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Abstract

In this thesis, we investigate the problem of maximizing the link velocity of elas-
tic joints using velocity-sourced elastic actuators. More speci�cally, focusing on
joints with nonlinear series elastic actuators we derive motor control strategies
such that the link velocity is maximized at a given time instant when the joint
is initially at rest. Furthermore, we provide a physical interpretation for the de-
rived strategies by exploiting their time optimality. The interpretation reveals
the dependence of these strategies on periods of mass-spring systems which in
turn explains how nonlinear torque-de�ection pro�les in�uence the maximal link
velocity. In order to clearly illustrate this in�uence, we analyse in detail three
di�erent elastic joints with softening, linear and hardening springs. In particu-
lar, we compare their maximal link velocities as well as the corresponding control
strategies and elaborate on the observed di�erences. Our theoretical results are
experimentally validated on the DLR Floating Spring Joint where link veloci-
ties at least more than three times the maximally applied motor velocity are
attained in less than a second. Several extensions are also provided which reveal
the in�uence of damping and sti�ness actuation on optimal control strategies.
Finally, we give a proof of Pontryagin's Minimum Principle, the main theorem
used in the thesis, by exploiting the properties of transition maps. Assuming
an additional degree in the smoothness of the system dynamics and the cost
functional, this leads to an extension of the principle, namely the Second Order
Minimum Principle.
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Zusammenfassung

In dieser Arbeit untersuchen wir das Problem der Maximierung der Ausgangsge-
schwindigkeit von elastischen Gelenken mit geschwindigkeitsgesteuerten elasti-
schen Aktuatoren. Wir konzentrieren uns dabei auf Gelenke mit nichtlinearen se-
riell elastischen Aktuatoren und leiten Motorsteuerungsstrategien ab, so dass die
Ausgangsgeschwindigkeit zu einem gegebenen Zeitpunkt maximiert wird wenn
das Gelenk anfänglich in Ruhe ist. Darüber hinaus liefern wir eine physikalische
Interpretation für die abgeleiteten Strategien, indem wir deren Zeitoptimalität
nutzen. Die Interpretation zeigt die Abhängigkeit dieser Strategien von Perioden
von Masse-Feder-Systemen, die wiederum erklären wie nichtlineare Kennlinien
für den Drehmoment die maximale Geschwindigkeit beein�ussen. Um diesen
Ein�uss deutlich zu veranschaulichen, analysieren wir im Detail drei verschie-
dene elastische Gelenke mit degressiven, linearen und progressiven Federkennli-
nien. Insbesondere vergleichen wir die maximal erreichbaren Geschwindigkeiten
sowie die entsprechenden Steuerungsstrategien und erarbeiten die beobachteten
Unterschiede. Unsere theoretischen Ergebnisse werden experimentell an dem
DLR Floating Spring Joint validiert, wo Ausgangsgeschwindigkeiten von mehr
als dem Dreifachen der maximal kommandierten Motorgeschwindigkeit in we-
niger als einer Sekunde erreicht werden. Es werden auch Erweiterungen her-
geleitet, die den Ein�uss einer aktiven Stei�gkeits- und Dämpfungssteuerung
auf optimale Steuerstrategien aufzeigen. Schlieÿlich geben wir einen Beweis für
das Minimumprinzip von Pontryagin, der Hauptsatz aus dem die Ergebnisse
der Arbeit hervorgehen, indem wir die Eigenschaften von Flüssen von Di�e-
rentialgleichungen nutzen. Unter der Annahme eines zusätzlichen Grads in der
Di�erenzierbarkeit der Systemdynamik und des Kostenfunktionals führt dies zu
einer erweiterten Version des Prinzips, nämlich zu dem Minimumprinzip zweiter
Ordnung.
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Chapter 1

Introduction

Robots are complex mechatronic systems whose performance limits largely de-
pend on the properties of their actuators. Di�erent actuation technologies exist
each of which can, depending on the application, be more bene�cial in terms
of execution speed, energy e�ciency, accuracy, etc [26]. One such technology,
namely Elastic Actuation Technology, has attracted increasingly more attention
over the last two decades [56, 20]. Many researchers regard this technology as
the key in enabling humanoid robots to achieve human-like performances. This
view is particularly supported by the mechanical robustness of systems with
elastic actuators and by the possibility of using the elastic elements in these
actuators as a potential energy source [60, 23].

Numerous elastic actuator designs with constant and variable impedance
exist by now as well as studies which, for certain tasks, demonstrate their ben-
e�ts. In particular, being hit with a baseball bat the DLR Floating Spring
Joint (FSJ) [59], an Elastic Joint (EJ) with a variable sti�ness actuator, has
been shown to handle impacts which can not be handled by traditional rigid
actuators currently found in industrial robots. Moreover, the DLR Hand Arm
System [18], which is designed to mimic the behaviour of a human's arm and
which consists of several FSJ's, has been shown to reach throwing velocities
which are not achievable with a rigid actuator using the same maximal motor
velocity and gear reduction as used during the experiments [22]. In other words,
for an explosive throwing motion it has been experimentally shown that elas-
tic actuators can increase the performance of a robot. Other similar explosive
motion tasks, such as hammering and kicking, as well as periodic motion tasks,
such as walking and hopping, have been also succesfully performed by robotic
systems with elastic actuators [17, 16, 46, 48, 33].

The main advantages of incorporating an elastic element into an actuator are
thus well understood and also validated at several EJ's and Elastic Joint Robots
(EJR's). One mathematical tool, which is commonly used in these validations,
is Optimal Control (OC) Theory [44] as it allows to �nd control strategies which
can fully exploit the elasticity in elastic actuators. Consequently, several frame-
works have been proposed to systematically apply this theory such that a given

10



CHAPTER 1. INTRODUCTION 11

task is e�ciently accomplished by an EJ or an EJR, see for instance [7] and
[25]. Nevertheless, being mainly based on numerical solution procedures these
frameworks do not provide a general understanding for the computed control
strategies and can also lead to suboptimal strategies.

Considering the lack of knowledge on the optimal control of even the sim-
plest EJR's, the primary goal of this thesis has been to �nd physical principles
for control strategies which maximize the performance of EJ's with nonlinear
impedance. More speci�cally, a very basic EJ model has been investigated
using OC Theory which takes account for the nonlinear torque-de�ection pro-
�les (TDP's) as they commonly occur in existing designs [20]. Making use of
some simplifying assumptions, analytical solutions have been obtained which
describe, in terms of physical quantities, the optimal way to transfer the energy
generated by elastic actuators to the link of an EJ. Moreover, by studying the
resulting motion, a quantitative analysis has been conducted in order to reveal
the dependence of the attained performance on joint and task parameters. The
second goal of the thesis was to extend the obtained results to more complex
EJ models with variable impedance [56]. Focus was always given to explosive
motion tasks as they clearly demonstrate the capability limits of these joints.
The following papers have been published during the conducted research:

� Optimal Control for Maximizing Link Velocity of Visco-elastic joints.
Mehmet Can Özparpucu and Sami Haddadin. Conference on Intelli-
gent Robots and Systems (IROS), 2013.

� Optimal Control of Elastic Joints with Variable Damping.
Mehmet Can Özparpucu and Sami Haddadin. 13th European Control
Conference (ECC), 2014.

� Optimal Control of Variable Sti�ness Actuators with Nonlinear Springs.
Mehmet Can Özparpucu, Sami Haddadin and Alin Albu-Schä�er.
IFAC World Congress (IFAC), 2014.

� Optimal Control Strategies for Maximizing the Performance of Variable
Sti�ness Joints with Nonlinear Springs.
Mehmet Can Özparpucu and Alin Albu-Schä�er. Proc. 53st IEEE
Conf. Decision and Control (CDC), 2014.

The purpose of this introductory chapter is to clarify the need for the undertaken
line of research and to emphasize the signi�cance of the attained results. To
achieve this, we will �rst start with a motivation for the use of elastic actuators
in robotic systems and discuss its main advantages. Moreover, taking an energy
point of view we will underline two basic control and design questions for EJ's
which constitute the main focus of this thesis. Then, we will elaborate on the
approach we followed to tackle with these questions. Afterwards, an overview
of the existing results on the OC of EJ's is given together with a classi�cation
of di�erent EJ models. Finally, we conclude this chapter by brie�y discussing
the contents of the following chapters.



CHAPTER 1. INTRODUCTION 12

1.1 Motivation and Challenges

Today, robotic applications exist in diverse areas such as manufacturing, health-
care, agriculture, space, etc [54]. The advances in actuator, sensor and comput-
ing technology have played a crucial role in the vast increase of these applications
as well as in their improvement. Conversely, the desire to use robots in di�erent
�elds has stimulated the further development of these technologies as well. In
particular, with the growing interest in making robots a part of our daily life
providing robots with human-like abilities have become a major goal in robotics
research. Motivated by the adjustable elasticity present in the musculoskele-
tal systems of humans, this interest has then resulted in the current Elastic
Actuation Technology.

The musculoskeletal system of a human consists of elastic elements such as
ligaments and tendons [58]. Taking a closer look at the actuators of this system,
i.e. at the muscles, one can see that the forces generated there are transmitted
to various joints not directly but rather by tendons which connect the muscles
to the bones. Following the same principle, elastic actuators are characterized
by the presence of elastic elements which can be modeled, similar to a tendon, as
an elastic spring attached to a torque generating actuator. Compared to their
rigid counterparts, the existence of such a spring leads to signi�cant changes
in the properties of elastic actuators as well as to challenges in their control
when used in a robotic system. We want to next discuss these properties and
challenges.

The series elastic actuator (SEA), one of the �rst elastic actuators, has been
proposed more than two decades ago by Pratt and Williamson and consists
simply of a DC Motor, a planetary gearbox and a steel torsion spring that is
attached to the output shaft of the gearbox [45]. As discussed there, one of the
main advantages of the spring in this design is the increase in the shock tolerance.
This increase follows from the fact that the spring acts as a low-pass �lter in
case of collisions so that the corresponding peak forces at the gears are reduced.
Consequently, the mechanical robustness of robotic systems can be signi�cantly
increased when equipped with elastic actuators. It is interesting to note here
that current biomechanical studies similarly indicate that tendons protect the
muscles by acting as a mechanical bu�er during rapid motions [19, 50, 51].

A second advantage of using an elastic element in an actuator is the possibil-
ity to store potential energy in that element. This property can allow robots to
accomplish periodic tasks, such as walking and hopping, with less energy expen-
diture [57]. Moreover, as already mentioned using a proper control strategy this
additional source of energy can also be used to realize explosive motion tasks.
Both of these aspects are also encountered in humans and animals [10, 4, 49].

Being mechanically robust, energy e�cient and able to achieve energy in-
tensive tasks in a short duration are clearly all important properties for robots,
especially if they are to achieve human-like performances. Based on our discus-
sion so far, we can clearly see that EJ's, i.e. joints with elastic actuators, can
provide robots with such properties. Nevertheless, there are still many open
questions on how to best control the actuators in these joints to accomplish
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particular tasks. For instance, even for the simplest EJ models, which consist
only of a motor, a nonlinear spring and a link, it is not fully understood how
to control the motor in order to maximize the link velocity if all motor con-
straints are taken into account. Similarly, for this case it is also not known
how to control the motor such that the link stops moving in the least possible
amount of time in case of a collision. Such strategies are important to evaluate
the capabilities and thus the safety of EJ's, especially if they are to be used in
proximity to humans.

The reason for the de�ciency in our understanding of the control strate-
gies for EJ's follows mainly from the nontrivial relation between the motion of
the actuator and the link. In a Rigid Joint (RJ), the link motion is uniquely
determined by the motion of the rigid actuator and probably some kinematic
relations present due to the gear mechanism. In an EJ, on the other hand, the
motion of the link is infuenced only dynamically by the elastic forces present
in the joint. This nontrivial relation results in at least doubling the number of
the states which are required to analyse the dynamic behaviour of an EJ when
compared to a RJ. Moreover, this dynamic behaviour gets more complicated if
the elastic actuator can additionally adjust the impedance of the joint. Finally,
the way how constraints for the elastic actuator incluence the possible link mo-
tions becomes also nontrivial as it can not be directly derived from kinematic
considerations as done in a RJ.

In order to gain a better understanding on how to best make use of the
relation between the actuator and the link motion, one possible way is to look
at EJ's from an energy point of view. In particular, focusing on explosive motion
tasks one can try to �rst �nd control strategies which, in a given time interval,
maximize the energy that is transfered from the actuator to the link. As the
corresponding maximal energy will in general depend on the system parameters,
one can then try to analyse this dependence. This leads to the following two
basic questions for EJ's:

� How can we maximize the link velocity of an elastic joint?

� How does the maximal link velocity depend on joint parameters?

It is important to realize here that �nding an answer to the �rst question can
provide a physical insight for how to optimally transfer the energy from the
actuator to the link by using the inherent elasticity in EJ's. Understanding
the dependence of the resulting maximal energies on the joint and in particular
on the actuator parameters, the answer to the second question can be used to
derive design guidelines for elastic actuators especially if these actuators are to
be used for energy intensive tasks. In this thesis, we will apply OC Theory
to �nd complete answers to both of these questions under practically relevant
assumptions.
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1.2 Approach

OC Theory is a mathematical tool which can be used to analyse the maximum
performance of a system if there exists a mathematical model describing this
system's dynamics in terms of �rst-order di�erential equations [44, 11]. More
speci�cally, given such a model and a cost functional, which is expressed in terms
of this model's states and which describes a performance criteria, OC Theory
can be used to determine the control strategies which minimize this functional.
Considering now the two control and design questions from the previous section,
it is clear that by choosing an appropriate model for an EJ and cost functionals
related to the joint's terminal link velocity, OC Theory can be directly used to
address these questions. For deriving control strategies for EJ's and analyse the
resulting performance we will, therefore, also make use of this theory.

It is important to realize here that the two questions, as we have stated
in the previous section, are very basic but also very broad questions whose
answers will in general depend, besides the initial conditions of the EJ and the
given time interval, also on the chosen mathematical model. This model choice
is, however, not unique as there exist numerous elastic actuator designs with
di�erent actuation possibilities. Even for the same design, di�erent models
can be chosen which, for instance, di�er on how detailed they consider the
motor dynamics. As we will see in Section 1.3, in contrary to the large number
of existing designs, only a few number of EJ models have been analyzed so
far using OC Theory. Moreover, these studies concentrate mostly on models
with linear impedance, constant or adjustable, which allows them to obtain
analytical solutions. Studies investigating models with nonlinear impedance also
exist, but they rely on numerical methods and focus only on a particular design
without a detailed analysis on how a di�erent choice for actuator parameters
might in�uence the system's performance. Noting that the output torque of
existing elastic actuators with variable impedance are mostly described by a set
of nonlinear functions [56, 20], the contributions of the existing studies to the
control and design of EJ's are therefore limited.

In order to derive general physical principles for EJ's, we have analysed in
this thesis simpli�ed models of these joints such that the corresponding OC
strategies could be expressed analytically. In particular, we have applied OC
Theory to three such models and used them to investigate the in�uence of ac-
tuator parameters, such as spring nonlinearity and maximal motor velocity,
and actuation possibilities, such as variable damping and variable sti�ness. Our
primary focus was given to a basic model consisting of a motor, a link and a non-
linear spring for which the analytical derivation turned out to be very complex
due to the nontrivial relation between OC strategies and spring characteristics.
The obtained results have been then extended to the other two models.



CHAPTER 1. INTRODUCTION 15

Imot

θ

M

q

KJ(φ, σs)
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Figure 1.3.1: EJ with Variable Impedance

1.3 State of the Art

In this section, we want to give an overview of the existing results on OC strate-
gies for EJ's. Moreover, we want to clarify how this thesis and our publications
on the subject extend these results. As already mentioned, there are di�erent
design approaches for elastic actuators leading to di�erent models for EJ's. To
be able to clearly distinguish between the various results in literature, we will
�rst introduce a classi�cation for EJ models of di�erent complexity.

1.3.1 Elastic Joint Models

From a mechanical perspective, an EJ can be regarded as a system consisting of
two rigid bodies, namely a motor and a link, which are attached to each other
by a torsional elastic spring and damper. The motor together with the spring
and the damper constitute the elastic actuator of that system and the motion
of the link is determined by this actuator through the torques acting at the
spring and damper. Figure 1.3.1 graphically illustrates this system in its most
general form, where Imot denotes the motor's mass of inertia and θ its position.
Similarly,M denotes the link's mass of intertia and q its position. Moreover, KJ

stands for the sti�ness of the spring and DJ for the damping coe�cient of the
damper. It is important to recall here that depending on their designs elastic
actuators can control the torque acting between the motor and the link through
di�erent mechanisms [56]. This is accounted for in Fig. 1.3.1 by letting KJ to
be a function of both the spring de�ection φ = θ− q and a sti�ness variable σs.
Similarly, DJ is de�ned as a function of the time-derivative1 of the de�ection φ̇
and a damper variable σd.

The dynamic behaviour of the system depicted in Fig. 1.3.1 can be math-
ematically described once we are given the function τJ,S , which describes the
torque in the spring as a function of φ and σs, and the function τJ,D, which
describes the torque in the damper as a function of φ̇ and σd. These functions
in�uence the way how the energy of an EJ can in general be changed and also
distributed along the motor, spring and link. As already mentioned, depending
on the elastic actuator, the total torque τJ between the motor and the link of
an EJ, i.e. the sum of τJ,S and τJ,D, may or may not be adjustable through a
sti�ness and/or damper variable. This, however, has a direct in�uence on the

1We use dots to indicate derivatives with respect to time t.
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i σs σd

MC σs = const. σd = const.
MSC - σd = const.
MDC σs = const. -
MIC - -

(a) Assumptions for σs and σd
(i ∈ {MC,MSC,MDC,MIC})

j τJ,S

LS τJ,S(φ, σs) = σsφ
NS -

(b) Assumptions for τJ,S
(j ∈ {LS,NS})

k τJ,D

UD τJ,D ≡ 0

LD τJ,D(φ̇, σd) = σdφ̇
ND -

(c) Assumptions for τJ,D
(k ∈ {UD,LD,ND})

Table 1.1: Classi�cation of EJ Models (EJ i,j,k)

corresponding OC strategies. Moreover, the way how the two functions τJ,S
and τJ,D are related to their arguments, i.e. whether this relation is linear or
nonlinear, also has an e�ect on these strategies.

In order to be able to distinguish between the di�erent actuation possibilities
for EJ's we propose in Fig. 1.3.2 a classi�cation of EJ models. As indicated
there, we �rst have a general class of models EJMIC which is based on the sys-
tem depicted in Fig. 1.3.1 and for which both σs and σd are adjustable. Three
subclasses are then derived from this class which are denoted by EJMC , EJMSC

and EJMDC . They only di�er in the adjustability of σs and σd. More speci�-
cally, for models in the subclass EJMC both σs and σd are constrained to take
constant values. This is indicated in Fig. 1.3.2 by representing KJ and DJ

as a function of only φ and φ̇, respectively. Similarly, for models in EJMSC

and EJMDC the damping variable σd and the sti�ness variable σs are assumed
to remain constant, respectively. In other words, models in EJMSC consist
of a variable sti�ness actuator (VSA) [60] and models in EJMDC a variable
damping actuator (VDA) [56]. Finally, two additional subscripts are used to
specify whether the two functions τJ,S and τJ,D are linear in their arguments
and whether damping is present in the system. Table 1.1 gives a summary of
the di�erent assumptions for the proposed classes for EJ's.
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Figure 1.3.2: Classi�cation of EJ Models
(In this thesis, the models in the gray area are investigated. The main focus is

given to the model on the lower left corner.)

1.3.2 Optimal Control Strategies

Based on the classi�cation we introduced in the previous subsection, Table 1.2
gives an overview of the EJ models which are investigated in the literature
using OC Theory. As shown there, most existing works deal with joints having
either a SEA, i.e. models in the class EJMC , or a VSA, i.e. models in the
class EJMSC [24, 16, 17, 39, 21]. Making use of di�erent motor models, they
all investigate motor control strategies which either maximize the terminal link
velocity of EJ's or the stored potential energy. Similarly, in [47] EJ models in
the classes EJMDC and EJMIC have been investigated to realize a reaching
task. We will next summarize some of the main �ndings of these works and
clarify how the results of this thesis extend them.

1.3.2.1 Elastic Joints with SEA's (EJMC)

In the literature, studies following an approach similar to the one we pursue
in this thesis mostly exist for undamped EJ's with linear SEA's (LSEA's) [17,
24, 16, 39, 21]. In these actuators, the TDP describing the output torque as a
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EJMC,j,k EJMSC,j,k EJMDC,j,k

j = LS j = NS j = LS j = NS k = LD k = ND

Analytical
[24, 17, 16]

[43]
[17, 16]

[42, 43] [41] -
[39, 21, 40] [39, 21]

Numerical - [24] - [24] - [47]

Table 1.2: Investigated EJ Models in Literature (The publications [40, 41, 42]
and [43] resulted from the research conducted by the author during the thesis

period.)

function of the spring de�ection is linear. Consequently, when the position of
the motor is �xed the dynamics of an EJ with such an actuator corresponds
exactly to the dynamics of a conservative and linear mass-spring system (MSS)
[35]. In particular, the link will oscillate in this case with the corresponding
MSS's eigenfrequency whenever the joint has a positive energy.

Existing studies on EJ's with LSEA's reveal a close relation between the os-
cillatory nature of MSS's and optimal control strategies maximizing the joint's
terminal link velocity as well as the joint's potential energy. In particular, mod-
eling the motor as a velocity source it has been shown in [24], using Pontryagin's
Minimum Principle (PMP) [44], that in order to maximize the link velocity of
an EJ with a LSEA at a given time instant, the motor velocity needs to peri-
odically switch between its minimum and maximum value provided the given
time is su�ciently high. Furthermore, the frequency of this switching has been
shown to correspond to the eigenfrequency of the corresponding MSS while its
phase has been shown to be uniquely determined by the �nal time. Similarly, in
[39, 21] it has been shown that the same principle also applies when maximizing
the potential energy at a given terminal time.

In [17], the problem of maximizing the link velocity is discussed as well.
Nevertheless, in contrary to [24] the �nal time has been left free and constraints
have been included on the switching number of the controls and on the �nal
link position. Based on the conducted analysis, it can be observed that for this
particular problem the optimal motor velocity simply changes its sign whenever
the torque in the spring changes its sign. Moreover, the maximal link velocity
is always attained at zero spring de�ection. In this thesis, we will show how
these problems are all closely related. More importantly, we will introduce
the concept of resonance energies which extend existing results on joints with
LSEA's to joints with nonlinear SEA's (NSEA's).

1.3.2.2 Elastic Joints with VSA's (EJMSC)

VSA's enable EJ's to actively change their TDP. This change in turn in�uences
both the potential energy stored in these joints and their oscillatory behaviour.
In order to understand how to best exploit this additional degree of freedom in
the control, research has been mainly directed towards EJ models in which an
instantaneous change between two linear TDP's, a minimal and maximal TDP,
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was allowed. In other words, the eigenfrequency of the corresponding MSS's was
assumed to be directly controllable. Under this assumption, control strategies
have been proposed in [17] for a position-sourced motor to attain high termi-
nal link velocities at a given position. These strategies satisfy the necessary
conditions provided by PMP for the task of maximizing the terminal link veloc-
ity and are determined under the assumption that the Hamiltonian is zero. A
physical principle has been also found describing these strategies. According to
this principle the motor position switches between its minimum and maximum
value depending on the sign of the link velocity. Similarly, the VSA switches
the controllable eigenfrequency between its minimum and maximum value, and
the switchings occur whenever the product of the link velocity with the spring
torque changes its sign [54].

In [39, 21], focus was given to an EJ model with a velocity-sourced motor.
Under the simplifying assumption of directly controlling the eigenfrequency, the
problem of maximizing the potential energy of an EJ at a given terminal time
has been investigated there. The obtained analytical expressions for the control
strategies show the existence of a physical principle closely related to the one
found in [17] for EJ's with position-sourced motors. In particular, for control
strategies leading to a zero Hamiltonian the motor velocity switches between
its minimum and maximum value depending on the sign of the spring torque.
The VSA, on the other hand, switches in this case the eigenfrequency between
its minimum and maximum value depending on the sign of the product of this
torque with its time-derivative. For control strategies leading to a non-zero
Hamiltonian the principle is more complex, but can be described in terms of
the potential energy of the joint and the kinetic energy of the link. In this thesis,
we will show the existence of similar physical principles for the case when the
VSA is allowed to instantaneously change the TDP by switching between two
nonlinear functions of the de�ection, see also [42, 43]. Considering the currently
existing VSA designs, this is a practically more relevant scenario.

1.3.2.3 Elastic Joints with VDA's (EJMDC)

Regarding the OC of EJ's with VDA's, a reaching task has been analysed in [47]
such that a desired link position is reached while minimizing a cost functional
that accounts for the deviation of the link trajectory from the given target. More
speci�cally, setting the motor position to the desired link position and �xing
the TDP of an EJ optimal control strategies have been found for the adjustable
damping in a VDA. Numerical results obtained using the ILQR method [31]
show that for this particular task the damping in the system needs to switch
between its minimum and maximum value. In this thesis, OC strategies are
investigated for a more simpli�ed EJ model for which analytical solutions could
be obtained. The existence of switching strategies as observed in [47] have been
then shown to be necessary whenever a linear cost functional is to be minimized,
see also [41].
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1.4 Thesis Organization

In this thesis, we have mainly investigated optimal control strategies for an
undamped EJ with a NSEA, see Fig. 1.3.2. In particular, treating the motor of
the actuator as a velocity source and assuming that the joint is initially at rest
we have fully solved the problem of maximizing the link velocity of such EJ's
at a given terminal time. The main body of the thesis is devoted to deriving
the solution to this problem. Furthermore, we also investigate optimal control
strategies for more complex EJ models and more general cost functionals. The
thesis is organized as follows:

� Chapter 2 formulates the problem of maximizing the link velocity of an
EJ with a velocity-sourced NSEA in the context of OC theory.

� Chapter 3 provides several preliminary results on mass-spring systems as
well as a novel result on their periods.

� Chapter 4 discusses switching control strategies maximizing the energy of
EJ's.

� Chapter 5 introduces an iterative construction method to determine opti-
mal control strategies maximizing the link velocity of EJ's.

� Chapter 6 discusses the maximal link velocity of EJ's by making use of the
proposed method. Furthermore, the applicability of the obtained results
is experimentally veri�ed using the DLR FSJ.

� Chapter 7 extends the obtained results on optimal control strategies to
EJ's with VDA's and VSA's.

� Chapter 8 concludes the thesis by summarizing the main results, discussing
their implications and giving an outlook for future research directions.

There are also two appendices in the thesis. The �rst appendix, that is Appendix
A, provides a proof of PMP for a fairly general OC problem and also shows how
to further extend this principle under appropriate assumptions on the system
dynamics and cost functional. Appendix B contains the proofs for the various
propositions stated in the thesis.



Chapter 2

Problem Formulation

In this thesis, we will make use of OC Theory to mostly determine control
strategies which maximize the link velocity of EJ's at a given time instant.
Focusing on the case where the joints are initially at rest and controlled by
velocity-sourced SEA's, the main purpose of the current chapter is to formulate
this velocity maximization problem as an OC problem. This requires us to �rst
�nd the control system that mathematically describes the dynamics of an EJ
and then to express the cost functional describing our problem as a function
of this system's states. In the following section, we focus on determining the
required control system1.

2.1 Control System Σ

The control system corresponding to a given OC problem is a 4-tuple consisting
of the state-space X, the state dynamics f , the control set U and �nally the class
of admissible controls U [53]. In order to determine these four quantities and
thus the control system Σ for our problem, we will �rst describe the dynamics
of an EJ with a velocity sourced SEA. Moreover, we will also clarify several
properties of TDP's of SEA's that are common in most existing designs and
that we will take as granted.

As already discused in Sec. 1.3.1 and also illustrated in Figure 2.1.1, an EJ
with a SEA can simply be regarded as a mechanical system which consists of a
motor and a link that are attached to each other by a possibly nonlinear spring.
Consequently, using q to denote the link position and θ for the motor position
the dynamics of such a joint is given by the following two di�erential equations

1The introduced control system will be used in Chapters 4-6, i.e. the main body of the
thesis, where we analyse EJ's with velocity-sourced SEA's. In Chapter 7, we will slightly
adjust this system to be able to account for the additional parameters and control variables
in the more complex EJ models. Similarly, we will also formulate there di�erent OC problems
dealing with more general cost functionals.

21
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Imot M

KJ(φ)

θ(t) q(t)

Figure 2.1.1: EJ Model with a SEA

[35]:

Mq̈ = τJ(φ), (2.1.1)

θ̇ = u ∈ [−θ̇max, θ̇max], (2.1.2)

where M > 0 stands for the link's mass of inertia with respect to its rotation
axis, τJ : R→ R for the TDP2 describing the output torque as a function of the
de�ection in the spring φ = θ− q and �nally u for the controlled motor velocity
whose magnitude is bounded by the maximum motor velocity θ̇max > 0. Based
on the TDP's present in most existing SEA designs, we will have the following
three standing assumptions for τJ :

(A1) τJ : R→ R is symmetric with respect to the origin.

(A2) τJ : R→ R is a continuously di�erentiable function of the de�ection.

(A3) The sti�ness-de�ection pro�le (SDP) KJ : R→ R, i.e. the �rst derivative
of τJ , is positive at each de�ection value.

Having described the dynamics of EJ's with SEA's and also clari�ed the general
properties of their TDP's, we next �nd the state-space X and the state dynamics
f for our problem.

Both X and f can be determined by the di�erential equations (2.1.1)-(2.1.2)
and the mathematical states we choose to describe our problem. We take these
states as the spring de�ection and the link velocity, i.e. x =

(
x1 x2

)T
=(

φ q̇
)T
, due to their direct relation to the potential energy stored in the SEA

and to the kinetic energy of the link. With this choice, our state-space becomes
simply the two-dimensional space R2, i.e.

X = R2. (2.1.3)

Moreover, by di�erentiating x with respect to time we get using the di�erential
equations (2.1.1)-(2.1.2) the state dynamics f : R2 × R→ R2 with

ẋ = f(x, u) =

(
u− x2
τJ (x1)
M

)
. (2.1.4)

2For an undamped EJ, we simply have τJ = τJ,S .
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To determine our control system Σ, we now need to �nd its control set and
further choose the class of admissible controls over which we will search for
the optimal control strategy. The control set of a control system describes the
constraints on the values of the control. For our problem, the control u in (2.1.4)
corresponds to the motor velocity and according to (2.1.2) the control set is then
given by

U = [−θ̇max, θ̇max]. (2.1.5)

Similar to the control set, the class of admissible controls U describes the func-
tion space to which the controlled motor velocity belongs. We will take this
class to be the practically relevant set of piecewise continuous functions3 which
are de�ned on a compact interval D = [t0, tf ] ⊂ R with tf > t0 and which take
values in U. Denoting this set by PCU, we thus have

U = PCU. (2.1.6)

In order to ease our analysis, we will assume that all the functions in U are
left-continuous at t ∈ [t0, tf ) and continuous at tf .

Equations (2.1.3)-(2.1.6) fully describe the control system Σ = (X,f ,U,U)
which we will use to formulate our OC problem in Section 2.3. It is important
to remark here that in this description we do not specify particular values for
M or θ̇max. Similarly, we do not provide the exact expression for the TDP. This
is justi�ed by the fact that the solution method we propose in this thesis can
be applied for any admissible choice for these three parameters. Nevertheless,
we will also see that OC strategies and the resulting maximal link velocities do
depend on these parameters. In order to be able to easily distinguish between
control systems with di�erent parameters and also to rigorously formulate our
OC problem, we require some basic de�nitions which we provide next.

2.2 Basic De�nitions

In this section, we present de�nitions and notations which we will use in the for-
mulation of our OC problem and which will simplify our discussions in the later
chapters where we derive and analyse the solution to the formulated problem.

Following [53], we call any control u in the set of admissible controls U an
admissible control. A piecewise continuously di�erentiable function x : D =
[t0, tf ] → X is then said to be a trajectory of Σ if there exists an admissible
control u sharing the same domain as x such that ẋ(t) = f(x(t), u(t)) holds
at each t ∈ D where this derivative exists. Moreover, in this case we will
call the pair (x, u) an admissible controlled trajectory of Σ and refer to x as the
trajectory corresponding to u. Since Σ = (X,f ,U,U) is a time-invariant system,
without loss of generality we always choose the initial time t0 of x and u as 0,
i.e. D = [t0, tf ] = [0, tf ]. Consequently, their domains of de�nition depend only
on their �nal time tf > 0.

3In the thesis, we will adopt the de�nition of piecewise continuous functions and piecewise
continuously di�erentiable functions from [34].
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Let us consider now the set of all trajectories of Σ. Following this time
[55], we will denote this set by Traj(Σ). For each x ∈ Traj(Σ), we use x0 =(
x10 x20

)T
:= x(0) to denote its initial state and xf =

(
x1f x2f

)T
:= x(tf )

to denote its terminal state. Moreover, we use T (x) := tf to denote the �nal
time of x and refer to this time also as the time along x. The trajectory
x∗ ∈ Traj(Σ) will then be called a time-optimal trajectory of Σ, if T (x∗) is less
then or equal to T (x) for any x ∈ Traj(Σ) with x0 = x∗0 and xf = x∗f . Finally,
an admissible control u∗ is called a time-optimal control of Σ if there exists a
time-optimal trajectory x∗ of Σ such that (x∗, u∗) is an admissible controlled
trajectory.

As we will see in Chapter 5, the notion of time-optimality we have just
introduced plays an important role in understanding how to maximize the link
velocity of series elastic actuators in a limited time. In particular, we will
show that control strategies maximizing the link velocity at a given time are
always time-optimal in case the joint is initially at rest. In that chapter, we
will also show that these particular strategies are always piecewise-constant.
We want to next introduce the de�nitions and notations used in the thesis to
discuss di�erent possibilities for piecewise-constant control strategies and the
trajectories corresponding to them.

We call a control described by a piecewise-constant function of time simply
a switching control and denote the set of all admissible switching controls by
SU. Note that a control in SU ⊂ PCU is uniquely described by its �nal time tf ,
its switching times in (0, tf ) at which it changes its value and �nally the control
values at the initial time and at the switching times. We de�ne the switching
number of such a control as the number of its switching times, which is always
non-negative and �nite. Moreover, if i ≥ 0 is the switching number of a control
u ∈ SU we will refer to this control also as an admissible switching control with
i switchings.

Given an admissible switching control u : D → U with i switchings, we
use tS,0 := 0 and tS,i+1 := tf to denote its initial and �nal time, respectively.
Moreover, if i > 0 we use tS,k to denote the switching times of that control with
k ∈ {1, . . . , i} and tS,0 < tS,1 < . . . < tS,i+1. Regardless of the value of i, we
also introduce a �nite partition of the domain D using the times tS,0, . . . , tS,i+1

such that the control takes the same value in each element of this partition.
This partition consists of i+ 1 subsets of D de�ned by

Dk :=

{
[tS,k, tS,k+1) k 6= i

[tS,k, tS,k+1] k = i
, (2.2.1)

where k ∈ Si := {0, . . . , i}.
Finally, for any time-dependent variable related to a switching control u with

i ≥ 0 switchings we indicate the value of that variable at tS,k ∈ {tS,0, . . . , tS,i+1}
by putting the upper left superscript k to that variable. For instance, ku denotes
for each k ∈ Si+1 the value of the control u at tS,k. Similarly, if x is a trajectory
corresponding to u, kx denotes the value of that trajectory at tS,k.
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The de�nitions we have so far provided for Σ are valid regardless of our choice
for the control system parameter, i.e. for the three-tuple p := (M, τJ , θ̇max) ∈ PΣ

with
PΣ := (0,∞)× C1

τJ × (0,∞), (2.2.2)

where C1
τJ denotes the set of all TDP's satisfying (A1)−(A3). Note that for each

possible choice of p, equations (2.1.3)-(2.1.6) describe a unique control system
Σ = (X,f ,U,U). More speci�cally, there exists a one-to-one correspondence
between the parameter set PΣ and the set of control systems satisfying the
assumptions from Sec. 2.1. To emphasize this bijective relation between p
and Σ, we will occasionally call Σ as the control system corresponding to the
parameter p. Similarly, for the functions which we will de�ne in the following
chapters for the control system Σ, we will either expand their domains using
the set PΣ or call them the function corresponding to p, if we want to explicitly
state their dependence on the elements of p . This will especially be done in
Chapter 6 where we analyse the in�uence of the control system parameters on
the maximal link velocity of EJ's.

2.3 Optimal Control Problem

Based on the control system Σ described in Section 2.1, we introduce the fol-
lowing cost functional J : U → R, with

J(u) = −x2f , (2.3.1)

where x2f denotes the terminal link velocity of the trajectory x which starts
from the initial state x0 = 0 and which corresponds to the control u. Our
OC problem on maximizing the link velocity of an EJ with a SEA can then be
formulated as follows.

Link Velocity Maximization Problem (LVMP): Given a �nal time tf > 0,
�nd the control uopt which minimizes J(u) over all admissible controls u ∈ U
de�ned on D = [0, tf ].

Having mathematically formulated our OC problem, we want to use OC
Theory to �nd its solution. As we show in Chapter 5, the control strategies
solving the introduced LVMP, i.e. the optimal controls for the LVMP, can be
derived using mainly PMP [44]. Nevertheless, in order to simplify the derivation
of these controls and the computation of the corresponding optimal trajectories
for the LVMP we will �rst provide some preliminary discussions on the prop-
erties of Σ. More speci�cally, in the following chapter we will have a detailed
look at the trajectories of MSS's, i.e. trajectories of Σ corresponding to u ≡ 0,
and at the time properties of these systems. In Chapter 4, we then turn our
attention to trajectories of Σ corresponding to switching control strategies and
discuss how to maximize the energy stored along these trajectories.



Chapter 3

Mass-Spring Systems

In this chapter, we will discuss trajectories and time properties of MSS's and
investigate how they are in�uenced by the energy and TDP of such systems.
Our results on trajectories will be used for constructing candidates for opti-
mal control strategies solving the LVMP and for determining the resulting link
velocities. Our results on time properties will, on the other hand, help in de-
termining the optimality of the constructed strategies as well as in �nding a
physical interpretation for the optimal strategies.

3.1 Trajectories

A MSS consists simply of a mass that is attached to a wall by a spring. Conse-
quently, such a system can be thought of as an EJ with a �xed motor position.
Making use of (2.1.1) and the notations we have previously introduced for EJ's,
the dynamics of a MSS can then be described by the second-order di�erential
equation

Mφ̈+ τJ(φ) = 0, (3.1.1)

where φ denotes as before the de�ection in the spring. It is important to note
here that given an initial de�ection φ0 := φ(0) and an initial velocity φ̇0 := φ̇(0),
a two-times continuously di�erentiable function φ : [0, tf ] → R solving (3.1.1)
exists for each value of tf > 0 due to our assumptions on τJ . Moreover, this
solution is unique [52]. Based on the de�nitions we have introduced in Section
2.2, we will call a pair (φ, φ̇) that consists of a solution of (3.1.1) and its time-
derivative a trajectory of a MSS. Our aim is now to �rst elaborate on the energy
stored along trajectories of MSS's.

The energy of a MSS consists of the kinetic energy of its mass and the
potential energy stored in its spring. The potential energy Epot : R→ [0,∞) is
a function of only the de�ection and is given by the integral

Epot(φ) =

∫ φ

0

τJ(s)ds. (3.1.2)

26
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Similarly, the kinetic energy Ekin : R → [0,∞) of a MSS depends only on its
velocity φ̇:

Ekin(φ̇) =
1

2
Mφ̇2. (3.1.3)

Multiplying now both sides of (3.1.1) with φ̇, integrating with respect to time
and using our assumptions on τJ , it can be observed that along a trajectory of
a MSS the system's energy EMSS : R2 → [0,∞) with EMSS(φ, φ̇) = Epot(φ) +

Ekin(φ̇) is constant and given by

EMSS(φ, φ̇) =

∫ φ0

0

τJ(s)ds+
1

2
Mφ̇2

0 (3.1.4)

=

∫ φmax

0

τJ(s)ds =
1

2
Mφ̇2

max. (3.1.5)

Notice that in (3.1.5) we use φmax ≥ 0 to denote the maximum de�ection which
the system can obtain at φ̇ = 0, and similarly φ̇max ≥ 0 to denote the system's
maximum velocity attainable at φ = 0.

According to (3.1.4), the energy along a trajectory of a MSS is uniquely
determined by the initial values φ0 and φ̇0. Moreover, this energy can only be
equal to zero if both φ0 and φ̇0 are zero. In this case the MSS is simply in static
equilibrium and does not move, i.e. φ ≡ 0. In all other cases, the system's energy
and thus φmax and φ̇max are positive. Moreover, for a su�ciently high �nal time
the system will periodically oscillate between−φmax and φmax [36, 52]. We want
to next take a closer look at the trajectories of MSS's with positive energy.

It is important to �rst realize that for any given φmax > 0, the equality
EMSS(φ, φ̇) =

∫ φmax
0

τJ(s)ds describes a closed curve in the phase plane. In-
deed, this equality can be solved for the magnitude of the velocity as follows:

|φ̇|(φ, φmax) =

√
2
∫ φmax
φ

τJ(s)ds

M
, (3.1.6)

where we have |φ̇| : [−φmax, φmax] × (0,∞) → [0,∞). The values |φ̇|(φ, φmax)
takes at φ ∈ (−φmax, φmax) provides then the upper half of the aforementioned
curve in the phase plane while the negative of these values will give the lower
half. Both parts will join at the minimum and maximum de�ection values.

It now follows from (3.1.4)-(3.1.5) that in a phase plane trajectories of MSS's
move on closed curves when their energies are positive. Figure 3.1.1 illustrates
these curves as well as several trajectories moving on them for three di�erent
TDP's and various values of φmax (τJ ∈ {τJ,1, τJ,2, τJ,3},M = 1[kgm2]). More
speci�cally, in Fig. 3.1.1 (Top) three TDP's are plotted for φ[rad] ∈ [− 4π

45 ,
4π
45 ]

together with the corresponding SDP's and potential energy functions. The
TDP's are chosen such that each of them shows a di�erent spring characteristic
but attains the same potential energy of 5J at the de�ection φc = π

15 rad. For
each of these TDP's, the corresponding closed curves are then plotted in Fig.
3.1.1 (Bottom) for four di�erent values of φmax. On each of these curves, a
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Figure 3.1.1: Trajectories of MSS's with di�erent Spring Characteristics
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32(1−cos( 35π
96 ))

sin( 175
32 φ), τJ,2(φ) = 2250

π2 φ, τJ,3(φ) =

150
π(cosh(2)−1) sinh( 30

π φ),M = 1[kgm2])

trajectory is also depicted which starts from zero de�ection with the maximal
velocity and terminates at φ = 3φmax

4 . Notice that on the upper half of the
phase planes where φ̇ is positive, the de�ection increases, while on the lower
part it decreases. Consequently, all the depicted trajectories rotate clockwise as
they move on the closed curves in Fig. 3.1.1.

A closer look at Fig. 3.1.1 (Top) shows now how di�erent spring charac-
teristics can in�uence the values of τJ ,KJ and Epot at various de�ections. As
illustrated there, for the third TDP τJ,3 which is depicted on the right and which
shows a progressive spring characteristic, the torque at φ = φc is greater than
the torque values attained by the other two TDP's at this de�ection. Similarly,
the sti�ness value at this de�ection, i.e. KJ(φc), takes the highest value for τJ,3.
These two observations are merely a consequence of the condition on the stored
potential energy Epot according to which the chosen TDP's need to store the
exact same energy at this de�ection. Another consequence of that condition is
that for each φ > φc the potential energy Epot(φ) that is stored using τJ,3 is
greater than the energy stored using the other two TDP's while for each φ in
(0, φc) the potential energy stored using τJ,1, which shows a degressive spring
characteristic, is the greatest. This also results in the sti�ness value at zero
de�ection, i.e. KJ(0), being the greatest for τJ,1.

