
Dgest. For this, choose first an arbitrary & € I, and define the continuous
matrix-valued function A(t) : (0, t“t(*)) = R>2 ¢t — A(t) = o (z°(a,1)).
Notice that according to (B.3.92) awez (@, .) satisfies the dlfferentlal equation
(B.3.84), with A = A, at each t € u};;lo( tg" (@), kT g (@)). Similarly, ac-
cording to (5.4.4) A“"*(a,.) satisfies the differential equation (B.3.85), again
with A = A, at each ¢ € (0,/! 5" (a)). Consequently, by Lemma 54 we con-
clude that for each k € S; the product A***(a, t) 22— 3” " (a,t) remains constant on
(P&t (a),* T tg" (@)). In other words, for each k; € S; there exists a scalar s
such that

awext

Oa

(vt € (Ftg"(a), T tg (@) | A (a,t) (a,t) = sp| . (B.3.96)

We next use mathematical induction to show that sj is equal to zero for each
ke s,;.

Base Case (k = 0) Choose an arbitrary time { in the interval (0,*t&"(a)).
Then, by (B.3.93) and (B.3.96) we have so = A"*(a, )22~ (a,1) = 0.
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Inductive Step (k € S;_1) Let k € S;_; and assume that s; = 0. Then,
taking the limit of the product in (B.3.96), with k = k, as t goes to *T1t&"!(a)
from the left we get the following expression for sz:

amezt

sz = lim A (@t a,t

B e dm o AT@ ) (@
_ ) ext

= (d,’““tg”(d)) ~lim _(at)
t—ktlgert(a)— da

ext
0x§

— gt (aﬁ“tm a ) lim a,t), B.3.97

: @), dm T (B.3.97)
where we have used the fact that A°**(a,.) is continuous and that the first
costate A{™'(@,.) is equal to zero at the switching time *™'¢g* (@), see Prop.
7-8. Similarly, taking the limit of the product in (B.3.96), with k =k + 1, as ¢
goes to FT1¢¢* (@) from the right we get

" 8wewt
S = lim )\em a.t Gt
k41 t L eet (5)+ (a,t) oy (@,t)
k oxert
= Aeait (O_é, k+1tesmt(d)) ) lim (5[70
toktipeet (@)t Oa

ext
ox§

_lim (a,t),
toF+igert(a)+ O

_ )\Sxt (d’E+1teSxt<a))

and this shows together with (B.3.97) that 35 + 1 is exactly equal to 5 since
according to (B.3.89) we have
Ars™t

~ lim a,t)=  lim
tohtigert(a) - o tohigget @)+ Oa

ext
075" (1),

Noting that our choice for a € I, was arbitrary, we finally conclude, as
desired, that the relation in (B.3.90) is true for each (a,t) € Dyeat. O

We conclude this part of the appendix by showing how to make use of Lemma
54-55 to prove Prop. 18.

Proof of Prop. 18. Let i > 1, Icet C D,, the functions ¥t& and *z &, with
k € S;\{0}, and " satisfy the hypotheses of the proposition. By Lemma 55,
¢t is then continuously differentiable on the open set Dgez:. Moreover, we
can define the matrix-valued function F : Dgese — R2%2 with

ext ext
Flot) = (2" (a,1) 22 (a,1)), (B.3.98)
such that F' maps each element of Dw:ct to the Jacobi matrix of x*** at this
element. We want to next show that the determinant of this matrix is always
positive.
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Let (a,t) be an arbitrary element of Dgest. Then, there must exist an
integer k € S;\{0} such that ¢ € (*t&"* (@), **'t&""(a)). Moreover, noting that
the control on this interval is constant we can, according to (2.1.4) and (B.3.91),
differentiate each term in F'(@,.) with respect to time which leads to

OF _  of
E(a,t)—%

for each t € (Ftg(a), F+11g" (@)). Noting now that the trace of 9% is equal to
zero, we can use Lemma 54 to determine the determinant of F'(&,t) as follows:

(x(a, 1)) F(a, t), (B.3.99)

det (F(a,f) = lim det (F(a,t)) (B.3.100)
t—kts" (&)
(B.3.91) kwe:ct _ e _
2 det (1125 (a)  f(tagi(a), u)
(31.4) OFEMSS 1k exts -\ k ot/ dkzgt
= o (Fa5E (@), *25¥ (@) — Fu) das (@)
L) qet (F(a, 1)) > 0. (B.3.101)

Noting that our choice for (@, %) € Dgert was arbitrary we conclude that (5.4.14)
indeed holds.