As shown in Fig. 3.1.1 (Bottom), choosing di�erent TDP's does not only
in�uence the sti�ness, torque and potential energy values at various de�ections
but also the curves on which the trajectories of MSS's move. In the following,
we want to brie�y discuss several properties of these curves which will explain
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the similarities as well as the di�erences observed in Fig. 3.1.1 (Bottom) and
show, in particular, how the di�erences are related to the previously discussed
values of τJ ,KJ and Epot.

Note that regardless of the TDP, the closed curves described by the equal-
ity EMSS(φ, φ̇) =

∫ φmax
0

τJ(s)ds enclose a greater area as φmax and thus the

system's energy increases. This follows from the partial derivative ∂|φ̇|
∂φmax

being
positive everywhere it is de�ned, see (3.1.6). Moreover, all these closed curves
are symmetrical not only with respect to the horizontal axis, as expected from
(3.1.6), but with respect to both axes. This property is due to the two energy
functions (3.1.2) and (3.1.3) being both even functions and allows us to de�ne
similar to (3.1.6) the magnitude of the de�ection |φ| : [−φ̇max, φ̇max]×(0,∞)→
[0,∞) as a function of φ̇ and φ̇max with

|φ|(φ̇, φ̇max) = E−1
pot

(
1

2
M(φ̇2

max − φ̇2)

)
, (3.1.7)

where E−1
pot denotes the inverse of the potential energy function restricted to non-

negative de�ection values, i.e. of Epot|[0,∞). This symmetry property also allows
us to concentrate only on the part of the phase plane where both φ and φ̇ are
non-negative when analysing the properties of these curves. Consequently, all
the properties of the curves can be found by simply analysing the two functions
(3.1.6) and (3.1.7).

Focusing now on the di�erences in the curves in Fig. 3.1.1 (Bottom), one
important di�erence exists in the values of the maximum velocity φ̇max. As
shown there, given the same maximum de�ection value the maximum velocity
the three MSS's attain are not necessarily equal to each other. The reason
for this can be found by looking at the equality (3.1.5) which relates φmax
and φ̇max. According to this equality, for any given MSS the value of φ̇max is
directly related to the potential energy stored at the de�ection φmax. As already
discussed, by our choice of the TDP's all the three MSS's analysed in Fig. 3.1.1
have the same potential energy for φmax = φc and since the masses of MSS's
are also equal to each other so are their maximum velocities in this case. For
φmax < φc, however, Epot(φmax) takes its maximum value for τJ,1 and similarly
for φmax > φc, Epot(φmax) is maximal for τJ,3. Consequently, for φmax < φc
the maximum velocity φ̇max is greatest for τJ,1 and for φmax > φc it is greatest
for τJ,3.

Another important di�erence between the illustrated curves are their cur-
vatures at zero de�ection and at the maximal de�ection. These curvatures can
be quantitatively analysed by evaluating the partial derivatives ∂2|φ̇|

∂φ2 (φ, φmax)

and ∂2|φ|
∂φ̇2

(φ̇, φ̇max) at φ = 0 and at φ̇ = 0, respectively. Using equations (3.1.6)-
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(3.1.7), it can be shown that these derivatives take the values

∂2|φ̇|
∂φ2

(0, φmax) = − ω2
0

φ̇max
, (3.1.8)

∂2|φ|
∂φ̇2

(0, φ̇max) = − M

τJ(φmax)
, (3.1.9)

where ω0 :=
√

KJ (0)
M denotes the eigenfrequency of MSS's when linearized

around their equilibrium. Notice that equations (3.1.8)-(3.1.9) and the pre-
viously discussed values of τJ ,KJ and Epot explain now why in Fig. 3.1.1 (Bot-
tom) the curvatures of the light blue and dark red dashed lines (φmax ≥ 3π

45 rad)
at the two de�ection values φ = 0 and φ = φmax are highest for τJ,1 and smallest
for τJ,3.

For brevity, we will not go into a more detailed discussion on the properties
of the illustrated curves, but summarize all the equations required for their
analysis in Table 3.1. More speci�cally, we introduce in Table 3.1a the TDP
types τJ,s, τJ,l and τJ,sh which respectively generalize the TDP's τJ,1, τJ,2 and
τJ,3 from Fig. 3.1.1, and provide the corresponding SDP's and potential energy
functions. Moreover, we give in Table 3.1b the expressions for the functions |φ̇|
and |φ| together with the equations for φ̇max and ω0 which clarify the relation
between the domains of these two functions1.

Our discussion on the trajectories of MSS's so far elucidates their dependence
on the system's energy and on the TDP. We have, however, not yet discussed
the times these trajectories need to move from one state to another. In the
following section, we show how to explicitly compute these times.

3.2 Time Properties

Based on our discussion on the trajectories of MSS's, we can see that for each
initial state (φ0, φ̇0) with EMSS(φ0, φ̇0) > 0 there exists a unique periodic solu-
tion φ : [0,∞)→ R of (3.1.1) such that the corresponding trajectory constantly
rotates on a closed curve when illustrated in a phase plane. Choosing an arbi-
trary state (φs, φ̇s) on that curve, which is not equal to the given initial state,
we are now interested in �nding the times t ∈ (0,∞) at which this trajectory
(φ, φ̇) reaches this second state, i.e. for which we will have(

φ(t), φ̇(t)
)

= (φs, φ̇s). (3.2.1)

1Notice that when using the expressions in Table 3.1 for the TDP τJ,s, φ and φmax are
allowed to take values only in the intervals (− π

2ke
, π

2ke
) and (0, π

2ke
), respectively. This is

done in order to ensure that assumption (A3) is satis�ed, see Section 2.1. Moreover, in the
de�nition of the TDP τJ,l we use two parameters, Ke and ke, instead of only one. This choice
better indicates the similarities and di�erences between the di�erent expressions for the three
TDP's. In addition, it will also be useful in Sec. 6.2, where we analyse the dependence of the
maximal link velocity on system parameters using dimensionless parameters.
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Moreover, we want to understand the in�uence a MSS's energy and TDP have
on these times.

It is important to notice here that there exist in�nitely many times for which
(3.2.1) will hold. Indeed, as (φ, φ̇) rotates clockwise in the phase plane the state
(φs, φ̇s) will be reached for the �rst time at a positive time ts and keep reaching
this point after every oscillation period Tp. Consequently, ts and Tp are su�cient
to describe the set of all possible times at which (3.2.1) will hold. We will next
show how to compute the minimum time ts that is required to reach the state
(φs, φ̇s) from (φ0, φ̇0) and discuss some of its main properties.

3.2.1 Minimum Time ts

There are di�erent possibilities for computing the minimum time ts. In the
following, we will show how to compute ts using (3.1.6) and (3.1.7).

Let us �rst assume that the trajectory starts from zero de�ection with a
positive velocity, as is the case for the trajectories illustrated in Fig. 3.1.1.
Moreover, assume that the state (φs, φ̇s) lies in the �rst quadrant of the phase
plane. The velocity φ̇ will then remain positive and the de�ection φ will strictly
increase until (φs, φ̇s) is reached for the �rst time. Consequently, for each t ∈
[0, ts] we will have |φ̇|(φ(t), φmax) = dφ

dt (t). Dividing now this relation by its left
hand side and integrating with respect to time, the minimum time ts will, for
positive values of φs, be given by the function Tφ : (−φmax, φmax)× (0,∞)→ R
with

Tφ(φs, φmax) =

∫ φs

0

dφ

|φ̇|(φ, φmax)
. (3.2.2)

If we now look at the more general case with2 sgn(φ̇0) = sgn(φ̇s) = sgn(φs−
φ0), the function Tφ can still be used to compute ts. Indeed, in this case
the velocity φ̇ will again not change its sign in the time interval [0, ts] and
depending on this sign the de�ection φ will either strictly increase or decrease
until (φs, φ̇s) is reached. Consequently, for each t ∈ [0, ts] we will now have
|φ̇|(φ(t), φmax) = sgn(φs−φ0)dφ

dt (t). Dividing again this relation by its left hand
side, noting that both sides are positive and integrating with respect to time, ts
can be computed using now the function ts,φ : (−φmax, φmax)2×(0,∞)→ [0,∞)
with

ts,φ(φ0, φs, φmax) = |Tφ(φs, φmax)− Tφ(φ0, φmax)| . (3.2.3)

Equation (3.2.3) provides us a possible way to compute the minimum time
ts assuming that the sign of φ̇ remains constant. As we will next show, we can
similarly �nd a function which can be used to compute ts in case the de�ection
φ and thus the acceleration do not change their signs.

2The sign function is de�ned as follows:

sgn : R→ {−1, 0, 1}, x→ sgn(x) =


−1 x < 0

0 x = 0

1 x > 0

.
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Assuming now that the initial state (φ0, φ̇0) lies in the �rst quadrant of the
phase plane and that φs equals to the maximal de�ection φmax, φ and φ̈ will
not change their signs and the velocity will strictly decrease until φ̇ equals to

φ̇s = 0 for the �rst time. According to (3.1.1), the equality
τJ(|φ|(φ̇(t),φ̇max))

M =

−dφ̇
dt (t) will hold in this case for each t ∈ [0, ts] leading to the function Tφ̇ :

(−φ̇max, φ̇max)× (0,∞)→ R with

Tφ̇(φ̇0, φ̇max) =

∫ φ̇0

0

Mdφ̇

τJ

(
|φ|(φ̇, φ̇max)

) . (3.2.4)

The function (3.2.4) gives the minimum time ts which is required by a MSS
starting from a positive de�ection φ0 and a positive velocity φ̇0 to reach the
maximum de�ection φmax. Similar to Tφ, the same function can also be used
for the computation of ts in the more general case in which we have sgn(φ0) =
sgn(φs) = sgn(φ̇0 − φ̇s). In this case, φ and φ̈ will not change their signs in
the interval [0, ts] either. Moreover, for each t in this time interval they will

be related to the velocity φ̇ through the equality
τJ(|φ|(φ̇(t),φ̇max))

M = sgn(φ̇s −
φ̇0)dφ̇

dt (t) which in turn leads to the function ts,φ̇ : (−φ̇max, φ̇max)2 × (0,∞) →
[0,∞) with

ts,φ̇(φ̇0, φ̇s, φ̇max) =
∣∣∣Tφ̇(φ̇s, φ̇max)− Tφ̇(φ̇0, φ̇max)

∣∣∣ . (3.2.5)

Notice that (3.2.5) can be used to compute ts whenever the sign of the de�ection
φ remains constant.

In general, both φ and φ̇ can change their signs in the time interval [0, ts].
Nevertheless, these changes can never occur simultaneously. Therefore, it is
always possible to divide the trajectory into a �nite number of subtrajectories
along which the sign of φ or φ̇ remains the same. Consequently, equations
(3.2.2)-(3.2.5) provide all the necessary relations required to determine the time
ts for any state (φs, φ̇s). As we will later show in Section 3.2.2, these equations
can also be used to compute the period Tp of a MSS. Nevertheless, before
showing how to compute the period of a MSS, we want to brie�y discuss several
properties of the functions Tφ and Tφ̇ which will clarify the in�uence of the
system's energy and TDP on ts and which will turn out to be useful in our
analysis of Tp.

Looking �rst at Tφ, the properties of this function are according to (3.2.2)
closely related to the properties of |φ̇|. Indeed, since for each given φmax > 0
the function |φ̇|(., φmax) is an even function of the de�ection it follows from the
de�nition of Tφ that we have for each (φ, φmax) ∈ DTφ := (−φmax, φmax) ×
(0,∞)

Tφ(−φ, φmax) = −Tφ(φ, φmax). (3.2.6)

Moreover, since |φ̇| is positive at each element of DTφ so is the partial derivative
∂Tφ
∂φ . Consequently, for each given φmax > 0 Tφ(φ, φmax) will be a strictly
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Figure 3.2.1: The Time Functions Tφ and Tφ̇ for MSS's with di�erent Spring
Characteristics

increasing function of φ. This simply means that the minimum time ts a MSS
with a given energy requires to reach a de�ection φs ∈ (0, φmax) from the state
(0, φ̇max) always increases as φs approaches the system's maximal de�ection
regardless of the system's TDP. Similarly, by looking at the partial derivative
∂Tφ
∂φmax

it can be shown that given a de�ection φs > 0 the minimum time required
to reach φs by a MSS with a su�ciently high energy from the initial state
(φ0, φ̇0) = (0, φ̇max), i.e. Tφ(φs, φmax), always decreases as φmax > φs and thus
the system's energy increases. Indeed, by applying Leibniz rule [61] to (3.2.2)
we �rst get ∂Tφ

∂φmax
: DTφ → R with

∂Tφ
∂φmax

(φ, φmax) = −τJ(φmax)

M

∫ φ

0

ds(
|φ̇|(s, φmax)

)3 . (3.2.7)

The discussed decrease follows then from the partial derivative (3.2.7) being
negative at each (φ, φmax) ∈ DTφ with φ > 0.

Figure 3.2.1 (Top) illustrates the function Tφ for the three MSS's whose
trajectories have been depicted in Fig. 3.1.1. More speci�cally, for each of
these MSS's Tφ is plotted as a function of the de�ection φ for four di�erent
values3 of φmax. In addition, we have also plotted for the three MSS's the
limits limφ→φ−max Tφ(φ, φmax) and limφ→−φ+

max
Tφ(φ, φmax) for φmax ∈ (0, 4π

45 ),
see the black dashed lines. According to (3.2.2) and (3.2.4), these limits provide
the minimum time a MSS requires to reach the state (φmax, 0) from (0, φ̇max).

3The exact same values have been used in Section 3.1 when investigating the trajectories
of these MSS's.
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The illustrated graphs for the function Tφ verify all of its discussed prop-
erties. Moreover, as expected from the independence of these properties on
the TDP, all the graphs for Tφ share a similar structure. Comparing the de-
picted limits, however, it can be observed that the dependence of these limits
on φmax is di�erent for the three MSS's having di�erent spring characteristics.
We postpone a detailed analysis of this dependence to Section 3.2.2, where we
will discuss oscillation periods of MSS's. Nevertheless, it is important to already
note here how this observed di�erence is closely related to the di�erence in the
SDP's of the three MSS's analysed, see Fig. 3.1.1.

If we now look at the properties of Tφ̇, we can see that they are similar to
the properties of Tφ. Indeed, noting this time the close relation between Tφ̇ and

|φ| it can be �rst shown using (3.2.4) that we have for each (φ̇, φ̇max) ∈ DTφ̇
:=

(−φ̇max, φ̇max)× (0,∞)

Tφ̇(−φ̇, φ̇max) = −Tφ̇(φ̇, φ̇max). (3.2.8)

Moreover, since |φ|(φ̇, φ̇max) > 0 holds at each (φ̇, φ̇max) ∈ DTφ̇
the partial

derivative
∂Tφ̇
∂φ̇

is positive at each element of DTφ̇
. In addition, the partial

derivative
∂Tφ̇
∂φ̇max

: DTφ̇
→ R which according to (3.2.4) equals to

∂Tφ̇

∂φ̇max
(φ̇, φ̇max) = −M2φ̇max

∫ φ̇

0

KJ

(
|φ|(s, φ̇max)

)
τJ

(
|φ|(s, φ̇max)

)3 ds (3.2.9)

takes always negative values. Finally, if we look at limφ̇→φ̇−max Tφ̇(φ̇, φ̇max) for

an arbitrary φ̇max > 0 and note that this limit provides the minimum time a
MSS requires to reach the state (φmax, 0) from (0, φ̇max), we can see that Tφ
and Tφ̇ are related to each other as follows:

lim
φ→φ−max

Tφ(φ, φmax) = lim
φ̇→φ̇−max

Tφ̇(φ̇, φ̇max). (3.2.10)

Fig. 3.2.1 (Bottom) plots Tφ̇ as a function of φ̇ for four di�erent values of

φ̇max which correspond to the maximum de�ection values used when plotting
Tφ. Furthermore, limφ̇→φ̇−max Tφ̇(φ̇, φ̇max) and limφ̇→−φ̇+

max
Tφ̇(φ̇, φ̇max) are also

depicted. Due to the close relation (3.1.5) between φmax and φ̇max and the
discussed similarities of the functions Tφ and Tφ̇ all the illustrated graphs share
actually a similar structure. Table 3.1c provides analytical expressions of these
two functions for the TDP's τJ,s, τJ,l and τJ,sh which have been used in creating
Fig. 3.1.1. We will come back to these expressions again in Chapter 5 when we
construct optimal control strategies solving the LVMP.

Having shown how to compute the minimum time ts using mainly the two
functions Tφ and Tφ̇ and having discussed their basic properties, we next turn
our attention to the oscillation period Tp of MSS's.
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3.2.2 Oscillation Period Tp

As already mentioned, functions φ : [0,∞) → R solving (3.1.1) are periodic if
EMSS(φ0, φ̇0) > 0. The oscillation period Tp of MSS's is given by the minimal
period of these solutions and we want to next show how to compute this period.

Following our discussion in the beginning of Section 3.2, the oscillation period
of a MSS is equal to the time required by its trajectory (φ, φ̇) to reach the state
(φs, φ̇s) for the second time after ts. Assuming that (φs, φ̇s) is located in the �rst
quadrant of the phase plane, i.e. φs > 0 and φ̇s > 0, let us introduce four trajec-
tories, which respectively start from the states (φs, φ̇s), (φs,−φ̇s), (−φs,−φ̇s),
(−φs, φ̇s) and terminate the �rst time they reach (φs,−φ̇s), (−φs,−φ̇s), (−φs, φ̇s)
and (φs, φ̇s). Since along these trajectories the sign of either φ or φ̇ will not
change, the time required by each of them to reach their �nal state can be de-
termined using (3.2.3) and (3.2.5). Summing up these times leads us then to
the function Tp : (0,∞)→ (0,∞) with

Tp(φmax) = 4
[
Tφ(φs, φmax) + Tφ̇(φ̇s, φ̇max)

]
, (3.2.11)

where we have Epot(φmax) = Ekin(φ̇max) = EMSS(φs, φ̇s), φ̇max > 0 and
(φs, φ̇s)

T ∈ (0, φmax)× (0, φ̇max).
It is important to remark here that for deriving (3.2.11), we have made

use of the symmetry properties (3.2.6) and (3.2.8) together with the fact that
both Tφ and Tφ̇ take positive values in their domains of de�nition when their
�rst arguments are positive. Moreover, notice that we have de�ned Tp as a
function of only the maximum de�ection corresponding to the system's energy.
This follows from the fact that for any state (φs, φ̇s) having the same positive
energy the corresponding trajectories will move on the same closed curve and
consequently the resulting oscillation period will be the same.

Using the fact that the oscillation period can be written as a function of
only φmax, the expression (3.2.11) for Tp can now be rewritten such that it only
depends on Tφ or Tφ̇. To see this, let us substitute in the right-hand side of

(3.2.11) the function |φ̇|(φs, φmax) for the velocity φ̇s. For each φmax > 0, the
resulting expression will then be a constant function of φs. Taking the limit of
this function as φs goes to 0+ and to φ−max yields then the following two more
common formulations for Tp:

Tp(φmax) = 4 lim
φ̇s→φ̇−max

Tφ̇(φ̇s, φ̇max), (3.2.12)

= 4 lim
φs→φ−max

Tφ(φs, φmax). (3.2.13)

Notice that the two equalities above clarify the well-known relation between the
limits depicted in Fig. 3.2.1 and the oscillation period Tp of the corresponding
MSS's.

Obviously, we could have directly de�ned the oscillation period using one
of the two limits in (3.2.12)-(3.2.13). Nevertheless, for both of these limits an
integral needs to be evaluated which has a singularity either at φ = φmax or at



CHAPTER 3. MASS-SPRING SYSTEMS 37

φ̇ = φ̇max. Consequently, for TDP's for which no analytical expressions exist for
Tφ or Tφ̇ approximating these integrals numerically is not straightforward. In
order to have our method of �nding the optimal control strategy being applicable
for any TDP satisfying our assumptions we have decided to follow this current
approach. Moreover, this approach enables us to analyse the dependence of Tp
on φmax for any MSS as we will shortly see.

Table 3.1d summarizes for the three TDP's τJ,s, τJ,l and τJ,sh analytical ex-
pressions for Tp which have been found using (3.2.13). Moreover, the derivatives

dTp
dφmax

of these expressions are provided in that table as well. Based on the sign
of these derivatives, it can now be concluded that in accordance with the limits
depicted in Fig. 3.2.1 the oscillation period Tp for the TDP τJ,s is always a
strictly increasing function of φmax on (0, π

2ke
) regardless of the value of the

parameters Ke, ke and M . Similarly, for the linear TDP τJ,l Tp is always con-
stant while for τJ,sh it is always strictly decreasing on (0,∞). In the remainder
of this subsection, we will take a closer look at the derivative dTp

dφmax
and show

in particular how the observed monotonicity of Tp generalizes to MSS's with
arbitrary softening and hardening springs4.

A general expression for dTp
dφmax

can be found by taking the derivative of
(3.2.11) with respect to φmax. When taking this derivative, however, it needs to
be taken into account that in the right-hand side of (3.2.11) both φs and φ̇s are
positive and lie on the closed curve described by EMSS(φs, φ̇s) =

∫ φmax
0

τJ(s)ds.
This can be done by substituting, as before, the function |φ̇|(φs, φmax) for the
velocity φ̇s. Taking the partial derivative of the resulting expression with respect
to φmax and using (3.1.5) together with (3.1.6) and (3.2.4) we can then conclude
that dTp

dφmax
: (0, φmax)→ R is given by5

dTp
dφmax

(φmax) = 4

[
∂Tφ
∂φmax

(φs, φmax) +
τJ(φmax)

τJ(φs)φ̇s
+

τJ(φmax)

Mφ̇max

∂Tφ̇

∂φ̇max
(φ̇s, φ̇max)

]
, (3.2.14)

where we have the same conditions on φ̇max and (φs, φ̇s) as in (3.2.11).
The dependence of the oscillation period of a MSS on its maximal de�ection

and thus on its energy can now be investigated by analysing the sign of (3.2.14).
Based on our previous discussions, we already know that the �rst and third
terms in the parenthesis are always negative. The second term, on the other
hand, is always positive. Consequently, for a given MSS the sign of dTp

dφmax
can take di�erent values depending on φmax. The following proposition gives

4We call a spring softening/hardening if the corresponding TDP satis�es assumptions

(A1) − (A3), is two-times continuously di�erentiable, and d2τJ
dφ2 (φ) is negative/positive for

each φ > 0.
5Notice that according to (3.1.5), (3.1.6) and (3.2.4), we have dφ̇max

dφmax
=

τJ (φmax)

Mφ̇max
,

∂|φ̇|
∂φmax

(φs, φmax) =
τJ (φmax)

Mφ̇s
and

∂T
φ̇

∂φ̇
(φ̇s, φ̇max) = M

τJ (φs)
.
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su�cient conditions under which a sign change of dTp
dφmax

can never occur in a
given interval.

Proposition 1. Let τJ be a given TDP such that

1. τJ satis�es assumptions (A1)− (A3),

2. τJ is two-times continously di�erentiable,

3. There exists a ϕmax > 0 such that we have

(∀φ ∈ (0, ϕmax))

(
sgn

(
d2τJ
dφ2

(φ)

)
= const.

)
.

Then for any MSS with the TDP τJ , we have

(∀φ ∈ (0, ϕmax))

[
sgn

(
dTp

dφmax
(φ)

)
= − sgn

(
d2τJ
dφ2

(φ)

)]
.

Proof. See Appendix B.1.

It is well known that the period of a MSS with a linear TDP is always
constant and does not depend on the system's energy, see for instance [35].
Proposition 1 generalizes this property by providing a relation between the
sign of the derivative dTp

dφmax
and the sign of d2τJ

dφ2 . More speci�cally, with this
proposition we now see that the period of a MSS with a softening spring always
increases if the system's energy is increased. Similarly, the period of a MSS
always decreases with increased energy if the system has a hardening spring. In
Chapter 5, we will see how di�erent possibilities for the sign of dTp

dφmax
in�uence

the optimal control strategies solving the LVMP.



Chapter 4

Switching Control Strategies

As we will show in Chapter 5, optimal controls for the LVMP are all switching
controls. In order to better understand the trajectories corresponding to these
optimal controls, we derive in this chapter several properties of Σ for the case
when the system is controlled by an element of SU. In particular, we will
�rst look at the trajectories corresponding to admissible switching controls and
clarify their relation to trajectories of MSS's. Focusing on the energy stored
along trajectories of Σ, we will then discuss the maximal energy which can be
attained using admissible switching controls with a limited switching number.

4.1 Trajectories

Let us assume that u : D → U is an admissible switching control with the
switching number i ≥ 0. By de�nition, we know that for any given k ∈ Si the
value of the control u remains constant in the time interval Dk. Moreover, if i
is positive and k < i holds the control will instantaneously change its value at
tS,k+1. According to (2.1.4), along trajectories of the control system Σ which
corresponds to u, the time-derivative of the de�ection will then not be continu-
ous at tS,k+1. This is in clear contrast with trajectories of MSS's. Nevertheless,
trajectories corresponding to u and trajectories of MSS's are both closely re-
lated and in this section we will elaborate on this relation. In particular, we will
show how using this relation we can construct trajectories corresponding to any
admissible switching control.

To see the above mentioned relation, let us �rst �x a k ∈ Si and focus on the
time interval Dk where u is constant. Taking the time-derivative1 of the �rst

1Strictly speaking, if tS,k is a switching time the time-derivative of x1 does not exist at
this time. Nevertheless, in such a case it follows from the continuity of the state x and the
piecewise continuity of u that the two limits lim

t→t−
S,k

ẋ1(t) and lim
t→t+

S,k
ẋ1(t) exist, see

(2.1.4). In accordance with our assumption on the control u being left-continuous, see the
de�nition of PCU and SU in Sec. 2.2, we will use, with a slight abuse of notation, ẋ1(tS,k) to
denote the limit lim

t→t+
S,k

ẋ1(t).

39
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row of (2.1.4) and substituting the second row into the resulting expression, we
arrive then at the following second-order di�erential equation for the dynamics
of the de�ection x1:

Mẍ1 + τJ(x1) = 0. (4.1.1)

Clearly, (4.1.1) is the exact same di�erential equation that describes the dy-
namics of a MSS. Consequently, we can make use of all the functions introduced
in the previous chapter to �nd and analyse the solution to this equation. In
particular, using these functions with the mass and TDP of Σ we can uniquely
compute x1 and ẋ1 at each t ∈ Dk, if we know the two boundary conditions
kx1 := x1(tS,k) and kẋ1 := ẋ1(tS,k). Moreover, using x2 = ku− ẋ1 we can also
determine the trajectory x corresponding to u for t ∈ Dk.

Depending on the values of kx1 and kẋ1, it is important to distinguish here
between two di�erent cases as we have done for MSS's. First of all, from our
discussions in Chapter 3 we know that in a phase plane the pair (x1, ẋ1) will
remain at the origin if both kx1 and kẋ1 and thus EMSS(kx1,

kẋ1) are equal to
zero. In this case, the de�ection in the spring remains at zero for each t ∈ Dk

while both the motor and the link rotate with the same velocity. In a phase
plane, the trajectory x will then simply be described by a point on the vertical
axis with its position depending only on the value of the control.

In the more general case where (kx1,
k ẋ1) 6= 0 holds, we know that in a phase

plane the pair (x1, ẋ1) will move on a closed curve described by EMSS(x1, ẋ1) =
EMSS(kx1,

kẋ1). From the symmetry of this closed curve and the equality
x2 = ku− ẋ1 it follows that in a phase plane x will then also move on a closed
curve. Moreover, this curve can be obtained from the closed curve for (x1, ẋ1) by
simply shifting it vertically by ku. Finally, if the time interval Dk is su�ciently
long x1 will periodically oscillate between −kφmax and kφmax while x2 will
oscillate between ku− kφ̇max and ku+ kφ̇max.

It is important to remark here that for both cases discussed above, the
constant value of EMSS(x1, ẋ1) in the time intervalDk corresponds physically to
the energy of the EJ when computed relative to a frame that is rigidly attached
to the motor. For that reason, we will call this value the system's relative energy
along the trajectory x in Dk and denote it simply by kErel. Since our choice
for k was arbitrary, this energy is given for each k ∈ Si by

kErel := Epot(
kx1) + Ekin(kẋ1). (4.1.2)

So far we have shown how depending on kx1,
kẋ1 and ku, we can compute

and graphically illustrate x in Dk for any given k ∈ Si. If the control u does
not switch, i.e. D = D0, the entire trajectory x can thus be found using merely
the initial state x0 and the control u ≡ ku. We show in the following how using
x0 and u we can �nd the entire trajectory if the switching number is non-zero.

Assuming that i > 0 holds, we need to determine the values of x1 and ẋ1

at each tS,k ∈ {tS,0, . . . , tS,i} in order to apply the results from our discussion
above. It is important to realize here that these values are not independent of
each other. Indeed, knowing the trajectory x in Dk with now k ∈ Si−1 we can
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Figure 4.1.1: Trajectories of EJ's with velocity-sourced SEA's and di�erent
Spring Characteristics

uniquely determine the values of k+1x1 and k+1ẋ1 at the switching time tS,k+1

using the continuity of x:

k+1x1 = lim
t→t−S,k+1

x1(t), (4.1.3)

k+1ẋ1 = k+1u− ku+ lim
t→t−S,k+1

ẋ1(t). (4.1.4)

With equations (4.1.3)-(4.1.4) we can now use the trajectory x in Dk and
the change in the control at tS,k+1 to �nd the values k+1x1 and k+1ẋ1. This
also means that starting from k = 0 with the two values for 0x1 and 0ẋ1, we can
iterarively construct the entire trajectory x by solving (4.1.1) to �nd x in Dk

and using, if k 6= i, (4.1.3)-(4.1.4) to determine the required boundary conditions
at the switching time tS,k+1. Since the two values 0x1 and 0ẋ1 depend only on
the initial state x0 and the control u, we have thus found our desired way of
determining the trajectory x corresponding to u.

Note that our choice for the control u was arbitrary. Consequently, with
our results obtained so far we can now uniquely construct trajectories of Σ
which start from any given initial state x0 ∈ R2 and correspond to any u ∈ SU.
Moreover, having a means to construct these trajectories we can also analyse, as
in Chapter 3, how di�erent TDP's can in�uence trajectories of EJ's with velocity
sourced SEA's. In the remainder of this section, we want to brie�y conduct such
an analysis by looking at the trajectories of three di�erent control systems Σ1,Σ2

and Σ3 which only di�er in their TDP's2, see Table 4.1a-4.1c. More speci�cally,

2The subscripts used for the control systems are in accordance with the functions describing
their TDP's. That is, the TDP's in Σ1,Σ2 and Σ3 are equal to τJ,1, τJ,2 and τJ,3, respectively.
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M Ke ke θ̇max
Σsin M ∈ (0,∞) Ke ∈ (0,∞) ke ∈ (0,∞) θ̇max ∈ (0,∞)

Σ1 1[kgm2] 875

32(1−cos( 35π
96 ))

[Nm] 175
32 [1] 1

2 [ rads ]

τJ(φ) = τJ,s(φ) = Ke sin(keφ), φ ∈ (− π
2ke

, π
2ke

)

(a) Control Systems Σs and Σ1

M Ke ke θ̇max
Σid M ∈ (0,∞) Ke ∈ (0,∞) ke ∈ (0,∞) θ̇max ∈ (0,∞)

Σ2 1[kgm2] 2250
π2 [Nm] 1[1] 1

2 [ rads ]
τJ(φ) = τJ,l(φ) = Kekeφ, φ ∈ R
(b) Control Systems Σid and Σ2

M Ke ke θ̇max
Σsinh M ∈ (0,∞) Ke ∈ (0,∞) ke ∈ (0,∞) θ̇max ∈ (0,∞)

Σ3 1[kgm2] 150
π(cosh(2)−1) [Nm] 30

π [1] 1
2 [ rads ]

ΣFSJ,i 2.251[kgm2] 135e−
2π
3 [Nm] 12[1] i[ rads ]

τJ(φ) = τJ,sh(φ) = Ke sinh(keφ), φ ∈ R, i ∈ (0,∞)

(c) Control Systems Σsh,Σ3 and ΣFSJ,i

Table 4.1: Parameters of the investigated Control Systems

we will apply to all these systems the same de�ection dependent control strategy
which is known to maximize the terminal link velocity of EJ's with LSEA's when
they are initially at rest and when the control is constrained to have only one
switching [17]. Comparing the resulting trajectories and refering to our results
from the previous chapter, we will then see how with a NSEA we can reach the
same terminal link velocity as with a LSEA using less spring de�ection and a
smaller amount of time.

Figure 4.1.1 illustrates for each of the three control systems the trajectory
that starts from the origin and corresponds to the control strategy mentioned
above. As shown there, all the applied controls start with their minimum motor
velocity and switch once to their maximum value when the de�ection in the
spring equals to zero for the second time. Moreover, all trajectories terminate
as soon as the de�ection equals to zero for the third time.

A closer look at the phase plot in Fig. 4.1.1 shows that the applied control
strategy results for each control system to the same values for x1 and ẋ1 at
tS,0 and tS,1. Consequently, the relative energies 0Erel and 1Erel and thus the
velocities 0φ̇max and 1φ̇max are not a�ected by the TDP. This then results not
only in having a similar structure for the depicted trajectories but also in having
the same terminal link velocity of 4θ̇max. Nevertheless, looking at the de�ection
values attained along the depicted trajectories we can observe that the values
of 0φmax and 1φmax depend on the TDP of the system. More speci�cally, these
two values are minimal for Σ1 and maximal for Σ3. This di�erence in the
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de�ection trajectories actually occurs since the TDP of each system requires
di�erent spring de�ections to fully store the two relative energies 0Erel and
1Erel as potential energy, see Fig. 3.1.1. Note, in particular, that Σ1 obtains
the minimal values since the two relative energies 0Erel and 1Erel are less than
5J.

Comparing now the time along the depicted trajectories, it can be observed
that similar to the maximal de�ection values the �nal time also depends on
the TDP of the systems. According to the relation between trajectories of
EJ's and MSS's we have just shown, this �nal time will be equal to the sum
Tp(0φmax)

2 +
Tp(1φmax)

2 for each system. Looking now at the limits depicted in
Fig. 3.2.1 (Top), it can be seen that both of these terms in this sum take
their minimal values for the control system Σ1 and their maximal values for
the control system Σ3. Accordingly, we see in Fig. 4.1.1 that the terminal link
velocity 4θ̇max is reached by the control system Σ1 using the least amount of
time and by Σ3 using the greatest amount.

Having introduced the concept of relative energy and shown how to construct
trajectories of Σ corresponding to admissible switching controls, we next turn
our attention to the maximal energy which can be stored along these trajectories.
In particular, for a given switching number we provide switching strategies which
maximize this energy in minimum time. With our results we will then see that
the de�ection dependent control strategy used in Fig. 4.1.1 actually maximize
both the terminal link velocity and the terminal energy of all the three control
systems over switching controls u ∈ SU with one switching.

4.2 Maximal Energy

As in a MSS, we de�ne the energy of an EJ with a velocity sourced SEA as
the sum of the potential energy stored in its elastic elements and the kinetic
energy of its link. This energy is in general, in contrary to a MSS, not constant
and depends on the motor velocity. To see this, let us �rst �nd a mathematical
expression describing the energy stored along trajectories of Σ. These trajec-
tories are uniquely determined by their initial state and by the control applied
to them3. Taking also their time dependence into account leads us then to the
energy function EEJ : R2 × U ×D → R with

EEJ(x0, u, t) = Epot (x1(t)) + Ekin (x2(t)) , (4.2.1)

where x denotes the trajectory corresponding u : D → U. Equation (4.2.1)
gives us the desired expression for the energy of Σ. The mentioned dependence
of this energy on the applied control can now easily be seen by taking the time-
derivative of this expression which leads to4

∂EEJ
∂t

(x0, u, t) = τJ (x1(t))u(t). (4.2.2)

3See Appendix B.3.1.
4Notice that this time-derivative exists everywhere except at those points where u has a

discontinuity and the de�ection x1 is non-zero.
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Note that for deriving (4.2.2), we have simply used (2.1.4) together with the
de�nitions (3.1.2)-(3.1.3).

According to (4.2.2) the in�uence of the control on the system's energy
EEJ is closely related to the torque in the spring. The aim of this section is
to analyse this relation by discussing how to maximize EEJ using admissible
switching controls when the system is initially at rest. More speci�cally, we will
deal with the problem of maximizing EEJ using controls u ∈ SU with a limited
number of switchings and focus in particular on the strategies which require the
least amount of time to reach this maximal energy. In order to be more precise,
let us now give here the mathematical formulation of this Energy Maximization
Problem (EMP).

Energy Maximization Problem (EMP): For a given switching number i ≥ 0,
�nd the switching control u∗S which maximizes EEJ(0, u, tf ) over all admissible
switching controls u ∈ SU with i switchings in minimum time.

To increase readability, we will from here on mostly omit the �rst argument
of EEJ whenever x0 equals to 0. Moreover, in the remainder of this section we
will automatically assume that trajectories of a given control system start from
the origin if we do not explicitly state their initial state.

In order to derive the solution to the EMP, we want to �rst take a closer
look at the relative energy along a trajectory x which corresponds to a control
u ∈ SU with i ≥ 0 switchings. From our discussions in Section 4.1 we already
know that this relative energy is going to take only a �nite number of values, see
(4.1.2). We will next show that these values are closely related to the system's
energy. For this let us �x a k ∈ Si and compare the relative energy kErel with
the energy EEJ(u, t) attained at a time t ∈ Dk. Using (4.1.2) and (4.2.1) we
obtain the following relation between both energies:

EEJ(u, t) = kErel +M

(
ku2

2
− kuẋ1(t)

)
(4.2.3)

≤ kErel +M

(
θ̇2
max

2
+ θ̇max

kφ̇max

)
. (4.2.4)

It is important to realize here that the inequality in (4.2.4) will hold with equality
only if we have |ku| = θ̇max for the magnitude of the control. Moreover, in case
kErel is non-zero both x1(t) = 0 and sgn (ẋ1(t)) = − sgn(ku) must hold at
t ∈ Dk.

Equation (4.2.3) clari�es the relation between the system's relative and real
energy while (4.2.4) uses this relation to provide an upper bound for the total
energy along x. Focusing on EEJ(u, tf ), we can see that the corresponding
upper bound at the �nal time only depends on iErel and θ̇max. Moreover, it fol-
lows from (4.2.3) that in case |iu| = θ̇max holds we can always attain this upper
bound by only adjusting, if necessary, the length of the time interval Di. Based
on these observations, it is tempting to assume that maximizing EEJ(u, tf ) re-
quires us to �rst maximize the relative energy iErel. This assumption can be
veri�ed using the following proposition which provides the maximal value for
iErel as well as two su�cient conditions for a control to reach it.
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Proposition 2. Let i ≥ 0 be a non-negative integer and u ∈ SU a control with
the switching number i. Then, along the trajectory x which starts from x0 = 0
and corresponds to u we have for each k ∈ Si the following inequality for the
relative energies:

kErel ≤ Er,max(k) :=
(2k + 1)

2

2
Mθ̇2

max. (4.2.5)

Moreover, all the inequalities hold with equality in case we have

|u(0)| = θ̇max, (4.2.6)

and
(∀t ∈ (0, tf ]) [x1(t) 6= 0⇒ u(t) = sgn (x1(t)) θ̇max]. (4.2.7)

Proof. See Appendix B.2.

Proposition 2 tells us that along a trajectory x which corresponds to a
control u ∈ SU with i switchings, iErel is always bounded above by Er,max(i).
Moreover, this upper bound will be attained exactly if the control u satis�es
the two conditions (4.2.6)-(4.2.7). Note that the magnitude of such a control
will always remain at θ̇max, since x can not remain at zero de�ection when the
relative energy remains positive.

We show in Appendix B.2 that an admissible switching control satisfy-
ing (4.2.6)-(4.2.7) always exists for any switching number5. Consequently, we
can now conclude from (4.2.3)-(4.2.4) and from Proposition 2 that maximizing
EEJ(u, tf ) using a control u ∈ SU with i switchings is indeed only possible by
�rst maximizing iErel and then choosing the time interval Di such that (4.2.4)
holds with equality at tf with k = i. The following proposition provides the
corresponding maximum value of EEJ(u, tf ) and also clari�es how to reach it
after maximizing the relative energy iErel using the control strategy described
in Proposition 2.

Proposition 3. Let i ≥ 0 be a non-negative integer and u ∈ SU a control with
the switching number i. Then we have the following inequality for the system's
total energy:

EEJ(u, tf ) ≤ Emax(i) := 2(i+ 1)2Mθ̇2
max. (4.2.8)

Moreover, the inequality in (4.2.8) will hold with equality if along the controlled
trajectory (x, u) with x0 = 0, (4.2.6)-(4.2.7) are satis�ed together with

x1(tf ) = 0. (4.2.9)
5More speci�cally, we show in Lemma 41 that the two conditions (4.2.6)-(4.2.7) together

with an initial control u(0) ∈ {−θ̇max, θ̇max} and a �nal time tf uniquely describe an admis-
sible controlled trajectory (x, u) with x0 = 0. In addition, we show there that the control u
will then always be an element of SU with its switching number depending on the �nal time tf ,
see (B.2.5). It follows from this last relation between the switching number and the �nal time
that for any given i ≥ 0 we can �nd an admissible switching control satisfying the conditions
(4.2.6)-(4.2.7) with i switchings.
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Proof. Let u an admissible switching control with i ≥ 0 switchings. The in-
equality (4.2.8) follows from the inequality (4.2.4) by noting that for k = i and
t = tf ∈ Di, the maximal value for iErel is given by Er,max(i) and the maximum

value for iφ̇max by
√

2Er,max(i)
M = (2i+ 1)θ̇max.

Let us now assume that along the controlled trajectory (x, u) with x0 = 0 the
conditions (4.2.6), (4.2.7) and (4.2.9) are all satis�ed. According to Proposition
2, for each k ∈ Si the relative energy kErel in Dk is then positive so that x1 can
never remain at zero in a �nite time interval. This means that we have for each
k ∈ Si, kx1 = 0 and thus |kẋ1| = (2i + 1)θ̇max > 0. Since u has i switchings,
it follows from (4.2.6)-(4.2.7) and from the condition (4.2.9) that we must have

tf = tS,i+
Tp(iφmax)

2 and thus ẋ1(tf ) = −iẋ1. The proof now follows from (4.2.3)
with k = i and t = tf if we also consider the equality sgn(iẋ1) = sgn(iu) which
holds due to Lemma 41.

According to Proposition 3, the maximal energy which can be transfered to
an EJ with a velocity sourced SEA is given by Emax(i) if we use an admissible
switching control with i ≥ 0 switchings and if the system is initially at rest.
Moreover, this energy can be fully transfered to the system by using the de�ec-
tion dependent control strategy from Proposition 2 if after the i'th switching
the control remains constant until the de�ection of the spring equals to zero
for the �rst time after tS,i. Note that there is a straightforward physical inter-
pretation for this strategy. Indeed, according to (4.2.2) this strategy requires
us simply to apply at each non-zero spring de�ection the control input which
maximizes the power that �ows into the system until the maximum possible
energy is transferred.

It is important to remark here that the three conditions (4.2.6)-(4.2.7) and
(4.2.9) are only su�cient for maximizing the system's total energy using admis-
sible switching controls and not necessary. This is most obvious for switching
controls with 0 switchings where the corresponding trajectories are periodic. By
applying the control u ≡ θ̇max, for instance, the maximal energy for EEJ can be
attained periodically at multiple times if the �nal time is su�ciently high. Since,
however, the de�ection in the spring will then also change its sign periodically,
we can see that EEJ can be maximized without satisfying (4.2.7). Nevertheless,
as the following proposition shows, in case the maximum value of EEJ is to be
attained in minimum time all the three conditions from Proposition 3 must be
satis�ed.

Proposition 4. Let i ≥ 0 be a non-negative integer and u ∈ SU a control
with the switching number i such that EEJ(u, tf ) = Emax(i). Then, along the
trajectory x which starts from x0 = 0 and corresponds to u we have for each
k ∈ Si

kx1 = 0 ∧ kErel = Er,max(k). (4.2.10)

In addition, for each k ∈ Si+1\{0} the following inequality holds for the time
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tS,k:

tS,k ≥ tmin(k) :=
1

2

k−1∑
l=0

Tp(
lφmax), (4.2.11)

with
Epot(

lφmax) = Er,max(l). (4.2.12)

Finally, the inequality (4.2.11) will hold with equality for the �nal time tf , i.e.
for k = i + 1, if and only if both (4.2.6) and (4.2.7) hold along (x, u) together
with (4.2.9). Moreover, in this case (4.2.11) will hold with equality also for each
k ∈ Si+1\{0}.

Proof. See Appendix B.2.

One important result we can immediately deduce from Proposition 4 is that
using a control u ∈ SU with i switchings one can only reach the maximal value
for EEJ(u, tf ), i.e. Emax(i), if all the previously obtained relative energies are
maximized by that control as well, see (4.2.10). Moreover, this will only be
possible if switchings of the control occur at zero de�ection and if the terminal
de�ection equals to zero. Looking at the minimum time required to maximize
the system's energy, i.e. at tf = tmin(i + 1), the second important result of
Proposition 4 is the direct relation between this time and the obtained relative
energies in terms of the oscillation period Tp, see (4.2.11)-(4.2.12).

Propositions 3 and 4 provide now together the solution to the EMP. In par-
ticular, given a switching number i ≥ 0 Proposition 3 establishes the existence
of a maximum of EEJ(u, tf ) over controls in SU with i switchings. Proposition
4 provides then the �nal time as well as the switching times of the control which
leads to this maximum value for EEJ using the least amount of time, see (4.2.11).
Since the magnitude of the control will remain at θ̇max due to (4.2.6)-(4.2.7),
these times together with the initial value of the control u(0) ∈ {−θ̇max, θ̇max}
determine then uniquely the control strategy u∗S which solves the EMP for the
given switching number i. Note that this also means that for any switching
number there exists exactly two di�erent control strategies which will solve the
EMP.

If we now look back at Fig. 4.1.1, it can be observed that the controlled
trajectories there all satisfy the required conditions by Proposition 4 with i =
1. Consequently, the depicted controls solve the corresponding EMP. In other
words, the maximum possible value for the total energy, which equals to Emax(1)
since the controls switch only once, is attained as fast as possible, i.e. tf =
tmin(2). Moreover, since the terminal de�ection is equal to zero and the �nal
link velocity is positive we can also conclude that the depicted strategies actually
maximize the terminal link velocity over the set of all admissible switching
controls with one switching as well. It is important to realize here that given
any switching number i, one can actually always �nd a control strategy that
solves the EMP and simultaneously maximizes the terminal link velocity over
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controls in SU with i switchings6. In the following two chapters, we will take a
closer look at these control strategies solving the EMP and show in particular
that these strategies satisfy all the necessary conditions from PMP to be a
solution to the LVMP. Nevertheless, we will also see that for nonlinear TDP's
they will not necessarily solve the LVMP.

6Note that for any given i ≥ 0 the two control strategies solving the EMP only di�er in
their signs. Consequently, due to the symmetry of the TDP's the corresponding trajectories
will be symmetric with respect to the origin when they are depicted in a phase plane. This
means that one of the control strategies solving the EMP will always result to a positive
terminal link velocity as Emax(i) > 0 and ix1 = 0.



Chapter 5

Optimal Control Strategies

In this chapter, we will �rst show that there always exists an admissible control
strategy solving the LVMP regardless of the given �nal time tf > 0. Then, in
Sec. 5.2 we will derive several basic properties of these control strategies. In
particular, making use of PMP [44] and the oscillation nature of both the state
and costate dynamics we derive necessary conditions for these strategies in terms
of the attained relative energies and spring de�ections. Providing a construction
method for extremals, i.e. controlled trajectories satisfying the conditions from
PMP, and further introducing a parameterization to simultaneously account
for their �nal times and terminal link velocities, Sec. 5.3 �nally shows how to
solve the LVMP. Noting the close relation between the time functions from Sec.
3.2 and the derived conditions for the solutions to the LVMP, we conclude the
chapter by revealing a physical principle behind these solutions.

5.1 Existence

We have shown in Chapter 3 that the period of a MSS with a hardening spring
strictly decreases as the system's energy increases. According to Table 3.1d,
this period can even go to zero. For control strategies solving the EMP, this
means that for a SEA with hardening springs the time between two switching
times can go to zero as the number of switchings increase. Since by increasing
the switching number we can always increase the terminal link velocity, it seems
then reasonable to speculate that by using certain TDP's the link velocity of an
EJ can be made arbitrarly large in a �nite time. For such TDP's, however, the
LVMP would not always have a solution. In this section, we will �rst show that
the situation just described can never occur and then prove that a solution to
the LVMP always exists.

We start our discussion by illustrating how for a given trajectory of Σ we
can always build a compact subset of the state-space in which the trajectory
remains. For this, we will take an energy based approach. More speci�cally, we
will exploit (4.2.2) and show that the energy which can be transferred from or

49
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to the system in a limited time must be bounded.
Let (x, u) be an arbitrary controlled trajectory of Σ de�ned on D = [0, tf ].

Looking at the right-hand side of (4.2.2), we can see that at each t ∈ D the
power input to the system can be bounded using the maximum motor velocity
and the system's current energy EEJ . Indeed, de�ning a maximal de�ection
function1 ψmax : D → [0,∞) which corresponds to the energy stored along
(x, u) with

ψmax(t) = E−1
pot (EEJ(x0, u, t)) , (5.1.1)

we have the following inequality for EEJ at each t ∈ D:∣∣∣∣∂EEJ∂t
(x0, u, t)

∣∣∣∣ ≤ θ̇maxτJ (ψmax(t)) . (5.1.2)

Using the fact that (5.1.2) can only hold with equality if the link velocity equals
to zero, we arrive then at the following proposition leading to the desired com-
pact set.

Proposition 5. Let (x, u) be an admissible controlled trajectory de�ned on
D = [0, tf ]. Then, the following inequality holds for the maximal de�ection
ψmax given by (5.1.1):

(∀t ∈ (0, tf ])
[
|ψmax(t)− ψmax(0)| < θ̇maxt

]
. (5.1.3)

In particular, using the lower and upper bounds for ψmax de�ned by

ψlb := max
{

0, ψmax(0)− θ̇maxtf
}
, (5.1.4)

ψub := ψmax(0) + θ̇maxtf , (5.1.5)

we can build a compact set SEb with

SEb :=
{
y ∈ R2|EMSS(y1, y2) ∈ [Epot(ψlb), Epot(ψub)]

}
(5.1.6)

such that the following relation holds along x:

(∀t ∈ [0, tf ]) [x(t) ∈ SEb ] . (5.1.7)

Proof. See Appendix B.3.1.

According to Proposition 5, we can now �nd for any trajectory of Σ a lower
and an upper bound for the system's energy which in turn describe a compact
set SEb to which the trajectory will belong. It is important to note here that
these bounds depend only on x0 and tf but not on the applied control, see
(5.1.1) and (5.1.4)-(5.1.5). Consequently, any trajectory of Σ sharing the same
initial state and �nal time will belong to the same compact set SEb described
by (5.1.6). In particular, if we look at admissible trajectories starting from

1Note that for SEA's we have already reserved the symbol φmax for the maximum de�ection
values corresponding to the system's relative energy.
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the origin and terminating at the �nal time tf , we can see that their energy is
bounded above by Epot(θ̇maxtf ). This shows that their terminal link velocity
can not grow unbounded in �nite time as speculated.

With Proposition 5 we can now also solve the existence problem for the
LVMP using mainly Filippov's Theorem [14]. Indeed, using the compact sets
from that proposition together with the compactness of the control set U and the
fact that the set fU(x) := {f(x, u) ∈ R2|u ∈ U} is convex for each x ∈ R2, it can
be seen that all the conditions required to apply this theorem are satis�ed [11].
Taking also several properties of the optimal control strategies into account2,
we can then arrive at the main result of this section.

Proposition 6. A solution to the LVMP exists for each �nal time tf > 0.

Proof. See Appendix B.3.1.

Having established the existence of solutions to the LVMP, we next turn
our attention to the necessary conditions which need to be satis�ed by these
solutions.

5.2 Basic Properties

In this section, we will derive several basic properties of control strategies solv-
ing the LVMP. More speci�cally, we will �rst apply PMP to �nd necessary
conditions for these strategies in terms of costates. A �rst analysis of these
conditions will show that optimal controls for the LVMP are always piecewise
constant. Focusing on switching control strategies, we will then take a closer
look at the time evolution of the costates. In particular, by analysing the di�er-
ential equations describing the costate dynamics we will obtain mathematical
expressions which clarify the relation between costates and trajectories corre-
sponding to switching controls. Finally, we will use these expressions to �nd a
relation between optimal control strategies and optimal trajectories.

5.2.1 Minimum Principle

Let us call an admissible controlled trajectory (x, u), which consists of an op-
timal control for the LVMP and the corresponding optimal trajectory with
x0 = 0, an optimally controlled trajectory. According to PMP, we have then the
following result for these trajectories.

Proposition 7. Let (x, u) be an optimally controlled trajectory de�ned on the
interval D = [0, tf ]. Then, there must exist a continuously di�erentiable costate3

λ : D → (R2)∗ such that the following �rst three conditions hold at each t ∈ D
and the fourth condition at the �nal time tf :

2Filippov's Theorem can ensure for our OC problem only the existence of an OC strategy
in the space of Lebesgue measurable functions taking values in U almost everywhere.

3As in [53], we use (Rn)∗ to denote the set of all n-dimensional row vectors.
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1. Costate Dynamics

λ̇(t) =
(
−KJ (x1(t))

M λ2(t) λ1(t)
)
. (5.2.1)

2. Minimum Condition

H (x(t), u(t),λ(t)) = min
v∈U

H (x(t), v,λ(t)) , (5.2.2)

where H : R2×U× (R2)∗ → R denotes the Hamiltonian function given by

H(x, u,λ) = λf(x, u)

= λ1(u− x2) + λ2
τJ(x1)

M
. (5.2.3)

3. Hamiltonian Condition

H (x(t), u(t),λ(t)) = −λa, (5.2.4)

where λa ∈ {0, 1} is a constant scalar.

4. Transversality Condition

λ(tf ) =
(
0 −v

)
, (5.2.5)

where v is a positive constant scalar.

Proof. The proof follows directly from applying PMP to the LVMP and is omit-
ted for brevity. A proof of PMP is provided in Appendix A, see Theorem 37.

Based on the de�nitions given in [53], we will call the 4−tuple Λ = (x, u,λ, λa)
consisting of an admissible controlled trajectory (x, u) with x0 = 0, a constant
scalar λa ∈ {0, 1} and a continuously di�erentiable costate λ such that the
conditions (5.2.1)-(5.2.5) are satis�ed an extremal lift for the LVMP. In addi-
tion, the admissible controlled trajectory (x, u) of such an extremal lift Λ will
simply be called an extremal for the LVMP (corresponding to Λ). Moreover,
if λa equals to zero we will call the extremal (lift) an abnormal extremal (lift)
and otherwise a normal extremal (lift). Finally, if an extremal is equal to an
optimally controlled trajectory we will call this extremal an optimal extremal
for the LVMP.

According to Prop. 7, we thus know that there exists an extremal lift for each
optimally controlled trajectory. Moreover, using the condition (5.2.2) together
with the Hamiltonian function in (5.2.3) we can see that given an extremal lift
Λ the value of the control u in that lift always depends on the sign of the �rst
costate λ1 as follows:

u(t) =

{
−θ̇max λ1(t) > 0

θ̇max λ1(t) < 0
, (5.2.6)
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where t ∈ D. In addition, notice that (5.2.1) and (5.2.5) imply that there always
exists a su�ciently small time interval (tf − ε, tf ) ∈ D where λ1 is negative.
Consequently, using (5.2.6) we can also conclude that we have the following
equality for the terminal value of u:

u(tf ) = θ̇max. (5.2.7)

It is important to remark here that (5.2.6) does not give any information on
the control u if λ1(t) = 0 holds in a �nite time-interval. We have just seen that
this can not happen in a su�ciently small neighborhood of the �nal time tf . In
the following proposition, we similarly show that whenever λ1(t) equals to zero
in t ∈ [0, tf ) its time-derivative will be non-zero so that the condition (5.2.6)
actually uniquely determines the control u. Moreover, with this proposition we
will also see that λ1 can be equal to zero at most once in case the �rst state,
i.e. the spring de�ection, remains negative or positive.

Proposition 8. Let Λ = (x, u,λ, λa) be an extremal lift for the LVMP which
is de�ned on the interval D = [0, tf ]. Then, u is a switching control with its
initial value given by

0u =

{
−θ̇max sgn

(
λ̇1(0)

)
λ1(0) = 0

−θ̇max sgn (λ1(0)) λ1(0) 6= 0
, (5.2.8)

where λ̇1(0) 6= 0 holds in case λ1(0) equals to zero. In addition, tS ∈ (0, tf ) is a
switching time of u if and only if λ1(tS) is equal to zero in which case we have

τJ (x1(tS))

KJ (x1(tS))
λ̇1(tS) = λa, (5.2.9)

with λ̇1(tS) 6= 0. Finally, if the control u has i ≥ 0 switchings we have

(∀k ∈ Si+1\{0})
[
sgn

(
kx1

)
= (−1)k+i+1λa

]
. (5.2.10)

Proof. See Appendix B.3.2.

With (5.2.6) and Proposition 8, we can now conclude that optimal control
strategies solving the LVMP will always be admissible switching controls which
take values in the boundary of the control set U. Moreover, if (x, u) is an opti-
mally controlled trajectory corresponding to the extremal lift Λ = (x, u,λ, λa),
the initial value of the control u will depend according to (5.2.1) and (5.2.8)
only on the initial costate λ0 := λ(0). Finally, the switching times of u will be
uniquely given by the zeros of λ1 in the interior of its domain.

Our analysis so far clearly demonstrates the close relation between the op-
timal control strategies and the costates. Since Σ represents a physical system,
it is then natural to expect that we can �nd a description of these costates in
terms of physical quantities. In the following subsection, we will see that this
is indeed possible by studying the solutions to the di�erential equation (5.2.1)
along trajectories corresponding to admissible switching controls.
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5.2.2 Costates with u ∈ SU
In Section 4.1, we have introduced an iterative procedure to construct a trajec-
tory which starts from a given initial state and corresponds to a given admissible
switching control. Note that for such a trajectory (5.2.1) describes a linear dif-
ferential equation for the costate and has therefore a unique solution provided
we know the initial costate. Our aim is now to introduce an iterative procedure
which will enable us to construct this solution.

Let us assume that (x, u) is an admissible controlled trajectory with u : D →
U being a switching control with i ≥ 0 switchings. As in Section 4.1, we will �rst
focus on �nding the solution λ : D → (R2)∗ of (5.2.1) in the time interval Dk

where k ∈ Si. In particular, we will show how to determine this particular part
of the solution assuming we are given the boundary condition kλ := λ(tS,k).

Depending on the relative energy kErel stored along x, we need to again
distinguish between two cases. Assume �rst that kErel is zero. In this case,
x1(t) will be equal to zero for each t ∈ Dk. Consequently, (5.2.1) becomes
a linear di�erential equation with constant coe�cients whose solution can be
explicitly written as

λ(t) = kλ

(
cos (ω0(t− tS,k))

sin(ω0(t−tS,k))
ω0

−ω0 sin (ω0(t− tS,k)) cos (ω0(t− tS,k))

)
, (5.2.11)

where t ∈ Dk. Notice that (5.2.11) describes λ in terms of harmonic oscillations

with the eigenfrequency ω0 =
√

KJ (0)
M .

Assuming now that kErel is non-zero, we already know from our previous
discussions in Chapters 3-4 that x1 will continuously increase and/or decrease
over time. Moreover, x1 will take values in the interval [−kφmax, kφmax] and
its time-derivative ẋ1 will only change its sign whenever x1 is at one of the
boundaries of that interval. In order to �nd the solution of (5.2.1) for this
case, one possible approach would be now to �rst make use of the relation
(3.2.3) to express x1 as a function of time. The resulting expression can then
be substituted into (5.2.1) yielding a time-varying linear di�erential equation.
Finally, the solution of that equation can be found, for instance, by computing
the corresponding transition matrix function [34]. In this thesis, we will follow a
more straightforward approach where the main idea is to use (3.2.3) to rewrite
(5.2.1) such that the continuously changing de�ection becomes the independent
variable instead of the time. By exploiting the relation between the state and
costate dynamics, this leads to a linear �rst-order partial di�erential equation
whose solution can be directly related to the solution of (5.2.1) as shown in the
following proposition.

Proposition 9. Let (x, u) be an admissible controlled trajectory such that
u : D → U is a switching control with i ≥ 0 switchings and let λ : D → (R2)∗

be a solution of (5.2.1) for this trajectory. Moreover, let η : (−φmax, φmax) ×
(0,∞)→ R, (x, φmax)→ η(x, φmax) be a solution to the following partial di�er-
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ential equation: (
|φ̇|(x, φmax)

)2 ∂η

∂x
+
τJ (x)

M
η + ηc = 0, (5.2.12)

where ηc is a constant scalar. Finally, let k be an element of Si and D̄k ⊂ Dk

a non-empty open interval with(
∀t ∈ D̄k

)
[sgn (ẋ1(t)) = vφ] , (5.2.13)

where vφ ∈ {−1, 1} is also a constant scalar. In this case, if there exists a
t̄ ∈ D̄k such that

λ2(t̄) = η(x1(t̄), kφmax) ∧H (x(t̄), u(t̄),λ(t̄)) = −ηc, (5.2.14)

then for each t ∈ D̄k we have

λ(t) =
(
− ηcvφ
|φ̇|(x1(t),kφmax)

0
)

+ η(x1(t), kφmax)
(
− τJ (x1(t))vφ
M |φ̇|(x1(t),kφmax)

1
)
. (5.2.15)

Moreover, at each boundary point t̄b of D̄k the equality (5.2.15) still holds if
limD̄k3t→t̄b ẋ1(t) 6= 0 while if this limit is equal to zero we have

λ(t̄b) =
(
−vφηc4

dTp
dφmax

(kφmax) 0
)

− sgn (x1(t̄b))

(
vφη(0,kφmax)
M kφ̇max
τJ (kφmax)

Mηc
τJ (kφmax)

)
. (5.2.16)

Proof. See Appendix B.3.2.

With Prop. 9 we can now see that in an open interval D̄k ⊂ Dk, in which
the de�ection x1 either increases or decreases, λ can always be described using
(x, u) and a solution of (5.2.12) provided the two conditions in (5.2.14) hold,
see (5.2.15). One of the main advantages of this description is that solutions
of (5.2.12) can be explicitly expressed in terms of physical quantities as we
show Appendix B.3.2, see Lemma 45. Furthermore, taking a closer look at the
corresponding expression, which we provide in Table 5.1a, we can conclude from
(5.2.15) that the costate λ in D̄k can be uniquely described as a function of the
de�ection if we know, in addition to (x, u), the values of ηc and η(0,k φmax) .
Moreover, with these values λ can also be determined at the boundaries of D̄k.
It is important to remark here that the number of times, at which ẋ1 changes
its sign in the interval Dk, is always �nite. Consequently, we can always �nd a
�nite number of open intervals satisfying the hypothesis of Prop. 9 such that Dk

is contained in the closure of their union. To construct λ in Dk, it would then
be su�cient to �nd for each of these intervals the values of ηc and η(0, kφmax).
We illustrate next how to systematically carry out this construction.
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η(x, φmax) |φ̇|(x,φmax)

φ̇max

[
η(0, φmax) + ηc

Mφ̇max
τJ (φmax)

∂Tφ
∂φmax

(x, φmax)
]

(a) Mathematical Expression for η

limDφ3x→φb η(x, φmax) − sgn(φb)
Mηc

τJ (φmax)

limDφ3x→φb
∂η
∂x (x,φmax)

1
|φ̇|(x,φmax)

−ηc4
dTp

dφmax
(φmax)− sgn(φb)

τJ (φmax)

Mφ̇max
η(0, φmax)

φmax > 0, φb ∈ {−φmax, φmax}, Dφ = (−φmax, φmax)

(b) Limits for η(., φmax) and ∂η
∂x

(., φmax)

Table 5.1: The Function η : DTφ → R

Computing ηc and η(0, kφmax) in Dk Let mk ∈ {0, 1, . . .} denote the nec-
essarily �nite number of times at which ẋ1 is equal to zero in (tS,k, tS,k+1).
Moreover, for each j ∈ Smk\{0} let tS,kj denote the j'th time at which ẋ1 is
equal to zero in this interval. In addition, let tS,k0

be equal to the switching
time tS,k and tS,km+1 to tS,k+1. Finally, for each j ∈ Smk introduce the open in-
terval Dkj := (tS,kj , tS,kj+1) which always satis�es the hypothesis of Prop. 9 by
construction. As already discussed above, for each j ∈ Smk the values λ takes
in Dkj can be determined using (5.2.15) if we know the corresponding value of η
and η(0, kφmax). In addition, using (5.2.16) the values at the boundaries of Dkj

can be determined as well. To be able to distinguish between di�erent intervals,
we will from now on use kηc,j and kη0,j to denote, respectively, the value of η
and η(0, kφmax) in the interval Dkj . Moreover, we will use kvφ,j := (−1)j kvφ,0
to denote the sign of ẋ1 in Dkj . We want to next show how to describe for each
j ∈ Smk the values of kηc,j and kη0,j in terms of kλ.

Let j be an arbitrary element of Smk . We want to �rst show how to determine
the value of kηc,j . For this, let us note that the value of the Hamiltonian function
H(x(t), u(t),λ(t)) will always remain constant in Dk regardless of whether the
pair (x, u) is an extremal or not, see the proof of Prop. 9. Consequently, when
applying Prop. 9 to construct λ in Dkj we can simply set kηc,j to

kηc,j = kηc := −H
(
kx, ku, kλ

)
. (5.2.17)

Finding an expression for kη0,j in terms of kλ is unfortunately more involved
as it depends, in contrary to kηc,j , also on ẋ1|Dk . To see this dependence, let us
�rst focus on the interval Dk0

. Noting that tS,k is a boundary point, it follows
then from Prop. 9 that two di�erent expressions will exist for kη0,0 depending
on whether kẋ1 is equal to 0 or not. Indeed, if kẋ1 is not equal to zero it follows
from evaluating (5.2.15) at t = tS,k und using (5.2.17) that we have

kη0,0 =
kφ̇max

kλ2

|φ̇|(kx1, kφmax)
−

kηc
∂Tφ
∂φmax

(kx1,
kφmax)

τJ (kφmax)

Mkφ̇max

, (5.2.18)

where we have also made use of the expression for η(x, φmax) in Table 5.1a. If
kẋ1(tS,k) = 0, on the other hand, it follows from (5.2.16) with t̄b = tS,k that
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kη0,0 will be equal to

kη0,0 = − M kφ̇max
τJ(kφmax)

[
kvφ,0

kλ1 +
kηc
4

dTp
dφmax

(kφmax)
]

sgn(kx1)
. (5.2.19)

Note that using (5.2.15)-(5.2.19), we can determine the costate λ in Dk0 and at
tS,k1

.
Focusing now on an interval4 Dkj with a positive j ∈ Smk , it can be shown

that kη0,j is closely related to kη0,j−1. Indeed, we know that the �rst costate is
continuous at tS,kj and that tS,kj is a boundary point of both Dkj−1 and Dkj .
Consequently, using (5.2.16) and the fact that x1(tS,kj ) has the same sign as ẋ1

in Dkj−1
, we can see that kη0,j is given by

kη0,j = −kη0,j−1 + 2 kηc
kvφ,j−1∆(kφmax), (5.2.20)

where ∆ : (0,∞)→ R is the function de�ned by

∆(φmax) = −1

4

Mφ̇max
τJ(φmax)

dTp
dφmax

(φmax). (5.2.21)

With (5.2.18)-(5.2.20), we can now iteratively compute kη0,j for each j ∈ Smk\{0}
and thus determine λ in Dkj as well as at tS,kj+1

.
Our discussion above provides all the means to construct λ|Dk along the

admissible controlled trajectory (x, u) when kφmax > 0. This construction is
graphically illustrated in Figure 5.2.1 for the three control systems Σ1,Σ2 and
Σ3 from Table 4.1 by plotting for each system two di�erent costate trajectories
against the time varying de�ection. More speci�cally, for each of these systems
the costate trajectories are determined in D = D0 using Prop. 9 and (5.2.17)-

(5.2.20) for the controlled trajectory (x, u) with x0 =
(
0 −5θ̇max

)T
, u ≡ θ̇max

and tf = 3
4Tp(

0φmax). In addition, for the costates in Fig. 5.2.1 (Top) λ0

was set to
(
0 − 1

10

)T
and in Fig. 5.2.1 (Bottom) to

(
− 1

6θ̇max
− 1

10

)T
. Notice

that along each controlled trajectory, ẋ1 always changes its sign once at tS01
=

1
2Tp(

0φmax). Moreover, depending on the chosen initial costate 0ηc is either
equal to 0 or to 1, see (5.2.17).

As one can see from the graphs in Fig. 5.2.1, when the initial �rst costate and
thus 0ηc is equal to zero the costates possess of symmetry properties shared by
each control system. This directly follows from (5.2.15) and (5.2.20) according
to which for 0ηc = 0 the �rst and second costates remain proportional to the
torque in the spring and to the time-derivative of the de�ection, respectively.
Consequently, all the three curves representing the �rst costate in Fig. 5.2.1
(Top) can be directly expressed as a function of the de�ection. For the second
costate, on the other hand, the corresponding curves do not directly represent a
function. Nevertheless, following our construction method described above one

4Clearly, such an interval only exists if ẋ1 changes its sign in (tS,k, tS,k+1), i.e. mk ≥ 1.
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Figure 5.2.1: Costate Trajectories in D = [0,
3Tp(0φmax)

4 ]

(u ≡ θ̇max,x0 = (0,−5θ̇max)T ,λ0 = (− 0ηc
6θ̇max

,− 1
10 ))

can divide each of these curves into two subcurves on which the de�ection either
increases or decreases. These two subcurves can then be described by a function
of the de�ection, namely the function η(., 0φmax) with ηc = 0 and η(0, φmax) ∈
{0η0,0,

0η0,1}. Furthermore, they will join each other at the maximal de�ection
0φmax.

If we now look at the graphs in Fig. 5.2.1 (Bottom), it can be observed that
for all the three systems two di�erent functions of the de�ection are needed
to fully describe the �rst as well as the second costate. In particular, both
costates take two di�erent values at zero de�ection. For the �rst costate, these

are given according to (5.2.17) by −
0vφ,j
6θ̇max

, with j ∈ {0, 1}, and thus only di�er

in their signs. For the second costate, they are given by 0η0,j with j ∈ {0, 1}, see
(5.2.15). As shown in Fig. 5.2.1, for the systems Σ1 and Σ3 these values di�er,
consistent with (5.2.20), both in their signs and their magnitudes. Moreover,
for Σ1, i.e. the control system with the softening spring, there is a decrease in
the magnitude, while for the system Σ3 with the hardening spring there is an
increase. For the system Σ2 with the linear TDP, on the other hand, there is
again only a change of sign. In Sec. 5.4, we will provide a physical interpretation
which will explain why the value for η(0, φmax) in general changes with a sign
change of ẋ1 and clarify in particular how this change is related to the sti�ness
characteristics of TDP's. The interpretation will also explain the relation be-
tween the costates and the partial derivative ∂Tφ

∂φmax
which exists whenever the

Hamiltonian function is not equal to zero, see Table 5.1a. Notice that, it is this
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relation and the condition (5.2.20) which result in the more complex costate
trajectories in Fig. 5.2.1 (Bottom) when compared to the trajectories in Fig.
5.2.1 (Top).

Our results so far show that we can always use (5.2.20) or Prop. 9 to
construct the costate λ in the interval Dk ⊂ D using kλ. Notice that in both
cases, we can uniquely determine k+1λ by making use of the continuity of λ.
Consequently, if the initial value of the costate λ0 = 0λ is given we can determine
the costate λ in the whole interval D. Indeed, starting from k = 0 and using for
each k ∈ Si the controlled trajectory (x, u) to determine whether kErel is zero
or positive, we can iteratively apply our results to fully construct λ as desired.

5.2.3 Switching and Terminal State Conditions

Let Λ = (x, u,λ, λa) be an extremal lift for the LVMP. We already know from
Sec. 5.2.1 that the control u in this lift is a switching control which is uniquely
determined by the sign of λ1. From Sec. 5.2.2, we further know that for each
k ∈ Si, with i ≥ 0 denoting the switching number of u, λ|Dk can be expressed
in terms of kλ, x1 and ẋ1 assuming that the relative energy kErel is positive.
Under this assumption, the control u|Dk can therefore also be expressed in terms
of these three terms. In the following, we will derive such an expression for the
control and use it to derive various conditions for its switching times as well as
the terminal time in terms of the attained de�ection values. The assumption
on the relative energy kErel being positive will be justi�ed in Section 5.3, where
we show that for each extremal lift for the LVMP the relative energy actually
remains positive along the whole trajectory.

Let k be an element of Si for which the relative energy kErel is positive and
let mk denote, as in Sec. 5.2.2, the number of times at which ẋ1 equals to zero
in the interior of Dk. Moreover, let j be an element of Smk . According to Prop.
7-8, we know that u(t) is given by −θ̇max sgn (λ1(t)) for each t ∈ Dkj . If we
now use Prop. 9 and in particular (5.2.15), we can rewrite this relation between
u and λ1 to obtain the following equality which holds for each t ∈ Dkj when
x1(t) 6= 0:

u(t)

θ̇max
=

sgn
([
kη0,j − λaC(x1(t), kφmax)

]
x1(t)

)
kvφ,j

, (5.2.22)

where C : DC → R is the function de�ned by

C(x, φmax) = −
∂Tφ
∂φmax

(x, φmax) + τJ (φmax)

τJ (x)|φ̇|(x,φmax)

τJ (φmax)

Mφ̇max

, (5.2.23)

with DC := DTφ\{0} × (0,∞). It is important to remark here that in (5.2.22),
kη0,j ,

kvφ,j ,
kφmax and λa are all constant. Consequently, one can regard the

right-hand side of (5.2.22) as a function of the de�ection which is de�ned on
(−kφmax, kφmax)\{0}. If x1(t) is an element of this set, with t ∈ Dkj , the value

of this function at this de�ection will be equal to the ratio u(t)

θ̇max
=

ku
θ̇max

and thus
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non-zero. Moreover, since both kvφ,j and u are constant in Dkj the set {x1(t) ∈
R|t ∈ Dkj} will describe an open interval depending only on x1(tS,kj ) and
x1(tS,kj+1

), and for each non-zero de�ection value in this interval the function
will take the exactly same value. Finally, even if there exists a time t ∈ Dkj

with x1(t) = 0 this function can still be used to determine u(t) by taking its
limit as the de�ection goes to zero. This simply follows from the fact that there
exists at most one zero of x1 in Dkj and that u|Dkj is constant.

Our discussion above shows how the right-hand side of (5.2.22) can be used
to determine the control in Dkj . Based on the continuity properties of u, the
value of u at tS,kj can be clearly obtained using this expression as well. More
speci�cally, u(tS,kj ) will be equal to the limit of the expression as x1(t) ap-
proaches x1(tS,kj ) from the right if kvφ,j > 0 and from the left, otherwise. The
value of the control u at tS,kj+1

can be similarly obtained by calculating the
corresponding limit of the expression at x1(tS,kj+1

), if tS,kj+1
is not a switch-

ing time. Nevertheless, if tS,kj+1 is a switching time the jump in u must be
accounted for as well. In order to �nd u(tS,kj+1), it is therefore crucial to deter-
mine whether tS,kj+1

is a switching time or not. The following proposition shows
how this can be done by using the product at the numerator of the right-hand
side of (5.2.22).

Proposition 10. Let Λ = (x, u,λ, λa) be an extremal lift for the LVMP and
u a control with i ≥ 0 switchings. Moreover, let k ∈ Si such that kErel > 0,
j ∈ Smk , t ∈ Dkj and φ = x1(t). Finally, let Sφb the set of all de�ections φb
such that |bφ| ≤ kφmax and

lim
Dkφ\{0}3x→φb

[
kη0,j − λaC(x, kφmax)

]
x = 0, (5.2.24)

where Dkφ denotes the open interval (−kφmax, kφmax). Then, tS,kj is the k'th
switching time if and only if k > 0 and there exists an element φb ∈ Sφb such
that sgn(φ− φb) = kvφ,j . Moreover, in this case we have

x1(tS,kj ) =

{
min{φb ∈ Sφb |φb > φ}, kvφ,j = −1

max{φb ∈ Sφb |φb < φ}, kvφ,j = 1
. (5.2.25)

Similarly, tS,kj+1 is the k + 1'th switching time (respectively, the �nal time) if
and only if k < i (respectively, k = i) and there exists an element φb ∈ Sφb such
that sgn(φb − φ) = kvφ,j . Finally, in this case we have

x1(tS,kj+1
) =

{
max{φb ∈ Sφb |φb < φ}, kvφ,j = −1

min{φb ∈ Sφb |φb > φ}, kvφ,j = 1
. (5.2.26)

Proof. See Appendix B.3.2.

Prop. 10 provides now for both tS,kj and tS,kj+1
a su�cient and necessary

condition to be a switching time. Moreover, for each of these times the attained
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Figure 5.2.2: Controls along Extremal Lifts
(t ∈ Dkj , i ∈ {0, 1, . . .}, k ∈ Si, j ∈ Smk , kφmax > 0)

de�ection is also provided if the control switches at this time, see (5.2.25)-
(5.2.26). According to the de�nition of the set Sφb in the proposition, it is
clear that the zeros of the limits of the product in (5.2.24) play an important
role in determining the de�ection values x1(tS,kj ) and x1(tS,kj+1

). Moreover, as
we have already discussed the sign of this product, with x = x1(t), divided by
kvφ,j uniquely determines the control in Dkj , see (5.2.22). In order to better
understand the dependence of the control on the time-varying de�ection and the
parameters kη0,j ,

kvφ,j and λa, we will next investigate in detail the di�erent
possibilities for the sign of this product along Λ, the zeros of its limits and the
value of kvφ,j . We start our investigation by distinguishing between two cases
based on the value of λa.

Abnormal Extremal Lifts Let us assume that Λ is an abnormal extremal
lift so that λa = 0. According to (5.2.22), the value of u in Dkj depends then
directly on the sign of the product kη0,jx1 in Dkj and

kvφ,j . Clearly, kvφ,j is an
element of {−1, 1}. Similarly, the sign of kη0,j also belongs to this set. Indeed,
according to (5.2.4) and Prop. 8 both kλ1 and kx1 must be equal to zero since
λa is equal to zero and x0 = 0. Moreover, since kηc = λa we know from (5.2.20)
and Prop. 9 that |kη0,j | will be equal to |kη0,0| = |kλ2|. It follows then from
(5.2.5) that kλ 6= 0 holds implying that kη0,j is non-zero. Finally, the sign of
x1 in Dkj is constant and non-zero. To see this, let us �rst note that for a given
time t ∈ Dkj it follows from (5.2.4) and the positiveness of the relative energy
kErel that λ1(t) must be zero if x1(t) = 0. According to Prop. 8, t would then
be a switching time contradicting the fact that it is an element of (tS,k, tS,k+1).
Since x1 is continuous, we can �nally conclude that its sign remains constant
and belongs to {−1, 1}.

With our discussion above, we now see that there are in total eight di�erent
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possibilities regarding the signs of kη0,j and x1 and the value of kvφ,j . Each of
these possibilities results according to (5.2.22) in the control u to attain either
its minimum or maximum value. This is graphically illustrated in Fig. 5.2.2
(Left) by introducing a coordinate system in which the horizontal and vertical
axis denote the values of x1 and kη0,j , respectively. More speci�cally, for each
of the eight possibilities a horizontal line segment has been drawn there with
an arrow representing the value of kvφ,j . These segments all correspond to a
particular value of kη0,j and either start from the vertical axis, i.e. at zero
de�ection, and terminate at kvφ,jkφmax or vice versa. It is important to notice
here that for λa = 0, the equality in (5.2.24) is satis�ed, regardless of the
particular values of kη0,j and kvφ,j , if and only if the de�ection φb is zero. This
is indicated in Fig. 5.2.2 (Left) by the black dots on the vertical axis and can be
used with (5.2.22) and Prop. 10 to �nd explicit expressions for the de�ections
x1(tS,kj ), x1(tS,kj+1

) and the control u(tS,kj ) depending on whether tS,kj is the
initial time, a switching time or a time at which ẋ1 changes its sign without a
change in the control. Moreover, it can also be determined whether tS,kj+1

will
be equal to the �nal time of Dkj , i.e. to tS,k+1, which in turn yields the value
of u(tS,kj+1). The resulting expressions are provided5 in Table 5.2a.

Normal Extremal Lifts If Λ is a normal extremal lift, i.e. λa = 1, kη0,j can
this time take any real value without violating (5.2.4)-(5.2.5). Moreover, in this
case the function C will in�uence the values which the product in (5.2.24) will
take along Λ. In the following, we will �rst take a closer look at the properties
of this function. Then, similar to the previous case we will introduce a graphical
illustration which clari�es the dependence of the control on kη0,j , x1 and kvφ,j .

First of all, according to (5.2.23) and the symmetry properties of τJ , |φ̇| and
Tφ we have

C(−x, φmax) = −C(x, φmax), (5.2.27)

for each (x, φmax) ∈ DC . Moreover, at each such point C is di�erentiable with
respect to x and the corresponding partial derivative is given by

∂C

∂x
(x, φmax) =

Mφ̇maxKJ(x)

τ2
J (x)|φ̇|(x, φmax)

, (5.2.28)

where we have made use of (3.1.6) and (3.2.7). Since (5.2.28) is positive for each
(x, φmax) ∈ DC , the function C(., φmax) is strictly increasing on (−φmax, 0) and
(0, φmax) for each φmax > 0. Finally, using (3.2.14) and (5.2.23) it can be shown
that the limits of this function as x approaches zero from the right and as x
approaches φmax from the left are given by

lim
x→0+

C(x, φmax) = −∞, (5.2.29)

5We use �b.c� to denote the �oor function. Consequently, the value of
⌊
tS,kj+1

tS,k+1

⌋
determines

whether tS,kj+1
is equal to tS,k+1 or not.
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⌊
tS,kj+1

tS,k+1

⌋
x1(tS,kj ) u(tS,kj ) x1(tS,kj+1) u(tS,kj+1)

tS,kj = tS,k 0 0 θ̇max
sgn(kη0,j)

kφmax
kvφ,j

ku

tS,kj > tS,k 1 − kφmax
kvφ,j

ku 0

{
−ku k < i
ku k = i

(a) Abnormal Extremal Lifts (λa = 0, kη0,j 6= 0)⌊
tS,kj+1

tS,k+1

⌋
x1(tS,kj ) u(tS,kj ) x1(tS,kj+1

) u(tS,kj+1
)

tS,kj = 0

kη0,j
kvφ,j

≤ ∆(kφmax) 1 0 θ̇max
kvφ,j

Kφ,1

{
−ku k < i
ku k = i

kη0,j
kvφ,j

> ∆(kφmax) 0 0 θ̇max
kvφ,j

kφmax
kvφ,j

ku

(b) Normal Extremal Lifts (λa = 1, k = j = 0,∆(kφmax) ∈ R)⌊
tS,kj+1

tS,k+1

⌋
x1(tS,kj ) u(tS,kj ) x1(tS,kj+1

) u(tS,kj+1
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(c) Normal Extremal Lifts (λa = 1,∆(kφmax) < 0)⌊
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(d) Normal Extremal Lifts (λa = 1,∆(kφmax) = 0)⌊
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(e) Normal Extremal Lifts (λa = 1,∆(kφmax) > 0)
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(
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Kφ

(
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)
−kvφ,j

(f) Parameter De�nitions

Table 5.2: De�ection Values and Controls at the Boundaries of Dkj

(i ∈ {0, 1, . . .}, k ∈ Si, j ∈ Smk , kφmax > 0, kvφ,j ∈ {−1, 1}, kη0,j ∈ R)
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and
lim

x→φ−max
C(x, φmax) = ∆(φmax), (5.2.30)

respectively. It is important to recall here that the function ∆ in the second
limit was introduced in Sec. 5.2.2 when we discussed how to use Prop. 9 to
construct a costate trajectory and analysed the changes in η(0, φmax) which can
occur at the minimal and/or maximal de�ection values, see (5.2.20)-(5.2.21).

Based on the properties of C, we can now conclude that the graph of the
function C(.,k φmax) divides the set {(x1,

kη0,j) ∈ R2||x1| < kφmax} into three
open regions as illustrated in Fig. 5.2.2 (Right). As indicated there by the
horizontal line segments and arrows, for each of these regions the corresponding
elements lead, according to (5.2.22), to the same control value when the sign of
ẋ1 is the same. In addition, regardless of the value of kη0,j and kvφ,j there can
exist at most two de�ection values for φb for which the equality in (5.2.24) will
hold. In other words, the set Sφb from Prop. 10 has at most two elements and
it follows further from (5.2.27)-(5.2.30) that the number of elements depends on
kη0,j and ∆(kφmax). Finally, these elements can all be graphically determined
by �nding the intersection points between a horizontal line, which corresponds
to the value of kη0,j , and the two curves described by the closure of the graph
of C(.,k φmax), see Fig. 5.2.2 (Right). As in the previous case, this can be
used together with (5.2.22) and Prop. 10 to �nd expressions for the de�ections
and controls at the boundaries of Dkj depending on the properties of tS,kj .
These are provided in Table 5.2b-5.2e, where we use Kφ : (−∞,∆(φmax)] ×
(0,∞) → (0, φmax], (η0, φmax) → Kφ(η0, φmax) to denote the function which
for each φmax > 0 equals to the continuously extended inverse of the function
C|(0,φmax)×{φmax}(., φmax). Notice that each of these tables considers a di�erent
case which is characterized by whether tS,kj is equal to the initial time or not
and by the sign of ∆(kφmax). Moreover, for each of these cases the magnitude
of kη0,j and ∆(kφmax) in�uence whether tS,kj+1 can be equal to a switching
time or the terminal time.

It is important to remark here that knowing the de�ection values at tS,kj
and tS,kj+1

, as provided in Table 5.2, we can directly determine the length of
the interval Dkj since kvφ,j is constant. Consequently, by combining all our
results so far we can now uniquely construct the extremal lift Λ in the closure of
Dkj by knowing only tS,kj , x(tS,kj ),λ(tS,kj ) and the integers k and i. Indeed,
based on our results from Sec. 5.2.1 we can �rst determine the control u(tS,kj )
using λ(tS,kj ) and then kφmax and kvφ,j using this control and x(tS,kj ). In
addition, depending on the value of tS,kj and λ1(tS,kj ) we can �nd out whether
tS,kj is equal to tS,k or not. Furthermore, we can determine the value of λa
using (5.2.4) and the value of kη0,j using Prop. 9. Moreover, the expressions
in Table 5.2 together with (3.2.3) will yield tS,kj+1 and x1(tS,kj+1). Using the
construction procedures for states and costates in Sec. 4.1 and Sec. 5.2.2, this
will �nally lead to the desired extremal lift Λ in the closure of Dkj . In addition,
using either the value of λ1 at tS,kj+1

or again Table 5.2 we can additionally
determine whether tS,kj+1

is equal to tS,k+1 or not.
Our discussion so far is valid for any j ∈ Smk . Since both x and λ are
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continuous, this means that starting from j = 0 we can actually iteratively
apply the procedure described above to determine mk and construct Λ in the
closure of Dk by using the values of tS,k, kx, kλ, k and i. Similarly, in our choice
for k ∈ Si we only required kErel to be positive. Consequently, if this energy
is known to be positive for each k ∈ Si our results actually provide an iterative
procedure to fully construct the extremal lift Λ depending only6 on its initial
costate λ0 and the switching number of its control. In the following section,
we will see that the relative energy is indeed always positive along trajectories
in extremal lifts. Moreover, we will illustrate how to determine the set of all
extremals by making use of the iterative procedures just described.