To conclude the proof of the proposition, let us first note that there exists
an inverse of the restriction £t to Dgest, with the set Dt;m as its range, since

¢ is a surjective function by assumption. Using p¢*t : Dt;m — Dgeat, @ —

pet(z) = (p§t ugwf)T to denote this inverse, we clearly have

(V(,t) € Dgent) | (2" (o, 1)) = <i‘>] , (B.3.102)

and the desired function t?” in the proposition is uniquely determined by p$*.
Now, it follows from (5.4.14) and the inverse function theorem [62] that the
restriction of 4%t to Dges: is continuously differentiable and satisfies, in accor-
dance with (B.3.102), the equality
atewt
f
e (" (o, 1)) Flayt) = (0 1),

for each (a,t) € Dgest. In addition, notice that by the Hamiltonian condition
in (5.2.4) and the condition (B.3.90) in Lemma 55, we similarly have

A (a, ) F(a,t) = (0 —1).

According to (5.4.14), this shows that (5.4.16)-(5.4.17) must hold for each
(a,t) € Dgest\Dgest. The fact that the relation (5.4.17) also holds at points
(o, t) € Dgert\Dgeat follows from the continuity of A°**, as one can show using
Lemma 52, and the fact that the determinant of F'(«,t) is positive for each
(a,t) € Dgear, see also Theorem 6.1.1 in [53]. This finally shows that t§" is
continuously differentiable, as desired. O
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B.4 Maximal Link Velocity

B.4.1 Final Time Dependence

In this first part of the appendix, we will provide the proofs of the two propo-
sitions from Sec. 6.1.

Proof of Prop. 19. Let (x,u) be an optimally controlled trajectory with the
final time ¢y > 0. Moreover, let ¢; : (0,00) — R and ¢y @ (0,00) — R be
the two functions defined by (6.1.5) and (6.1.6), respectively. It follows then
from the continuity of  and E,, that both ¢;, and ¢,, are continuous on the
intervals (0,t) and (7, 00). Moreover, since the limits of ¢, and ¢y, as ¢t goes
to ¢y, are both equal to x2(ts) these two functions are continuous at ¢, as well.
Consequently, we conclude that ¢;, and ¢, are continuous.

Evaluating now ¢y, and ¢, at ¢ty and noting that x is an optimal trajectory,
we can directly see that we have ¢ip(t¢) = Gus(tf) = gmaa(ty). This shows that
the inequalities in (6.1.7) hold with equality if ¢ equals to t¢. Moreover, notice
that our discussion in the beginning of Sec. 6.1 and in particular the relations
(6.1.3)-(6.1.4) directly imply that ¢;5(t) < Gmaz(t) holds for each ¢t € (0, c0).
In order to prove the proposition, it is thus sufficient to show the truth of the
following statement:

(vt € (0,27) U (t5,00)) [gmaa (t) < Gun(t)] - (B.4.1)

In the remaining of the proof, we will show that the statement above is indeed
true.

Let t¢ be an arbitrary element of (0,¢7) U (tf,00). Then, by Prop. 6 there
exists an optimally controlled trajectory (&,a) with the final time ¢; such that
To(ty) equals tO Gmaz(ty). In order to prove (B.4.1), we need to show that

Gmaz(ty) is less than or equal to ¢uu(ty). For this, we will investigate two
different cases depending on the value of ¢;.

Case 1 (ty € (0,t7)) Notice that the relation (6.1.3) holds for any optimally
controlled trajectory and thus also for (&, @). Consequently, we have the follow-
ing condition for ¢,qz:

(Vt € ({f7 OO)) [EQ(EJC) = Qmam({f) < Qmaz(t)] .
Since in this first case ¢; is greater than t;, the condition above implies then,

as desired, that ¢mas(tr) is less than or equal to Guy(tf) = Gmaaz(ts)-

Case 2 ({5 € (ty,00)) Due to the optimality of (&, 4) and the system dynamics
in (2.1.4), the following equality holds for the value of ¢y,q, at t;:

Gmaz (tf) = I (tf)

Fa(ty) + /t :f LZ\}(S))ds. (B.4.2)
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Now, based on the definition of ¢4 it is clear that Zo(tf) < dmaz(ty) = z2(ty)
must hold. Moreover, since & starts from the origin it follows from Prop. 5
that we will have Z; (t) < 0,42t for each t € (0,%¢]. Using these two inequalities
together with (B.4.2) and the fact that ¢; is greater than ¢y, we arrive then at
the following relation for ¢,qz.:

. Y 77 (Bmans
Gmaz(tf) < xg(tf)—i—/ 7J(M )ds
tr

97nasz
= {EQ(tf)-f—-/ TJ.(S) dS
énzamtf Memaaz

(6.1.6) . _ o
= Qmar(tf) < Qub(tf)~
With the relation above, we finally conclude that in this second case the in-
equality in (B.4.1) holds for ¢t = ¢, as well. O

Proof of Prop. 20. We will first show that ¢4, is a continuous function. For
this, let t; be an arbitrary positive scalar. By Prop. 6, there exists then
an optimally controlled trajectory (x,u) defined on D = [0,¢;] with za(t;) =
Gmaz(tf). Moreover, using Prop. 19 and in particular (6.1.5)-(6.1.6) we can
construct two continuous functions, ¢y, and ¢up, for which (6.1.7) will hold.
From the continuity of these functions and the fact that they are both equal to
Gmaz (ty) at ty, it follows that for each scalar € > 0 there exists a 0 € (0,t5) such
that for each t € B, (9) := (ty — d,t; + ) we have

. . 3 . . e
‘QIb(t) - Qmaa:(tf)‘ < 5 A |Qub(t) - QZb(t)| < 5

Looking now at the difference |§maz(t) — Gmaz(ts)[, we have for each t in By, (9)
|(jmaz (t) - ijaz (tf)| S |(jmaz (t) - qlb(t)| +
|G16(t) = dmaa ()]
SR _
< Jqus(t) — qu(t)] +

|Gi6(1) = dmaa(tr)]
< €.

(6

Since the choice of € was arbitrary, the inequality above proves the continuity of
Gmaz at ty. Similarly, since the choice of ¢t; was also arbitrary we conclude that
(maz 1S & continuous function. We next prove that ¢,q. is a strictly increasing
function.

Let t; and ¢ty be two arbitrary scalars with ¢y > ¢; > 0. Moreover, let (z,u)
as above an optimally controlled trajectory defined on D = [0,tf] and ¢;; the
continuous lower bound defined by (6.1.5). Evaluating the inequality (6.1.7) at
t =ty, we can then arrive directly at the following condition for ¢,qq:

Qub(ff) = q'maw (tf) < ‘jmaw (Ef)
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Since our choice for ¢y and ¢y was arbitrary, the inequality above shows that
(maz 18 an increasing function. To prove now that ¢,,q. is a strictly increasing
function, assume by contradiction that there exist two scalars ¢s,ty with ¢y >
tr > 0 and Gmaz(tf) = Gmax(ty). Since gmas is an increasing function, ¢y
must then be constant in the interval [ty,¢s], i.e. we must have

(Vt € [tf’ Ef}) [‘jmaw (t) = dmaz (tf)] . (B~4-3)

Notice that by Prop. 6 and Prop. 7 there exists an extremal lift A = (x, u, A\, \y)
for the LVMP such that (x, ) is an optimally controlled trajectory defined on
D = [0,tf]. In addition, according to (5.2.3)-(5.2.5) the following equality will
hold for the terminal spring deflection x;:

Ti(z1f) g
_— = — B.4.4
M v’ ( )
where v is a positive scalar and A\, € {0,1}. In the following, we investigate two
cases depending on the value of A\, and show that in each case (B.4.3) leads to
a contradiction.

Case 1 (A, =1) In this case, the terminal deflection x,¢ will be positive due
to (B.4.4). Defining now a control @ : [0,¢;] — U with

i) = {u(t) t<ty

ulty) t2tp

we can see that the trajectory & which starts from the origin and corresponds
to u will coincide with the optimal trajectory x in the interval D. Moreover,
the time-derivative of Z at ¢t = ¢ will be positive since it equals to M, see
(2.1.4). Consequently, we can find a time ¢y € (ts,ty] at which Z(ty) will be
greater than mqz(ty). Since ¢mq, is an increasing function, this implies that

Gmaz(tf) > Gmaz(tf) will hold in contrary to (B.4.3).