5.3 Extremals for the LVMP

Let Λ = (x, u,λ, λa) be an extremal lift for the LVMP such that u is a switching
control with i ≥ 0 switchings. It follows then from the transversality condition
(5.2.5) that the terminal costate is non-zero and this implies due to the linearity
of the costate dynamics the following inequality for the initial costate:

λ0 = (λ10, λ20) 6= 0. (5.3.1)

Moreover, by evaluating the Hamiltonian function H (x(t), u(t),λ(t)) at the
initial time using (5.2.3)-(5.2.4) and noting that x starts from the origin we
can arrive at the following equality for λ10:

λ10 = −λa
0u
∈ {− 1

θ̇max
, 0,

1

θ̇max
}, (5.3.2)

where we have also used the fact that λa ∈ {0, 1} and |0u| = θ̇max, see Prop.
7-8. Finally, as already discussed in Sec. 5.2 the terminal control in an extremal
lift is always positive which means that for each k ∈ Si the control must satisfy

ku = (−1)i+kθ̇max. (5.3.3)

Depending on whether |λ10| is zero or non-zero, or equivalently depending on
whether Λ is an abnormal or a normal extremal lift, evaluating (5.3.3) at k = 0
leads then according to (5.2.1), (5.2.8) and (5.3.2) to two di�erent conditions
for the sign of the initial costate in terms of the switching number:

λ10 = 0⇒ sgn(λ20) = (−1)i, (5.3.4)

and
λ10 6= 0⇒ sgn(λ10) = (−1)i−1. (5.3.5)

Clearly, there exists an in�nite number of switching numbers i ≥ 0 and initial
costates λ0 ∈ (R2)∗ which satisfy (5.3.1)-(5.3.2) and (5.3.4)-(5.3.5). Moreover,
it follows from the properties of the state and costate dynamics in (2.1.4) and

6Notice that tS,0 = 0 and 0x = x0 = 0.



CHAPTER 5. OPTIMAL CONTROL STRATEGIES 66

(5.2.1) that for each such λ0 and i there always exists a unique extremal lift.
In this section, we will �rst show how to construct this extremal lift. More
speci�cally, using mainly our results from Sec. 5.2 we will show in Sec. 5.3.1-
5.3.2 how to uniquely construct abnormal and normal extremal lifts knowing
only their initial costate and the switching number of their controls. Exploiting
the properties of the extremals in these lifts, we will then show in Sec. 5.3.3 how
the set of all extremals can be parameterized by using only a one-dimensional
parameter. Since optimal extremals necessarily belong to this set, this will
enable us to reformulate the LVMP as a nonlinear programming problem (NPP)
[5] whose solution can be determined graphically or numerically.

5.3.1 Abnormal Extremal Lifts

Assuming that Λ = (x, u,λ, λa) is an abnormal extremal lift, we know from
(5.3.1)-(5.3.2) that λ10 is equal to zero and that λ20 is non-zero with its sign
given by (5.3.4). Moreover, regardless of the sign of λ20, or equivalently the
switching number i of u, the magnitude of the initial control will be equal to
the maximal motor velocity so that the relative energy 0Erel will according to
(4.1.2) and (4.2.5) satisfy

0Erel = Er,max(0) =
1

2
Mθ̇2

max, (5.3.6)

since x0 = 0. Consequently, 0Erel is positive and we can use Table 5.2a, Prop.
9 and our results from Chapter 4 to show that the control u in Λ can be uniquely
determined by its switching number i. Indeed, noting �rst that 0η0,0 = λ20 6= 0
holds by Prop. 9, we can see from the �rst row of the table that tS,01 is never
a switching time or the �nal time. Moreover, the magnitude of the de�ection
at this time is equal to 0φmax > 0. Using then the second row of the table, we
can see that tS,02

is a switching time if i > 0 and the terminal time if i = 0, i.e.
tS,02

= tS,1. Furthermore, in both cases we have x1(tS,1) = 0. Consequently, the

time tS,1 is equal to Tp(0φmax)
2 which together with (5.3.3) uniquely determines

the control u in D0. In addition, m0 = 1 and for each j ∈ Sm0
we have the

equalities 0vφ,j = (−1)j sgn(0ẋ1) = (−1)j sgn(λ20) and, by (5.2.4), (5.2.17) and
(5.2.20), 0η0,j = (−1)jλ20. Using these expressions in (5.2.22), we can then
directly relate the applied control u to the sign of the de�ection x1 as follows:

[∀t ∈ (tS,0, tS,1)]

(
u(t)

θ̇max
= sgn (x1(t)) 6= 0

)
. (5.3.7)

It is important to realize here that the control strategy in (5.3.7) has al-
ready been encountered in Sec. 4.2 when discussing switching control strate-
gies maximizing the energy of an EJ with a velocity-sourced SEA. In particu-
lar, if i = 0 it follows from Prop. 3-4 that u is a solution to the EMP since
x1(tf ) = x1(tS,1) = 0. As we show in the following proposition, if i > 0 the
relation between u and x1 in (5.3.7) still holds at each time in D at which the
de�ection is non-zero. Consequently, the control u always provides a solution
to the EMP.
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Proposition 11. Let (x, u) be an admissible controlled trajectory de�ned on
D = [0, tf ] with x0 = 0. Then, (x, u) is an abnormal extremal if and only if
there exists an integer i ≥ 0 such that u is a switching control with i switchings
and solves the EMP with 0u = (−1)iθ̇max. Moreover, in this case we have for
each k ∈ Si+1\{0}

tS,k = tmin(k), (5.3.8)

and
kx = (−1)i+k−12k

(
0

θ̇max

)
. (5.3.9)

Proof. See Appendix B.3.3.

With Prop. 11 we now see that the control u in Λ can indeed be uniquely
determined by its switching number i, see (5.3.3) and (5.3.8). Moreover, knowing
the value of i the corresponding trajectory x can also be uniquely constructed
using our results from Sec. 4.1, see (5.3.9). Note that for the case when i = 1,
this construction is already illustrated in Fig. 4.1.1 for the systems Σ1,Σ2 and
Σ3 since the control strategies depicted there solve the corresponding EMP with
one switching and with 0u = −θ̇max.

In order to now fully construct Λ, we need to determine the costate λ and
for this it is su�cient to know the magnitude of λ20 in addition to i. This is
shown in the following proposition, where we use our results from Sec. 5.2.2 to
describe λ in terms of the extremal (x, u).

Proposition 12. Let Λ = (x, u,λ, λa) be an abnormal extremal such that u is
a control with i ≥ 0 switchings. Then, for each k ∈ Si and t ∈ Dk we have

λ(t) =
|λ20|
kφ̇max

(
− τJ (x1(t))

M ẋ1(t)
)
. (5.3.10)

Proof. See Appendix B.3.3.

When discussing the costate trajectories depicted in Fig. 5.2.1 (Top), we had
actually already noted the existence of a linear relation between the costate, the
torque in the spring and the time-derivative of the de�ection for the case when
the Hamiltonian function is equal to zero. With Prop. 12, we now additionally
see how for an abnormal extremal this relation depends on the relative energy.
In the following we will see, as in Fig. 5.2.1 (Bottom), that the relation between
costates and the extremals are more complex if the Hamiltonian function is
non-zero.

5.3.2 Normal Extremal Lifts

If Λ = (x, u,λ, λa) is a normal extremal lift, the conditions (5.3.2) and (5.3.5)
uniquely determine λ10 in terms of the switching number i of the control u.
Moreover, since the initial control is equal to the maximal motor velocity and
since by Prop. 8 we have kx1 6= 0 for each k ∈ Si\{0} the relative energy
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(−1)iλ20 < ∆(0φmax) (−1)iλ20 = ∆(0φmax) (−1)iλ20 > ∆(0φmax)
m0 0 0 1
1x1 (−1)iKφ

(
(−1)iλ20,

0φmax
)

(−1)i · 0φmax (−1)iKφ

(
(−1)i · 0η0,1,

0φmax
)

tS,1 Tφ(|1x1|, 0φmax)
Tp(0φmax)

4
Tp(0φmax)

2 − Tφ(|1x1|, 0φmax)
0η0,1 = (−1)i2∆(0φmax)− λ20, Epot(

0φmax) = Er,max(0), 0vφ,0 = 0u = (−1)i, i ∈ {0, 1, 2, . . .}

Table 5.3: m0,
1x1 and tS,1 along a Normal Extremal

will remain positive along x. Consequently, Λ can be iteratively constructed if
the values of λ20 ∈ R and i ≥ 0 are known, see Sec. 5.2.3. In the following,
we will illustrate how to carry out this construction and clarify how these two
values in�uence the switching times of the control as well as the de�ection values
attained at these times. We start our discussion with the construction of Λ in
the interval D0. Focusing on the case when the control is not constant, i.e.
i > 0, we then show how for each k ∈ Si\{0} we can construct Λ in Dk using
mainly the value of the de�ection, the sign of its time-derivative and the relative
energy at the k'th switching time.

Construction in D0 (i ≥ 0) Let us �rst note that the sign of the control 0u
and thus 0vφ,0 directly depends on the value of i, see (5.3.3). Moreover, since
the initial de�ection is equal to zero we know by Prop. 9 that 0η0,0 = λ20 will
hold. Using Table 5.2b-5.2e, with k = 0 and j ∈ Sm0 ⊂ {0, 1}, together with
(5.2.20) we can then �nd di�erent expressions for the values of m0,

1x1 and
tS,1 depending on λ20,∆(0φmax) and i. Table 5.3 provides these expressions
while Fig. 5.3.1 (Top) graphically illustrates their derivation. More speci�cally,
focusing on the case when i is an even integer the �gure shows how we can
determine them by using the graph of C(.,0 φmax) and by plotting for each
j ∈ Sm0 the scalar 0η0,j as a constant function of the de�ection, see Fig. 5.2.2
(Right). For the case when i is an odd integer, the expressions in Table 5.3
can be similarly derived using the graph of C(.,0 φmax) and noting that 0vφ,0
will this time be negative. The dependence of the provided expressions on the
switching number follows from the symmetry properties of C and from (5.2.20).

With the expressions in Table 5.3, we can now uniquely construct both the
control u and the corresponding trajectory x in D0 if we know the sign of the
initial control and λ20, see Fig. 5.3.1 (Bottom). Moreover, by using the resulting
controlled trajectory and applying the construction procedure from Sec. 5.2.2
with 0η0,0 = λ20 the costate λ can be determined, as well. This shows how to
construct Λ in D0 depending only on λ20 and i.

Construction in Dk (k ≥ 1, i ≥ 1) Let us assume that i ≥ 1 and k ∈
Si\{0} so that tS,k is a switching time and kη0,0 is equal to C(kx1,

kφmax), see
Prop. 10. According to the relations provided in Table 5.2b-5.2e, there exist
then di�erent possibilities for the variables mk,

k+1x1 and tS,k+1 depending on
the values of kx1,

kφmax,
kvφ,0 and ∆(kφmax). By successively applying the

provided relations in the table, as discussed in Sec. 5.2.3, and making use of
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Figure 5.3.1: Construction of x in D0 (0u = θ̇max, i ∈ {0, 2, . . .}, j ∈ Sm0
)

the graphical illustration provided in Fig. 5.2.2 (Right) together with (5.2.20),
these possibilities can all be described using four main Switching Patterns each
of which provides a di�erent relation for the desired variables, see Table 5.4a-
5.4d. The derivations of these relations are depicted in Fig. 5.3.2 for the case
when the de�ection at tS,k is positive. As indicated there, a continuous change
in the values of this de�ection and its time-derivative can change the switching
pattern followed by the control if ∆(kφmax) is �xed. This leads to �ve Limiting
Switching Patterns clarifying the relation between the main switching patterns,
see Table 5.4e.

Using the expressions in Table 5.4, it is now possible to uniquely determine
the values of mk,

k+1x1 and tS,k+1 using kx, ku and tS,k. As in the previous
case, these three terms can in turn be used to uniquely determine the extremal
(x, u) in Dk, see Sec. 4.1. Moreover, with this extremal and the equality
kη0,0 = C(kx1,

kφmax) the costate λ|Dk can be determined as well, see Sec. 5.2.2.
In other words, Table 5.4 provides all the necessary information to construct Λ
in Dk using the k'th switching time and the value of the extremal at this time.

It is important to remark here that knowing Λ in Dk, it is always possible to
determine the value of the extremal at tS,k+1. Since in our discussion above the
value for k ∈ Si\{0} was chosen arbitrarily, this means that Table 5.4 actually
provides all the relations required to iteratively construct the extremal lift Λ
in D\D0 if we know the values of 1x, 1u and tS,1. Moreover, these three terms
depend on λ20 and i as we have seen when discussing the construction of Λ in
D0. Combining our results on the construction of extremal lifts leads then to
an iterative procedure with which we can uniquely construct Λ in D depending
only on λ20 and i. This procedure is graphically illustrated in Fig. 5.3.3 for the
systems Σ1,Σ2 and Σ3 from Table 4.1, where we used the expressions in Table
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mk
k+1x1 tS,k+1 − tS,k

1
kη0,0+C(k+1x1,

kφmax)
2 kvφ,0

= ∆(kφmax)
Tp(kφmax)

2 − Tφ(|kx1|, kφmax) + Tφ(|k+1x1|, kφmax)

(a) Switching Pattern Sw1 : kx1 · kvφ,0 > 0 ∧
kη0,0
kvφ,0

≤ 3∆(kφmax)

mk
k+1x1 tS,k+1 − tS,k

0 kη0,0 = C(k+1x1,
kφmax) Tφ(|kx1|, kφmax) + Tφ(|k+1x1|, kφmax)

(b) Switching Pattern Sw2 : kx1 · kvφ,0 < 0 ∧
kη0,0
kvφ,0

≤ ∆(kφmax)

mk
k+1x1 tS,k+1 − tS,k

1
kη0,0+C(k+1x1,

kφmax)
2 kvφ,0

= ∆(kφmax)
Tp(kφmax)

2 + Tφ(|kx1|, kφmax)− Tφ(|k+1x1|, kφmax)

(c) Switching Pattern Sw3 : kx1 · kvφ,0 < 0 ∧
kη0,0
kvφ,0

> ∆(kφmax)

mk
k+1x1 tS,k+1 − tS,k

2
kη0,0−C(k+1x1,

kφmax)
4 kvφ,0

= ∆(kφmax) Tp(
kφmax)− Tφ(|kx1|, kφmax)− Tφ(|k+1x1|, kφmax)

(d) Switching Pattern Sw4 : kx1 · kvφ,0 > 0 ∧
kη0,0
kvφ,0

> 3∆(kφmax)

mk
k+1x1 tS,k+1 − tS,k

Sw1,2 : ∆(kφmax) = −
kη0,0
kvφ,0

> 0 0 C(k+1x1,
kφmax)

kvφ,0∆(kφmax)
= −1

Tp(kφmax)
4 + Tφ(|k+1x1|, kφmax)

Sw2,3 : ∆(kφmax) =
kη0,0
kvφ,0

> 0 0
kφmax
kvφ,0

Tφ(|kx1|, kφmax) +
Tp(kφmax)

4

Sw1,4 : ∆(kφmax) =
kη0,0

3 kvφ,0
< 0 1

kφmax
kvφ,0

3Tp(kφmax)
4 − Tφ(|kx1|, kφmax)

Sw3,4 : ∆(kφmax) = −
kη0,0
kvφ,0

< 0 1 C(k+1x1,
kφmax)

3 kvφ,0∆(kφmax)
= 1

3Tp(kφmax)
4 − Tφ(|k+1x1|, kφmax)

Sw1,2,3,4
: ∆(kφmax) = kη0,0 = 0 0

kφmax
kvφ,0

Tp(kφmax)
2

(e) Limiting Switching Patterns Sw1,2 , Sw2,3 , Sw1,4 , Sw3,4 , Sw1,2,3,4

Table 5.4: mk,
k+1x1 and tS,k+1 along a Normal Extremal

(i ≥ 1, k ∈ Si\{0}, kφmax > 0, kη0,0 = C(kx1,
kφmax), sgn(k+1x1)

sgn(kx1)
= −1)
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Figure 5.3.3: Normal Extremal Lift Construction for Σ1,Σ2 and Σ3

(i = 2, k ∈ Si, j ∈ Smk , tf = 0.55s)

3.1 to construct for each system an extremal lift with a control switching two
times, i.e. i = 2. Moreover, for each lift the initial costate λ20 is chosen such
that the terminal time satis�es tf = tS,2 = 0.55[s]. Fig. 5.3.3 (Top) clari�es the
changes of kη0,j along the extremal lifts, with k ∈ S2 and j ∈ Smk , as well as its
relation to the de�ection values at the switching times and terminal time. Fig.
5.3.3 (Middle) plots the trajectories corresponding to the applied controls, and
�nally Fig. 5.3.3 (Bottom) depicts the costate trajectories along the lifts.

5.3.3 Parameterization of Extremals

As we have already discussed, there exists a one-to-one correspondence between
extremal lifts and the set of pairs (λ0, i) satisying (5.3.1)-(5.3.2) and (5.3.4)-
(5.3.5). Therefore, each solution to the LVMP can be referred to by at least
one such pair. Note that our results from Sec. 5.3.1 and Sec. 5.3.2 show
how to determine for each such pair the corresponding extremal. Consequently,
with the construction procedures described there we can in principle solve the
LVMP for any given terminal time tf . Indeed, the desired solution can be
found if we �rst determine the set of all pairs (λ0, i), which lead to an extremal
terminating at the given time, then compare the corresponding terminal link
velocities and �nally choose one pair resulting in the maximal terminal link
velocity. In the following, we will show how to simplify this solution process by
�nding a parameterization for the family of all extremals [2]. This will lead to
a reformulation of the LVMP as a NPP which can be e�ciently solved.

We start our discussion by showing how to parameterize all the normal
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extremals by exploiting their dependence on the initial costates. Focusing
�rst on normal extremals (x, u) for which the initial control is positive, Fig.
5.3.1 already indicates that there exists a continuous relation between the ini-
tial costate λ20 and the state 1x. More speci�cally, the �gure suggests that
as λ20 goes from minus in�nity to positive in�nity, the state 1x will contin-
uously move from the origin to the state (0, 2θ̇max)T while remaining on the
closed curve described by the relative energy 0Erel = 1

2Mθ̇2
max and the control

0u = θ̇max, see Sec. 4.1. Based on this observation and the dependence of 1x
on the switching number, let us introduce the injective and continuous function
1xextS : Dα → R2, α→ 1xextS (α) =

(
1xext1S (α) 1xext2S (α)

)T
with

1xextS (α) =

(
E−1
pot(2Mθ̇2

max|α|(1−|α|))
sgn(α)

2αθ̇max

)
, (5.3.11)

and Dα := (−1, 1)\{0}. For α ∈ (0, 1), the image of this function describes
the set of all states which normal extremals can attain at tS,1 if the control has
an even number of switchings, see Table 5.3 and the green dashed curves in
Fig. 5.3.1 (Bottom). Similarly, the image of 1xextS |(−1,0) is equal to the set of
all states which normal extremals with 0u = −θ̇max can attain at tS,1. More-
over, the union of these two images and the set of initial costates λ0 satisfying
(5.3.1)-(5.3.2) with λa = 1 are homeomorphic. This can be shown using the
homeomorphism λext0 in Table 5.5a which is derived using (5.3.2),(5.3.5) and
Table 5.3. Finally, notice that limα→1−

1xextS (α) is equal to the value of 1x at-
tained by an abnormal extremal (x, u) if λ20 is positive, and limα→−1+

1xextS (α)
gives the value of the same state if λ20 is negative, see (5.3.4) and Prop. 11.

If we now take a closer look at our results from Sec. 5.3.2, we can observe
that for normal extremal lifts sharing the same initial costate the switching
number only in�uences the number of the switching times but not their values
or the values of the states at these times. This simply follows from the properties
of the state and costate dynamics in (2.1.4) and (5.2.1) according to which the
condition (5.2.2) uniquely determines both the state and costate trajectories
when the initial costate is non-trivial, see Appendix B.3.3. Since for any normal
extremal lift, the �rst costate is zero not only at the switching times but also
at the terminal time, based on Prop. 8 we can therefore conclude the following:
If Λ = (x, u,λ, λa) and Λ̃ = (x̃, ũ, λ̃, λa) are two extremal lifts with λ0 =
λ̃0 and i ≥ ĩ ≥ 0, where i and ĩ denote the switching numbers of u and ũ,
respectively; then for each k ∈ Sĩ+1 we have tS,k = t̃S,k and kx = kx̃. With the
homeomorphism from Table 5.5a, this result shows us that for each non-negative
integer k there must exist functions ktextS : Dα → R and kxextS : Dα → R2 such
that for any normal extremal Λ with i ≥ max{0, k − 1} switching times and

λ0 = λext0 (α), (5.3.12)

we have
ktextS (α) = tS,k ∧ kxextS (α) = kx. (5.3.13)
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α λext0 (α)

0 < |α| < 1
2

(
− sgn(α)

θ̇max
, C
(

1xext1S (α), 0φmax
))

|α| = 1
2

(
− sgn(α)

θ̇max
, ∆(0φmax)

sgn(α)

)
1
2 < |α| < 1

(
− sgn(α)

θ̇max
, 2∆(0φmax)

sgn(α) − C
(

1xext1S (α), 0φmax
))

0φmax = E−1
pot(

1
2Mθ̇2

max) > 0

(a) λext0 : Dα → (R2)∗

ktextS (α) (k−1)π+arccos(1−2|α|)
ω0

kxextS (α) (−1)k−12θ̇max sgn(α)

(√
|α|(1−|α|)
ω0

k − 1 + |α|

)
k ∈ {1, 2, . . .}, α ∈ Dα = (−1, 1)\{0}

(b) ktextS and kxextS for Σid

textS (β)

{
ktextS (β − k + 1) β ∈ (k − 1, k)

tmin(k) β = k

xextS (β)

(−1)k−1 · kxextS (β − k + 1) β ∈ (k − 1, k)

2k
(

0 θ̇max

)T
β = k

β ∈ (k − 1, k], k ∈ {1, 2, . . .}
(c) textS : (0,∞)→ R and xextS : (0,∞)→ R2

Table 5.5: Parameterization of Extremals
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Notice that for k = 0, we simply have 0textS ≡ 0 and 0xextS ≡ 0. More impor-
tantly, for k = 1 this de�nition is in accordance with the previously introduced
function in (5.3.11).

It is important to realize here that the values of the functions in (5.3.13) can
be uniquely determined using the construction procedure from Sec. 5.3.2 and the
function λext0 . Table 5.5b provides these functions for the linear control system
Σid. By using elliptic integrals and their inverses [1], it is actually also possible
to mathematically describe these functions for the nonlinear systems Σsin and
Σsinh, see Table 3.1 and Table 5.3-5.4. Nevertheless, the resulting terms become
very long due to the iterative nature of the proposed construction procedure and
are therefore not given.

Turning back to our problem of solving the LVMP, let us assume that Λ is
a normal extremal lift with a control u having i ≥ 0 switchings. Our results
so far show how instead of using the pair (λ0, i) we can equivalently use the
pair (α, i) to refer to this lift if (5.3.12) holds. Moreover, using the functions
just introduced above we can also directly refer to the �nal time of u which
will be given by i+1textS (α). This means that the control u in this lift might be
a solution to the LVMP for the �nal time tf = i+1textS (α). To de�nitely solve
this particular LVMP, however, we need to �nd the set of all controls which are
contained in an extremal, normal or abnormal, with the �nal time tf . According
to Prop. 11 and in particular (5.3.8), the question of whether there exists such
a control in an abnormal extremal is equivalent to the question of whether there
exists an integer k ≥ 1 such that

tmin(k) = tf . (5.3.14)

Similarly, the existence question for controls belonging to a normal extremal
and terminating at tf can be investigated by making use of the time functions
in (5.3.13). More speci�cally, based on the properties of λext0 and the three
conditions (5.3.1),(5.3.2) and (5.3.5) we can identify the set of all such controls
by �nding for each k ≥ 1 the parameters β, which belong to the set Dext

k ⊂ Dα

de�ned by
Dext
k :=

{
β ∈ Dα| sgn(β) = (−1)k−1

}
, (5.3.15)

and satisfy
ktextS (β) = tf . (5.3.16)

Note that equations (5.3.14) and (5.3.16) provide an in�nite number of equal-
ity constraints for the integer k ≥ 1 and the pair (β, k) ∈ Dext

k × {1, 2, . . .},
respectively. In addition, based on our discussion above we can see that for any
given �nal time tf > 0, solving the LVMP requires us to �rst �nd the solution set
for each of them and then to compare the corresponding terminal link velocities.
We want to next show how by exploiting the properties of the functions in these
equality constraints we can describe this whole process as a one-dimensional
NPP. The following proposition will be essential in our discussion.

Proposition 13. For any positive integer k, the functions ktextS : Dα → R and
kxextS : Dα → R2 are continuous. Moreover, if τJ is two-times continuously
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di�erentiable they are continuously di�erentiable. In addition, in each case we
have for each α ∈ Dα

ktextS (−α) = ktextS (α) > 0, (5.3.17)

and
kxextS (−α) = −kxextS (α). (5.3.18)

Finally, for textS we have

lim
α→0

ktextS (α) =

{
0 k = 1

tmin(k − 1) k ≥ 2
, (5.3.19)

and
lim
α→1−

ktextS (α) = tmin(k), (5.3.20)

while for kxextS we have

lim
α→0+

kxextS (α) = (−1)k−12(k − 1)

(
0

θ̇max

)
, (5.3.21)

and

lim
α→1−

kxextS (α) = (−1)k−12k

(
0

θ̇max

)
. (5.3.22)

Proof. See Appendix B.3.3.

We had already given an explicit expression for 1xextS in (5.3.11) which shows
that this function is continuous. Moreover, by the relations provided in Table
5.3 the same expression also implies that 1textS is continuous. The main value
of Prop. 13 is that it shows that the functions kxextS and ktextS remain to be
continuous for k ≥ 2. In addition, it also states that for each k ≥ 1 their limits
at the boundaries of Dα are closely related to abnormal extremals as we have
also previously observed when discussing the limits of 1xextS at the non-zero
boundaries of Dα.

Choosing an arbitrary k ≥ 1 and concentrating at the restriction of the
function ktextS to the interval Dext

k , we can now make use of the limits in (5.3.19)-
(5.3.20) together with the symmetry property (5.3.17) to obtain the following
relation:

lim
Bk,1

ktextS (β) = lim
Bk+1,0

k+1textS (β) = tmin(k), (5.3.23)

where Bk,1 denotes the base7 Dext
k 3 β → (−1)k−1 and Bk+1,0 the base Dext

k+1 3
β → 0. According to (5.3.23), the two restricted functions ktextS |Dextk

and
k+1textS |Dextk+1

can be both continuously extended and, more importantly, simul-
taneously described using one continuous function with a suitable domain. More
generally, since our choice for k was arbitrary it is possible to construct a con-
tinuous function whose graph contains, after a suitable transformation of the

7For notational simplicity, we use here the concept of the limit of a function over a base,
see [62].
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Figure 5.3.4: The Functions textS and xextS for Σ1,Σ2 and Σ3, and the Maximal
Link Velocity xext2S (βopt) for tf = 0.55[s].

domain, the graph of all the restricted functions ktextS |Dextk
with k ≥ 1. The func-

tion textS : (0,∞)→ R provided in Table 5.5c is such a function. It is constructed
by using for each k ≥ 1 the mapping βextk : Dext

k → (k − 1, k), β → βextk (β) =
k−1+|β| and the condition that textS (βextk (β)) = ktextS (β) holds at each β ∈ Dext

k .
Fig. 5.3.4 depicts textS for the three control systems Σ1,Σ2 and Σ3 in the in-
terval (0, 4]. Moreover, for each system the �gure also illustrates, in the same
interval, the function xextS de�ned in Table 5.5c. Similar to textS , this function is
continuous and constructed using the condition8 xextS (βextk (β)) = kxextS (β) for
each k ≥ 1 and β ∈ Dext

k .
As already mentioned, solving the LVMP for a given �nal time tf > 0 re-

quires us to �nd for each k ≥ 0 the set of all solutions for the equality constraints
(5.3.14) and (5.3.16). Based on its construction and its relation to abnormal
extremals as described by (5.3.23), the function textS provides us a means to de-
termine the union of all these sets by �nding the set of all parameters β ∈ (0,∞)
solving the equality textS (β) = tf . Moreover, by evaluating xextS at each such β
we can also determine the �nal states reached by all the extremals correspond-
ing to these parameters and thus also their �nal link velocity. Since the desired
optimal control is known to maximize this velocity, this leads us directly to the
following proposition9 which shows how we can determine for any given �nal
time the solution to the LVMP by solving a NPP.

8Notice that similar to (5.3.23), we have according to (5.3.18) and (5.3.21)-(5.3.22)
limBk,1

kxextS (β) = limBk+1,0
k+1xextS (β) for each k ≥ 1.

9The proof of the proposition follows simply from Prop. 7 and the de�nition of the functions
textS and xextS . It is omitted for brevity.
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Proposition 14. Let tf be an arbitrary positive scalar. Then the nonlinear
programming problem

Maximize xext2S (β) (5.3.24)

subject to textS (β) = tf , (5.3.25)

β ∈ (0,∞), (5.3.26)

has at least one optimal solution. Moreover, the admissible switching control
u : [0, tf ] → U with i ≥ 0 switchings and |u| ≡ θ̇max solves the LVMP if and
only if there exists a solution βopt ∈ (i, i+ 1] to the problem such that we have

0u = (−1)iθ̇max, (5.3.27)

for the initial value of that control and

(∀k ∈ Si)[tS,k+1 = textS (βopt − i+ k)], (5.3.28)

for its switching times and �nal time. Finally, in this case we have

(∀k ∈ Si)[k+1x = (−1)i+k · xextS (βopt − i+ k)], (5.3.29)

for the optimally controlled trajectory (x, u).

Given any �nal time tf > 0, the optimal solution to the NPP in Prop.
14 can be searched for graphically since it is a one-dimensional problem. Fig.
5.3.4 illustrates this by showing how the graphs of textS and xext2S can be used to
determine, for the systems Σ1,Σ2 and Σ3 and for tf = 0.55[s], the parameter
βopt solving the problem and the corresponding maximal link velocity xext2S (βopt).
It is important to remark here that for all the three systems analysed in the
�gure, it is su�cient to restrict our search for a solution to the interval (0, 4].
This follows from the observation that the function textS |(0,4] is strictly increasing
and from the fact that the value of ktextS (α), with α ∈ Dα, and of tmin(k) always
increase with increasing k ≥ 1.

According to Fig. 5.3.4, for the systems Σ1,Σ2 and Σ3 there exists only
one solution to the NPP in Prop. 14 when tf = 0.55[s]. This means that for
all these three systems there can only exist one extremal terminating at this
�nal time. Consequently, we can now conclude that each of the three extremal
lifts constructed in Fig. 5.3.3 are actually optimal. Unfortunately, in general
there might exist multiple extremals terminating at the same terminal time. We
will see this in the next chapter, when we investigate the maximal link velocity
of control systems sharing the same dynamics as the DLR FSJ [59]. Since
our results only imply continuity of the function textS but not monotonicity, in
such cases it is not straightforward to determine the solution set of the equality
(5.3.25). We conclude this section with a proposition, which provides lower and
upper bounds for this set as well as for the maximal value that can be attained
by the objective function (5.3.24). The proposition is especially useful when the
NPP in Prop. 14 is to be solved numerically.
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Proposition 15. Let tf > 0 be an arbitrary scalar and βext ∈ (0,∞) a scalar
for which the equality tf = textS (βext) holds. Moreover, let

ωmin = min
φ∈[0,θ̇maxtf ]

√
KJ(φ)

M
, (5.3.30)

and

ωmax = max
φ∈[0,θ̇maxtf ]

√
KJ(φ)

M
, (5.3.31)

denote the minimal and maximal eigenfrequency attainable at the �nal time tf ,
respectively. Finally, let the integers ilb and iub be given as follows10:

ilb = max{0,
⌈
ωmintf
π

⌉
− 2}, (5.3.32)

and

iub =

⌈
ωmaxtf
π

⌉
+ 1. (5.3.33)

Then, we have
βext ∈ (ilb, iub + 1]. (5.3.34)

Moreover, if βext also solves the nonlinear programming problem described by
(5.3.24)-(5.3.26), the following inequalities hold for the corresponding terminal
link velocity xext2S (βext):

0 < xext2S (βext) <

√
2Epot(θ̇maxtf )

M
. (5.3.35)

Proof. See Appendix B.3.3.

5.4 Resonance Energies

The LVMP as formulated in Sec. 2.3 is actually a problem already studied in [24]
for the case when the TDP is linear [53]. As already mentioned, for su�ciently
large terminal times the corresponding OC strategies periodically switch be-
tween their minimum and maximum values with the EJ's eigenfrequency. From
a mechanics point of view, OC Theory thus establishes the fact that an EJ with
a linear spring must be excited with its resonance frequency when the terminal
link velocity is to be maximized. The main aim of this section is to show how our
results obtained so far extend this well-known concept of resonance frequency
to a new concept which we will call resonance energies.

We will start our discussion by �rst clarifying the main properties of opti-
mally controlled trajectories for the linear control system Σid, see Table 4.1b.
These properties will directly follow from well-known results on the OC of linear

10We use �d.e� to denote the ceiling function.
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systems [30]. Afterwards, we show that some of these properties remain also
valid for systems with nonlinear TDP's. Focusing on the common properties, we
then make use of Bellman's principle of optimality [9] together with the concept
of parameterized families of extremals [37, 53] to �nd a physical interpretation
for the costates as well as the optimal control strategies. Using this interpreta-
tion, we further explain the relation between costate trajectories and the time
functions introduced in Sec. 3.2. Noting that this relation is valid for any TDP,
linear and nonlinear, our discussion will �nally lead to the concept of resonance
energies.

The control system Σid is a completely controllable system with a compact
and convex control set. Consequently, given a �nal time tf > 0 the time-tf -
reachable set from the origin, which we will denote by ReachΣid,tf (0), is compact
and convex [53]. Moreover, since the same system also satis�es the normality
condition this set is actually strictly convex [30]. In addition, for each tf > 0
there exists exactly one control strategy solving the LVMP. More generally,
for any non-trivial linear combination of terminal states there exists exactly
one control strategy minimizing this combination. The following proposition
clari�es the relation between these strategies and also show that they all lead
to time-optimal and boundary trajectories11.

Proposition 16. Let τJ be a linear TDP and Λ = (x, u,λ, λa) an extremal
lift for the LVMP which is de�ned on D = [0, tf ]. Then, Λ is optimal, x is
time-optimal and (x, u) is a boundary trajectory. Moreover, for each t̄f ∈ (0, tf ]
the admissible control ū : [0, t̄f ]→ U de�ned by

∀t ∈ [0, t̄f ) [ū(t) = u(t)] , (5.4.1)

is the unique control that minimizes the cost functional J̄ : PCU → R with12

J̄(ũ) = λ(t̄f )x̃f , (5.4.2)

over all admissible controls ũ de�ned on [0, t̄f ].

Proof. See Appendix B.3.4.

In general, it is not possible to directly determine whether the time-t-reachable
sets of Σ are convex or not if the TDP is nonlinear. Consequently, for such sys-
tems the conditions provided by PMP can only be regarded as necessary condi-
tions. This also means that Prop. 16 can not be directly extended to extremal
lifts for an arbitrary control system Σ. Nevertheless, applying �rst Filippov's
Theorem [2] and then Sturm Comparison Theorem [3], as done in the proof of
Prop. 6, it is possible to see that ReachΣ,tf (0) will be compact for each tf > 0.
Moreover, an optimal extremal (x, u) for the LVMP, de�ned on D = [0, tf ], will
always terminate at the boundary this set. Finally, as we show in the following
proposition x will in this case also be a time-optimal trajectory.

11See [53] for the de�nition of a boundary trajectory.
12Similar to (2.3.1), x̃f denotes in (5.4.2) the terminal state to which the admissible control

ũ will steer the system Σ from the origin.
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Proposition 17. Let (x, u) be an optimally controlled trajectory. Then, (x, u)
is a boundary trajectory and x is a time-optimal trajectory.

Proof. See Appendix B.3.4.

According to Prop. 17, time-optimality is a property shared by every opti-
mally controlled trajectory regardless of the TDP. This is in accordance with
the mathematical expressions we have found in Table 5.1a which describe the
costates in terms of the time functions from Sec. 3.2, see Prop. 9. Similarly,
for each control system Σ optimally controlled trajectories belong at each time
to the boundaries of the systems time-t-reachable sets. In order to extend the
concept of resonance frequency, we will next investigate these common prop-
erties in more detail and provide, in particular, a physical explanation for the
costates.

When using Bellman's optimality principle to solve an OC problem, it is
known that the costates of the problem will be given by the gradient of the
value function if this function is continuously di�erentiable [15, 9]. To be able
to physically interpret the costates, we will therefore search for a value function
which can be used to distinguish between optimal and non-optimal trajectories
for the LVMP. For this aim, we will make use of the parameterized family of
extremals we introduced in Sec. 5.3.3.

Following [53], let us now introduce the continuous �ow of extremals xext :
Dα × [0,∞)→ R2, (α, t)→ xext(α, t) which for each k ≥ 0 and t ∈ Dk satis�es

xext(α, t) = kxextS (α) +

∫ t

ktextS (α)

f(xext(α, s), ku)ds. (5.4.3)

Similarly, let λext : Dα× [0,∞)→ R2, (α, t)→ λext(α, t) denote the continuous
�ow of costates de�ned by13

λext(α, t) = λext0 (α)−
∫ t

0

λext(α, s)
∂f

∂x

(
xext(α, s)

)
ds. (5.4.4)

Moreover, let Λ = (x, u,λ, λa) be a normal optimal extremal such that u is
a switching control with the terminal time tf and switching number iopt ≥ 1.
Then, by our results from Sec. 5.3.3 we know that there must exist a parameter
αopt ∈ Dα such that x is given by the restriction of xext(αopt, .) to the interval
[0,i

opt+1 tS,k(αopt)]. Finally, assume that there exists an open interval Iαopt ⊂ Dα

containing αopt such that for each α ∈ Iαopt the restriction of xext(α, .) to the
interval [0,i

opt+2 textS (α)] is optimal with iopt+1textS (α) < iopt+2textS (αopt). In this
case, it follows from Prop. 17 that the set

Sf :=
{
xext(α, tf ) ∈ R2 |α ∈ Iαopt

}
, (5.4.5)

de�nes a continuous curve on the boundary of ReachΣ,tf (0). This is graphically
illustrated in Fig. 5.4.1 for the nonlinear control system Σ3 with iopt = 2,

13Noting that ∂f
∂x

does not depend on the applied control strategy, we omit here, with a
slight abuse of notation, the second argument of this derivative.
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Figure 5.4.1: Physical Interpretation for the Costates
(Σ = Σ3, α

opt = 1
2 , Iαopt = ( 1

4 ,
3
4 ), iopt = 2, tf ≈ 0.57[s])

αopt = 1
2 and Iαopt = (1

4 ,
3
4 ). As shown there, the costate λf represents in this

case a normal vector to Sf and thus also to ReachΣ,tf (0). In the following, we
will derive our desired physical interpretation for the costates which will reveal
the reason behind this geometric property.

Making use of the set Sf , let us introduce the value function Vf : DVf → R
with

Dxopt := Iαopt × [0, tf ], (5.4.6)

DVf := xext(Dxopt), (5.4.7)

such that
Vf (y) = 0, (5.4.8)

if y ∈ Sf and14

Vf (y) = min {T (z) |z ∈ Traj(Σ) ∧ z0 = y ∧ zf ∈ Sf } , (5.4.9)

if y /∈ Sf . According to its de�nition, Vf (y) provides the minimum time15

required by trajectories of Σ to terminate on the set Sf when they start from
y ∈ DVf \Sf and remain in DVf . Clearly, for trajectories starting from the
origin we always have Vf (0) = tf . More generally, by the Bellman's principle of
optimality [9] we have for each α ∈ Iαopt and t ∈ [0, tf ]

Vf
(
xext(α, t)

)
= tf − t. (5.4.10)

The equality in (5.4.10) simply shows that the value function Vf linearly de-
creases over time when evaluated along optimal trajectories. Assuming that

14Recall that for each trajectory x of Σ, T (x) denotes the terminal time tf .
15Notice that the existence of the minimum directly follows from our assumptions on the

existence of optimal extremals corresponding to pairs (α, iopt + 2) with α ∈ Iαopt .
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Vf is continuously di�erentiable, we can take the time-derivative of (5.4.10)
everywhere except at the switching times. This leads, as expected from the
Hamilton-Jacobi-Bellman equation, to the equality

∂Vf
∂x

(
xext(α, t)

) ∂xext
∂t

(α, t) = −1, (5.4.11)

which holds at each (α, t) ∈ D̊xopt := Dxopt\Iαopt × {1tS(α), . . . , i
opt

tS(α)}.
A comparison of the Hamiltonian function in Prop. 7 with (5.4.11) already

suggests a close relation between λ and the gradient of Vf . Similarly, if we
additionally assume that xext(α, t) is di�erentiable with respect to α, we obtain
the following equality from (5.4.10):

∂Vf
∂x

(
xext(α, t)

) ∂xext
∂α

(α, t) = 0. (5.4.12)

Taking now a closer look at (5.4.11)-(5.4.12), one can see that knowing the
derivatives of xext with respect to the time t and parameter α one can uniquely
determine ∂Vf

∂x (xext(α, t)) in D̊xopt provided that these derivatives exist and are
linearly independent. The following proposition, which is closely related to the
results from [53] such as the Shadow-Price Lemma16, provides conditions under
which this will be true for xext(α, t) in a particular subset of D̊xopt . Moreover,
as shown there the provided conditions also ensure Vf to be continuously di�er-
entiable in this subset with a gradient which directly corresponds to the costates
of optimal extremals corresponding to parameters in Iαopt .

Proposition 18. Let i ≥ 1 be a positive integer and Iαext ⊂ Dα = (−1, 1)\{0}
a non-empty open interval. In addition, assume that for each k ∈ Si\{0} the
functions ktextS and kxextS are continuously di�erentiable on Iαext and that for
each α ∈ Iαext we have

∂EMSS

∂x

(
kxext1S (α), kxext2S (α)− ku

) dkxextS

dα
(α) > 0. (5.4.13)

Finally, let D̊xext , Dxext and Dtext denote the sets

D̊xext :=
{

(α, t)
∣∣α ∈ Iαext ∧ t ∈ ∪ik=1

(
ktextS (α), k+1textS (α)

)}
,

Dxext := Iαext ×
(

1textS (α), i+1textS (α)
)
,

and
Dtextf

:= xext(Dxext),

and assume further that the restriction of xext to Dxext is an injective function.
Then, the restriction of xext to D̊xext is continuously di�erentiable and we have

det
(
∂xext

∂α (α, t) ∂xext

∂t (α, t)
)
> 0, (5.4.14)

16The main contribution of the proposition is the interpretation of the time along trajectories
as an additional parameter used to parameterize the extremals.
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for each (α, t) ∈ D̊xext . In addition, the unique function textf : Dtextf
→ R,x →

textf which satis�es

(∀(α, t) ∈ Dxext)
[
textf (xext(α, t)) = t

]
, (5.4.15)

is continuously di�erentiable and for each (α, t) ∈ D̊xext we have

∂textf

∂x

(
xext(α, t)

)
= (0 1)

(
∂xext

∂α (α, t) ∂xext

∂t (α, t)
)−1

, (5.4.16)

while for each (α, t) ∈ Dxext we have

∂textf

∂x

(
xext(α, t)

)
= −λext(α, t). (5.4.17)

Proof. See Appendix B.3.4.

By applying Prop. 18, with Iαext = Iαopt and i = iopt+1, we can see that for
each point y in the setDVf \xext

(
Iαopt × [0, 1textS (α)]

)
the function Vf will be ex-

actly equal to the di�erence tf−textf (y) provided xext|Iαopt×(1textS (α),i
opt+2textS (α))

is a surjection and (5.4.13) holds for each k ∈ Siopt+1. Moreover, in this case it
follows from (5.4.16) -(5.4.17) that the gradient of the value function ∂Vf

∂x will
exist at each point in the set DVf \xext

(
Iαopt × [0, 1tS(α)]

)
and satisfy

∂Vf
∂x

(xext(α, t)) = λext(α, t), (5.4.18)

for each (α, t) ∈ Iαopt ×
(

1textS (α), i
opt+1textS (α)

)
. It is important to remark

here that Prop. 18 can always be applied to analyse the extremals of systems
with linear TDP's. Moreover, the di�erentiability condition on the functions
ktextS and kxextS can always be ensured when the TDP is two-times continuously
di�erentiable, see Prop. 13. Finally, regardless of the TDP the proposition can
always be applied if iopt = 1. In deriving the concept of resonance energies we
will take the conditions required to apply Prop. 18 as granted. Note that these
conditions are also satis�ed by the family of extremals analysed in Fig. 5.4.1.

Equation (5.4.18) provides us now the desired physical interpretation for the
costates according to which the costates represent, after the �rst switching time
of the control, the gradient of the minimum time required to reach the set Sf
in (5.4.5). In particular, evaluating (5.4.18) along the optimal extremal Λ, by
setting α to αopt, and using (5.4.16) we can see that for each t ∈ (1tS(αopt), tf ]
λ(t) will satisfy

λ(t)· lim
BVf (t)

(
∂xext

∂α (α, s) ∂xext

∂t (α, s)
)

=
(
0 −1

)
, (5.4.19)

with BVf (t) := D̊Vf 3 (α, s)→ (αopt, t). With (5.4.19), we can now also see that
λ(t) will be a normal vector to the boundary of the reachable set ReachΣ,t(0)
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pointing inwards whenever t > tS,1. Moreover, according to (5.4.19) we also
see that at each such time the Minimum Condition in (5.2.2) simply requires
the optimal control to adjust the time-derivative of the optimal trajectory such
that the trajectory leaves the corresponding time-t-reachable set at its highest
possible rate. Finally, evaluating (5.4.19) at t = tf one can observe, in ac-
cordance with Fig. 5.4.1, that the transversality condition requires the limit
limBVf (tf )

∂xext

∂α (α, s) to be a horizontal vector ensuring that the terminal link

velocity attained by the neighbouring extremals can not be greater then x2(tf ).
In our analysis above, we have used the parameterization from Sec. 5.3.3 to

�nd an additional condition on optimally controlled trajectories, see (5.4.12).
Using this condition together with (5.4.11), we could relate in Prop. 18 the
gradient of Vf to the �ow of costates. We want to next further exploit this
condition to understand the meaning behind the analytical expressions we have
found in Sec. 5.2.2 for the costates. For this aim, let us recall that for each
k ∈ Siopt and j ∈ Smk , the costate λ in Dkj is uniquely determined by (x, u)
if we additionally know the value of jη0,k or equivalently the value of λ2 when
the de�ection is equal to zero in Dkj , see Sec. 5.2.2. Based on this property,
let us introduce, as in Fig. 5.4.1, for each k ∈ Siopt\{0} the continuous curves
kγ : Iαopt → R2 with

kγ(α) =

(
0

xext2

(
α, ktx(α)

)) ,
where ktx : Iαopt →

(
ktS(α), k+1tS(α)

)
is the unique continuously di�erentiable

function satisfying the equality

(∀α ∈ Iαopt)
[
xext1

(
α, ktx(α)

)
= 0
]
.

Moreover, let kϕmax : Iαopt → [0,∞) denote the maximal de�ection function
corresponding to the relative energies attained along these curves. That is

(∀α ∈ Iαopt)
[
kϕmax(α) = E−1

pot

(
Ekin

(
ku− kγ2(α)

))]
.

Without loss of generality, assume now that for a given k ∈ Siopt\{0} the

derivative ∂xext1

∂t (α, tx(α)) is positive for each α ∈ Iαopt and �x the integer
j ∈ Smk−1 = {0, 1} such that tx(αopt) ∈ Dkj . If we now choose a time t̃
from the same interval Dkj and set x̃ = x(t̃), there will exist a su�ciently small
neighborhood Nx̃ of x̃ such that for each ỹ ∈ Nx̃ we have

Vf (ỹ) = Vf
(
kγ(α̃)

)
− Tφ

(
ỹ1,

kϕmax(α̃)
)
, (5.4.20)

with
Ekin

(
ku− kγ2(α̃)

)
= EMSS

(
ỹ1,

ku− ỹ2

)
. (5.4.21)

Similarly, if we choose a time t̄ from the interval Dkj+1 and set x̄ = x(t̄) there
will exist a su�ciently small neighborhood Nx̄ of x̄ such that for each ȳ ∈ Nx̄
we have

Vf (ȳ) = Vf (kγ(ᾱ))− Tp
(
kϕmax(ᾱ)

)
2

+ Tφ
(
ȳ1,

kϕmax(ᾱ)
)
, (5.4.22)
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with
Ekin

(
ku− kγ2(ᾱ)

)
= EMSS

(
ȳ1,

ku− ȳ2

)
. (5.4.23)

Fig. 5.4.1 ilustrates two such possible choices for t̃ and t̄ .
As one can observe from Fig. 5.4.1, equations (5.4.20)-(5.4.21) simply illus-

trate the fact that using only the function Tφ we can relate the minimum time
required to reach the set Sf from a given state ỹ to the minimum time required
to reach the same set from a state kγ(α̃) at which the de�ection is zero provided
both states share the same relative energy and same sign of the velocity kvφ,j .
If, on the other hand, there is a change in the velocity, the oscillation period
Tp must also be accounted for as shown by (5.4.22). Furthermore, by partially
di�erentiating (5.4.20) and making use of the equalities in (5.4.18) and (5.4.21)
we can now get the exact same expressions for the costates λ in Dkj as provided
in Prop. 9 and Table 5.1b. Similarly, by partially di�erentiating (5.4.22) we can
also �nd the expressions describing λ in Dkj+1 if we additionally use (5.2.20)-

(5.2.21) to relate j+1η0,k to jη0,k =
∂Vf
∂x2

(
kγ(αopt)

)
and dTp

dφmax

(
kϕmax(αopt)

)
.

Focusing now on the optimal control u in the normal extremal lift Λ, we
can see from (5.4.20)-(5.4.23) why for k ≥ 1 knowing the relative energy kφmax
and the boundary condition jη0,k we can describe u|Dkj as a function of the

de�ection using the function C(.,k φmax). In addition, the equations also clarify
why this description of the control must be adjusted whenever there is a change
in the sign of ẋ1 and why this adjustment is related to the system's period Tp
and thus TDP. Looking now back at the switching patterns illustrated in Fig.
5.3.2, one can observe that it is the period Tp, or more speci�cally its derivative

dTp
dφmax

= − 4∆(φmax)τJ (φmax)

Mφ̇max
, which complicates the description of optimal con-

trol strategies. For system's with linear TDP's, this derivative is equal to zero.
Consequently, it follows from the symmetry properties of C, that the value of
the de�ection at two consecutive switching instants will share the same mag-
nitude, see Fig 5.3.2 (Middle Row). That is at both these instants the same
potential energy will be stored and this leads to the well-known harmonic oscil-
lation of such systems. For systems with nonlinear TDP's, the same principle
still holds regarding the in�uence of the function C on the potential energies
at the switching instants. In particular, knowing the �rst switching instant one
can uniquely determine all the other switching instants by making use of this
dependence. Describing the resulting control as a function of time is, however,
not straight-forward as for systems with linear TDP's. This follows from the
energy-dependence of Tp. The potential energies at the switching times and
the relative energies attained along the trajectories can, on the other hand, be
more easily determined and they also better explain the switching structure of
the optimal control. Since this is also true for controls in abnormal extremals
and, more importantly, for any control system Σ, we regard optimal control
strategies for the LVMP as excitation of the system with its resonance energies.



Chapter 6

Maximal Link Velocity

As stated in Prop. 6, a solution to the LVMP exists for each �nal time tf > 0.
Moreover, it follows from Prop. 15 that the terminal link velocity attained using
this solution is always positive. Consequently, for EJ's with velocity-sourced
SEA's we can always de�ne a maximal link velocity function q̇max : (0,∞) →
(0,∞) with

q̇max(t) = −J(u∗), (6.0.1)

where u∗ denotes the control strategy solving the LVMP for the �nal time
tf = t, see also (2.3.1). The purpose of the current chapter is to �rst study the
properties of this maximal link velocity function. More speci�cally, we want to
clarify how this function depends on the �nal time as well as the parameters of
the control system Σ such as the maximal motor velocity and the TDP. Secondly,
we want to experimentally illustrate how to attain this maximal link velocity
with the DLR FSJ and thus validate our theoretical results. We will start our
discussion by investigating the dependence of q̇max on the �nal time.

6.1 Final Time Dependence

In this section, we will �rst prove that the function q̇max is a continuous and
strictly increasing function of the �nal time. This will require us to investigate
in detail the relation between q̇max and optimally controlled trajectories. Then,
taking a geometrical approach and exploiting the derived properties of q̇max we
will discuss how to construct the graph of q̇max in a given interval. Moreover,
following the described procedure we will graphically illustrate q̇max for several
control systems.

6.1.1 Continuity and Monotonicity

Let us assume that (x, u) is an optimally controlled trajectory de�ned in the
interval D = [0, tf ]. According to (6.0.1), the value of q̇max at tf will then
be clearly equal to the terminal link velocity x2(tf ). Moreover, for �nal times

87
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greater than tf the values attained by q̇max will be greater than or equal to
x2(tf ). Indeed, for any t̄f > tf we can de�ne an admissible control ū : [0, t̄f ]→ U
with

ū(t) =

{
0 t < ε

u(t− ε) t ≥ ε , (6.1.1)

and ε = t̄f − tf . Using (2.1.4) and noting in particular that the origin is an
equilibrium point of Σ when the control equals to zero, we can then see that the
pair (x̄, ū) de�ned in the interval [0, t̄f ] with

x̄(t) =

{
0 t < ε

x(t− ε) t ≥ ε , (6.1.2)

is an admissible controlled trajectory. Moreover, this trajectory starts from the
origin and terminates at x̄f = xf so that we have x2(tf ) ≤ q̇max(t̄f ). Since our
choice for t̄f was arbitrary, we �nally arrive at the relation

(∀t ∈ (tf ,∞)) [x2(tf ) = q̇max(tf ) ≤ q̇max(t)] . (6.1.3)

Our discussion above simply shows that the terminal link velocity of (x, u)
is a lower bound of q̇max in the interval [tf ,∞). Similarly, we can show that the
trajectory of the link velocity, i.e. x2, is a lower bound of q̇max in the interval
(0, tf ]. To see this, let us �rst note that the restriction of x to a closed interval
[0, t] ⊂ D will always be a trajectory of Σ if t > 0. Clearly, this trajectory will
also start from the origin. Based on the de�nition of q̇max, we can then directly
arrive at the following relation between x2 and q̇max:

(∀t ∈ (0, tf ]) [x2(t) ≤ q̇max(t)] . (6.1.4)

It is important to note here that equations (6.1.3)-(6.1.4) can be combined to
de�ne a continuous function taking values always less than or equal to q̇max, i.e.
a continuous lower bound of q̇max. Similarly, using the arguments above and
additionally exploiting the limits on the system's maximal energy as discussed
in Prop. 5, we can �nd a continuous upper bound of q̇max which depends on
the terminal link velocity x2(tf ) and the maximal motor velocity. The following
proposition introduces these two functions and also clari�es their relation to
q̇max.

Proposition 19. Let (x, u) be an optimally controlled trajectory which is de-
�ned on the interval D = [0, tf ]. Moreover, let q̇lb : (0,∞) → R and q̇ub :
(0,∞)→ R be two functions with

q̇lb(t) =

{
x2(t) t < tf

x2(tf ) t ≥ tf
, (6.1.5)

and

q̇ub(t) =

{
x2(tf ) t < tf

x2(tf ) +
Epot(θ̇maxt)−Epot(θ̇maxtf )

Mθ̇max
t ≥ tf

, (6.1.6)
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respectively. Then, both q̇lb and q̇ub are continuous functions and we have

(t ∈ (0,∞)) [q̇lb(t) ≤ q̇max(t) ≤ q̇ub(t)] . (6.1.7)

Moreover, all inequalities in (6.1.7) hold with equality at t = tf .

Proof. See Appendix B.4.1.

Given an optimally controlled trajectory, Prop. 19 provides now a means
to construct a continuous lower and upper bound of q̇max using this trajectory
as well as the parameters describing Σ, see (6.1.5)-(6.1.7). Moreover, since
these two bounds intersect each other as well as q̇max at the �nal time of the
given trajectory, Prop. 19 can be used together with Prop. 6, to show that
q̇max is continuous at every point of its domain. Using additionally our results
on optimally controlled trajectories from Sec. 5.2 and 5.3, we can prove the
following proposition which establishes the desired monotonicity and continuity
properties1 of q̇max.

Proposition 20. The maximal link velocity q̇max : (0,∞) → (0,∞) is a con-
tinuous and strictly increasing function with the following limits:

lim
t→0+

q̇max(t) = 0 ∧ lim
t→∞

q̇max(t) =∞. (6.1.8)

Proof. See Appendix B.4.1.

6.1.2 Graph Construction

As we have seen in the previous chapter, if (x, u) is an optimally controlled
trajectory de�ned on D = [0, tf ] there always exists a positive integer k and a
parameter βopt ∈ (k − 1, k], such that the trajectory's �nal time and terminal
link velocity are given by textS (βopt) and xext2S (βopt), respectively. Consequently,
the value of q̇max at textS (βopt) will in this case be given by xext2S (βopt). Moreover,
following a geometric approach we can de�ne2 a continuous map kγ : (k−1, k]→
R2 with

kγ(β) =

(
textS (β)
xext2S (β)

)
. (6.1.9)

The image of this map will then contain the set of all �nal times and terminal
link velocities which can be attained by extremals when the control switches k−1
times. In addition, the map itself will describe a plane curve intersecting the
graph of q̇max at the point (textS (βopt), xext2S (βopt))

T . Furthermore, if there exists
a neighborhood Iβopt of βopt in (k − 1, k] such that extremals corresponding to
parameters in this neighborhood are all optimal, the curve kγ restricted to Iβopt

1As we show in the proof of the proposition, Prop. 6 and Prop. 19 already imply that
q̇max is an increasing function. Nevertheless, in order to show that q̇max is strictly increasing
we also require some of the properties of optimally controlled trajectories which we derived in
Sec. 5.2 and 5.3.

2with a slight abuse of notation, see Sec. 5.4.
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Figure 6.1.1: The Maximal Link Velocity Function q̇max
(Left: Σ1,Σ2 and Σ3. Right: ΣFSJ,2.)

will coincide with the graph of q̇max for t ∈ textS (Iβopt). We want to next describe
how to exploit this relation between kγ and q̇max to construct the graph of q̇max
in a given time interval Iq̇max := (0, tf,max] ⊂ (0,∞).

Let tf,max > 0 be an arbitrary scalar. The values of q̇max in the interval
Iq̇max can then be clearly determined by �nding the set of all optimally controlled
trajectories with a �nal time less than or equal to tf,max. Note that by Prop.
7-8 and Prop. 14, each of these trajectories is necessarily equal to an extremal
(x, u) which corresponds to a parameter β ∈ (0,∞) such that (5.3.28)-(5.3.29)
hold. Moreover, by Prop. 15 there always exists a maximum switching number
imax which will be valid for all the controls of these trajectories3. Consequently,
if we construct for each k ∈ {1, . . . , imax + 1} the map kγ according to (6.1.9),
the union of the images of the resulting maps will contain the graph of q̇max in
Iq̇max . In addition, based on the way we de�ned the functions textS and xextS in
Sec. 5.3.3 this union can be represented as one possibly self-intersecting curve.
Finally, it follows from Prop. 20 that we can always extract a continuous part
of this curve which will correspond to the graph of q̇max|Iq̇max .

Fig. 6.1.1 (Left) graphically illustrates the construction procedure described
above for the three control systems Σ1,Σ2 and Σ3 which have been already
investigated in Chapters 4 and 5. For each of the constructed graphs, the max-
imal �nal time tf,max was set to textS (4) = tmin(4) and the maximal switching
number imax was found to be equal to three. Consequently, twelve curves have
been in total computed using (6.1.9). None of these curves intersect each other
and they also do not have any self-intersections. Therefore, they all uniquely

3In particular, according to Prop. 15 we will have imax ≤
⌈
ωmaxtf,max

π

⌉
+ 1 with ωmax =

maxφ∈[0,θ̇max·tf,max]

√
KJ (φ)
M

.



CHAPTER 6. MAXIMAL LINK VELOCITY 91

represent one particular part of the graphs and can be directly combined as
done in the �gure. It is important to remark here that with the constructed
graphs we can now conclude that abnormal extremals terminating at tmin(i),
with i ∈ {1, 2, 3, 4}, are all optimal for Σ1,Σ2 and Σ3. Consequently, the control
strategies depicted in Fig. 4.1.1 solve both the EMP and the LVMP. In addition,
the graphs also indicate the optimality of the trajectories in Fig. 5.3.3 which
we had previously established in Sec. 5.3.3 using Fig. 5.3.4.

Unfortunately, combining the curves kγ with k ∈ {1, . . . , imax + 1} does not
always directly lead to the desired graph of q̇max as in Fig. 6.1.1 (Left). This is
exempli�ed in Fig. 6.1.1 (Right), where we illustrate the function q̇max|Iq̇max for
the control system ΣFSJ,2 which describes a DLR FSJ with the parameters given
in Table 4.1c. The maximal time tf,max was set this time to textS (3) = tmin(3)
while the maximal switching number imax was found to be again equal to three.
Consequently, four curves were computed to determine the graph of q̇max in the
interval Iq̇max . As shown in the �gure, by combining these four curves into one
continuous curve we do not directly obtain in this case the desired graph due
to self-intersections. Such an intersection occurs, for instance, at a time close
to tmin(3) where the curves 3γ and 4γ intersect each other. Notice that for
this particular time, there exist two di�erent control strategies which solve the
LVMP using a di�erent number of switchings. For higher times, on the other
hand, the optimal control strategies all require three switchings to solve the
LVMP. This is especially true for t = tmin(3) and we can thus conclude that
control strategies solving the EMP do not necessarily solve the LVMP.

The four graphs depicted in Fig. 6.1.1 clearly validate our results regarding
the time dependence of the maximal link velocity function. Furthermore, they
also show how the parameters describing a control system can in�uence the
attained maximal link velocity as well as the optimal control strategies required
to reach this velocity. In the following section, we will take a closer look at this
in�uence and show in particular how to systematically analyse it by making use
of dimensionless parameters.

6.2 Parameter Dependence

In this section, we want to understand how the maximal link velocity of an
EJ depends on its parameters. For this, we will analyse the properties of the
velocity gain function (VGF) ε : (0,∞)× PΣ → (0,∞) de�ned by

ε(t;p) =
q̇max(t;p)

θ̇max
, (6.2.1)

where q̇max(.;p) denotes the maximal link velocity function for the system Σ
corresponding to p = (M, τJ , θ̇max). Noting that abnormal extremals always
lead to terminal link velocities which are an even multiple of the motor velocity,
we will start our discussion by clarifying the relation between their terminal
times and the parameter to which they correspond. In other words, we will �rst
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investigate the in�uence of p on the function4 tmin(.;p). Our discussion will
lead to a dimensionless time function which will explain some of the di�erences
between the graphs in Fig. 6.1.1 (Left). In the second part of the section, we
will then similarly introduce dimensionless parameters which can be used to
simultaneously determine VGF's corresponding to di�erent parameters.

6.2.1 Dimensionless Time Function

Let Σ be a control system corresponding to an arbitrary parameter p ∈ PΣ and
k a positive integer. From Prop. 11, it is then known that there exists a unique
abnormal extremal such that the terminal link velocity 2kθ̇max is reached at the
�nal time tmin(k;p). Consequently, the following inequality holds for the VGF
according to (6.2.1):

ε (tmin(k;p);p) ≥ 2k. (6.2.2)

Clearly, the inequality above will hold with equality in case the abnormal ex-
tremal terminating at tmin(k;p) is optimal. We have already seen in Fig. 6.1.1
(Left) that abnormal extremals can be optimal. In order to gain an insight on
the properties of ε, we will therefore investigate in the following the relation
between tmin and p.

Notice �rst that for any given p ∈ PΣ, the function tmin(.;p) : {1, 2, . . .} →
(0,∞) is a strictly increasing function. This simply follows from the de�nition
of tmin in (4.2.11)-(4.2.12) and the fact that periods of mass springs systems are
always positive. In addition, according to the de�nition the image of tmin(.;p)
depends on all elements of p. Indeed, the TDP determines the potential energy
function while the link mass together with the motor velocity determine the
relative energies stored along abnormal extremals. In addition, the mass and the
TDP determine the period of the corresponding mass spring system. Analysing
the in�uence of p on tmin requires us to consider all these dependences. The
following proposition shows how this can be achieved by analysing dimensionless
control systems for which both the mass and the maximum motor velocity are
equal to one5.

Proposition 21. Let p be an arbitrary element of the parameter set PΣ and

4Similar to q̇max(.;p), the additional argument in tmin is used to explicitly state its de-
pendence on the parameter p. In this section, we will adopt this same notation also for other
previously de�ned functions (See also Sec. 2.2).

5In Prop. 21-26 as well as in our discussions to follow, we will be using the symbols

� ˆ � and � ˜ � to distinguish the parameters p̂ = (M̂, τ̂J ,
ˆ̇
θmax) and p̃ = (M̃, τ̃J ,

˜̇
θmax) from

p. Consistent with this notation, we use K̂J and K̃J to denote the SDP corresponding to

τ̂J and τ̃J , respectively. Similarly, we use ω̂0 =

√
K̂J (0)

M̂
and ω̃0 =

√
K̃J (0)

M̃
to denote the

corresponding eigenfrequencies. Moreover, KJ will denote as before the SDP corresponding

to τJ and we will have ω0 =
√
KJ (0)
M

. Finally, in Prop. 22-24 and Prop. 26 as well as in

Lemma 57 the function τJ (φ) will be given by Keg(keφ) and τ̃J (φ) by K̃eg(k̃eφ).
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τ̂J : R→ R the TDP de�ned by

(∀φ ∈ R)

[
τ̂J(φ) =

τJ( θ̇maxω0
φ)

Mω0θ̇max

]
. (6.2.3)

Then, the parameter p̂ = (1, τ̂J , 1) is an element of PΣ and we have

(∀k ∈ {1, 2, . . .}) [ω0tmin(k;p) = tmin(k; p̂)] . (6.2.4)

Proof. See Appendix B.4.2.

Given a parameter p ∈ PΣ, Prop. 21 shows how to construct a dimension-
less parameter p̂ = (1, τ̂J , 1) such that the dimensionless time function (DTF)
ω0tmin(.;p) is given directly by tmin(.; p̂). It is important to realize here that
there exist in�nitely many elements of the set PΣ for which application of Prop.
21 results in the same dimensionless parameter and thus in the same DTF. This
is, in particular, true for elements of PΣ with linear TDP's. Indeed, for these
elements the DTF is always given by kπ with k ∈ {1, 2, . . .}, see (4.2.11)-(4.2.12)
and (6.2.3)-(6.2.4). The main value of Prop. 21 is therefore that it allows us
to determine one particular function which can be used to analyse tmin for an
in�nite set of control system parameters. In the following proposition, we fur-
ther exploit this property to introduce a subset of PΣ for which the DTF can
depend at most on one dimensionless variable.

Proposition 22. Let g : R → R be an element of C1
τJ such that we have

dg
dφ (0) = 1 and let PΣg be the set de�ned as follows:

PΣg =
{

(M, τJ , θ̇max) ∈ PΣ

∣∣∣ (∃Ke > 0) (∃ke > 0)

(∀φ ∈ R) [τJ(φ) = Keg(keφ)]
}
. (6.2.5)

In addition, assume that p = (M, τJ , θ̇max) and p̃ = (M̃, τ̃J ,
˜̇
θmax) are both

elements of PΣg such that the following equality holds:

keθ̇max
ω0

=
k̃e

˜̇
θmax
ω̃0

.

Then, we have

(∀k ∈ {1, 2, . . .}) [ω0tmin(k;p) = ω̃0tmin(k; p̃)] .

Proof. Let g,p and p̃ satisfy the hypotheses of the proposition. Then, for each
φ ∈ R we have

τJ( θ̇maxω0
φ)

Mω0θ̇max
=

Keg(keθ̇maxω0
φ)

Mω0θ̇max
=
g(keθ̇maxω0

φ)

keθ̇max
ω0

=
g( k̃e

˜̇
θmax
ω̃0

φ)

k̃e
˜̇
θmax
ω̃0

=
τ̃J(

˜̇
θmax
ω̃0

φ)

M̃ω̃0
˜̇
θmax

, (6.2.6)



CHAPTER 6. MAXIMAL LINK VELOCITY 94

Σ ω0tmin(k;p)

Σg
∑k−1
l=0

∫ 2l+1

0
2Θ̇maxds

g

(
E−1
pot,g

[
Θ̇2
max((2l+1)2−s2)

2

])
Σsin 2

∑k−1
l=0 K

(
2l+1

2 Θ̇max

)
, Θ̇max ∈

(
0,
√

2
2k−1

)
Σid kπ

Σsinh 2
∑k−1
l=0

K

((
1+
(

2
2l+1

1
Θ̇max

)2
)− 1

2

)
√

1+( 2l+1
2 Θ̇max)

2

g ∈ C1
τJ ,

dg
dφ (0) = 1, Epot,g(φ) =

∫ φ
0
g(s)ds,

k ∈ {1, 2, . . .}, Θ̇max = keθ̇max
ω0

> 0.

Table 6.1: The Dimensionless Time Function ω0tmin for Σsin,Σid,Σsinh and
Σg

where we have used of the fact that ω0 is given by
√

Keke
M and ω̃0 by

√
K̃ek̃e
M̃

.
If we now apply Prop. 21 once for the parameter p and once for the parameter
p̃, (6.2.6) implies that the resulting parameter will in both cases be equal to
p̂ = (1, τ̂J , 1) with τ̂J given by (6.2.3). Consequently, for each k ∈ {1, 2, . . .} we
will have ω0tmin(k;p) = ω̃0tmin(k; p̃) = tmin(k; p̂) as desired. Since our choice
for g,p and p̃ was arbitrary, this concludes our proof.

Given an arbitrary function g ∈ C1
τJ with dg

dφ (0) = 1, we can now see with
Prop. 22 that for any element p in the set PΣg , as de�ned by (2.2.2), the DTF is

uniquely determined by the dimensionless ratio Θ̇max := keθ̇max
ω0

. Consequently,
for any k ∈ {1, 2, . . .} the product ω0tmin(k;p) can be expressed as a function of
the dimensionless ratio Θ̇max when p is known to belong to PΣg . This is indeed
true as shown in6 Table 6.1 where we provide a mathematical expression for the
DTF depending only on g and Θ̇max, see second row. For ease of readability,
we give the derivation of this expression in Appendix B.4.2, see Lemma 57.

Focusing now on the three control systems Σsin,Σid and Σsinh described in
Table 4.1, the identity and the hyperbolic sine functions are clearly both valid
candidates for the mapping g in Prop. 22. Furthermore, any element of C1

τJ
which coincides with the sine function in a closed interval in (−π2 , π2 ) is a valid
candidate. Consequently, we can substitute these three basic functions into the
expression in the second row of Table 6.1 and �nd expressions for the DTF's of
Σsin,Σid and Σsinh as a function of k and Θ̇max. These are provided again in7

6Given a g ∈ C1
τJ

with dg
dφ

(0) = 1, we use Σg to denote any control system which corre-

sponds to a parameter p ∈ PΣg . Moreover, we use E−1
pot,g : [0,∞) → [0,∞) to denote the

inverse of the function Epot,g |[0,∞) with Epot,g : R→ [0,∞) given by Epot,g(φ) =
∫ φ
0 g(s)ds,

see Section 3.1.
7Notice that for the control system Σsin, the ratio Θ̇max is allowed to take values only in

the bounded interval (0,
√

2
2k−1

) which depends on the argument of ω0tmin(.;p). This is done

in order to ensure that the assumptions (A1)− (A3) from Sec. 2.1 hold. More speci�cally, for
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Figure 6.2.1: The Dimensionless Time Function ω0tmin for
Σsin,Σid and Σsinh (Θ̇max = keθ̇max
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Table 6.1 and are also graptically illusrated in Fig. 6.2.1. To better understand
how the parameter p can in�uence tmin, we will next discuss this last �gure
and state two more propositions which will clarify for Σsin,Σid and Σsinh the
dependence of tmin on ω0 and Θ̇max. Moreover, we will show how the graphs
in Fig. 6.1.1 (Left) are related to the graphs in Fig. 6.2.1.

We had already observed that for control systems with linear TDP's the
dimensionless time function does not depend on the parameter p. Consequently,
the eigenfrequency ω0 of these systems uniquely determine tmin. This is shown
in Fig. 6.2.1 by the straight red lines which represent for each k ∈ {1, 2, 3, 4} the
product ω0tmin(k;p) as constant function of the ratio Θ̇max. On the other hand,
if we look at the blue lines, i.e. at the DTF's for the control systems with the
TDP τJ,s, we can see that regardless of the value of k the product ω0tmin(k;p)

strictly increases as the ratio Θ̇max increases. This means that even if we �x ω0

we can still decrease in this case the time tmin(k;p) by decreasing, for instance,
the motor velocity. Conversely, for control systems with the TDP τJ,sh the
product ω0tmin(k;p) is always strictly decreasing when Θ̇max increases. This
implies that for a given ω0 and k the time tmin(k;p) will decrease if we increase
the motor velocity or the parameter ke in the TDP.

These di�erent possibilities regarding the dependence of tmin on p follow
actually from the energy dependence of periods of MSS's and Prop. 22. This
is exploited in the following proposition to introduce a particular set of control
systems for which the relation between ω0tmin and p mainly depends on the
spring characteristics.

each k ∈ {1, 2, . . .} the provided upper bound for Θ̇max ensures that the maximal magnitude
of the de�ection value, which is obtained along the abnormal extremal terminating at tmin(k),
is less than π

2ke
.



CHAPTER 6. MAXIMAL LINK VELOCITY 96

Proposition 23. Let g : R → R be a two times continuously di�erentiable

element of C1
τJ with dg

dφ (0) = 1 and p = (M, τJ , θ̇max), p̃ = (M̃, τ̃J ,
˜̇
θmax) two

elements of the set PΣg de�ned by (6.2.5). Moreover, assume that there exists
a positive integer k and a positive scalar Φmax > 0 such that the inequality

Epot,g(2Φmax) > Θ̇2 (2k − 1)2

2
(6.2.7)

holds for each Θ̇ ∈ {keθ̇maxω0
, k̃e

˜̇
θmax
ω̃0
} and that we additionally have

(∀φ ∈ (0, 2Φmax))

[
sgn

(
d2g

dφ2
(φ)

)
= const.

]
. (6.2.8)

Then, for each positive integer l ∈ {1, . . . , k} we have

sgn [ω0tmin(l;p)− ω̃0tmin(l; p̃)] =

(−1) sgn

(
d2g

dφ2
(Φmax)

)
sgn

(
keθ̇max
ω0

− k̃e
˜̇
θmax
ω̃0

)
. (6.2.9)

Proof. See Appendix B.4.

Prop. 23 clearly justi�es our observations from Fig. 6.2.1 for the control
systems Σsin,Σid and Σsinh. More importantly, it shows that the relation be-
tween tmin and p, as we have discussed above for these control systems, remains
also valid for other control systems with softening and hardening springs. In-
deed, it follows from the proposition and in particular (6.2.9) that for a TDP
g, which can be obtained using a softening or a hardening spring and which
satis�es dg

dφ (0) = 1, the in�uence of Θ̇max on tmin is always described in terms

of the sign of the derivative d2g
dφ2 if the eigenfrequency ω0 is kept constant and p

belongs to PΣg .
It is important to note here that when the function g corresponds to a soft-

ening or a linear spring, (6.2.9) also implies that tmin will decrease if we increase
the eigenfrequency ω0 while keeping the product keθ̇max constant. When g cor-
responds to a hardening spring, however, the in�uence of ω0 on tmin can not
be uniquely determined by (6.2.9) in this case. The reason is that ω0tmin(k;p)
is a strictly decreasing function of Θ̇max for each integer k > 0 and if the rate
of this decrease is su�ciently high an increase in ω0 might also increase8 tmin.
Nevertheless, this can never occur if g is given by the hyperbolic sine function.
This is shown in the following proposition which provides su�cient conditions
under which tmin always decreases with an increase in ω0.

Proposition 24. Let g : R → R be an element of C1
τJ with dg

dφ (0) = 1. In

addition, let p = (M, τJ , θ̇max) and p̃ = (M̃, τ̃J ,
˜̇
θmax) be two elements of the

8As discussed in Appendix B.4.2, a function g for which such a dependence exists between
ω0 and tmin can be constructed.
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set PΣ,g de�ned by (6.2.5) such that we have

keθ̇max = k̃e
˜̇
θmax, (6.2.10)

and
ω0 > ω̃0. (6.2.11)

Morever, assume that there exists a positive integer k and a scalar Φmax > 0
with

Epot,g(2Φmax) >
1

2

(
k̃e

˜̇
θmax
ω̃0

)2

(2k − 1)2 (6.2.12)

such that we have

(∀φ ∈ (0, 2Φmax))

[
Epot,g(φ) dg

dφ (φ)

g2(φ)
< 1

]
. (6.2.13)

Then, the following inequality holds for each positive integer l ∈ {1, . . . , k}:
tmin(l;p) < tmin(l; p̃). (6.2.14)

Proof. See Appendix B.4.2.

According to Prop. 24, we can now see that for the three control systems
Σsin,Σid and Σsinh an abnormal extremal solving the EMP always requires less
time if the eigenfrequency ω0 is increased while keeping the product keθ̇max
constant. Moreover, if we compare these times among each other it follows from
Fig. 6.2.1 that for any given switching number they will approach each other
by such an increase in ω0.

Looking now back at Fig. 6.1.1 (Left), we can see that for the control system
Σ1 the velocity gains of 2, 4, 6 and 8 are all attained in a smaller amount of
time when compared with the systems Σ2 and Σ3. As the inequality in (6.2.2)
holds with equality for these gains, this means that for each k ∈ {1, 2, 3, 4}
the time tmin(k;p) is smallest for the system Σ1. The values attained by the
dimensionless product ω0tmin(k;p), on the other hand, is greatest for the system
Σ1 as we can see from Fig. 6.2.1. Consequently, the reason for the smaller time
values for Σ1 follows mainly from the fact that the eigenfrequency ω0 is the
highest for Σ1, see Sec. 3.1.

A closer look at Fig. 6.2.1 also shows that for Σ1 the di�erence tmin(k) −
tmin(k − 1) is strictly increasing with increasing k. This follows directly from
the fact that Σ1 has a softening spring, see Prop. 1 and Prop. 4. Similarly,
for the system Σ3 the same di�erence is strictly decreasing with increasing k
as this system has a hardening spring. As a consequence, we can see that in
Fig. 6.1.1 (Left) the horizontal distance between the �lled points is increasing
for Σ1 and decreasing for Σ3. Nevertheless, these increases and decreases are
not su�ciently high so that Σ3 always requires the maximum amount of time
to reach the velocity gains mentioned above. This is especially true for the gain
ε = 8, even though Σ3 requires in this case the least amount of spring de�ection
to store the �nal relative energy 3Erel = 6.125 while Σ1 requires the maximal
amount, see Sec. 3.1.
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6.2.2 Velocity Gain Function

Given a parameter p ∈ PΣ, it follows from our discussions in Sec. 6.1.2 that
the velocity gain function ε(.;p) must satisfy the following inequality for each
β ∈ (0,∞):

ε
(
textS (β;p);p

)
≥ xext2S (β;p)

θ̇max
. (6.2.15)

Furthermore, as already discussed there it follows from PMP that for each given
�nal time tf > 0 there exists at least one scalar β > 0 for which the �nal time
is equal to textS (β;p) and the inequality in (6.2.15) holds with equality. This
particular property has been used in Sec. 6.1.2 together with the continuity
properties of textS and xext2S to introduce a construction procedure for the graph
of q̇max(.;p), see Fig. 6.1.1. Focusing particularly on the systems Σsin,Σid and
Σsinh, we want to show in the following how to use this same procedure to
analyse the dependence of ε on tf and p.

Similar to Sec. 6.2.1, for analysing the in�uence of the �nal time and the
system parameter on the velocity gain we will make use of dimensionless control
systems in which both the mass and the maximal motor velocity are equal to
one. The following proposition provides a basis for the construction of such
systems.

Proposition 25. Let p be an arbitrary element of the parameter set PΣ and
tf > 0 an arbitrary scalar. Moreover, let t̂f be an arbitrary positive scalar and
τ̂J : R→ R the TDP de�ned by

(∀φ ∈ R)

τ̂J(φ) =
τJ(

θ̇maxtf
t̂f

φ)

Mθ̇max t̂f
tf

 . (6.2.16)

Then, the parameter p̂ = (1, τ̂J , 1) is an element of PΣ and we have

ε(tf ;p) = ε(t̂f ; p̂). (6.2.17)

Proof. See Appendix B.4.2.

Given a parameter p ∈ PΣ and �nal time tf > 0, Prop. 25 provides a
means to construct a dimensionless parameter p̂ = (1, τ̂J , 1) and a dimensionless
time t̂f such that the two velocity gains ε(tf ;p) and ε(t̂f ; p̂) are equal to each
other. It is important to note here that in this construction, the choice of t̂f
is arbitrary as long as it remains positive. More speci�cally, (6.2.16) will in
general describe a di�erent TDP for each choice of t̂f and thus also a di�erent
parameter. Nevertheless, the equality (6.2.17) will hold in each case.

Given a dimensionless time and a dimensionless parameter, Prop. 25 can
also be used to �nd di�erent choices for the system parameter and �nal time
such that the same velocity gain is attained. Indeed, it follows from (6.2.16)
that for any two parameters p and p̃ in the set PΣ and any positive scalar tf
we will have

ε(tf ;p) = ε(
θ̇max
˜̇
θmax

tf ; p̃), (6.2.18)
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provided τ̃J is equal to M̃
˜̇
θ2
max

Mθ̇2
max

τJ . Note that this particular relation implies that

given a control system and a desired velocity gain, the minimum time required
to reach this gain will be reduced by half if the motor velocity is doubled and
the mass is scaled down by four.

The equality (6.2.18) clearly illustrates how VGF's corresponding to di�erent
parameters can be closely related to each other. By focusing, as in Prop. 22, on
a particular set of parameters, this relation can be further exploited to describe
the velocity gain ε as a function of only two dimensionless parameters. This is
shown in the following proposition.

Proposition 26. Let g : R → R be an element of C1
τJ with dg

dφ (0) = 1 and

p = (M, τJ , θ̇max), p̃ = (M̃, τ̃J ,
˜̇
θmax) two elements of the set PΣg de�ned by

(6.2.5). Moreover, let tf and t̃f be two arbitrary positive scalars such that the
following two equalities hold:

keθ̇max
ω0

=
k̃e

˜̇
θmax
ω̃0

, (6.2.19)

and
ω0tf = ω̃0t̃f . (6.2.20)

Then, we have
ε(tf ,p) = ε(t̃f , p̃). (6.2.21)

Proof. Let g,p, p̃, tf and t̃f satisfy the hypotheses of the proposition. By ap-
plying Prop. 25 once using the parameter p with tf and once using the param-
eter p̃ with t̃f , it can then be shown that in both cases the same parameter
p̂ will be obtained if t̂f is set to ω0tf = ω̃0t̃f . Consequently, we will have
ε(tf ;p) = ε(t̃f ; p̃) = ε(t̂f ; p̂) showing that (6.2.21) holds.

Given a function g ∈ C1
τJ , with

dg
dφ (0) = 1, Prop. 26 shows that for any

p ∈ PΣg and tf > 0 the velocity gain ε(tf ;p) can depend at most on two terms,
namely the dimensionless ratio Θ̇max and the dimensionless �nal time ω0tf .
Moreover, we can use the same proposition also to systematically analyse the
in�uence of these two terms on ε. To see this, let us �rst set in the proposition

both M̃ and ˜̇
θmax to one and let the TDP τ̃J satisfy

(∀φ ∈ R)

[
τ̃J(φ) =

g(Θ̇maxφ)

Θ̇max

]
. (6.2.22)

The parameter p̃ will then only depend on Θ̇max. In addition, the equality
(6.2.19) will hold since ω̃0 and k̃e are equal to one and Θ̇max, respectively.
Finally, it follows from (6.2.20)-(6.2.21) that for this particular parameter we
will have

ε(tf ;p) = ε(ω0tf ; p̃). (6.2.23)
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Figure 6.2.2: The Velocity Gain Function ε for Σsin,Σid and Σsinh

The equality above shows now clearly that the velocity gain ε|(0,∞)×PΣg
can

be described as a function of Θ̇max and ω0tf . More importantly, it indicates
that the graph of this function can be constructed using our results from Sec.
6.1.2 provided ω0tf is constrained to take values in a closed interval Ĩq̇max =
(0, ω0tf,max] ⊂ (0,∞). Indeed, using (6.2.22) we can �rst determine for each
Θ̇max > 0 a parameter p̃ = (1, τ̃J , 1). For each of these parameters, the graph
of q̇max(.; p̃) = ε(.; p̃) can then be constructed in Ĩq̇max by determining the set
of the corresponding extremals terminating at a �nal time less than or equal to
ω0tf,max. Finally, the union of these graphs will lead to the desired graph.

The procedure described above is graphically illustrated in Fig. 6.2.2 (Top)
for the parameter sets PΣsin and PΣsinh and in Fig. 6.2.2 (Bottom) for the set
PΣid . As shown there, for the �rst two sets we have additionally constrained the
ratio Θ̇max to take values in a closed interval. More speci�cally, for the set PΣsin

the ratio Θ̇max was constrained to take values in the interval [0.1, 1.414] and for
the set PΣsinh in the interval [0.1, 3]. In addition, for the sets PΣsinh and PΣid

the �nal time ω0tf,max was set to 5
2π. For the set PΣsin , on the other hand, the

same �nal time was only used for su�ciently small ratios. For larger ratios, the
�nal time was further decreased until it could be numerically ensured that the
�nal de�ection value φf , which can be attained by an extremal corresponding to
p, is always less than π

2ke
. We want to next conclude our discussion on VGF's

by elaborating on the properties of the depicted functions.
Taking a closer look at Fig. 6.2.2 (Bottom), it can be �rst seen that for each

p ∈ PΣid the VGF ε(.;p) can be described by the exact same function with only
the dimensionless time ω0tf as its argument. This property follows actually
directly from (6.2.22) and (6.2.23), as the TDP de�ned by the former relation
is not depending on Θ̇max when g is the identity function. Furthermore, using
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Σ ε(tf ;p)

Σid 2k − 1 + (−1)k cos(ω0tf )

k =
⌈
ω0tf
π

⌉
, ω0tf ∈ (0,∞)

Table 6.2: The Velocity Gain Function ε for Σid

the expressions for textS and xextS in Table 5.5b and the fact that (6.2.15) always
holds with equality for linear SEA's, an analytical expression for this function
describing the VGF can also be obtained. The corresponding expression is
provided in Table 6.2.