Case 2 (A, =0) As we have shown in Prop. 11, the equality A\, = 0 implies
that there exists an integer ¢ > 0 such that t; is given by t,,;,(¢ +1). Since the
time &y, (1 4+ 2) will always be greater than t,,:, (i + 1), see (4.2.11)-(4.2.12), we
can then find a time ¢; € (ty, %) which is smaller than t,,,,(i + 2). Moreover,
by Prop. 6 and Prop. 7 there will again exist an extremal lift A = (&, @, X, \q)
containing an optimally controlled trajectory (&, @) defined on D = [0,%;]. For
this extremal lift, however, X, will be equal to 1 since ff € (tmin(2), tmin(@ + 1)).
Following the arguments we used for the first case above, we can then see that
dmaz(ty) must be greater than ¢z (ff) > Gmas(t) contradicting (B.4.3).

Our discussion of the two cases above shows that (B.4.3) can not be true.
Consequently, Gmqz(tf) must be greater than ¢,..(tr). Since our choice for
ty and t; was arbitrary, we finally conclude that ¢y,., is a strictly increasing
function.



APPENDIX B. PROOFS 212

To conclude the proof of the proposition, it remains to show that (6.1.8) is
true. Focusing first at the limit of ¢4, as t approaches 0 from the right, let us
first note that the following relation holds for ¢4, according to Prop. 15:

vt € (0,00) |0 < Gmax(t) < (B.4.5)

. . . [ 2Epot (Omaxt
Since the upper bound for ¢,,.. above, i.e. %, goes to zero as

t approaches zero from the right, we can conclude that lim;_,g+ ¢maz(t) = 0
indeed holds.

Focusing now on the second limit, we know from Prop. 11 that for each
non-negative integer i there exists an abnormal extremal (a,u) with the final
link velocity zo(ty) = 2(i + 1)9mam. This means that the function ¢,,., can
never be bounded above by a positive constant. Since ¢4, is also an increasing

function, we conclude that ¢4, () must go to infinity as xs goes to infinity. O

B.4.2 Parameter Dependence

In this second part, we will provide the proofs for Prop. 21 and Prop. 23-25
which are stated in Sec. 6.2. Moreover, we will provide two lemmas and a
corollary which are made use of in these proofs as well as in our discussions in
that section. We start with the lemma which will be essential in the proofs of
Prop. 21 and Prop. 25.

Lemma 56. Let Cy;,, > 0 be an arbz:tmry scalar. Mqreover, let 33 be the control
system corresponding top = (M, Ty, 0maz) € Ps and X the system corresponding
top = (1,75,1) € Ps such that the following relation holds between their TDP’s:

(o)
(\VI¢ S R) TJ(¢) = m . (B46)

In addition, let v : [0,tf] = U and @ : [0, Caimts] — U = [-1,1] be two piecewise
continuous controls satisfying

(vt € [0,t4)) [u(t) - a',ma(cdimt)] . (B.4.7)

Finally, let x be a trajectory of the control system ¥ which corresponds to the
control u and & a trajectory of ¥ corresponding to 4. Then, we have

bnae
xg = | Caim . Ty &
0 emaw

(Vt € [0,1/]) [w(t) = (g%f‘i 9.0 ) &(Cdimt)l . (B.A.8)




APPENDIX B. PROOFS 213

Proof. Let Cyim, P, P, S, 3, u, @, @ and & all satisfy the hypotheses of the lemma.
Assume first that x¢ and & are related to each other as stated on the left hand
side of (B.4.8). We want to show that in this case the right-hand side of (B.4.8)
is true. For this, let us first introduce the function y : [0,¢¢] — R? defined by

WtEWJA)P@%:<%$9O )@&@mw]. (B.4.9)

Since & is a trajectory of ¥, the function y will be differentiable everywhere
except at a finite number of times where 4 has a discontinuity. Denoting the
set of these times as E and using the state dynamics in (2.1.4), we can then see
that the following relation holds at each t € [0,¢/]\E:

. o émaa: (ﬁ(cdzmt) - 5%2 (Cdzmt))
y(t) B < Cdimémawi—J (jf'l(cdzmt)) >

(Bﬁ,ﬁ) <9maza(cdimt) - emaa:i?(cdimt))

TJ ( 907;“” Z1 (Cdimt))

im

M

(B.4.7),(B.4.9) <U(Q(;(%)(t)> — Fly(D), u(?)). (B.4.10)

M
Noting that (B.4.10) holds at almost everywhere in [0,¢/], we can conclude that
y is a trajectory of ¥ which corresponds to the control u. Moreover, it follows
from the definition of y in (B.4.9) and our assumption on the relation between
xo and &y that we have y, = xo. This means that y and « must be equivalent
trajectories and that the right-hand side of (B.4.8) holds as desired.