In Fig. 6.2.2 (Bottom), VGF's corresponding to di�erent parameters in the
sets PΣsin and PΣsinh have been illustrated as a function of ω0tf as well. As
shown there and in the two graphs in Fig. 6.2.2 (Top), the depicted functions
all correspond to a certain ratio Θ̇max and do not intersect each other. Fur-
thermore, the way how Θ̇max in�uences these functions depends on the sti�ness
characteristics of the TDP's similar to the way how Θ̇max in�uences DTF's.
Indeed, it follows from Fig. 6.2.2 (Top) that for the constructed VGF's, which
correspond to parameters in PΣsin , the dimensionless time required to reach a
certain velocity gain always increases with increasing Θ̇max. For the VGF's cor-
responding to parameters in PΣsinh , on the other hand, the same time decreases
with increasing Θ̇max. Consequently, we observe that the function which is de-
picted in Fig. 6.2.2 (Bottom) to illustrate the VGF for linear SEA's divides the
plot into two seperate parts.

We had already observed in Fig. 6.1.1 that abnormal extremals can be
optimal or non-optimal depending on their �nal time as well as the parameters
describing the control system. In Fig. 6.2.2 (Bottom), this dependence is also
clari�ed by depicting ε(tmin(k;p);p), with k ∈ {1, 2}, as a function of ω0tf =
ω0tmin(k;p), see the dot-dashed lines. More speci�cally, for each of the ratios
Θ̇max and TDP's used to construct the VGF's in Fig. 6.2.2, the two lines show
the values attained by ε at the �nal times tmin(1;p) and tmin(2;p), respectively.
Notice that according to the blue line, we can see that a velocity gain of 2 is
always attained at tf = tmin(1;p) regardless of the ratio Θ̇max or the TDP.
That is, abnormal extremals terminating at tmin(1) are always optimal for these
parameters and TDP's. Similarly, the orange line shows that a velocity gain of
4 is always attained at tf = tmin(2;p) when the parameter p belongs to PΣid or
PΣsin . If, however, p belongs to PΣsinh we can see that the same gain is attained
at a time smaller than tmin(2;p) when Θ̇max is su�ciently high. These results
are consistent with the depicted graphs in Fig. 6.1.1.

It is important to note here that our results from Sec. 6.2.1 already implied
a similarity between the parameter dependence of the DTF and the VGF when
the velocity gain is a positive even integer and when abnormal extremals leading
to this gain provide an optimal solution. Nevertheless, Fig. 6.2.2 suggests that
for the three control systems Σsin,Σid and Σsinh this similarity remains valid
for any gain regardless of whether abnormal extremals are optimal or not. In



CHAPTER 6. MAXIMAL LINK VELOCITY 102

0 0.2 0.4 0.6 0.8

t[s]

-0.1

0

0.1
θ̇
[r
a
d
/
s]

θ̇max = 0.1[rad/s]

Experiments Optimal Extremals

0 0.2 0.4 0.6 0.8

t[s]

-2.5

0

2.5

φ
[d
eg
]

0 0.2 0.4 0.6 0.8

t[s]

-0.25

0

0.25

0.5

q̇
[r
a
d
/
s]

ǫexp ≈ 3.23[1]

0 0.2 0.4 0.6 0.8

t[s]

-0.2

0

0.2

θ̇
[r
a
d
/
s]

θ̇max = 0.2[rad/s]

0 0.2 0.4 0.6 0.8

t[s]

-5

0

5

φ
[d
eg
]

0 0.2 0.4 0.6 0.8

t[s]

-0.5

0

0.5

1

q̇
[r
a
d
/
s]

ǫexp ≈ 3.99[1]

0 0.2 0.4 0.6

t[s]

-0.3

0

0.3

θ̇
[r
a
d
/
s]

θ̇max = 0.3[rad/s]

0 0.2 0.4 0.6

t[s]

-7.5

0

7.5

φ
[d
eg
]

0 0.2 0.4 0.6

t[s]

-0.75

0

0.75

1.5

q̇
[r
a
d
/
s]

ǫexp ≈ 4.00[1]

0 0.2 0.4 0.6

t[s]

-0.4

0

0.4

θ̇
[r
a
d
/
s]

θ̇max = 0.4[rad/s]

0 0.2 0.4 0.6

t[s]

-10

0

10

φ
[d
eg
]

0 0.2 0.4 0.6

t[s]

-1

0

1

2

q̇
[r
a
d
/
s]

ǫexp ≈ 3.83[1]

Figure 6.3.1: Experimental Results with the DLR FSJ
(ΣFSJ,i, i ∈ {0.1, 0.2, 0.3, 0.4})

particular, it suggests that for a control system Σsin an increase in the maximal
motor velocity always leads to an increase in the �nal time required to reach
a given velocity gain. Conversely, for a control system Σsinh the required �nal
time is expected to decrease in the same scenario. In the following section, we
will use the DLR FSJ to show how by increasing the motor velocity the same
velocity gain can indeed be obtained in a smaller amount of time both in theory
and in practice.

6.3 Experimental Results

The experiments were conducted with the DLR Hand Arm System [18]. More
speci�cally, using simple PD controllers with gravity compensation the torque
controlled arm of the system has been �rst constrained to move on a horizontal
plane. This ensured that the motion of the system was mainly caused by the
forces in the elastic spring of the second shoulder joint which is a DLR FSJ.
Then, the sti�ness adjuster motor in this joint was set to 5 degrees in order
to have a �xed TDP which is described by a hyperbolic sine function, see [59].
The motion of the arm could then be described by the control system ΣFSJ,i
in Table 4.1. Note that i denotes here the maximal motor velocity θ̇max ap-
plied by the main motor in the second joint. Choosing four di�erent values for
θ̇max ∈ {0.1 rads , 0.2 rads , 0.3 rads , 0.4 rads }, the optimal control strategy for the mo-
tor velocity has been computed afterwards such that in each case a velocity gain
of ε = 5 could be theoretically obtained. Finally, the computed strategies were
implemented on the shoulder joint using again a fairly simple motor torque con-
troller. The controller consisted of only a feed-forward term canceling the joint
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torque and a proportional gain controller accounting for the di�erence between
the optimal and measured motor velocity.

Figure 6.3.1 illustrates the control and state trajectories obtained during
the experiments9. More speci�cally, the blue lines in the �rst row show the
trajectories of the motor velocity for all the four experiments. The dashed red
lines, on the other hand, depict the desired optimal motor control strategies.
Similarly, the blue lines in the second and third rows depict the trajectories of
the de�ection and link velocity, respectively; while the dashed red lines stand for
the optimal trajectories. Notice that based on the depicted blue and red lines,
we can easily see that the experimental results correspond very well with the
theoretical results. Clearly, unmodeled damping forces prevent the system to
attain the theoretically achievable velocity gain. This is most obvious when the
maximal motor velocity θ̇max is at its lowest value. Moreover, the unmodeled
motor dynamics also has a negative in�uence as the desired motor velocities can
never be exactly tracked. Nevertheless, regardless of these model de�ciencies
the experimentally obtained velocity gain εexp, i.e. the ratio of the terminal link
velocity as obtained by the experiments to θ̇max, is always higher than 3 and
can even reach values as high as 4. Moreover, note that the time required to
reach these gains strictly decrease when θ̇max is increased. This clearly agrees
with our results from Sec. 6.2.2.

9For the trajectories of the motor and link velocity, a low pass �lter with a cuto� frequency
of 15Hz has been used.



Chapter 7

In�uence of Damping and

Sti�ness Actuation

The purpose of this chapter is to discuss the structure of OC strategies for
EJ's with variable impedance. In particular, we want to show how they are
related to the strategies we have so far derived for EJ's with linear and nonlinear
impedance. Moreover, we want to show how the concept of resonance energies,
as we introduced for EJ's with SEA's, can also be extended to these more
complex joints. The tasks we will investigate will again be related to explosive
motion tasks, but our choice for the cost functionals will be more general. We
start our discussion with the analysis of OC strategies for EJ's with variable
damping actuators1.

7.1 In�uence of Variable Damping

In this section, we will focus on an EJ model that consists of a VDA, see Fig.
7.1.1. The TDP will be assumed to be described by the linear function τJ,l
in Table 3.1a. Similarly, we will assume that the adjustable damping torque
τJ,D is linear in each of its arguments and that the damping variable σd can be
directly controlled. Finally, we will assume that the velocity of the motor can
also be directly controlled and that the system is initially at rest. Under these
assumptions, we want to discuss the structure of OC strategies minimizing a
non-trivial linear combination of the terminal link velocity and spring de�ection.
We �rst give a mathematical formulation of this problem.

7.1.1 Problem Formulation

As in Chapter 2, we will �rst introduce the control system Σ for the above
described EJ model and then formulate our desired OC problem. Notice that

1For our discussions on EJ's with VDA's and VSA's, we will make use of the references
[41] and [42, 43], respectively.

104
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Figure 7.1.1: EJ Model with a VDA

for an EJ with a VDA, the torques acting between the motor and the link are
not only due to the spring but also due to the VDA, i.e. τJ = τJ,S + τJ,D.

Taking the state as x =
(
φ q̇

)T ∈ X = R2 and considering the assumptions
introduced in the beginning of this section, the dynamics of Σ can be described,
according to (2.1.1)-(2.1.2), by the function f : R2 × R2 → R2 with

f(x,u) =

(
u1 − x2

Keke
M x1 + σd(u2)

M ẋ1

)
=

(
u1 − x2

ω2
0x1 + 2u2ω0(u1 − x2)

)
, (7.1.1)

where u =
(
u1 u2

)T
and σd(u2) = 2u2ω0M . Notice that the �rst control

u1 denotes the motor velocity of the EJ whose magnitude will be bounded by
θ̇max > 0. The second control u2, on the other hand, represents an adjustable
damping ratio [35]. In particular, in case the control u1 is constant and u2 is
continuous it follows from (7.1.1) that the de�ection x1 is two-times continuously
di�erentiable and described by the following second-order di�erential equation:

ẍ1 + 2u2ω0ẋ1 + ω2
0x1 = 0. (7.1.2)

Equation (7.1.2) describes a damped MSS and we will constrain the second
control to the set [DJ,min, DJ,max] ⊂ [0, 1), with DJ,max > DJ,min, so that for
constant u2 this system is either undamped or underdamped. This leads us to
the following convex control set:

U = [−θ̇max, θ̇max]× [DJ,min, DJ,max]. (7.1.3)

Finally, we will take PCU as the class of admissible controls U .
Our discussion so far fully describes the control system Σ = (X,f ,U,U).

Based on this system, we can now introduce the cost functional J : U ×
(R2)∗\{0} → R with

J(u,κf ) = κfxf , (7.1.4)

where xf denotes the terminal state of the trajectory x which starts from x0 = 0
and corresponds to the control u. Making use of this cost functional, our desired
OC problem can be formulated as follows.

Linear Terminal Cost Problem (LTCP): Given a �nal time tf > 0 and a
non-trivial vector κf ∈ (R2)∗ �nd the control uopt which minimizes J(u,κf )
over all admissible controls u ∈ U de�ned on D = [0, tf ].
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7.1.2 Optimal Control Strategies

In this subsection, we will �rst apply PMP to derive necessary conditions which
need to be satis�ed by the OC to solve the LTCP. In particular, we show that this
control must be a switching control and provide analytical expressions for the
corresponding trajectories and costates. Focusing mainly on control strategies
where the motor velocity and damping ratio do not switch simultaneously, we
then use these analytical descriptions to show the existence of certain switching
patterns for OC strategies. Finally, for one of these patterns we provide an
interpretation in terms of the energies attained by the EJ. This interpretation
will show that the concept of resonance energies can also be extended to joints
with adjustable viscous damping. In addition, it will reveal a non-trivial relation
between the derived switching patterns and the optimal switching patterns for
EJ's with adjustable linear sti�ness [39, 21].

7.1.2.1 Basic Properties

We will call the pair (x,u) an optimally controlled trajectory if there exists
a non-trivial κf ∈ (R2)∗ and a terminal time tf > 0 such that u : [0, tf ] →
R2 solves the corresponding LTCP, x is a trajectory corresponding to u and
x0 = 0. According to PMP, we have the following necessary condition for such
trajectories.

Proposition 27. Let (x,u) be an optimally controlled trajectory de�ned on the
interval D = [0, tf ] such that u minimizes the cost functional (7.1.4) with κf ∈
(R2)∗\{0}. Then, there exists a piecewise continuously di�erentiable costate
λ : D → (R2)∗ such that the �rst of the following conditions holds at every
t ∈ D at which u2 is continuous, the second and third at every t ∈ D, and
�nally the fourth condition at the �nal time tf :

1. Costate Dynamics

λ̇(t) =
(
−ω2

0λ2(t) λ1(t) + 2u2(t)ω0λ2(t)
)
. (7.1.5)

2. Minimum Condition

H (x(t),u(t),λ(t)) = min
v∈U

H (x(t),v,λ(t)) , (7.1.6)

where H : R2×U× (R2)∗ → R denotes the Hamiltonian function given by

H(x,u,λ) = λf(x,u)

= λ1(u1 − x2) + λ2

(
ω2

0x1 + 2u2ω0(u1 − x2)
)
. (7.1.7)

3. Hamiltonian Condition

H (x(t),u(t),λ(t)) = −λa, (7.1.8)

where λa ∈ {0, 1} is a constant scalar.
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4. Transversality Condition
λ(tf ) = vκf , (7.1.9)

where v is a positive constant scalar.

Proof. The proof follows directly from applying PMP to the LTCP and is omit-
ted for brevity.

Following the de�nitions we introduced in Section 5.2.1, we will call the
4−tuple Λ = (x,u,λ, λa) consisting of an admissible controlled trajectory
(x,u), a costate λ and a scalar λa ∈ {0, 1} for which the conditions in Prop. 27
are satis�ed an extremal lift for the LTCP. Looking at the Minimum Condition
of this proposition and taking the partial derivative of the Hamiltonian H with
respect to the �rst control, we can see that for such an extremal lift Λ we always
have the following condition for u1:

u1(t) =

{
−θ̇max λ̇2(t) > 0

θ̇max λ̇2(t) < 0
, (7.1.10)

with λ̇2(t) = λ1(t) + 2u2(t)ω0λ2(t), see (7.1.5). Similarly, taking the partial
derivative of the Hamiltonian H with respect to u2 we get

u2(t) =

{
DJ,min λ2(t)ẋ1(t) > 0

DJ,max λ2(t)ẋ1(t) < 0
, (7.1.11)

with ẋ1(t) = u1(t)− x2(t).
It is important to remark here that the condition (7.1.10) for the motor

velocity depends, in contrary to EJ's with SEA's, not only on λ but also on
the second control. This can be best explained if we refer to the description of
costates in terms of impulse response functions of linear systems2 as described in
[40]. Indeed, if we choose an admissible control strategy for the second control
u2 and substitute it into (7.1.1), the resulting system will correspond to a linear
time-varying system. The impulse response functions of this new system will
then only depend on the eigenfrequency ω0 and u2, and λ is a linear combination
of these functions. More speci�cally, the costates λ1 and λ2 give the response
of the linear combination vκfxf to unit impulse functions applied to the �rst
and second state, respectively. The reason behind the dependence of u1 on u2,
as given by (7.1.10), follows �nally from the fact that a jump in the control
u1 not only results in a jump in the time-derivative of the de�ection but also
in a jump in the damper torque which in turn depends on u2, see (7.1.1). The
following proposition clari�es the relation between u1, u2 and the cost functional
J(u,κf ).

Proposition 28. Let (x,u) be an admissible controlled trajectory de�ned on
D = [0, tf ] and λ : D → (R2)∗ a solution to (7.1.5). Then, for each t ∈ D we
have

λ(t)x(t)− λ0x0 =

∫ t

0

λ̇2(s)u1(s)ds. (7.1.12)

2See for instance [12] for the de�nition of impulse response functions.
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Proof. The proof directly follows from integrating the derivative d(λx)
dt from 0

to t, see also Lemma 53 in Appendix B.3.4.

Applying Prop. 28 and using in particular (7.1.12), with x0 = 0, t = tf and
λf = vκf , it is clear that (7.1.10) must hold if Λ is optimal. Moreover, the
same proposition can also be used to analyse the dependence of the minimal
value of κfxf on the given terminal time. To see this, let us �rst note that the
dynamics of the second costate is described, similar to the �rst state, by the
following second-order di�erential equation if the control u2 ≡ DJ is constant:

λ̈2 − 2DJω0λ̇2 + ω2
0λ2 = 0, (7.1.13)

where we have simply used (7.1.5). According to (7.1.13), λ2 physically describes
the position of a MSS with an energy source modeled as a negative damper.
Moreover, both the system's position λ2 and velocity λ̇2 will oscillate with the
damped eigenfrequency ωd =

√
1−D2

Jω0 provided the system is not at its
equilibrium position. This means that the zeros of λ̇2 will in this case all be
isolated. Taking into account the transversality condition and (7.1.12), this
leads us then to the following proposition.

Proposition 29. Let κf ∈ (R2)∗\{0} be given and assume that the controls
ū : [0, t̄f ] → U and u : [0, tf ] → U solve the corresponding LTCP with tf > t̄f .
Moreover, let (x̄, ū) and (x,u) be both optimally controlled trajectories. Then,
we have

κfxf < κf x̄f < 0.

Proof. See [41].

With Prop. 29, we can now see that the minimum value of the product
κfxf is a strictly decreasing function of the terminal time. Moreover, since
the origin is an equilibrium position of (7.1.1) when u ≡ 0, we can follow the
same arguments as used in Sec. 5.4 to conclude that trajectories in optimal
extremal lifts are also time-optimal. This suggests us that the costates can be
again regarded, under some smoothness assumptions, as the gradient of the time
function which for a given initial state in the set ReachΣtf

(0) gives the minimum
time required to reach the boundary of this set. The condition (7.1.11) for the
second control can then be physically explained using this interpretation and
the Minimum Condition. A detailed analysis of conditions ensuring the required
degree of smoothness for this time function, as done in Sec. 5.4, is beyond the
scope of this thesis and left out for future work.

Based on the two conditions (7.1.10)-(7.1.11), it is tempting to assume that
in an extremal lift Λ the value of the control u(t) is equal to one of the four
extreme points of the control set U at each time t ∈ D. However, for the case
when λ̇2 or λ2ẋ1 remains zero on a �nite time-interval these conditions are not
su�cient to uniquely determine the OC strategy. In such a case, the extremal
lift is called singular [53]. In general, when searching for OC strategies singular
lifts need to be also investigated. Nevertheless, as the following proposition
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(
x1(s+ tS,k)
ẋ1(s+ tS,k)

)
e−u2ω0s

(
kx1

kẋ1+u2ω0
kx1

ωd
kẋ1 −ω

2
0
kx1+u2ω0

kẋ1

ωd

)(
cos(ωds)
sin(ωds)

)
x2(t) ẋ1(t)− u1(t)(

λ2(s+ tS,k)

λ̇2(s+ tS,k)

)
eu2ω0s

(
kλ2

kλ̇2−u2ω0
kλ2

ωd
kλ̇2 −ω2 kλ2−u2ω0

kλ̇2

ωd

)(
cos(ωds)
sin(ωds)

)
λ1(t) λ̇2(t)− 2u2ω0λ2(t)

t ∈ Dk, s = t− tS,k, ωd =
√

1− u2
2ω0, ω0 =

√
Keke
M

Table 7.1: States and Costates in Dk (i ≥ 0, k ∈ Si)

shows optimal extremal lifts for the LTCP are never singular. Consequently,
we can always focus on control strategies taking values from the set of extreme
points of U when searching for OC strategies.

Proposition 30. Let Λ = (x,u,λ, λa) be an optimal extremal lift for the LTCP
which is de�ned on D = [0, tf ]. Then, this extremal lift is non-singular and for
each t ∈ D we have

u(t) ∈ Uext =

{(
−θ̇max
DJ,min

)
,

(
−θ̇max
DJ,max

)
,

(
θ̇max
DJ,min

)
,

(
θ̇max
DJ,max

)}
. (7.1.14)

Proof. See [41].

According to Prop. 30, an OC strategy solving the LTCP can take only a
�nite number of values. Consequently, determining such a strategy is equiva-
lent to determining the initial value and the switching times of both the motor
velocity and damping ratio. Notice that for a given constant control, the two
di�erential equations (7.1.2) and (7.1.13) can be analytically solved. Conse-
quently, using the corresponding solutions together with (7.1.1) and (7.1.5) we
can analytically construct x and λ if we know their values at the initial time
as well as the switching times. Table 7.1 provides the expressions required for
this construction. We next show how to use these descriptions to �nd switching
patterns for OC strategies.

7.1.2.2 Switching Patterns

Let Λ be an extremal lift for the LTCP which is de�ned on D = [0, tf ]. As
already discussed, both the dynamics of the costate and the condition (7.1.10)
for the �rst control u1 depend on the second control u2 which is not necessarily
continuous. Consequently, even if we know the value of the costate at a given
time the condition (7.1.10) might, in a su�ciently small neighborhood of this
time, be simultaneously satis�ed by di�erent values of the set Uext in (7.1.14).
In other words, (7.1.5) and (7.1.10) do not always uniquely determine the control
u1(t), with t ∈ D, even if the value of the costate λ(t) is known. Such a case
did not occur for the LVMP we analysed in Chapter 5, as for that problem the
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control only depended on the �rst costate having isolated zeros. Similarly, the
condition (7.1.11) depends on the possibly discontinuous time-derivative of the
de�ection and this complicates the analysis of the set of all control strategies in
extremal lifts.

In the following, we will mainly focus on those control strategies along which
the motor velocity and the damping ratio do not change simultaneously. Their
analysis is more straight-forward, as for an extremal lift containing such a control
the right-hand side of (7.1.10) or (7.1.11) must be zero at a switching time. Since
between two consecutive switching times both right-hand sides are continuous,
this suggests us to construct extremal lifts for the LTCP as follows. First, choose
an initial costate λ0 and an initial control u0, for which (7.1.10)-(7.1.11) are
satis�ed. Then, construct the lift in D0 by investigating the sign changes of λ̇2

and λ2ẋ1. Finally, if the control u has i ≥ 1 switchings, construct successively
for each k ∈ {1, . . . , i} the lift inDk by determining the control ku using (7.1.10)-
(7.1.11) and by analysing again the sign changes of λ̇2 and λ2ẋ1. Table 7.2
provides a more detailed description of this construction procedure, where we
have additionally made use of (7.1.5)-(7.1.9) to systematically determine a pair
(λ0,u0) for which (7.1.10)-(7.1.11) hold. In particular, notice that by evaluating
(7.1.8) at the initial time, where x0 = 0, and using (7.1.5) we can obtain the
following relation:

λ̇20u10 = −λa ∈ {0, 1}, (7.1.15)

with λ̇20 = λ̇2(0). Since according to the transversality condition the costate λ
can never be equal to zero, this in turn implies by (7.1.5)- (7.1.6) the following
conditions for λ20 and λ̇20:

λ̇20 ∈ {−
1

θ̇max
, 0,

1

θ̇max
} ∧

(
λ20 λ̇20

)
6= 0, (7.1.16)

in accordance with the procedure in Table 7.2.
In order to obtain switching patterns explaining the structure of the OC

strategies, we want to next make use of the proposed construction procedure
and investigate the switching times of u1 and u2 which result from di�erent
choices for the pair

(
λ20 λ̇20

)
∈ (R2)∗\{0}. In particular, we will introduce as

in Section 5.3.3 a one-dimensional and dimensionless variable α0 ∈ R de�ned
by

α0 = − λ̇20

ω0λ20
, (7.1.17)

and use the expressions from Table 7.1 to construct extremal lifts corresponding
to di�erent values for α0. Depending on the sign of α0, we will then �nd
�ve di�erent switching patterns. We start our discussion by investigating the
extremal lifts corresponding to α0 = 0, i.e. abnormal extremal lifts, see (7.1.15)
and (7.1.17).

• α0 = 0 : In order for α0 to be zero, λ̇20 = 0 must hold with λ20 6= 0. Assume
without loss of generality that λ20 < 0 holds. Then, by the continuity of λ̇2
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Data : M,Ke, ke, θ̇max, DJ,min, DJ,max, tf
Result : An Extremal Lift Λ for the LTCP de�ned on D = [0, tf ]
Initialization;
- Choose λ20 ∈ R and λ̇20 ∈ {− 1

θ̇max
, 0, 1

θ̇max
} such that (λ20, λ̇20) 6= 0.

- Find u10 = ẋ10 ∈ {−θ̇max, θ̇max} using (7.1.10).
- Determine u20 ∈ {DJ,min, DJ,max} using (7.1.11).
- Set k to 0.
while tS,k < tf do

- Assuming k = i, construct λ2, λ̇2, x1 and ẋ1 in [tS,k, tf ].
- Find the maximal time interval [tS,k, tS,k+1] ⊂ [tS,k, tf ] for which
(7.1.10)-(7.1.11) remain true.

if tS,k+1 = tf then
- break.

else
- Find the control k+1u which ensures that (7.1.10)-(7.1.11) are
not violated in a su�ciently small neighborhood of tS,k+1.

- Set k to k + 1.
end

end

Table 7.2: Construction Procedure for an Extremal Lift for the LTCP
(i ∈ {0, 1, . . .} denotes the switching number of u and depends on tf )

in D0 it follows from (7.1.13) that there exists a su�ciently small ε such that
λ̇2(t) is positive for each t ∈ (0, ε] ⊂ D0. According to (7.1.10) this means that
u10 = −θ̇max, and since the joint starts from rest we also have ẋ10 = −θ̇max.
Based on our initial assumption on the sign of λ20 together with the continuity
of λ2 and ẋ1 in D0, (7.1.11) determines then uniquely the initial control:

0u =

(
−θ̇max
DJ,min

)
. (7.1.18)

Using now (7.1.18) together with Table 7.1 and λ̇20 = 0, we can �nd the following
expressions for λ2 and λ̇2:

λ2(t) = eDJ,minω0tλ20

(
cos (ωd,maxt)−

DJ,minω0 sin (ωd,maxt)

ωd,max

)
, (7.1.19)

λ̇2(t) = −eDJ,minω0t
ω2

0λ20

ωd,max
sin (ωd,maxt) , (7.1.20)

where t ∈ D0 and ωd,max = ω0

√
1−D2

J,min. Similarly, using the fact that

x0 = 0 we have the following two expressions for x1 and ẋ1 which are valid on
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D0:

x1(t) = e−DJ,minω0tẋ10
sin(ωd,maxt)

ωd,max
, (7.1.21)

ẋ1(t) = e−DJ,minω0tẋ10

(
cos(ωd,maxt)−

DJ,minω0 sin(ωd,maxt)

ωd,max

)
. (7.1.22)

To fully determine the extremal lift Λ in D0, we need to still �nd the value
of tS,1 ≤ tf . By investigating the times at which λ̇2 and the product λ2ẋ1

can change their signs, we show next how to determine this time under the
assumption that tf is su�ciently large.

Let us �rst take a closer look at (7.1.19)-(7.1.20) and (7.1.22). Then, as-
suming that the control remains constant both ẋ1 and λ2 change their signs
simultaneously at the times

t =
arctan(

ωd,max
ω0DJ,min

)

ωd,max
+ k

TDJ,min
2

, (7.1.23)

where TDJ,min = 2π
ωd,max

and k is a non-negative integer such that t ≤ tf .
Moreover, since both quantities change their signs simultaneously the sign of
their product remains non-negative.

Focusing now on λ̇2, it follows from (7.1.20) that λ̇2 will change its sign at
the times

t = k
TDJ,min

2
, (7.1.24)

with k ≥ 1 denoting this time a positive integer for which t ≤ tf . Notice that
at each of these times, the de�ection x1 is also zero, see (7.1.21). According to

(7.1.24), the �rst time λ̇2 changes its sign is equal to
TDJ,min

2 and based on the
construction procedure from Table 7.2 we have

tS,1 =
TDJ,min

2
∧ 1u =

(
θ̇max
DJ,min

)
. (7.1.25)

Notice that the change in the control as given by (7.1.25) increases ẋ1 in-
stantaneously by 2θ̇max but does not in�uence λ̇2. Consequently, evaluating
(7.1.19)-(7.1.22) at tS,1 we can see that 1λ2 and 1ẋ1 are both positive while 1x1

and 1λ̇2 are both equal to zero3. Assuming, as before, that the control remains
constant after tS,1 we can then again make use of Table 7.1 to see that the
product λ2ẋ1 is positive almost everywhere in D1. Furthermore, λ̇2 will change
its sign, for the �rst time after tS,1, at tS,2 = 2tS,1 and at this time u1 will
switch from θ̇max to −θ̇max. The second control u2, on the other hand, remains
the same. Consequently, 2λ2 and 2ẋ1 are both negative, and 2x1 and 2λ̇2 are
both equal to zero. Repeating the analysis above, we can �nally conclude that

3Note that for λ20 > 0 the sign of these values at tS,1 correspond exactly to the signs of

x10, ẋ10, λ20 and λ̇20.
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k = 0 k ≥ 1

tS,k 0 k
TDJ,min

2

ku

(
θ̇max

sgn(λ20)

DJ,min

) (
(−1)k θ̇max
sgn(λ20)

DJ,min

)
(
kx1
kẋ1

) (
0

θ̇max
sgn(λ20)

) (
0

2 ku1 −
k−1ẋ1

F (
TDJ,min

2 ,0)

)
kx2 0 ku1 − kẋ1(
kλ2
kλ̇2

) (
λ20

0

)
(−1)k Fexp(tS,k, 0)

(
λ20

0

)
kλ1 −2DJ,minω0λ20 −2DJ,minω0

kλ2

Fexp(t1, t2) = eω0(DJ,mint1+DJ,maxt2)

Table 7.3: Extremal Lifts at the Switching Times (α0 = 0, k ∈ {0, . . . , i})

the same switching pattern repeats itself. The damping u2 is therefore always
equal to its minimum value DJ,min and (7.1.19)-(7.1.20) actually hold for each

t ∈ D. The �rst control u1, on the other hand, switches at tS,k = k
TDJ,min

2 ,
with k ∈ {1, . . . , i}, and the change in ẋ1 at these switchings must be accounted
for when constructing x.

Table 7.3 summarizes4 the values of the switching times as well as the values
of u,x and λ attained at these times. They can be used together with Table
7.1 to construct the extremal lift when α0 = 0. Note that if λ20 is positive and
not negative as assumed in the beginning, the only di�erence in the resulting
control trajectory is the positive sign of the initial value u10 = θ̇max, while
the switching structure remains the same. Figure 7.1.2 (Left) illustrates the
described switching pattern for α0 = 0 and λ20 < 0 using phase plots.

We next discuss the switching patterns for α0 > 0. This structure is more
complicated, since λ2 and ẋ1 will not change their signs simultaneously anymore
and neither will λ̇2 and x1.

• α0 > 0 : When α0 is positive, the initial value λ20 of the second costate has
the opposite sign as its derivative λ̇20. According to (7.1.10), this means that
both u10 and λ20 have the same sign. Furthermore, since the joint is initially at
rest ẋ10 = u10 the product λ2ẋ1 is positive at the beginning of the trajectory.
Assuming without loss of generality that λ̇20 is positive, it follows then from
(7.1.10)-(7.1.11) that we have

0u =

(
−θ̇max
DJ,min

)
. (7.1.26)

In the interval D0, the trajectory x can thus still be described by (7.1.21)-
(7.1.22), while the costate can be obtained from Table 7.1 by considering the

4Notice that the term Fexp(t1, t2) there accounts for the exponential decrease of x and
increase of λ.
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Figure 7.1.2: Switching Patterns for EJ's with Variable Damping
(Adapted from [41],©2014 IEEE)

non-zero quantity λ̇20 = −α0λ20. If we now follow the steps from the construc-
tion procedure described in Table 7.2, it is possible to see that for α0 > 0 the
switching order always stays the same. More speci�cally, let l denote the num-
ber of times at which the de�ection equals to zero in the interior of D and for
each k ∈ Sl let t̄k denote the corresponding time, i.e. x1(t̄k) = 0. Using this
notation and assuming again that tf is su�ciently large, we can describe for
each j ∈ Sl the resulting switching pattern as follows5:

� First, λ2 changes its sign so that u2 switches from DJ,min to DJ,max

(t = t̄j + t∗j , x1(t̄j) = 0).

� Then, ẋ1 changes its sign so that u2 switches from DJ,max back to DJ,min

(t = t̄j + t∗j + t̂j). Since at this point the second costate is non-zero, λ̇2

has a jump discontinuity. However, its sign remains the same.

� After the switch of u2, λ̇2 changes next its sign so that u1 switches (t =
tMj+1). This results in an increase in the magnitude of ẋ1 by 2θ̇max.

� Finally, the angular de�ection x1 goes to zero and the switching structure
repeats itself (t = t̄j + Tj+1 = t̄j+1, x1(t̄j+1) = 0).

This switching pattern is illustrated in Figure 7.1.2 (Left).
Taking a closer look at the described structure, it can be observed that for

each k ∈ Sl−1 the �rst control switches exactly once in the interval (t̄k, t̄k+1).

5A thorough discussion on �nding the switching order of λ2− ẋ1−λ̇2−x1− . . . as described
below is omitted for brevity. The existence of this order can be shown by subsequently using
the equations in Table 7.1 and taking into account the discontinuities of ẋ1 and λ̇2 at the
switching times, see also Table 7.4.
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The second control, on the other hand, switches twice in the same interval and
the switchings of both controls never occur simultaneously. Finally, the sign of
λ̇20 only in�uences the sign of the motor velocity but not the switching pattern
or the switching times. This can be observed from Table 7.4a which provides
analytical expressions for the switching times as well as the values of u,x and
λ at these times. The used notation is clari�ed in Table 7.4b. In both tables,
the integer j ≥ 0 denotes the number how many times the motor velocity u1

switched so far.
It is important to note here that whenever x1 is zero along the trajectory

for the j'th time, with j ≥ 1, the ratio αj = − λ̇2(t̄j)
ω0λ2(t̄j)

, obtained after the j'th
switch of u1, remains positive. More speci�cally, using Table 7.4, it is possible
to show that this ratio not only remains positive but also decreases with every
switch of u1. Indeed, according to Table 7.4 we have the following relations:

αj+1 = − λ̇2(t̄j+1)

ω0λ2(t̄j+1)
=

1

βj − 2DJ,min
,

βj = − ẋ1(t̄j + tMj+1
)

ω0x1(t̄j + tMj+1
)

= 2DJ,min +
1

αj

+
2θ̇maxFexp(tMj+1

− t̂j , t̂j)K2
1 (αj)

K2(αj)αj |ẋ1(t̄j)|
⇒ αj+1 =

αj

1 +
2θ̇maxFexp(tMj+1

−t̂j ,t̂j)K2
1 (αj)

K2(αj)|ẋ1(t̄j)|

< αj . (7.1.27)

According to (7.1.27), the positive ratio αj is approaching zero with increased j.
This indicates that with every switch of the motor velocity the switching pattern
followed by the control strategy resembles more and more to the pattern we have
found for α0 = 0.

• α0 < 0 : If the ratio α0 is negative, the product ẋ1λ2 is initially negative as
well6 and due to (7.1.11) the damping ratio u2 starts with its maximum value.
Assuming without loss of generality that λ̇20 is positive, we then have

0u =

(
−θ̇max
DJ,max

)
. (7.1.28)

With this initial value, we can now again make use of Table 7.1, as done for
positive α0, and follow the procedure described in Table 7.2 to search for a
switching pattern. When deriving the switching structure for α0 > 0, we found
that the order, with which x1, ẋ1, λ2, λ̇2 change their signs, remained the same
regardless of the value of α0. For α0 < 0, on the other hand, this order depends
on the magnitude of α0 as well. More speci�cally, assuming that tf is su�ciently
large the following three switching patterns can exist in the interval [0, t̄1], where

6Note that for α0 < 0, both λ20 and λ̇20 have the same sign and according to (7.1.10) we
have sgn(ẋ10) = sgn(u10) = −sgn(λ̇20).



CHAPTER 7. INFLUENCE OF DAMPING AND STIFFNESS ACTUATION 116

t
−
t̄ j

0
ar

ct
an
(

ω
d
,m
a
x

ω
0
(D

J
,m
i
n

+
α
j
)

)
ω
d
,m
a
x

︸
︷︷

︸
=
t∗ j

t∗ j
+

ar
ct

an

(
ω
d
,m
i
n

ω
0
(D

J
,m
a
x
+

1 α
j

)

)
ω
d
,m
in

︸
︷︷

︸
=
t̂ j

t M
j
+

1
=
t∗ j

+
t̂ j

+

a
rc

ta
n

(
ω
d
,m
a
x

ω
0
(

1
1 α
j

+
2
D
J
,m
i
n
−
D
J
,m
i
n

)

)
ω
d
,m
a
x

︸
︷︷

︸
=
t m
j
+

1

T
j
+

1
=
t̄ j

+
1
−
t̄ j

u
(t

)

( (−
1
)j
θ̇
m
a
x

sg
n
(λ

2
0
)

D
J
,m
in

)
( (−

1
)j
θ̇
m
a
x

sg
n
(λ

2
0
)

D
J
,m
a
x

)
( (−

1
)j
θ̇
m
a
x

sg
n
(λ

2
0
)

D
J
,m
in

)
( (−

1
)j

+
1
θ̇
m
a
x

sg
n
(λ

2
0
)

D
J
,m
in

)
( (−

1
)j

+
1
θ̇
m
a
x

sg
n
(λ

2
0
)

D
J
,m
in

)
x

1
(t

)
0

ẋ
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t̄1 denotes as before the �rst time the de�ection becomes zero in the interior of
D.

1. α0 ∈ (−∞, 1
2DJ,min

): In this case, ẋ1 switches �rst so that u2 changes

from DJ,max to DJ,min (t = t̂0). According to (7.1.5), the change in u2

also results in an instantaneous change of λ̇2 and this quantity approaches
zero without changing its sign. Then, λ̇2 changes its sign and u1 switches
(t = tM1 > t̂0). The magnitude of ẋ1 is then increased and the angular
de�ection x1 changes its sign before λ2 does (t = T1 = t̄1).

2. α0 ∈ [− 1
2Dmin

,− 1
2Dmax

]: If α0 belongs to this interval, ẋ1 switches again

before λ̇2 and u2 switches to DJ,min(t = t̂0). This also results in an
instantaneous change in λ̇2. Unlike the previous case, however, this change
results in a sign change of λ̇2 as well. Consequently, u1 switches its sign
simultaneously with u2 (t = t̂0 = tM1). The magnitude of ẋ1 is again
increased by 2θ̇max and afterwards x1 changes its sign (t = T1 = t̄1).

3. α0 ∈ (− 1
2DJ,max

, 0): In this case, λ̇2 changes its sign at �rst and u1 switches
(t = tM1

). Consequently, ẋ1 has a discontinuity at this time instant.
Since limt→t−M1

|ẋ1(t)| < u1max holds, ẋ1 will have the opposite sign of

this limit. This means according to (7.1.10) that u2 switches its sign at
this time instant as well (t̂0 = tM1

). The quantity, that �rst changes its
sign afterwards, is again x1(t = T1 = t̄1).

These three possible switching patterns described above are illustrated in Figure
7.1.2 (Right) using again phase plots. The two straight dashed lines depicted
there, i.e. the lines de�ned by the equalities α0 = − 1

DJ,max
and α0 = − 1

DJ,min
,

can be used to identify the patterns. Table 7.5 provides analytical expressions
for the time instants t̂0, tM1 and t̄1 = T1. Notice that the sign of λ̇20 does again
not have any in�uence on these times.

Based on the last two switching patterns described above, we can now see
that the construction procedure described in Table 7.2 can, for certain negative
values of α0, lead to control strategies with simultaneous switchings at the �rst
switching time instant. Nevertheless, looking at the corresponding expressions
for λ2 and λ̇2 it can be seen that regardless of the value of α0 < 0 the signs
of λ2 and λ̇2 are di�erent at t = t̄1. More speci�cally, by the time the angular
de�ection x1 is zero again, the second costate λ2 has not changed its sign,

while λ̇2 has. This means that the ratio α1 = − λ̇∗2(t̄1)
ω0λ∗2(t̄1) is positive for each of

the three possibilities. Consequently, the switching pattern after t̄1 will be the
pattern we have found for α0 > 0 and the controls u1 and u2 will never switch
simultaneously after this time. This also means that the extremal lift can be
fully constructed using �rst Table 7.5, to construct the lift in [0, t̄1], and then
Table 7.4 with j ∈ {1, . . . , l}.

Before concluding our discussion on the switching patterns, it is important
to remark here that our results so far actually consider every possible pair
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(
λ20 λ̇20

)
satisfying (7.1.16) except the two pairs

(
0 1

θ̇max

)
and

(
0 − 1

θ̇max

)
for which α0 is not de�ned. Nevertheless, in accordance with the illustrated
phase plot in Fig. 7.1.2, it can be shown7 that for both of these pairs the
resulting control structure will correspond exactly to the structure for α0 ∈
(−∞, 1

2DJ,min
). More speci�cally, by taking the limit of the expressions provided

in the �rst row of Table 7.5 as α0 goes to minus in�nity, we can use the resulting
limits and Table 7.4 to fully construct the corresponding extremal lifts and thus
also the control strategies.

7.1.2.3 Energy Interpretation

We have so far shown the existence of �ve di�erent switching patterns which are
followed by control strategies in extremal lifts, provided that the right-hand side
of (7.1.10) or (7.1.11) is equal to zero at each switching time. We have further
seen that under this assumption, control strategies along normal extremal lifts
follow the exact switching pattern once the torque in the spring equals to zero
for the �rst time after the start of the motion. More speci�cally, they all follow
the pattern we have found for α0 > 0, see Fig. 7.1.2 (Left). In the remainder
of this section, we want to �nd a physical law describing this pattern in terms
of the relative energy of Σ along its extremals. Moreover, we also want to show
how this law relates to the optimal switching patterns for EJ's with adjustable
linear sti�ness.

Let Λ = (x,u,λ, λa) be a normal extremal lift for the LTCP which is de�ned
on a su�ciently large interval. Moreover, assume that x1 changes its sign l ≥ 2
times and let k ∈ Sl−1\{0}. Then, at the switching time t̄k + t∗k at which
the damping ratio u2 switches from DJ,min to DJ,max, the ratio of the relative
kinetic energy Ekin(ẋ1) of the system Σ to its potential energy, which we will
refer to as the energy ratio, is given by

r∗k =
Ekin (ẋ1(t̄k + t∗k))

Epot (x1(t̄k + t∗k))

= α2
k, (7.1.29)

where we have used Table 7.4. According to (7.1.29), we thus see that the ratio
αk > 0 of the costates at the time t̄k uniquely determine the energy ratio at
the �rst switching time after t̄k. Notice that after this switching time, i.e. after
t = t̄k + t∗k, the link is being pulled with the maximum damping ratio until ẋ1

and thus the damping torque changes its sign. At this time the energy ratio r̂k
is equal to zero and u2 switches again back to DJ,min. Afterwards, when the

energy ratio is equal to r−Mk+1
=

(1+αkDJ,min)2

α2
k

the motor velocity u1 switches

and the new energy ratio rMk+1
= β2

k(αk) is obtained. Finally, the de�ection
becomes zero and the same switching pattern repeats itself now with the ratio

r∗k+1 = 1
(βk−2DJ,min)2

!
= α2

k+1. Figure 7.1.3 (Right) illustrates qualitatively on

7By following again the procedure in Table 7.2 and using (7.1.10)-(7.1.11) together with
Table 7.1.
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ẋ1

x1

Variable Stiffness
u2 = KJ(t)

KJ,min KJ,max

α2
k

1
α2

k

β2
k(αk)

1
β2
k

!
= α2

k+1

ẋ1

x1

Variable Damping

u2 = DJ(t)

DJ,min DJ,max

α2
k

(1+αkDJ,min)
2

α2
k

β2
k(αk)

1
(βk−2DJ,min)2

!
= α2

k+1

e 1: The Energy Ratio kin

pot
TrajectoryFigure 7.1.3: Comparison of Switching Patterns for EJ's with Variable

Impedance (Adapted from [41], ©2014 IEEE)

a phase plot the changes of the energy ratio. It is important to remark here
that knowing the value of r∗1 , all the switching times after t = t̄1 + t∗1 can
be uniquely determined by this physical law that is described in terms of the
system's potential and relative energy. Therefore, the law provides our desired
extension of the concept of resonance energies to EJ's with adjustable viscous
damping.

Finally, optimal control strategies for EJ's with adjustable linear sti�ness can
also be uniquely described in terms of the energy ratio8 in (7.1.29), see [39, 21].
The change of this ratio, for the case when the sti�ness takes its minimum value
at zero de�ection, is depicted in Fig. 7.1.3 (Left) . A closer look at both systems
show now that for DJ,min = 0, the two switching patterns follow the exact same
physical law, eventhough they signi�cantly di�er in the way how their system
properties are controlled. This clearly indicates the generality of our concept of
resonance energies.

7.2 In�uence of Variable Sti�ness

In this section, we will analyse OC strategies for an EJ model with a VSA
as depicted in Fig. 7.2.1. In particular, we will assume that the adjustable
TDP of the system can be directly controlled. Furthermore, the motor velocity
will be again modeled as a velocity source and the system will be assumed to
start from a given position. Nevertheless, the initial state will this time not be
necessarily the system's equilibrium position. In addition, the cost functional
will be described by a terminal cost function which we will only require to
have a non-zero gradient. This additional generality is motivated by the fact

8For variable sti�ness joints the potential energy is computed using the maximum value
KJ,max > KJ,min for the sti�ness, i.e. Epot(φ) = 1

2
KJ,maxφ

2.
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Imot

θ

M

q

KJ(φ, σs)

Figure 7.2.1: EJ Model with a VSA

that the concept of resonance frequency, as it exists for EJ's with LSEA's, is
independent of the system's initial state and remains also valid for a large class
of cost functionals, see [40]. We next provide a mathematical formulation to the
general OC problem we just described and also clarify the assumptions on the
TDP of the investigated model as well as the cost functional.

7.2.1 Problem Formulation

Similar to an EJ with a NSEA, for an EJ with a VSA the torque between the
motor and the link is only due to the elastic elements in the VSA, i.e. τJ = τJ,S .
Nevertheless, in contrary to a NSEA this torque does not only depend on the
de�ection φ but also on the sti�ness variable σs. In other words, τJ is a function
of φ and σs. In our model, we will assume that this function is constrained
between two elements of C1

τJ , τJ,1 and τJ,2, which satisfy

(∀φ ∈ (0,∞)) [τJ,1(φ) < τJ,2(φ)] . (7.2.1)

Constraining σs to take values in the interval [−1, 1], this assumption leads us
then to the adjustable TDP τJ : R× [−1, 1]→R with

τJ(φ, σs) =
τJ,2(φ) + τJ,1(φ)

2
+ σs

τJ,2(φ)− τJ,1(φ)

2
. (7.2.2)

Figure 7.2.2 qualitatively illustrates one possible choice for τJ,1, τJ,2 and the
resulting τJ(., σs) for a piecewise continuous σs and φ ≥ 0. Notice that the SDP
corresponding to τJ , i.e. KJ , is given by the partial derivative ∂τJ

∂φ and is thus
also a function of φ and σs.

For the control system Σ describing our EJ model, we will take again x =(
φ q̇

)T ∈ X = R2 as the state variable and assume that both the motor
velocity and the sti�ness variable can be directly controlled. The dynamics of Σ
can then be described, in accordance with (2.1.4) and (7.2.2), using the function
f : R2 × R2 → R2 with

f(x,u) =

(
u1 − x2
τJ (x1,u2)

M

)
, (7.2.3)

where u1 and u2 denote the motor velocity and sti�ness variable, respectively.
This also leads to the control set

U = [−θ̇max, θ̇max]× [−1, 1],



CHAPTER 7. INFLUENCE OF DAMPING AND STIFFNESS ACTUATION 122

φ

τJ,1

τJ,2

τJ(., σs)

0

Figure 7.2.2: Adjustable TDP τJ in the VSA
(Adapted from [42],©2014 IFAC)

where θ̇max > 0 denotes the maximal motor velocity. Choosing PCU as the
class of admissible controls U , we have thus fully determined the control system
Σ = (X,f ,U,U).

As already mentioned, for the OC problems we want to investigate in this
section we will allow the initial state of the system to be chosen arbitrarily.
Similarly, we will let the terminal cost function V : R2 → R to be an arbitrary
continuously di�erentiable function and further assume that its gradient is al-
ways non-zero. Using CV to denote the set of all such functions9, this leads us
then to the cost functional J : PCU × R2 × CV → R with

J(u,x0,V) = V(xf ), (7.2.4)

where xf denotes the terminal state of the trajectory x which starts from x0 and
correspons to the control u. Our general OC problem can �nally be formulated
as follows.

General Terminal Cost Problem (GTCP): Given a �nal time tf > 0, an
initial state x0 ∈ R2 and a continuously di�erentiable function V ∈ CV �nd
the control uopt which minimizes J(u,x0,V) over all admissible controls u ∈ U
de�ned on D = [0, tf ].

7.2.2 Optimal Control Strategies

In this subsection, we will �rst make use of PMP to derive necessary condi-
tions which need to be satis�ed by the OC strategies solving the GTCP. More
speci�cally, we will show that these strategies are all switching controls if the
corresponding trajectories are time-optimal. Moreover, we will show that the
relation between the switching times of the optimal motor velocity and the sign
of the de�ection, as we have found for the LVMP, remains also valid for the
GTCP. In addition, regarding the adjustable TDP we show the existence of a
similar but less informative relation for the switching times of the second con-
trol which depends on the system's state as well as the sign of the controlled
motor velocity. Then, we make use of our results on the construction of costate

9That is CV is the set of all continuously di�erentiable functions V : R2 → R such that
∂V
∂x

(x) 6= 0 holds for each x ∈ R2.
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trajectories from Sec. 5.2.2 to reformulate the derived conditions from PMP as
state dependent switching conditions for OC strategies. This will show how to
determine the possible switching patterns for the OC strategies and lead to an
extension of the concept of resonance energies for EJ's with SEA's to EJ's with
VSA's.

7.2.2.1 Basic Properties

In accordance with our previous de�nitions, we will call an admissible controlled
trajectory (x,u) an optimally controlled trajectory if there exists a terminal
time tf > 0 and a function V ∈ CV such that u : [0, tf ] → R2 solves the
corresponding GTCP with the initial state x0. For such trajectories, PMP
provides the following necessary condition.

Proposition 31. Let (x,u) be an optimally controlled trajectory de�ned on
the interval D = [0, tf ] such that u minimizes the cost functional (7.2.4) with
a continuously di�erentiable function V ∈ CV . Then, there exists a piecewise
continuously di�erentiable costate λ : D → (R2)∗ such that the �rst of the
following conditions holds at every t ∈ D at which u2 is continuous, the second
and third at every t ∈ D, and �nally the fourth condition at the �nal time tf :

1. Costate Dynamics

λ̇(t) =
(
−KJ (x1(t),u2(t))

M λ2(t) λ1(t)
)
. (7.2.5)

2. Minimum Condition

H (x(t),u(t),λ(t)) = min
v∈U

H (x(t),v,λ(t)) , (7.2.6)

where H : R2×U× (R2)∗ → R denotes the Hamiltonian function given by

H(x,u,λ) = λf(x,u)

= λ1(u1 − x2) + λ2
τJ(x1, u2)

M
. (7.2.7)

3. Hamiltonian Condition

H (x(t),u(t),λ(t)) = −λa, (7.2.8)

where λa ∈ {−1, 0, 1} is a constant scalar.

4. Transversality Condition

λ(tf ) = v
∂V
∂x

(xf ), (7.2.9)

where v is a positive constant scalar.



CHAPTER 7. INFLUENCE OF DAMPING AND STIFFNESS ACTUATION 124

Proof. The proof follows directly from applying PMP to the GTCP and is omit-
ted for brevity.

It is important to remark here that the conditions provided by Prop. 31 for
the GCTP are very similar to those provided by Prop. 7 for the LVMP. This
directly follows from the similarities between the dynamics of the corresponding
control systems as well as the fact that in our formulation for the LVMP we
only required to maximize the terminal link velocity, i.e. we had a terminal
cost function. We want to next show how these similar conditions also lead to
similar properties for the corresponding OC strategies.

Let Λ = (x,u,λ, λa) be an extremal lift for the GCTP, i.e. a 4−tuple
consisting of an admissible controlled trajectory (x,u), a costate λ and a scalar
λa ∈ {0, 1} such that the conditions in Prop. 31 are satis�ed with a terminal
cost V ∈ CV . Focusing �rst on the control u1, i.e. the velocity of the motor,
we can see that the Minimum Condition (5.2.2) implies, as for the LVMP, the
following equality:

u1(t) =

{
−θ̇max λ1(t) > 0

θ̇max λ1(t) < 0
, (7.2.10)

where t ∈ D = [0, tf ]. According to (7.2.10), the value of u1 is thus uniquely de-
termined by the sign of the �rst costate whenever it is non-zero. Moreover, since
the gradient of elements of CV and thus of V is everywhere non-zero the transver-
sality condition (7.2.9), the costate dynamics (7.2.5) and our assumptions on the
TDP τJ ensure that the sign of λ̇1 = −KJ (x1,u2)

M λ2 is always non-zero whenever
λ1 is equal to zero. Consequently, we can conclude that u1 is a switching control
whose switching times are uniquely determined by the zeros of λ1. More gener-
ally, we have the following proposition which basically shows how to generalize
Prop. 8 to extremal lifts for the GTCP.

Proposition 32. Let Λ = (x,u,λ, λa) be an extremal lift for the GTCP which
is de�ned on the interval D = [0, tf ] and let vu10

and vu1f
denote the integers

vu10 =

{
sgn

(
λ̇1(0)

)
λ1(0) = 0

sgn (λ1(0)) λ1(0) 6= 0
, (7.2.11)

and

vu1f
=

sgn
(
∂V
∂x2

(xf )
)

∂V
∂x1

(xf ) = 0

sgn
(
∂V
∂x1

(xf )
)

∂V
∂x1

(xf ) 6= 0
, (7.2.12)

both of which are necessarily non-zero. Then, u1 is a switching control with its
initial value given by

0u1 = −vu10
θ̇max. (7.2.13)

In addition, tS ∈ (0, tf ) is a switching time of u1 if and only if λ1(tS) is equal
to zero in which case we have

τJ (x1(tS), u2(tS))λ2(tS)

M
= −λa, (7.2.14)
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with λ2(tS) 6= 0. Finally, if the control u1 has iu1 ≥ 1 switchings we have(
∀k ∈ Siu1

\{0}
) [

sgn
(
x1(tS,ku1

)
)

= (−1)k+iu1 vu1f
λa
]
, (7.2.15)

where tS,ku1
denotes the k'th switching time of u1.

Proof. The proposition can be derived using the proof of Prop. 8 if we addition-
ally consider the new transversality condition (7.2.9) according to which λ1(tf )
is now not necessarily zero, cf. (5.2.5).

According to Prop. 32 and in particular (7.2.15), we can see that in case Λ
is an abnormal extremal lift the control u1 only switches when the de�ection is
equal to zero. On the other hand, if Λ is normal the de�ection is non-zero at
the switching times of u1. Moreover, the sign of the de�ection always changes
between two switchings of u1. These properties suggest a switching structure for
the control u1 similar to the one we have found for the solutions to the LVMP.

Regarding the second control u2, we can again make use of the Minimum
Condition (7.2.6) which together with our assumptions on the adjustable TDP
yields the following relation:

u2(t) =

{
−1 λ2(t)x1(t) > 0

1 λ2(t)x1(t) < 0
, (7.2.16)

where t ∈ D. The value of u2 is thus uniquely determined by the sign of the
continuous product λ2x1 whenever this sign is non-zero. As for the �rst costate
λ1, the costate dynamics (7.2.5) and the transversality condition (7.2.9) ensure
that the zeros of λ2 are all isolated. The same is, however, not true for the �rst
state x1. Indeed, according to (7.2.3) it is possible that the de�ection remains
zero on a �nite time interval if both the motor and the link rotate with the
same velocity, i.e. u1 = x2. In such a case, (7.2.16) does not provide any
information on the control u2 and Λ becomes a singular extremal lift. This is in
accordance with the observation that at zero de�ection the control u2 does not
have any in�uence on the system's dynamics as we have τJ(0, .) ≡ 0, see (7.2.2).
Moreover, notice that in this case the system's relative energy becomes zero. As
the following proposition shows this is a necessary and su�cient condition for
an extremal lift for the GCTP to be singular.

Proposition 33. Let Λ = (x,u,λ, λa) be an extremal lift for the GTCP which
is de�ned on D = [0, tf ]. Then, Λ is singular if and only if there exists a time
t̄ ∈ D such that

Epot (x1(t̄)) + Ekin (ẋ1(t̄)) = 0.

Moreover, in this case Λ is abnormal, x is not time-optimal, and there exists a
closed and non-degenerate time interval D̄ ⊂ D, containing t̄, such that(

∀t ∈ D̄
) [
x(t) =

(
0

u1(t)

)
∈
{(

0

θ̇max

)
,

(
0

−θ̇max

)}]
.

Proof. See [43].
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When analysing the extremal lifts for the LVMP, we have shown that the
relative energy is always positive along their trajectories. Moreover, for optimal
extremal lifts we have observed that these trajectories are all time-optimal.
Based on these observations, we will from now on focus on non-singular extremal
lifts for the GCTP.

Assuming that Λ is non-singular, neither λ2 nor x1 can remain at zero in
a �nite time-interval. Consequently, all the zeros of λ2x1 are isolated and this
means that u2 will in this case also be a switching control, see (7.2.16). More-
over, at the switching times of u2 the product λ2x1 must be necessarily equal
to zero. However, in contrary to u1 this is not a su�cient condition. In par-
ticular, if there exists a time in the interior of D, at which both λ2 and x1

become simultaneously zero, the product λ2x1 will attain the same sign in a
deleted neighborhood10 of this time. Nevertheless, there is still a certain rela-
tion between the switching times of u2 and the sign of the de�ection as well as
its time-derivative. The following proposition clari�es this relation and can be
regarded as an analogue of Prop. 32 for the second control.

Proposition 34. Let Λ = (x,u,λ, λa) be a non-singular extremal lift for the
GTCP which is de�ned on the interval D = [0, tf ] and σ : D → (R2)∗, t →(
σ1 σ2

)
the function de�ned by

σ(t) = λ(t)

(
0 x1(t)

x1(t) ẋ1(t)

)
. (7.2.17)

Moreover, let vu20
denote the integer

vu20 =

{
sgn (σ2(0)) σ1(0) = 0

sgn (σ1(0)) σ1(0) 6= 0
. (7.2.18)

Then, u2 is a switching control with its initial value given by

0u2 =

{
−vu20 σ(0) 6= 0

λa σ(0) = 0
. (7.2.19)

In addition, tS ∈ (0, tf ) is a switching time of u2 if and only if we have

σ1(tS) = 0 ∧ σ2(tS) 6= 0. (7.2.20)

Finally, in this case we have(
x1(tS) λ2(tS)

)
6= 0, (7.2.21)

and

λ2(tS) = 0⇒ ẋ1(tS) = − λa
λ1(tS)

∧ sgn (ẋ1(tS)) = sgn (λau1(tS)) , (7.2.22)

with λ(tS) 6= 0.
10See for instance [62] for the de�nition of a deleted neighborhood.



CHAPTER 7. INFLUENCE OF DAMPING AND STIFFNESS ACTUATION 127

Proof. The proof follows from (7.2.5)-(7.2.9) and our discussion above if we
additionally note that σ2 in (7.2.17) gives the time-derivative of the product
σ1 = λ2x1 whenever this derivative exists, and similarly 2λ1ẋ1 its second time-
derivative whenever this derivative exists and λ2 = x1 = 0.

Comparing Prop. 32 and Prop. 34, it can be observed that the latter
proposition does not give a speci�c order on how the sign of the de�ection or
its time-derivative change between the switchings of u2. It can only relate the
sign of ẋ1 at the switchings to the sign of the motor velocity assuming that
the de�ection is non-zero, see (7.2.22). Furthermore, in contrary to Prop. 32 it
does not directly show how the transversality condition in�uence the switching
structure of u2, cf. (7.2.15). This in�uence is only implied indirectly by the sign
of u1. In order to better understand the switching structure of u2, and more
generally of u, we will next provide a graphical illustration which can be used
to determine control strategies satisfying (7.2.10) and (7.2.16) depending on the
system's state.

7.2.2.2 Switching Conditions

Let Λ = (x,u,λ, λa) be a non-singular extremal lift for the GCTP which is
de�ned on D = [0, tf ]. By Prop. 32 and Prop. 34, we know that in this case u
will be a switching control with i ≥ 0 switchings. Consequently, given an integer
k ∈ Si the restriction of x to the interval Dk can be regarded as a trajectory
of an EJ with a SEA. More speci�cally, x|Dk will be a trajectory of the control
system from Sec. 2.1 with the TDP τJ(., ku2). Moreover, substituting the
control ku2 into the costate dynamics (7.2.5) it can be seen that the restriction
λ|Dk will be a solution to (5.2.1) with the SDP KJ(., ku2). Noting that along
non-singular extremal lifts the relative energy is always positive, this means that
we can make use of Prop. 9 to express λ|Dk as a function of x1, kφmax and the
sign of ẋ1 as done in Sec. 5.2.2. More speci�cally, making use of the notation
introduced there11 together with the equality (5.2.15) and Table 5.1 we have for
each j ∈ Smk and t ∈ Dkj

λ1(t) = − lim
Dkj3s→t

τJ
(
x1(s), ku2

)
kvφ,j

M kφ̇max

[
kη0,j − λaCu2

(x1(s), kφmax)
]
,

(7.2.23)
and

λ2(t) =
|φ̇u2 |(x1(t), kφmax)

kφ̇max

[
kη0,j − λaJu2

(x1(t), kφmax)
]
, (7.2.24)

where Ju2
: DTφ → R is the function given by

Ju2
(x, φmax) = − Mφ̇max

τJ(φmax, ku2)

∂Tφu2

∂φmax
(x, φmax), (7.2.25)

11Recall that mk ≥ 0 gives the number of times the time-derivative ẋ1 is equal to zero in
the interior of Dk.
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and the additional subscript u2 is used to indicate the dependence of the func-
tions |φ̇|, Tφ and C on the TDP τJ(., u2), see (3.1.6), (3.2.7) and (5.2.23).

Focusing now on the time interval Dkj , with j ∈ Smk , the two expressions
(7.2.23)-(7.2.24) can be used to rewrite the conditions (7.2.10) and (7.2.16) on
the control as a function of the time-varying de�ection x1 and the constant
parameters kvφ,j ,

kφmax,
kη0,j and λa. In the following, we will show how to

use the resulting functions to reveal the switching structure of the control u.
More speci�cally, we will show how to graphically analyse the sign of these
functions which can be used to �nd all the possible switching patterns for u.
It is important to remark here that we have actually already made use of the
expression (7.2.23) for the �rst costate when deriving conditions for the controls
solving the LVMP, see Sec. 5.2.3. There we have observed that the value
of the control and its switching patterns can be graphically determined if we
additionally distinguish between abnormal and normal extremal lifts, see Fig.
5.2.2. We will next show that this is also true for the control u. We start our
discussion by analysing controls in abnormal extremal lifts.

Abnormal Extremal Lifts Let us assume that Λ is an abnormal extremal
lift, i.e. λa = 0. Following the exact same arguments as used in Sec. 5.2.3,
with the transversality condition (7.2.9) instead of (5.2.5), we can then see that
kη0,j 6= 0. Moreover, for each t ∈ Dkj the sign of x1(t) is non-zero and by
de�nition we have |x1(t)| < kφmax. If we therefore plot the possible values for
the parameter kη0,j against the de�ection x1, as done in Fig. 5.2.2 (Left), we
know that the horizontal curve

(
x1(t), kη0,j

)
will remain in the same quadrant

for t ∈ Dkj . Moreover, the value of the control u1 along this curve will be given
by

u1(t) = θ̇max sgn

(
kη0,j

kv0,j
x1(t)

)
, (7.2.26)

where t ∈ Dkj , see (7.2.10) and (7.2.23). Similarly, according to (7.2.16) and
(7.2.24) the second control u2 will be given by

u2(t) = − sgn
(
kη0,jx1(t)

)
, (7.2.27)

where t ∈ Dkj . The two equalities (7.2.26) and (7.2.27) lead to the graphical
illustration in Fig. 7.2.3 which provides the value of the control u in Dkj

depending on the constant parameters kη0,j ∈ R\{0}, kv0,j ∈ {−1, 1} and the
strictly decreasing or increasing de�ection x1 ∈ (−kφmax, kφmax)\{0}.

Fig. 7.2.3 can also be used to determine the de�ection values attained at
the switching times of u. To see this, notice �rst that at zero de�ection the
�rst costate is always equal to zero, see (7.2.23). Consequently, if the curve(
x1(t), kη0,j

)
intersects the vertical axis at t = tSkj+1

< tf the control u1 will
have a switching according to Prop. 32. Moreover, since at zero de�ection the
second costate is equal to kη0,j 6= 0 the second control u2 will also switch in this
case, see Prop. 34. In other words, the controls u1 and u2 switch simultaneously.

A switching of u2 and thus of u can also occur if the second costate is equal
to zero while the de�ection is non-zero. Taking a closer look at (7.2.24), we
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Figure 7.2.3: Controls along Abnormal Extremal Lifts
(t ∈ Dkj , i ∈ {0, 1, . . .}, k ∈ Si, j = mk = 0, kφmax > 0)

can see that this is always the case when |x1(tSkj+1
)| = kφmax. In other words,

there always exists a switching of u2 when the curve
(
x1(t), kη0,j

)
intersects one

of the two vertical curves x1 = −kφmax or x1 = kφmax at t = tSkj+1
< tf .

Notice that this also shows that for abnormal extremal lifts we necessarily have
mk = 0.

Our discussion so far considers all the possible switchings of the control u
which can occur in Dkj = Dk0

. Since our choice for k was arbitrary, we can thus
conclude that u1 switches in the interior of D if and only if the de�ection is equal
to zero. Similarly, u2 switches in the interior of D if and only if the de�ection

or its time-derivative is equal to zero. De�ning the constant kκ = sgn
(
kη0,j
kv0,j

)
,

this switching law can then be formulated in terms of the de�ection and its
time-derivative as follows:

u(t) = kκ

(
θ̇max sgn (x1(t))
− sgn (x1(t)ẋ1(t))

)
, (7.2.28)

where t ∈ Dk0 and k ∈ Si. Notice that for the case when kκ = 1 holds for each
k ∈ Si, the switching law for the �rst control above has been shown to solve
the EMP for an EJ with a SEA, see Sec. 4.2. With (7.2.28), we see now the
existence of a similar law which is valid for a more general class of EJ models.

Normal Extremal Lifts Let us assume that Λ is a normal extremal lift so
that λa ∈ {−1, 1}. Substituting the expressions (7.2.23)-(7.2.24) into (7.2.10)
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Figure 7.2.4: Controls along Normal Extremal Lifts
(λa ∈ {−1, 1}, t ∈ Dkj , i ∈ {0, 1, . . .}, k ∈ Si, j ∈ Smk , kφmax > 0,

Left: λa = −1, Right: λa = 1)

and (7.2.16), we have then the following equalities for u:

u1(t) = θ̇max lim
Dkj3s→t

sgn
([
kη0,j − λaCu2(x1(s), kφmax)

]
x1(s)

)
kvφ,j

, (7.2.29)

and

u2(t) = − lim
Dkj3s→t

sgn
([
kη0,j − λaJu2

(x1(s), kφmax)
]
x1(s)

)
, (7.2.30)

where t ∈ Dkj . As already mentioned, the dependence of the motor velocity
on the �rst costate is exactly the same as for the LVMP, see Prop. 32. Conse-
quently, the value of u1 can be graphically illustrated as done in Sec. 5.2.3. This
is shown in Fig. 7.2.4 with the only di�erence being the additional possibility
for λa to be negative. In this case the graph of −Cu2

(., kφmax) needs to be used,
see (7.2.29).

As illustrated in Fig. 7.2.4, it is possible to graphically determine the value of
u2, as well. In particular, since the function Ju2(., kφmax) is strictly increasing12

the graph of λaJu2(., kφmax) together with the vertical axis lead to four open
regions in the set

{
(x, φmax) ∈ R2

∣∣|x| <k φmax)}. In each of these regions,
(7.2.30) yields the same value for the control u2. In addition, for a given kvφ,j
the value of the control u1 is also constant in these regions. This follows from
the fact that the two functions Ju2

and Cu2
are related to each other by

Cu2
(φ, kφmax)− Ju2

(φ, kφmax) = − M kφ̇max

τJ(φ, ku2)|φ̇u2 |(φ, kφmax)
, (7.2.31)

12See (3.2.7) and (7.2.25).



CHAPTER 7. INFLUENCE OF DAMPING AND STIFFNESS ACTUATION 131

for each φ ∈ (−kφmax, kφmax)\{0}. Based on this, we can now see that there
will always exist six open regions determined by Cu2 , Ju2 and λa to which the
horizontal curve

(
x1(t), kη0,j

)
must belong in Dkj unless there exists a time

t̄ ∈ Dkj with x1(t̄) = kη0,j = 0, see Fig. 7.2.4, Prop. 32 and Prop. 34. In the
case when both x1 and λ2 are simultaneously equal to zero, the value of the
control u2 is given by λa in accordance with (7.2.30).

As with abnormal extremal lifts, Fig. 7.2.4 can be used to determine the
values of the de�ection at the switching times as well. In particular, assuming
k ≤ i − 1 this can be done by investigating the intersection points of the hori-
zontal curve

(
x1(t), kη0,j

)
with the graphs of Cu2

and Ju2
and the vertical axis.

Indeed, at an intersection with the graph of Cu2
, or its continuous extension

at |x1(t)| = kφmax, the �rst costate will be zero and the �rst control switches.
Similarly, at an intersection with Ju2 the second costate will be zero and unless
the de�ection is also zero, which is the case when kη0,j = 0, the second control
switches. Finally, at the vertical axis there will exist a switching of u2 if again
kη0,j 6= 0.

Our discussion above accounts for all the possible switchings of the control
and shows that there never exists a simultanuous switching of the motor velocity
and adjustable TDP in contrary to abnormal extremals. Nevertheless, with
Fig. 7.2.3-7.2.4 we see that controls in non-singular extremal lifts can always be
described in terms of the system's relative and potential energy at the switchings
times. That is, we can explain the OC strategies solving the GCTP again using
the concept of resonance energies according to which the system must attain a
certain sequence of relative energies by changing the control at also a certain
sequence of potential energies.



Chapter 8

Conclusion and Outlook

In this thesis, we have thoroughly analysed the problem of maximizing the link
velocity of EJ's with velocity-sourced NSEA's. In particular, we have found a
construction method for the control strategies solving this problem such that
they are described in terms of analytical expressions. Furthermore, we used
the proposed method to analyse the dependence of the maximal link velocity
of these joints on the �nal time as well as the system parameters such as the
maximal motor velocity, sti�ness characteristics, etc. Finally, we have extended
our results on the structure of OC strategies to EJ's with variable impedance.
Our discussions have led to various results regarding the control and design of
SEA's, both of theoretical and practical importance. Taking also our discussions
in the two appendices into account, the main contributions of the thesis can be
summarized under the following points:

� Energy Maximization under a limited number of control switch-
ings (Prop. 2-4 and 11)

Before solving the LVMP, we have analysed the intuitive control strategy
of rotating the motor with its maximal velocity against the spring torque.
Assuming that the terminal spring de�ection is equal to zero, our results
show that this strategy always maximizes the total energy stored in EJ's
when there is a constraint on the switching number of the motor velocity.
Moreover, the same strategy also maximizes the link velocity under the
same constraints provided the sign of the initial control is chosen appropri-
ately. Finally, in the latter case this strategy is also a solution candidate
for the LVMP.

� Existence of Piecewise Continuous Optimal Control Strategies
(Prop. 5-6)

For control a�ne systems with convex and compact control sets, the reach-
able sets are also compact if the trajectories of these systems can be con-
strained to a compact set [2]. We provide such a compact set for trajecto-
ries of EJ's depending only on the motor velocity and the �nal time. This
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enables us to use Filippov's Theorem [11] to conclude that there always
exists a measurable control strategy maximizing the terminal link veloc-
ity. Applying Pontryagin's Minimum Principle [44] and Sturm-Liouville
Theory [3], we then show how for each such control strategy we can also
construct a piecewise continuous control leading to the same terminal link
velocity and thus solving the LVMP.

� Link Velocity Maximization of SEA's under limited �nal time
(Prop. 1 and 7-15)

For determining the controls solving the LVMP, we show how to analyti-
cally describe extremal lifts in terms of only their initial costate and the
switching number of their control. Moreover, we clarify how the sti�-
ness characteristics of SEA's in�uence these extremal lifts by leading to
di�erent conditions for the trajectories of their costates and thus to dif-
ferent switching structures for their controls. Finally, by exploiting the
dependence of extremal lifts on their initial costate we show how to pa-
rameterize the set of all extremals. This leads to a reformulation of the
LVMP as a one-dimensional NPP, which can be solved numerically as well
as graphically.

� Resonance Energies (Prop. 1, 10 and 16-18)

Fixing a coordinate frame to its motor, the dynamics of an EJ with a
velocity-sourced SEA can be described by a mass-spring system if the
motor velocity remains constant. Consequently, whenever such a joint is
controlled by a switching control the joint's trajectory can be constructed
by combining trajectories of mass-spring systems with di�erent relative
energies, see Chapter 4. Our results show that the switching times of a
strategy solving the LVMP, or more generally of a time-optimal control
strategy, are uniquely determined as soon as the system's potential and
relative energy are known at its initial switching time. This relation is
described by the time properties of the EJ and thus depends on the spring
characteristics of the SEA, see Fig. 5.2.2 and Fig. 5.3.2. According to
the switching structures depicted there, for SEA's with linear springs each
structure leads to a harmonic excitation with the joint's eigenfrequency.
For SEA's with nonlinear springs, the corresponding structures are more
complex but ensure that a switching always occurs either at zero de�ection
or after a sign change in the spring torque. In this context, we extend the
concept of resonance frequency to the concept of resonance energies.

� In�uence of Final Time and System Parameters on the Maximal
Link Velocity (Prop. 19-26)

The maximal link velocity of an EJ with a velocity-sourced SEA can be
regarded as a function of both the �nal time and the system parameters.
For given parameters, we �rst show in our analysis that this function is
continuous in the �nal time and strictly increasing. Moreover, we also
provide a graphical construction method for the graph of this function
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based on the introduced parameterization for the set of extremals. Turning
then our attention to the role of the system parameters, we show that
graphs illustrating the dependence of the maximal link velocity on the �nal
time can also be used to investigate its dependence on these parameters.
More speci�cally, we show that using only two dimensionless parameters
we can simultaneously analyse the in�uence of both the �nal time and the
system parameters on the velocity gain, i.e. the ratio between the maximal
link and motor velocity. Regarding their in�uence, we have especially
observed that for a SEA with hardening springs this gain can be increased
if the maximal motor velocity is increased. For SEA's with softening
springs, on the other hand, the same gain can be increased with decreasing
motor velocity. Finally, for SEA's with linear springs the maximal motor
velocity does not have any in�uence, see Fig 6.2.1-6.2.2.

� Experimental Veri�cation

Our theoretical results on optimal control strategies and on the in�uence
of system parameters on the maximal link velocity have been both exper-
imentally veri�ed using the DLR FSJ [59], see Fig. 6.3.1.

� In�uence of Variable Impedance on Optimal Control Strategies
(Prop. 27-34)

We have applied PMP to analyse OC strategies for two di�erent EJ models
with variable impedance. Focusing �rst on EJ's with adjustable linear
damping, we have shown the existence of switching patterns, for both the
motor velocity and damping ratio, which maximize a non-trivial linear
combination of the terminal de�ection and link velocity. For one of these
patterns, we have furthermore found a physical law which under certain
assumptions on the minimal damping ratio fully agrees with the law for
EJ's with adjustable linear sti�ness. Then, we have analysed EJ's with
adjustable nonlinear sti�ness and shown how to graphically determine the
switching structure for a general class of cost functionals. For both models,
our results indicate that the introduced concept of resonance energies also
apply to EJ's with variable impedance.

� Second Order Minimum Principle (Theorem 39)

When searching for a global minimum of a di�erentiable real-valued cost
function over a given subset of the n-dimensional real space, it is well-
known that the cost function must satisfy certain conditions at such a
minimum [62, 5]. In particular, the gradient of the cost function must be
equal to the zero vector in case the minimum is an interior point of the
given set. This condition is, however, in general not su�cient as it can
be also satis�ed by local minimas and maximas. Nevertheless, if the cost
function is two-times continuously di�erentiable it is possible to obtain ad-
ditional conditions using the corresponding Hessian, and these conditions
can be used to distinguish between local minimas and maximas. In full
analogy, the conditions provided by PMP are only necessary for a control
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strategy to minimize a given cost functional over a given set of admissible
controlled trajectories. Nevertheless, additional conditions can be derived
if we assume that each element of the system dynamics is two-times contin-
uously di�erentiable with respect to the state and if we additionally have a
terminal cost function that is two-times continuously di�erentiable. This
is shown in Appendix A, where we make use of properties of transition
maps to derive the Second Order Minimum Principle.

There are several ways to extend our results on control strategies solving the
LVMP. First of all, since boundary trajectories starting from the origin are nec-
essarily contained in extremals, our proposed construction method for extremals
can actually be used directly to construct reachable sets of initially resting elas-
tic joints, as well. This is partially illustrated in Fig. 5.4.1 (Left), where we
focus on a particular subset of optimal extremals and further restrict them to
the same time interval. To fully understand the structure of these reachable sets,
however, we need to further study the properties of the functions from Prop. 13
to determine whether and when extremals intersect each other [53]. This is still
an open question, but can now be dealt with by making use of the analytical
expressions we derived for these functions. Clearly, knowing this structure one
can also construct the time-optimal synthesis to brake elastic joints in a time
optimal way [6]. This time-optimal synthesis can in turn be used to derive new
closed-loop control laws to control EJ robots. Noting that our results on EJ's
with variable impedance also provide a means to construct families of extremals
terminating at a given state, these results can be used to derive control laws for
EJ robots as well.

Regarding the maximal link velocity of elastic joints, our analysis have led
to several non-intuitive results which only apply to EJ's with nonlinear SEA's.
Besides the dependence of the velocity gain function on the sti�ness characteris-
tics as discussed above, we have for instance seen that a given maximal velocity
could be attained faster by an EJ with softening springs even though a larger
de�ection was required. Focusing only on linear springs, requiring a larger de-
�ection to store a given energy is equivalent to decreasing the eigenfrequency of
the joint and thus would not result in a faster motion in this case. The main
reason why a faster motion, nevertheless, occurs when EJ's are equipped with
nonlinear springs lies in the non-trivial relation between the attained relative
energies and the corresponding periods. Our study on the maximal link velocity
of EJ's with di�erent spring characteristics clari�es how to exploit this relation
to increase the velocity gain of such joints and thus lead to new design criteria
for more performant SEA's in robotic systems.

Finally, when using PMP to construct candidates for optimal control strate-
gies the resulting extremals might lead to non-optimal strategies with fairly low
performance, see for instance Fig. 6.1.1 (Right). The Second Order Minimum
Principle, which we introduce in Appendix A, provides a means to further de-
crease the set of such candidates under a practically relevant assumption on
the system dynamics and cost functional. For the EJ models and OC problems
which we have investigated in the thesis, this assumption is satis�ed whenever
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the TDP is two-times continuously di�erentiable. This means that this new
principle can be used to further analyse, for instance, EJ models with softening
and hardening springs, and this might in turn lead to additional information
on the optimality/non-optimality of the derived switching structures along the
corresponding extremals. More generally, the proposed principle can be used
to analyse optimal control strategies for any deterministic system, both analyt-
ically and numerically, as long as the dynamics of the system can be described
in terms of su�ciently smooth �rst-order di�erential equations.



Appendix A

Minimum Principles

In the thesis, we make substantial use of Pontryagin's Minimum Principle [44]
and in this appendix we will provide a novel proof to this principle. More
speci�cally, making use of the concept of parameterized families of controlled
trajectories [53] we will show how to prove this principle for a general OC
problem (GOCP) that accounts for all the three OC problems considered in
the thesis, i.e. LVMP, LTCP and GTCP. Moreover, we will also show how
using our approach we can further extend this principle assuming an additional
degree in the smoothness of the system dynamics and cost functional. This will
lead us to what we will call the Second Order Minimum Principle (SMP). Our
approach is similar to the one pursued in [28], but di�ers in the requirement
on the smoothness of control strategies. In particular, when deriving the SMP
we will require the optimal control strategy to be only piecewise continuous.
In addition, when deriving both PMP and SMP we will not make use of any
separation theorems on convex sets. All our results will basically follow from
investigating two types of control variations and the resulting transition maps.
We start our discussion by providing a formulation for the GOCP in terms of
transition maps and also clarifying some of the properties of these maps which
we will require for our proofs of PMP and SMP.

A.1 Problem Formulation

Let Σ = (X,f ,U,U) be a general control system which satis�es the following
assumptions:

(B1) The state-space X is a non-empty open subset of Rn with n ≥ 1 being a
positive integer.

(B2) The control set U is a non-empty subset of Rm with m ≥ 1 being a
positive integer.

(B3) The system dynamics f : X×U→ Rn is a continuous function. Moreover,
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for each (x,v) ∈ X× U the Jacobian

∂f

∂x
(x,v) =


∂f1

∂x1
(x,v) · · · ∂f1

∂xn
(x,v)

...
. . .

...
∂fn
∂x1

(x,v) · · · ∂fn
∂xn

(x,v)


exists and the corresponding function ∂f

∂x : X×U→ Rn×n is continuous1.

(B4) U = PCU, i.e. the class of admissible controls is the set of all piecewise
continuous functions u : [0, tf ]→ U with tf > 0.

It is important to remark here that our assumptions on the system dynamics
ensure that for each piecewise continuous function w : R → U and each pair
(t0,y0) ⊂ R× X of initial time and state, the initial value problem

ẏ(t) = f (y(t),w(t)) , y(t0) = y0 ∈ X, t0 ∈ R, (A.1.1)

has a unique maximal solution y : Dw(t0,y0) → X, where Dw(t0,y0) denotes
the maximal interval of existence of the solution which is necesarily a non-
empty open interval containing t0, see [34]. More speci�cally, since the function
fw : X× R→ Rn with

fw(x, t) = f(x,w(t)), (A.1.2)

is locally Lipschitz with respect to its �rst argument, the function w gives
rise to a locally Lipschitz transition map ψw : dom(ψw) → X such that
for each (t0,y0) ⊂ R × X the function ψw(., t0,y0) gives the maximal so-
lution to (A.1.1). Moreover, the domain of this map, given by dom(ψw) ={

(t, t0,y0) ∈ R2 × X |t ∈ Dw(t0,y0)
}
, is an open set in Rn+2, see Theorem 4.29

in [34]. We will call ψw the transition map of Σ corresponding to w.
When proving PMP and SMP, we will need several properties of partial

derivatives of transition maps. Focusing on the transition map ψw introduced
above, let Ew ⊂ R denote the set of times at which w is not continuous.
Regarding the partial derivative ∂ψw

∂t , it is by de�nition clear that this derivative
exists at each (t, t0,y0) ∈ (Dw(t0,y0)\Ew)× R× X with

∂ψw
∂t

(t, t0,y0) = f (ψw(t, t0,y0),w(t)) . (A.1.3)

Moreover, according to the properties of f ,ψw and w the corresponding func-
tion ∂ψw

∂t : (Dw(t0,y0)\Ew) × R × X → Rn is continuous. In addition, intro-
ducing for each t ∈ {τ ∈ Dw(t0,y0) |(t0 ∈ R ∧ y0 ∈ X)} the sets

H−(t) = {(τ, τ0, ξ0) ∈ dom(ψw) |τ < t} ,

and
H+(t) = {(τ, τ0, ξ0) ∈ dom(ψw) |τ > t} ,

1That is for each (i, j) ∈ {1, . . . , n}2 the function ∂fi
∂xj

: X× U→ R is continuous.
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the following equality holds for the left time-derivative
∂ψ−w
∂t : dom(ψw)→ Rn:

∂ψ−w
∂t

(t, t0,y0) := lim
H−(t)3(τ,τ0,ξ0)→(t,t0,y0)

∂ψw
∂t

(τ, τ0, ξ0)

= f

(
ψw(t, t0,y0), lim

τ→t−
w(τ)

)
,

while for the right time-derivative
∂ψ+

w

∂t : dom(ψw)→ Rn we have

∂ψ+
w

∂t
(t, t0,y0) := lim

H+(t)3(τ,τ0,ξ0)→(t,t0,y0)

∂ψw
∂t

(τ, τ0, ξ0)

= f (ψw(t, t0,y0),w(t)) .

Similar properties also hold for the partial derivatives ∂ψw∂t0
and ∂ψw

∂y0
. This is

shown in the following lemma, where for each t0 ∈ R we use H−0 (t0) and H+
0 (t0)

to denote the sets

H−0 (t0) = {(τ, τ0, ξ0) ∈ dom(ψw) |τ0 < t0 } ,

and
H+

0 (t0) = {(τ, τ0, ξ0) ∈ dom(ψw) |τ0 > t0 } .

Lemma 35. Let Σ satisfy assumptions (B1)-(B4), w : R → U be a piecewise
continuous function and ψw : dom(ψw) → X the locally Lipschitz transition
map of Σ corresponding to w. Moreover, let Ew denote the set of times at
which w is not continuous. Then, the partial derivative ∂ψw

∂y0
exists at each

(t, t0,y0) ∈ dom(ψw) and the corresponding function ∂ψw
∂y0

: dom(ψw)→ Rn×n

is continuous. Similarly, the partial derivative ∂ψw
∂t0

exists at each (t, t0,y0) ∈
dom(ψw) for which t0 /∈ Ew and the corresponding function ∂ψw

∂t0
: Dw(t0,y0)×

(R\Ew)×X→ Rn is continuous. Moreover, both the left initial time-derivative
∂ψ−w
∂t0

with

∂ψ−w
∂t0

(t, t0,y0) := lim
H−0 (t0)3(τ,τ0,ξ0)→(t,t0,y0)

∂ψw
∂t0

(τ, τ0, ξ0) ,

and the right initial time-derivative
∂ψ+

w

∂t0
with

∂ψ+
w

∂t0
(t, t0,y0) := lim

H+
0 (t0)3(τ,τ0,ξ0)→(t,t0,y0)

∂ψw
∂t0

(τ, τ0, ξ0) ,

exist at each (t, t0,y0) ∈ dom(ψw), and are given by

∂ψ−w
∂t0

(t, t0,y0) = −∂ψw
∂y0

(t, t0,y0)f

(
y0, lim

τ→t−0
w(τ)

)
, (A.1.4)



APPENDIX A. MINIMUM PRINCIPLES 140

and
∂ψ+

w

∂t0
(t, t0,y0) = −∂ψw

∂y0

(t, t0,y0)f (y0,w(t0)) , (A.1.5)

respectively.