To conclude the proof of the proposition, we need to show that the right-
hand side of (B.4.8) implies the relation between xo and &, as stated on its
left hand side. This can simply be done by evaluating the right-hand side at
t=0. O

Lemma 56 shows how to relate trajectories of two different control systems, 3
and 3, if the parameters to which they correspond, i.e. p and p, satisfy a certain
relationship that depends on an arbitrary scalar Cgy;,, > 0. It is important to
note here that the control system ¥ in this lemma contains of dimensionless
parameters if this scalar Cy;,, has the same dimension as ém(m. We next show
how by appropriately choosing Cgy;,,, we can use this lemma to derive Prop. 21.

Proof of Prop. 21. Let p be an arbitrary element of Ps;, and ¥ the control system
corresponding to p. Then, the TDP 7; : R — R defined by (6.2.3) is clearly an
element of CiJ. Consequently, the parameter p = (1,7, 1) is an element of Py
and we can construct a control system ) corresponding to p. Notice that ¥ and
3 both satisfy the relation (B.4.6) in Lemma 56 with Ci,;, = wp. Moreover,
the following equality holds for the SDP K

Ko =30 \ Mabe ) = K0



APPENDIX B. PROOFS 214

which means that we have wy = K50 — 1. We want to next use this last

equality together with Lemma 56 and Prop. 3-4 to show that the equality
Wolmin(k;P) = tmin(k; D) holds for each k € {1,2,...}. This will prove the
proposition, as our choice for p was arbitrary.

Let k be an arbitrary positive integer and (x,u) an admissible controlled
trajectory of ¥ which is defined on [0,¢f]. Moreover, assume that x equals to
0, u is a switching control with k& — 1 switchings and all the three conditions
(4.2.6), (4.2.7) and (4.2.9) are satisfied. By Prop. 3-4, we then know that
ty must be necessarily egual t0 tmin(k;p). If we now construct a piecewise
continuous control % : [0,t¢] — [—1,1] such that ¢; is equal to wot; and (B.4.7)
is satisfied, it follows from Lemma 56 that the trajectory @ of ¥ which starts
from the origin and which corresponds to @ will be related to @ by the right-
hand side of (B.4.8) with Cyi = wo. Consequently, the three conditions (4.2.6),
(4.2.7) and (4.2.9) will again be satisfied if we substitute there u, 0,40, 71 and ¢y

with , oz = 1,%; and ¢ ¢, respectively. Since Prop. 3-4 are also valid for i, we
can then see that ff must be equal to ¢, (k; D), i-6. Wotmin(k; D) = tmin(k; D).
Since our choice for the integer k was arbitrary, this concludes our proof. O
Given a function g € C} , with S—Z(O) = 1, we derive in the following lemma
two closely related expressions for the dimensionless time function wot i (-; P),
which are valid for any p € Py, . One of these expressions is already used in
Table 6.1 and they will both be important for the proof of Prop. 24 where we
analyse the dependence of t,,;, on the eigenfrequency wy.

Lemma 57. Let g € CiJ with S—Z(O) = 1. Then, for each positive integer k and
each p € Ps, we have

k—1

a(b) ds
thmin (ka p) =2 Z / -
=0 1202, — 2B,0(s)

o Omazd

+/ ®2maa(t(;+1)2 2) ) (B.4.11)
— mazx —S

)

where for eachl € Sy,_1 the pair (a(l),b(l)) is an arbitrary element of (0, ke Gmaz ) ¥
(0,20 + 1) with

E

20+ 1)2 .
pot,g(kel¢maw) = QGQ

2 mazx?

(B.4.12)

and
2F 0t g (a(l)) + 02, .b(1)? = 02, (21 + 1)%. (B.4.13)
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Moreover, the same product can also be expressed as

thmin(k;p) =
k—1

> /0 ! ( 20 gz s . (B.4.14)

2_s
=0 Epot g ( heal P =) >)

Proof. Let g be an element of C} with %(O) =1and p = (M,77,0maes) an
element of Py, such that we have

(V¢ € R)[15(¢) = Keg(ked)], (B.4.15)

with k. > 0 and K, > 0. Moreover, let k be an arbitrary positive integer. Using
the expression (B.4.15) for 77 in (3.1.6) and (3.1.7), we can find the following
relations for E,u, Epss, \qb| and |¢| which hold at each point of their respective
domains:

K.
Epot(¢) = —— N Epot.g(ke®), (B.4.16)
12
Enss(¢,6) = I,i 2Epot,q(k e¢)+®3maj’], (B.4.17)
|¢5\(¢,¢mam)=w0\/2 potss e¢7k”“x)_ Epor.g(ked)) (B.4.18)
and o - ;-
. Epot g (o= (Fma=—t"
|61(Ds Prmaz) = ptg( : ( Oinas )) (B.4.19)

ke

In addition, using the definition of ¢,,;, in Prop. 4 and the definition of 7}, in
(3.2.11) we can arrive at the following equality:

WOtmzn UJO Z T ¢maaz
k—1 ) )
= 2‘*)0 ZT¢(Z¢S» l¢maz) + Td',(l¢s, l¢maaz)a (B420)
=0

where for each [ € Sx_1; we have according to (4.2.5), (4.2.12) and (B.4.16)-
(B.4.19)

2 1
Epot,g(kel(bmaw) = %@%ax7 (B-4-21)
"bmaz = 2L+ 1)0mas, (B.4.22)
and )
. l¢2
2Epot,g(ke'ds) + O pp = = (21 +1)°07 .. (B.4.23)

92

max
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Notice that in the last equality the pair (l¢s,lq55) must belong to (0, dpmaz) X
(O, (20 + l)émar) but is otherwise arbitrary, see Sec. 3.2.

With the equations summarized above, it is now possible to derive the two
expressions for wotmin(k;p) in (B.4.11) and (B.4.14). Indeed, we can first use
(B.4.15)-(B.4.16) and (B.4.18)-(B.4.19) in (3.2.2) and (3.2.4) to rewrite the two
time functions Ty and T} in terms of Epor g and Ep_oiyg, respectively. This leads
to

ked ds
0 \/2 (Epot,g(ke¢max) - Epot,g(S))

which holds at each (¢, ¢maz) € D1, and to

)

CU()T¢(¢, (bmaz) =

é

T s _ Omax @maxds
wo ¢(¢7 ¢'maw) - ; 52 5
0 NG
9 Epot,g 2

which holds at each (é,émuw) c DTas' By using these last two relations and
(B.4.21)-(B.4.22) in (B.4.20), the expression for wot,nin(k;p) in (B.4.11) is then
directly obtained if we set for each I € Sy_; a(l) = k'¢s and b(l) = éld) .

max

Note that the conditions on a(l) and b(l) as provided in the proposition follow
from the conditions we have found on (‘¢s,'¢,). Finally, the expression in
(B.4.14) can be derived from (B.4.11) using first the fact that for each term in
the sum there the attained value does not change as long as (a(l), (1)) remains
an element of (0, kc'¢dmaz) % (0,20 + 1) which satisfies (B.4.13). The desired
expression then follows by noting that for each I € S;_1 a(l) goes to zero as b(l)
goes to 21 + 1. O

Using the equality (B.4.21) from Lemma 57 together with Prop. 1 and Prop.
21, we next show how to derive Prop. 23.

Proof of Prop. 23. Let g,p,p,k and ®,,,, all satisfy the hypotheses of the
2
proposition and let K = sgn %(@mw) . Moreover, let [ be an arbitrary

positive integer which is less than or equal to k. It is important to first note
2 2~ 2
that for each ¢ € R, 477 (4) and <77 (¢) are given by Kekg(%g(keqb) and

) d¢2 d¢2
f(elégé%g(ke@, respectively. Consequently, (6.2.8) implies the following two re-
lations for the sign of ‘f;;" and (fgé’ :
2(I)maz d2TJ
<V¢ S <0, ke >) {Sgn (W(¢)> = K:| 3 (B424)
and o 2
2 max 7~—J
(V(b € <0, i )) {Sgn ( 102 ((b)) = K] . (B.4.25)
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To prove the proposition, we will next consider three different possibilities re-

k 6m, _ kebmas
UJO °

garding the sign of the difference

Let us first assume that ©,,4, = k (ZJ"”” and G)m,m — ke i’”” are equal to

each other. It follows then from Prop. 22 ‘that wWotmin(l; D) and @otmin(l; D) are
also equal to each other and (6.2.9) holds.

Let us next assume that Omax 18 higher than Oymaz. Then, there exists a
scalar ¢ € (0,1) such that émam = c@max holds. Moreover, using this scalar we

can construct a parameter p= (M ’7']79ma1;) € P, with M = M, #; = 7; and

Hmax = f,naz such that @mm — ke 9’”” — kecOmas equals to @mm Note that

according to Prop. 22, @otmin(l; D) and wotmmzl p) will then be equal to each
other. Making use of the definition of t,,;,, this leads to

wo mzn(l P) - thmzn(l i)) =
wo ( mzn(lap> mzn )) =

-1
% ZTp(i(bm‘”’) - T;D(iqgmaz% (B.4.26)
=0

where for each i € S;_; the following equalities will hold for ‘ez and ‘Gmas
according to (B.4.21):

: 2%+ 1
Epot,g (ke bmaz) = %@iw (B.4.27)
and
2+ 1
Bpot,g(ke' max) = (T) 02 0s- (B.4.28)

With (B.4.27)-(B.4.28) and the inequality (6.2.7), we can now see that in the
sum in (B.4.26) the following inequalities hold for each i € S;_;:

2¢'maw
ko

i¢mam < i(bmaz <

Consequently, applying Prop. 1 with ¢,,0. = 2(1),;"” we can see that according
to (B.4.26) the difference wotymin (I; P) — Dot min (1 i)) has in this case the opposite
sign of K and thus of %(@maz). Consequently, (6.2.9) holds in this case as
well.

Finally, if we assume that ©,,4. is less than @mal we can agaln construct a

parameter p with ¢ = Smez € (0,1) and M = M,?; = 7; and Opmazw = BOmas-

Noting that the differen(?:e wotmm(l; P) — Qotmin(l; p) will this time be given by
@otmin(l; D) — @otmin(I; D), we can slightly adjust the arguments we used above
to show that the sign of this difference will have the same sign as %(‘Pmaz).
This means that (6.2.9) also holds in this last case. O
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As already mentioned, the expressions (B.4.11) and (B.4.14) from Lemma
57 will both be made use of in the proof of Prop. 24. To simplify this proof,
we first state a corollary which directly follows from (B.4.11) and which shows
that the two expressions are differentiable with respect t0 ©qs-

Corollary 58. Let g be an element of C}  with dg 2(0) = 1 and k an arbi-
trary positive integer. Moreover, let tgim i (0,00) (0,00) be the function
determined by the formula

tdim,k((;)ma:c) = tmzn(k7f))7 (B429)

where p is equal to (1,7;,1) with

A~ (;)mal'
(Vo € R) |#5(¢) = g(@@] . (B.4.30)
Then, for each ©qy € (0,00) we have
dt im . t im (';)maz
~d L (@maz) - d ’-k( 7) +
de)max @maw

k—1

20+1 s)ds
(—4) - Z/O Kl 5)ds (B.4.31)

P 9% (Epor.g(K(1,s)))
2 (Byoh,o(K(1,9)))
where K(1,s) is equal to M

Proof. For brevity, we will only sketch the proof. Let g,k and tg;m ; satisfy
the hypotheses of the lemma. For each Orax > 0, tdim,k(@maz) is then given
by the right-hand side of (B.4.11), see Lemma 57. By applying Leibniz rule
and accounting for the conditions on the integration limits in the sum, we can
differentiate this expression with respect to O,naz- This then leads to the desired
expression in (B.4.31) if we further exploit our freedom in our choice of the
integration limits as done in the proof of Lemma 57 to derive (B.4.14). O

With Corollary 58, we can now prove Prop. 24 as follows.

Proof of Prop. 24. Let g,p,p,k and ®,,,, satisfy the hypotheses of the lemma

and let [ be a positive integer in Si. Moreover, let O,maz denote the ratio e 9’;”

and @max the ratio k= f;"“ Making use of the function ¢g4im 1 : (0,00) — (0, 00)

as introduced in Lemma 58, with k = [, and Prop. 21 we can then arrive at the
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following relation for the difference Atyin 1 = timin(l; D) — tmin(l; P):

tdim,l (@max) B tdim,l (@mam)

wWo wo

~ EeOmaz EeOmaz Atdim,i ( kebmas
@0 tdim,i ( o ) LR ( o )
— wz d
w

Atmin,l =

w
0

Omas N dtg; : .
f. mazx tdlmJ(@) + 6 .dzm,l (@) d@
= DOmes dOmee . (B4.32)

keemaac

where we have also exploited the equality in (6.2.10) and the differentiability of
the function tgim ;. It is important to note here that the two conditions (6.2.10)

and (6.2.11) imply that (;)mm is greater than @maz. Consequently, in order to
show that (6.2.14) is true and thus to prove the proposition, it is sufficient to

show that the integrand in (B.4.32) is positive for each Oc [@mm, @mai]. We
will conclude the proof of the proposition by showing that this is indeed the
case. N

Let © be an arbitrary element of [(;)max, Omaz) and let Ia(O) denote the
integrand in (B.4.32) evaluated at ©. If we make use of the two expressions
(B.4.14) and (B.4.31) from Lemma 57 and 58 together with Prop. 21, we can

find the following equality for Ia(©):

K(m,s)ﬁ—i(Eil (K(TYL,S)))

. — _ pot,g
IA(©) _ -1 /2m+1 1 (B ,(K(m,s))
4@ m=0 0 g (Ep_olt,g (K(m7 S)))

1—1 a(m) 1 o Epﬁtyg(g)g%(g)

> / 6 g, (B.4.33)
0 ©2s(m, 3)

m=0

(;)2((2m+1)27s2)

where we have used K(m,s) to denote the term 5 , 8(m,3) to

\/(2m+1)2c4)_2—2E,,0t,g(5)
l2)

a(m) = B} <(2m+1)292> . (B.4.34)

pot,g 2

denote the term
scalar given by

and finally a(m) to denote the positive

According to (6.2.12), the scalar a(m) in (B.4.34) is less than 2®,,,, for each
m € S;_1. Consequently, using the inequality (6.2.13) we can now see that for
each m € S;_; the integrand in the right-hand side of (B.4.33) attains positive
values when 5 € (0, a(m)). This means that I (©) is positive as desired. O

It is important to note here that the proof of Prop. 24 can also be used
to show the existence of a function g, a positive integer | and parameters p
and p for which the difference Aty in (B.4.32) takes a negative value. More
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specifically, it follows from (B.4.32) and (B.4.33) that At will be negative
if the integrals in (B.4.33) can be made negative for 6 = @mam and if p is

Epo
sufficiently close to p. This in turn requires the ratio r := —222d¢ dd’, which is

uniquely determined by the function g, to be larger than 1 in a sufficiently large
interval and constructing such a function g together with I, p and p is feasible.
Indeed, the last condition on the ratio r describes a differential inequality for
the energy E,, 4 and this inequality has multiple solutions leading to a negative
Atpmin,. For brevity, we do not provide a detailed discussion on these solutions
or the construction procedure. Nevertheless, we note that one possible solution
for the mentioned inequality is given by the function ;%5 with ¢ > 0 and d > 0.

We conclude this part of the appendix by providing the proof of Prop. 25,

which is based on the application of Lemma 56 with Cy;,, =

Proof of Prop. 25. Let p = (M, 1y, émam) € Ps and ty > 0 be given. Moreover,
let ff > 0 be an arbitrary scalar and p = (1,7;,1) the parameter with the
function 7; : R — R defined by (6.2.16). Then, p is an element of Py since 7
is an element of C'! - Let now (x,u) denote an optimally controlled trajectory
which is defined on [0,t¢] and which corresponds to p. Similarly, let (&,4)
denote an optimally controlled trajectory which is defined on [0, t ¢] and which
corresponds to p. Finally, let ¥ denote the control system corresponding to p

and ¥ the system corresponding to p. Notice that by setting Cgy;,, to %, we can
apply Lemma 56 to see how trajectories of 3, which are defined on [0,t¢], are
related to trajectories of ﬁ), which are defined on [0, 7). We will next exploit

this relation to show that (6.2.17) holds.
First of all, it follows from Lemma 56 that the function y : [0,¢f] — R?

with y(t) = Opmae (i—;il(%t) Zao( ft)) is a trajectory of ¥ which starts from
the origin. Looking at the terminal link velocity of this trajectory, we can then

arrive at the following inequality:

Qmam(tf,p) 2 émazq.mam(if;i))v (B435)

where we have used the optimality of & and the definition of the function
dmaz- Similarly, Lemma 56 implies that the function g : [0,7;] — R? with

) T .
y(t) = émlw (i—;xl(%t) m(%t)) is a trajectory of ¥ which also starts from

the origin. Consequently, by evaluating this function at t = # ¢ and noting the
optimality of & we find the following inequality:

émaxdmax (tAfvi)) > Gmag (tﬁp)- (B436)

According to (B.4.35)-(B.4.36) and the definition of €, we can now see that

qmm(t};f}) is equal to €(ty;p). Moreover, since Omaz is equal to 1 we have
Gmaz(tr; D) = €(ty; p) and this finally leads to the desired relation (6.2.17). O
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