Proof. Let Σ,w,ψw and Ew satisfy the hypothesis of the lemma. Assume
�rst that Ew is empty. Then, both w and the function fw in (A.1.2) are
continuous. Moreover, the partial derivative of fw with respect to its �rst
argument exists and is continuous for each (x, t) ∈ X× R. It follows then from
Theorem 7.1 and 7.2 in Chapter 1 of [13] that both ∂ψw

∂t0
: dom(ψw)→ Rn and

∂ψw
∂y0

: dom(ψw) → Rn×n exist and are continuous. Consequently, the initial

time-derivatives ∂ψ−w
∂t0

and ∂ψ+
w

∂t0
also exist. Finally, the fact that the partial

derivatives ∂ψw
∂t0

and ∂ψw
∂y0

satisfy the same linear di�erential equation with the

boundary conditions2
∂ψw
∂y0

(t0, t0,y0) = Id,

and
∂ψw
∂t0

(t0, t0,y0) = −f (y0,w(t0)) , (A.1.6)

see for instance Theorem B.2.2 in [53], imply that (A.1.4) and (A.1.5) both hold.
This shows the truth of the lemma for Ew = ∅.

In the remainder of the proof, we want to now show that the lemma is also
true when w is piecewise continuous with Ew 6= ∅. For this, let (t̄f , t̄0, ȳ0) be
an arbitrary element of dom(ψw). Assuming �rst that t̄f ≥ t̄0, let D̄ = [t̄0, t̄f ]
and introduce the continuous function ȳ : D(t̄0, ȳ0)→ X with

ȳ(t) = ψw(t, t̄0, ȳ0).

Since the image of ȳ|D̄ is compact and dom(ψw) is open, we can then �nd a
scalar ε̃ > 0 such that the set

S̃ =
{

(t, t0,y0) ∈ Rn+2 |t ∈ (t̄0 − ε̃, t̄f + ε̃) ∧ (t0,y0) ∈ B ((t, ȳ(t)) ; ε̃)
}

is a subset of dom(ψw). Moreover, by choosing ε̃ > 0 su�ciently small we can
additionally ensure that the control w is continuous at each t ∈ (t̄0 − ε̃, t̄0) ∪
(t̄f , t̄f + ε̃). Under this assumption, let t̃0 = t̄0 − ε̃

2 and t̃f = t̄f + ε̃
2 . Moreover,

let D̃ = [t̃0, t̃f ] and introduce the necessarily �nite set Ẽw = (t̃0, t̃f ) ∩ Ew with
ñ ≥ 0 elements. Set t̃0 = t̃S,0 and t̃f = t̃S,ñ+1, and in case the set Ẽw is
non-empty let t̃S,1 < · · · < t̃S,ñ denote its elements. Finally, construct for each
k ∈ {0, . . . , ñ} the continuous control function wk : R→ U with

wk(t) =


w(t̃S,k) t ≤ t̃S,k
w(t) t ∈ (t̃S,k, t̃S,k+1),

limt→t̃−S,k+1
w(t) t ≥ t̃S,k+1

(A.1.7)

2Id ∈ Rn×n denotes the identity matrix.
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together with the corresponding transition map ψwk . In addition, starting
from k = 0 iteratively de�ne for each k ∈ {0, . . . , ñ} the state function kξ :
B
((
t̃0, ȳ(t̃0)

)
; ε̃
)
→ X with

kξ(t0,y0) =

{
y0 k = 0

ψwk−1

(
t̃S,k, t̃S,k−1,

k−1ξ(t0,y0)
)

k ≥ 1
. (A.1.8)

Based on our discussions in the beginning of the proof, we know that the con-
structed transition maps ψwk are all continuously di�erentiable. According to
(A.1.8), this implies that the state functions kξ are also all continuously dif-
ferentiable. To simplify our discussion, we will next distinguish between three
di�erent cases depending on whether the times t̄0 and t̄f belong to Ew or not.

First Case (t̄0 /∈ Ew ∧ t̄f /∈ Ew) In this case, we can �nd a scalar ε̄ < ε̃
such that the union (t̄0− ε̄, t̄0 + ε̄)∪ (t̄f − ε̄, t̄f + ε̄) and the set Ew are disjoint.
Consequently, we can also �nd a su�ciently small neighborhood V̄ ⊂ Rn+2 of
(t̄f , t̄0, ȳ0) such that for each (t, t0,y0) ∈ V̄ we have

ψw(t, t0,y0) = ψwñ
(
t, t̃S,ñ,

ñξ (t0,y0)
)
.

Since the functions ψwñ and ñξ are both continuously di�erentiable, we can
conclude that at each point of V̄ , including (t̄f , t̄0, ȳ0), the partial derivatives
∂ψw
∂t0

and ∂ψw
∂y0

exist and are continuous.

Second Case (t̄0 /∈ Ew ∧ t̄f ∈ Ew) In this case, t̄f = t̃S,ñ > t̄0 and we can
�nd a scalar ε̄ < ε̃ such that the union (t̄0 − ε̄, t̄0 + ε̄)∪ (t̄f − ε̄, t̄f )∪ (t̄f , t̄f + ε̄)
and the set Ew are disjoint. Consequently, we can also �nd a su�ciently small
neighborhood V̄ of (t̄f , t̄0, ȳ0) such that for each (t, t0,y0) ∈ V̄ we have

ψw(t, t0,y0) =

{
ψwñ−1

(
t, t̄f ,

ñξ (t0,y0)
)

t < t̄f

ψwñ
(
t, t̄f ,

ñξ (t0,y0)
)

t ≥ t̄f
. (A.1.9)

Notice that since the functions ñξ,ψwñ−1
and ψwñ are all continuously di�er-

entiable, the partial derivatives ∂ψw
∂t0

and ∂ψw
∂y0

exist again at each point of V̄ ,
including (t̄f , t̄0, ȳ0), with

∂ψw
∂t0

(t, t0,y0) =


∂ψwñ−1

∂y0

(
t, t̄f ,

ñξ (t0,y0)
)
∂ ñξ
∂t0

(t0,y0) t < t̄f
∂ψwñ
∂y0

(
t, t̄f ,

ñξ (t0,y0)
)
∂ ñξ
∂t0

(t0,y0) t ≥ t̄f
, (A.1.10)

and

∂ψw
∂y0

(t, t0,y0) =


∂ψwñ−1

∂y0

(
t, t̄f ,

ñξ (t0,y0)
)
∂ ñξ
∂y0

(t0,y0) t < t̄f
∂ψwñ
∂y0

(
t, t̄f ,

ñξ (t0,y0)
)
∂ ñξ
∂y0

(t0,y0) t ≥ t̄f
. (A.1.11)
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The fact that these partial derivatives are also continuous at each point of V̄ ,
and in particular at (t̄, t̄0, ȳ0), follows from the fact that the two expressions on
the right-hand side of (A.1.10), respectively of (A.1.11), take the same value at
t = t̄f since we have

∂ψwñ−1

∂y0

(t̄f , t̄f , .) ≡
∂ψwñ
∂y0

(t̄f , t̄f , .) ≡ Id.

Third Case (t̄0 ∈ Ew) In this case, we have t̄0 = t̃S,1 and we can therefore
�nd a su�ciently small neighborhood V̄ of (t̄f , t̄0, ȳ0) such that for each point
of V̄ we have

ψw(t, t0,y0) = ψw
(
t, t̃0,ψw(t̃0, t0,y0)

)
, (A.1.12)

with

ψw(t̃0, t0,y0) =

{
ψw0

(
t̃0, t0,y0

)
t0 < t̄0

ψw0

(
t̃0, t̄0,ψw1

(t̄0, t0,y0)
)

t0 ≥ t̄0
. (A.1.13)

By our discussion on the �rst two cases, the function on the right-hand side of
(A.1.12) can be continuously di�erentiated with respect to its third argument.
Similarly, the function in (A.1.13) can be di�erentiated with respect to its third
argument with

∂ψw
∂y0

(t̃0, t0,y0) =

{∂ψw0

∂y0

(
t̃0, t0,y0

)
t0 < t̄0

∂ψw0

∂y0

(
t̃0, t̄0,ψw1

(t̄0, t0,y0)
) ∂ψw1

∂y0
(t̄0, t0,y0) t0 ≥ t̄0

.

(A.1.14)
Now, both of the expressions in the right-hand side of (A.1.14) can be regarded
as continuous functions of the pair (t0,y0) and they both take the same value

at t0 = t̄0 since we have ψw1
(t̄0, t̄0,y0) = y0 and

∂ψw1

∂y0
(t̄0, t̄0,y0) = Id. By

the equality (A.1.12) and chain rule [62], we can then conclude that ∂ψw
∂y0

exists

again and is continuous at each point of V̄ . On the other hand, when focusing
on points of V̄ with t0 6= t̄0 we have

∂ψw
∂t0

(t̃0, t0,y0) =

{∂ψw0

∂t0

(
t̃0, t0,y0

)
t0 < t̄0

∂ψw0

∂y0

(
t̃0, t̄0,ψw1

(t̄0, t0,y0)
) ∂ψw1

∂t0
(t̄0, t0,y0) t0 > t̄0

,

which by an application of the chain rule implies

∂ψ−w
∂t0

(t̄f , t̄0, ȳ0) = (−1)
∂ψw
∂y0

(t̄f , t̄0, ȳ0)f

(
ȳ0, lim

t→t̄−0
w(t)

)
, (A.1.15)

and

∂ψ+
w

∂t0
(t̄f , t̄0, ȳ0) =

∂ψw
∂y0

(t̄f , t̄0, ȳ0)f (ȳ0,w(t̄0)) , (A.1.16)
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where we have made use of the fact that (A.1.6) also holds for w = w1 and
w = w2 since they are both continuous. Notice that the two expressions in
(A.1.15) and (A.1.16) will in general be di�erent and this shows why, in contrary
to ∂ψw

∂y0
, the partial derivative ∂ψw

∂t0
might not exist in this third case.

Assuming the inequality t̄f ≥ t̄0, our discussion of the three di�erent cases
proves all the desired properties of the partial derivatives ∂ψw

∂t0
and ∂ψw

∂y0
. More-

over, noting that (A.1.12) actually holds in all the three cases in a su�ciently
small neighborhood of (t̄f , t̄0, ȳ0) we can see that the equalities (A.1.15) and
(A.1.16) also hold when t̄f ≥ t̄0. To conclude the proof, we thus require to show
that our results so far are also valid when t̄f < t̄0. This can be done analogously
by letting D̄ = [t̄f , t̄0], �nding a positive scalar ε̃ > 0 such that the set S̃ with

S̃ =
{

(t, t0,y0) ∈ Rn+2 |t ∈ (t̄f − ε̃, t̄0 + ε̃) ∧ (t0,y0) ∈ B ((t, ȳ(t)) ; ε̃)
}
,

is a subset of dom(ψw) and �nally setting t̃0 = t̄f − ε̃
2 and t̃f = t̄0 + ε̃

2 .

Given an admissible control strategy u ∈ PCU de�ned on D = [0, tf ], let us
now introduce the extended function uex : R→ U corresponding to u with

uex(t) =


u(0) t ≤ 0

u(t) t ∈ (0, tf )

u(tf ) t ≥ tf
. (A.1.17)

Clearly uex is then also a piecewise continuous function and will lead to the
transition map ψuex . Using this map, we can now de�ne the following OC
problem.

General Optimal Control Problem (GOCP): Given a �nal time tf > 0, an
initial state x0 ∈ X and a continuously di�erentiable function V : X → R �nd
the control uopt which minimizes V

(
ψuex(tf , 0,x0)

)
over all admissible controls

u ∈ PCU.
We want to next show how we can derive PMP for this problem by exploiting

the properties of transition maps.

A.2 Pontryagin's Minimum Principle

To motivate our proof for the PMP, we will start with the following lemma
which illustrates how trajectories corresponding to the same control strategy
can be related to each other.

Lemma 36. Let Σ be a control system satisfying assumptions (B1)-(B4). More-
over, let w : R→ U be a piecewise continuous function and let Ew ⊂ R denote
the set of times at which w is discontinuous. Furthermore, let ξ : Iγ × It →
X, (γ, t)→ ξ(γ, t) be a continuous function satisfying the following conditions:

1. Iγ ⊂ R and It ⊂ R are two non-empty open intervals.
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2. The partial derivative ∂ξ
∂t exists at each (γ, t) ∈ Iγ × (It\Ew) with

∂ξ

∂t
(γ, t) = f (ξ(γ, t),w(t)) .

3. The partial derivative ∂ξ
∂γ exists at each (γ, t) ∈ Iγ × It and is continuous.

Then, ∂ξ
∂γ satis�es at each (γ, t) ∈ Iγ × (It\Ew) the following di�erential equa-

tion:
∂

∂t

(
∂ξ

∂γ

)
(γ, t) =

∂f

∂x
(ξ(γ, t),w(t))

∂ξ

∂γ
(γ, t). (A.2.1)

Proof. Let Σ,w, Ew, ξ, Iγ and It satisfy the hypothesis of the proposition. By
de�nition, we have then for each (γ, t, t0) ∈ Iγ × I2

t

ξ(γ, t) = ψw (t, t0, ξ(γ, t0))

= ξ(γ, t0) +

∫ t

t0

f (ψw (s, t0, ξ(γ, t0)) ,w(s)) ds

= ξ(γ, t0) +

∫ t

t0

f (ξ(γ, s),w(s)) ds.

Since f and ∂ξ
∂γ are both continuous and since Ew ∩ It is a �nite set, we can

apply Leibniz rule [61] to di�erentiate both sides of the equality above with
respect to γ and this leads to

∂ξ

∂γ
(γ, t) =

∂ξ

∂γ
(γ, t0) +

∫ t

t0

∂f

∂x
(ξ(γ, s),w(s))

∂ξ

∂γ
(γ, s)ds,

which again holds for each (γ, t, t0) ∈ Iγ × I2
t . Finally, noting that this last

relation can be di�erentiated with respect to time t when t /∈ Ew we see that
(A.3.5) must hold for each (γ, t) ∈ Iγ × (It\Ew), as desired.

Given a control system Σ and an admissible control strategy u, we can clearly
build the extended function uex and use the corresponding transition map ψuex
to construct di�erent trajectories of Σ. Lemma 36 provides a means to compare
such trajectories at any time along their domain of de�nition provided they can
be combined in a su�ciently smooth manner. More speci�cally, if these trajec-
tories can be described using a parameterized family of controlled trajectories
satisfying the three conditions of the lemma, their relation to each other can be
analysed using a linear homogeneous di�erential equation, see (A.2.1). In our
proof of the PMP we will introduce two types of such families. A comparison of
the trajectories in these families will then for each type lead to a di�erent condi-
tion for a control strategy to solve the GOCP. By the di�erentiability properties
of the constructed families, these conditions will in turn imply the well-known
optimality conditions provided by PMP.
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Theorem 37. (Pontryagin's Minimum Principle) Let Σ be a control system
satisfying assumptions (B1)-(B4), and (x,u) an admissible controlled trajec-
tory which is de�ned on D = [0, tf ]. Moreover, let E ⊂ D denote the �nite
set of times at which u is not continuous. Finally, assume that the control u
solves the GOCP with the �nal time tf > 0, the initial state x0 ∈ X and the
continuously di�erentiable function V : X → R. Then, there exists a piecewise
continuously di�erentiable costate λ : D → (Rn)∗ such that the �rst of the fol-
lowing conditions holds at each t ∈ D\E, the second and third at each t ∈ D,
and �nally the fourth condition at the �nal time tf :

1. Costate Dynamics

λ̇(t) = −λ(t)
∂f

∂x
(x(t),u(t)) . (A.2.2)

2. Minimum Condition

H (x(t),u(t),λ(t)) = min
v∈U

H (x(t),v,λ(t)) , (A.2.3)

where H : X× U× (Rn)∗ → R denotes the Hamiltonian function given by

H(x,u,λ) = λf(x,u). (A.2.4)

3. Hamiltonian Condition

H (x(t),u(t),λ(t)) = −λa, (A.2.5)

where λa ∈ {−1, 0, 1} is a constant scalar.

4. Transversality Condition

λ(tf ) = v
∂V
∂x

(x(tf )) , (A.2.6)

where v is a positive constant scalar.

Proof. Let Σ, (x,u), D = [0, tf ], E ⊂ D,x0 ∈ X and V satisfy the hypothesis of
the theorem. Moreover, let uex denote the extended function corresponding to
u and ψuex the transition map of Σ corresponding to uex. Notice that since
(x,u) is an admissible controlled trajectory, we have for each τ0 ∈ D

Sex(τ0) = {(t, τ0,x(τ0)) |t ∈ D} ⊂ dom(ψuex). (A.2.7)

Consequently, since Sex(τ0) is a compact subset of Rn+2 we can always �nd a
scalar ετ0 > 0 such that the set S̃ex(τ0, ετ0) given by

S̃ex(τ0, ετ0) = {(t, τ̃0, ỹ0) |t ∈ (−ετ0 , tf + ετ0) ∧ (τ̃0, ỹ0) ∈ B ((τ0,x(τ0)) ; ετ0)}
(A.2.8)

is a subset of dom(ψuex), i.e.

S̃ex(τ0, ετ0) ⊂ dom(ψuex). (A.2.9)

We will now prove the theorem in seven steps.
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1. Construction of ξs: A family of controlled trajectories described by a shift
in the time along the applied control strategy

Let tβ ∈ (0, tf )\E and εtβ > 0 be a scalar for which the set S̃ex(tβ , εtβ ) de�ned
by (A.2.8) is a subset of dom(ψuex). There exists then a δs ∈ (0, εtβ ] such that
Iβ = (tβ − δs, tβ + δs) is a subset of D\E and we have

Stβ = {(t, β, x(tβ)) |t ∈ (−δs, tf + δs) ∧ β ∈ Iβ } ⊂ S̃ex(tβ , εtβ ). (A.2.10)

Choosing now a β ∈ Iβ and constructing the admissible control strategy ūs :
D → U with

ūs(t) =

{
u(t) t ∈ [0, tβ)

uex(t+ β − tβ) t ∈ [tβ , tf ]
, (A.2.11)

it follows then from (A.2.9) and (A.2.10) that there exists a unique trajectory
x̄s : D → X which starts from x0 and corresponds to ūs. Moreover, this
trajectory can be described in terms of the transition map ψuex as follows:

x̄s(t) =

{
ψuex(t, 0,x0) t ∈ [0, tβ)

ψuex (t+ β − tβ , β,x(tβ)) t ∈ [tβ , tf ]
. (A.2.12)

Since (x̄s, ūs) is an admissible controlled trajectory, the optimality of (x,u)
results then to the following condition:

V (x(tf )) ≤ V (x̄s(tf )) . (A.2.13)

Notice that our choice for β ∈ Iβ was arbitrary and the condition above should
therefore hold for any such choice. Based on this observation, let us introduce
the map ξs : Iβ × (−δs, tf + δs)→ X with

ξs(β, t) = ψuex (t, β,x(tβ)) (A.2.14)

= x(tβ) +

∫ t

β

f
(
ψuex (s, β,x(tβ)) ,uex(s)

)
ds, (A.2.15)

which for β = tβ and t = tf takes the value x(tf ). With the mapping ξs,
(A.2.12) and (A.2.13), we can �nally arrive at the condition

(∀β ∈ (tβ − δs, tβ + δs)) [V (ξs(tβ , tf )) ≤ V (ξs(β, tf + β − tβ))] , (A.2.16)

which needs to be satis�ed in order for (x,u) to be an optimally controlled
trajectory. In the sixth step of the proof, we will show how to exploit this last
condition and the di�erentiability properties of ξs to derive the Hamiltonian
Condition.
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2. Construction of ξc: A family of controlled trajectories described by a
change in the value of the applied control strategy

Let v ∈ U be an arbitrary element of the control set, w : R → U the constant
function with w ≡ v and ψw : dom(ψw) → X the transition map of Σ cor-
responding to w. Moreover, let tα ∈ [0, tf )\E. Focusing on the initial value
problem (A.1.1), with t0 = tα and y0 = x(tα), the corresponding maximal solu-
tion y : Dw (tα,x(tα))→ Rn will then be de�ned in an open interval containing
tα. Moreover, if εtα > 0 denotes a positive scalar for which (A.2.8)-(A.2.9) hold
with τ0 = tα and εtα = ετ0 , it follows from the continuity of the solution y that
we can �nd a su�ciently small δw ∈ (0, εtα ] such that

Iw = (tα − δw, tα + δw) ⊂ (−∞, tf ) ∩Dw (tα,x(tα)) \E, (A.2.17)

and
(∀t ∈ Iw) [(t,y(t)) ∈ B ((tα,x(tα)) ; εtα)] . (A.2.18)

Let us now �rst choose an element α of the interval Iw with α > tα. According
to (A.2.8)-(A.2.9) and (A.2.17)-(A.2.18), the set

Sw(α) := {(t, α,y(α)) |t ∈ D} (A.2.19)

will be a subset of dom(ψuex). Consequently, once the state x(tα) is reached it
is possible to apply the constant control strategy w in the time-interval [tα, α) ⊂
Iw and then again the control strategy u in [α, tf ] ⊂ D. This can be regarded
as a spatial control perturbation as discussed in [32] and leads to the control
strategy ūc : D → U with

ūc(t) =


u(t) t ∈ [0, tα)

v t ∈ [tα, α).

u(t) t ∈ [α, tf ]

(A.2.20)

It is important to realize here that the control ūc as de�ned above is an admis-
sible control strategy. Moreover, the trajectory x̄c : D → X described by the
transition maps ψuex and ψw with

x̄c(t) =


ψuex(t, 0,x0) t ∈ [0, tα)

ψw (t, tα,x(tα)) t ∈ [tα, α]

ψuex (t, α,ψw (α, tα,x(tα))) t ∈ (α, tf ]

, (A.2.21)

is the unique trajectory which starts from x0 and corresponds to ūc. Conse-
quently, (x̄c, ūc) is an admissible controlled trajectory and in order for (x,u)
to be optimal we must have

V (x(tf )) ≤ V (x̄c(tf )) . (A.2.22)

Notice now that our choice for α ∈ (tα, tα+δw) was arbitrary and the inequality
in (A.2.22) must actually hold for each trajectory x̄c arising from such a choice.
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This suggests us to de�ne the continuous map ξc : Iw × (−δw, tf + δw) → X
with

ξc(α, t) = ψuex (t, α,ψw (α, tα,x(tα))) (A.2.23)

= x(tα) +

∫ α

tα

f (ψw (s, tα,x(tα)) ,v) ds (A.2.24)

+

∫ t

α

f
(
ψuex (s, α,ψw (α, tα,x(tα))) ,uex(s)

)
ds, (A.2.25)

which for α = tα and t = tf takes the value x(tf ). With the map ξc and
(A.2.21)-(A.2.22), we can arrive, similar to (A.2.16), at the condition

(∀α ∈ [tα, tα + δw)) [V (ξc(tα, tf )) ≤ V (ξc(α, tf ))] , (A.2.26)

which needs to be satis�ed in order for (x,u) to be an optimally controlled
trajectory. In the �nal step of the proof, we will show how to exploit this relation
and the di�erentiability properties of ξc to derive the Minimum Condition.

3. Computation of ∂ξs∂β : Iβ × (−δs, tf + δs)→ X

By Lemma 35, we know that the partial derivative
∂ψuex
∂t0

(t, t0,y0) exists and is
continuous at each (t, t0,y0) ∈ {(τ, β,x(tβ)) |τ ∈ (−δs, tf + δs) ∧ β ∈ Iβ } since
Iβ ∩ E = ∅ holds by construction. Similarly, since uex is continuous at each
β ∈ Iβ and since the set (−δs, tf + δs) ∩ E is �nite, we can use Leibniz rule to
di�erentiate the right-and side of (A.2.15) with respect to β and this leads to
the continuous map ∂ξs

∂β : Iβ × (−δs, tf + δs)→ X with

∂ξs
∂β

(β, t) = −f
(
ψuex (β, β,x(tβ)) ,uex(β)

)
+

∫ t

β

∂f

∂x

(
ψuex (s, β,x(tβ)) ,uex(s)

) ∂ψuex
∂t0

(s, β,x(tβ)) ds

= −f (x(tβ),uex(β))

+

∫ t

β

∂f

∂x
(ξs(β, s),uex(s))

∂ξs
∂β

(β, s)ds. (A.2.27)

According to (A.2.27), we can now see that ∂ξs∂β (β, .) is di�erentiable with respect
to time at each t ∈ (−δs, tf + δs)\E. More speci�cally, it solves the initial value
problem

∂

∂t

(
∂ξs
∂β

)
(β, t) =

∂f

∂x
(ξs(β, t),uex(t))

∂ξs
∂β

(β, t), (A.2.28)

with the boundary condition

∂ξs
∂β

(β, β) = −f (x(tβ),uex(β)) . (A.2.29)
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Notice that the initial value problem (A.2.28)-(A.2.29) is described by a home-
geneous linear di�erential equation. Therefore, its solution can be explicitly for-
mulated using the transition matrix function generated by ∂f

∂x (ξs(β, .),uex(.)),
see [34]. Let Φs : Iβ × (−δs, tf + δs)

2 → Rn×n be the matrix-valued function
such that Φs(β, ., .) is equal to this transition matrix function for each β ∈ Iβ .
We have then for each (β, t, t0) ∈ Iβ × (−δs, tf + δs)

2

∂ξs
∂β

(β, t) = Φs(β, t, t0)
∂ξ

∂α
(β, t0)

= −Φs(β, t, β)f (x(tβ),uex(β)) , (A.2.30)

where for the last inequality we have set t0 = β, see (A.2.29).

4. Computation of ∂ξc∂α : Iw × (−δw, tf + δw)→ X

Following the same arguments as used in the third step and noting by Lemma 35
that ψw is continuously di�erentiable since w is continuous, we can di�erentiate
the right-and side of (A.2.24)-(A.2.25) with respect to α and this leads to the
continuous map ∂ξc

∂α : Iw × (−δw, tf + δw)→ X with

∂ξc
∂α

(α, t) = f (ψw (α, tα,x(tα)) ,v)− f (ψw (α, tα,x(tα)) ,uex(α))

+

∫ t

α

∂f

∂x

(
ψuex (s, α, ξc(α, α)) ,uex(s)

){∂ψuex
∂t0

(s, α, ξc(α, α)) +

∂ψuex
∂y0

(s, α, ξc(α, α))
∂ψw
∂t

(α, tα,x(tα))

}
ds

= f (ξc(α, α),v)− f (ξc(α, α),uex(α))

+

∫ t

α

∂f

∂x
(ξc(α, s),uex(s))

∂ξc
∂α

(α, s)ds. (A.2.31)

According to (A.2.31), we now see that ∂ξc
∂α (α, .) is also di�erentiable with re-

spect to time at each t ∈ (−δw, tf + δw)\E and solves the initial value problem

∂

∂t

(
∂ξc
∂α

)
(α, t) =

∂f

∂x
(ξc(α, t),uex(t))

∂ξc
∂α

(α, t), (A.2.32)

with the boundary condition

∂ξc
∂α

(α, α) = f (ξc(α, α),v)− f (ξc(α, α),uex(α)) . (A.2.33)

As done in the third step for ∂ξs
∂β , let us introduce the matrix-valued function

Φc : Iw × (−δw, tf + δw)2 → Rn×n such that Φc(α, ., .) gives for each α ∈ Iw
the transition matrix function generated by ∂f

∂x (ξc(α, .),uex(.)). We have then
for each (α, t) ∈ Iw × (−δw, tf + δw)

∂ξc
∂α

(α, t) = Φc(α, t, α) [f (ξc(α, α),v)− f (ξc(α, α),uex(α))] . (A.2.34)
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5. Construction of ηs and ηc: A family of solutions to adjoint equations

In this �fth step, we will simply introduce two functions ηs and ηc which can be
used to refer to solutions of the di�erential equations that are adjoint to (A.2.28)
and (A.2.32). More speci�cally, we de�ne ηs : Iβ × (−δs, tf + δs) × (Rn)∗ →
(Rn)∗, (β, t,ηf ) → ηs(β, t,ηf ) such that for each (β,ηf ) ∈ Iβ × (Rn)∗ the
function ηs(β, .,ηf ) satis�es at each t ∈ (−δs, tf+δs)\E the di�erential equation

∂ηs
∂t

(β, t,ηf ) = −ηs(β, t,ηf )
∂f

∂x
(ξs(β, t),uex(t)) , (A.2.35)

with the boundary condition

ηs(β, tf ,ηf ) = ηf . (A.2.36)

Similarly, we de�ne ηc : Iw × (−δw, tf + δw) × (Rn)∗ → (Rn)∗, (α, t,ηf ) →
ηc(α, t,ηf ) such that for each (α,ηf ) ∈ Iw × (Rn)∗ the function ηc(α, .,ηf )
satis�es at each t ∈ (−δw, tf + δw)\E the di�erential equation

∂ηc
∂t

(α, t,ηf ) = −ηc(α, t,ηf )
∂f

∂x
(ξc(α, t),uex(t)) , (A.2.37)

with the boundary condition

ηc(α, tf ,ηf ) = ηf . (A.2.38)

Notice that since ∂f
∂x , ξs and ξc are all continuous functions and uex is piece-

wise continuous, solutions to the initial value problems (A.2.35)-(A.2.36) and
(A.2.37)-(A.2.38) uniquely exist. In particular, since (A.2.35) is adjoint to
(A.2.28) ηs is given by

ηs(β, t,ηf ) = ηfΦs(β, tf , t), (A.2.39)

while ηc is given by
ηc(α, t,ηf ) = ηfΦc(α, tf , t), (A.2.40)

since (A.2.37) is adjoint to (A.2.32), see [34]. Finally, by setting β = tβ and
α = tα it is possible to relate these solutions to the function λ : D → (Rn)∗

solving (A.2.2) with (A.2.6). Indeed, according to (A.2.14) and (A.2.23) we
have for each t ∈ D

λ(t) = ηs

(
tβ , t, v

∂V
∂x

(x(tf ))

)
= ηc

(
tα, t, v

∂V
∂x

(x(tf ))

)
. (A.2.41)

This shows the existence of λ for each possible value of v > 0 in (A.2.6). We
will next prove the Hamiltonian Condition and also specify the scalar v > 0.
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6. Proving the Hamiltonian Condition

We have already shown that ξs : Iβ × (−δs, tf + δs) → X is continuously
di�erentiable with respect to its �rst argument. Similarly, at each (β, t) ∈
Iβ × (−δs, tf + δs)\E it is also continuously di�erentiable with respect to its
second argument with

∂ξs
∂t

(β, t) = f (ξs(β, t),uex(t)) , (A.2.42)

see (A.2.14)-(A.2.15). Notice now that by de�nition, uex ∈ PCU must be con-
tinuous at tf . Consequently, we can �nd a su�ciently small interval Iβ̄ =

(tβ − δ̄s, tβ + δ̄s) ⊂ Iβ , with δ̄s ∈ (0, δs], such that the function ξs,f : Iβ̄ → X
with

ξs,f (β) = ξs(β, tf + β − tβ), (A.2.43)

is continuously di�erentiable with the derivative
dξs,f

dβ : Iβ̄ → X given by

dξs,f
dβ

(β) =
∂ξs
∂β

(β, tf + β − tβ) +
∂ξs
∂t

(β, tf + β − tβ)

= −Φs(β, tf + β − tβ , β)f (x(tβ),uex(β))

+ f (ξs(β, tf + β − tβ),uex(tf + β − tβ)) , (A.2.44)

see (A.2.30) and (A.2.42). Since V is also continuously di�erentiable, the con-
dition (A.2.16) implies by the fundemental theorem of calculus the following
relation: (

∀β ∈ Iβ̄
) [∫ β

tβ

∂V
∂x

(
ξs,f (s)

) dξs,f
dβ

(s)ds ≥ 0

]
. (A.2.45)

As tβ belongs to the interior of Iβ̄ a necessary condition for (A.2.45) to be true
is now that the integrand is equal to zero at s = tβ . According to (A.2.43)-
(A.2.44), this leads to

∂V
∂x

(
ξs,f (tβ)

) dξs,f
dβ

(tβ) =
∂V
∂x

(x(tf ))
dξs,f
dβ

(tβ)

=
∂V
∂x

(x(tf ))f (x(tf ),u(tf ))

− ∂V
∂x

(x(tf )) Φs(tβ , tf , tβ)f (x(tβ),u(tβ))

!
= 0

⇒ ∂V
∂x

(x(tf ))f (x(tf ),u(tf )) =
∂V
∂x

(x(tf )) Φs(tβ , tf , tβ)f (x(tβ),u(tβ)) .

(A.2.46)

Let us now de�ne the scalar v as follows:

v =

{
1 ∂V

∂x (x(tf ))f (x(tf ),u(tf )) = 0
1

| ∂V∂x (x(tf ))f(x(tf ),u(tf ))|
∂V
∂x (x(tf ))f (x(tf ),u(tf )) 6= 0

.
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Multiplying both sides of the equality (A.2.46) with this positive scalar v, we
get then using (A.2.39) and (A.2.41)

λ(tf )f (x(tf ),u(tf )) = λ(tβ)f (x(tβ),u(tβ)) = −λa, (A.2.47)

with λa ∈ {−1, 0, 1}. Since our choice for tβ ∈ (0, tf )\E was arbitrary, we
can �nally conclude that the Hamiltonian H (x(t),u(t),λ(t)) takes the same
value for each such tβ . The fact that the Hamiltonian H also takes the same
value at {0, tf}∪E follows from the continuity of x,λ and f , and the piecewise
continuity of u.

7. Proving the Minimum Condition

In the fourth step of the proof, we have shown that the function ξc, which
arises by a spatial control perturbation at tα /∈ E, is di�erentiable with respect
to α at each t ∈ (−δw, tf + δw) and thus also at the terminal time. Since V
is also continuously di�erentiable, it follows then from the Chain rule and the
fundamental theorem of calculus that the condition (A.2.26) can be equivalently
written as

(∀α ∈ [tα, tα + δw))

[∫ α

tα

∂V
∂x

(ξc(s, tf ))
∂ξc
∂α

(s, tf )ds ≥ 0

]
, (A.2.48)

or using the expressions for ∂ξc
∂α (α, t) and ηc(α, t,ηf ) in (A.2.34) and (A.2.40)

as ∫ α

tα

ηc

(
s, s,

∂V
∂x

(ξc(s, tf ))

)
[f (ξc(s, s),v)− f (ξc(s, s),u(s))] ds ≥ 0,

(A.2.49)
which must hold for each α ∈ [tα, tα + δw). A necessary condition for (A.2.49)
to hold is that the continuous integrand on the left-hand side of the inequality
is non-negative at s = tα. Multiplying the resulting term with v > 0, this leads
then according to (A.2.37)-(A.2.38) and (A.2.41) to the inequality

λ(tα) [f (x(tα),u(tα))− f (x(tα),v)] ≤ 0,

and thus by (A.2.4) to

H (x(tα),u(tα),λ(tα)) ≤ H (x(tα),v,λ(tα)) . (A.2.50)

Since our choice for tα ∈ [0, tf )\E and v was arbitrary we have actually shown
the truth of the following relation:

(∀t ∈ [0, tf )\E)

[
H (x(t),u(t),λ(t)) = min

v∈U
H (x(t),v,λ(t))

]
. (A.2.51)

To prove that the relation above also holds for t ∈ {tf} ∪ E, assume by con-
tradiction that there exists a time3 tS ∈ E such that H (x(tS),u(tS),λ(tS)) >

3The case with tS = tf can be proved very similarly by noting that
limD3t→tf H (x(.),u(.),λ(.)) = H

(
x(tf ),u(tf ),λ(tf )

)
since u is continuous at tf .
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minv∈U H (x(t),v,λ(t)) . Since x,λ and f are continuous and since the control
u is left-continuous, there exists then a control v̄ ∈ U and a su�ciently small
time-interval [tS , tS + εS) ⊂ D in which the di�erence H (x(t),u(t),λ(t)) −
H (x(t), v̄,λ(t)) remains positive. As the union {tf} ∪ E is �nite, we can then
�nd a time tα ∈ (tS , tS + εS) in this interval which also belongs to [0, tf )\E and
this in turn contradicts (A.2.51).

The main advantage of our proposed proof of Theorem 37 is that it clearly
illustrates why PMP in general only provides su�cient conditions for optimal
control strategies. Indeed, the Hamiltonian Condition (A.2.5) in the theorem is
derived by �rst constructing, for each time tβ ∈ (0, tf ) at which u is continuous,
a parameterized family of controlled trajectories using the map ξs. This leads
then to a continuously di�erentiable curve which is de�ned on an open set
and which must have a global minimum at tβ for (x,u) to be an optimally
controlled trajectory, see (A.2.45). Nevertheless, for the derivation of (A.2.5)
we only require the fact that the derivative of this curve must be zero at tβ , a
necessary condition which can also be satis�ed by local maximas. Similarly, to
prove the Minimizing Condition (A.2.3) a continuously di�erentiable curve is
constructed which must attain its global minimum at the boundary of a half-
open interval, see (A.2.48). However, the inequality (A.2.50) can only ensure
that this boundary is a local minimum if the inequality is strict.

Our discussion above suggests that we can attain additional necessary con-
ditions for optimal control strategies in case the two curves described above
have additional smoothness properties. In the following, we show how to ensure
such properties by providing additional assumptions on the system dynamics f
and the terminal cost function V. This will lead to the SMP which under these
assumptions extends PMP for the GOCP.

A.3 Second Order Minimum Principle

Let Σ = (X,f ,U,U) be a general control system which satis�es, in addition to
assumptions (B1)-(B4), the following assumption:

(B5) For each k ∈ {1, . . . , n}, the Hessian

∂2fk
∂x2

(x,v) =


∂2fk
∂x2

1
(x,v) · · · ∂2fk

∂x1∂xn
(x,v)

...
. . .

...
∂2fk
∂xn∂x1

(x,v) · · · ∂2fk
∂x2
n

(x,v)


exists at each (x,v) ∈ X×U and the corresponding function ∂2fk

∂x2 : X×U→
Rn×n is continuous.

Clearly, the properties of transition maps as we discussed in the beginning of this
appendix still holds for the control system Σ. In particular, given a piecewise
continuous function w : R→ U there exists a transition map ψw which can be
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used to construct trajectories of Σ which correspond to controls u = w|D, where
D = [0, tf ] denotes a closed interval with tf > 0. Let y : D → X be such a
trajectory and assume that t̄ ∈ D is a time at which w is continuous. Moreover,
let Ew denote the set of times at which w is discontinuous and δ̄ > 0 a scalar
such that the interval Īγ = (−δ̄ + t̄, t̄ + δ̄) and Ew are disjoint. We can then
construct, as done in our proof of PMP, a parameterized family of trajectories
ξ̄ : Īγ × Īt → X, with Īt = (−δ̄, tf + δ̄), such that for each γ ∈ Īγ the function
ξ̄(γ, .) solves the initial value problem

∂ξ̄

∂t
(γ, t) = f

(
ξ̄(γ, t),w(t)

)
, ξ̄(γ, γ) = z̄0(γ) ∈ X, (A.3.1)

where z̄0 : Īγ → X is a continuously di�erentiable function which can be chosen
arbitrarily. Using the properties of transition maps and Leibniz rule, we can
then see that the partial derivative ∂ξ̄

∂γ is continuous and solves the initial value
problem4

∂

∂t

(
∂ξ̄

∂γ

)
(γ, t) =

∂f

∂x

(
ξ̄(γ, t),w(t)

) ∂ξ̄
∂γ

(γ, t), (A.3.2)

with

∂ξ̄

∂γ
(γ, γ) =

dz̄0

dγ
(γ)− ∂ξ̄

∂t
(γ, γ)

=
dz̄0

dγ
(γ)− f

(
ξ̄(γ, γ),w(γ)

)
.

Finally, since (A.3.2) is a linear homogeneous di�erential equation, the derivative
∂ξ̄
∂γ can be explicitly described using the matrix-valued function Φ̄ : Īγ × Ī2

t →
Rn×n with

∂ξ̄

∂γ
(γ, t) = Φ̄(γ, t, γ)

∂ξ̄

∂γ
(γ, γ)

= Φ̄(γ, t, γ)

(
dz̄0

dγ
(γ)− f

(
ξ̄(γ, γ),w(γ)

))
, (A.3.3)

where Φ̄(γ, ., .) denotes for each γ ∈ Īγ the transition matrix function generated
by ∂f

∂x

(
ξ̄(γ, .),w(.)

)
.

Taking now a closer look at this last expression for ∂ξ̄
∂γ , it is clear that we can

not ensure that this term is di�erentiable with respect to γ unless we introduce
additional assumptions on the control strategy w, the dependence of f on its
second argument and the function z̄0. Nevertheless, being generated by a set of
piecewise continuous functions we know for certain that the partial derivative
∂Φ̄
∂t exists at each point (γ, t, t0) ∈ Īγ ×

(
Īt\Ew

)
× Īt with

∂Φ̄

∂t
(γ, t, t0) =

∂f

∂x

(
ξ̄(γ, t),w(t)

)
Φ̄(γ, t, t0). (A.3.4)

4See the third and fourth step in the proof of Theorem 37.



APPENDIX A. MINIMUM PRINCIPLES 155

Similarly, noting that for each pair (γ, t0) ∈ Īγ × Īt the matrix-valued function
Φ̄(γ, ., t0) solves the initial value problem (A.3.4) with

Φ̄(γ, t0, t0) = Id,

we can apply Lemma 35, with an appropriate choice for the control system, to
see that ∂Φ̄

∂t0
exists at each (γ, t, t0) ∈ Īγ × Īt ×

(
Īt\Ew

)
. Finally, using the

relation (
∀ (γ, t, t0) ∈ Īγ × Ī2

t

) [
Φ̄(γ, t0, t)Φ̄(γ, t, t0) = Id

]
,

and the chain rule we can see that the corresponding function ∂Φ̄
∂t0

: Īγ × Īt ×(
Īt\Ew

)
→ Rn×n is given by

∂Φ̄

∂t0
(γ, t, t0) = −Φ̄(γ, t, t0)

∂f

∂x

(
ξ̄(γ, t0),w(t0)

)
.

It is important to remark here that to establish the di�erentiability proper-
ties of Φ̄ discussed so far we did not make use of our additional assumption (B5).
The following lemma shows that this assumption ensures that Φ̄ is continuously
di�erentiable with respect to its �rst argument at each point of Īγ × Ī2

t .

Lemma 38. Let Σ be a control system satisfying assumptions (B1)-(B5). More-
over, let w : R→ U be a piecewise continuous function and let Ew ⊂ R denote
the set of times at which w is discontinuous. Furthermore, let ξ : Iγ × It →
X, (γ, t)→ ξ(γ, t) be a continuous function satisfying the following conditions:

1. Iγ ⊂ R and It ⊂ R are two non-empty open intervals.

2. The partial derivative ∂ξ
∂t exists at each (γ, t) ∈ Iγ × (It\Ew) with

∂ξ

∂t
(γ, t) = f (ξ(γ, t),w(t)) .

3. The partial derivative ∂ξ
∂γ exists at each (γ, t) ∈ Iγ × It and is continuous

so that at each (γ, t) ∈ Iγ × (It\Ew) it satis�es the di�erential equation

∂

∂t

(
∂ξ

∂γ

)
(γ, t) =

∂f

∂x
(ξ(γ, t),w(t))

∂ξ

∂γ
(γ, t). (A.3.5)

Finally, let Φ : Iγ × I2
t → Rn×n, (γ, t, t0) → Φ(γ, t, t0) denote the matrix-

valued function with Φ(γ, ., .) being the transition matrix function generated by
∂f
∂x (ξ(γ, .),w(.)) so that we have

∂ξ

∂γ
(γ, t2) = Φ(γ, t2, t1)

∂ξ

∂γ
(γ, t1), (A.3.6)
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for each (γ, t2, t1) ∈ Iγ × I2
t . Then, the partial derivative ∂Φ

∂γ : Iγ × I2
t → Rn×n

exists at each (γ, t0, t) ∈ Iγ × I2
t and is given by the continuous function

∂Φ

∂γ
(γ, t, t0) =

∫ t

t0

Φ(γ, t, s)


(
∂ξ
∂γ (γ, s)

)T
∂2f1

∂x2 (ξ(γ, s),w(s))

...(
∂ξ
∂γ (γ, s)

)T
∂2fn
∂x2 (ξ(γ, s),w(s))

Φ(γ, s, t0)ds.

(A.3.7)

Proof. Let Σ,w, Ew, ξ, Iγ , It and Φ satisfy the hypothesis of the lemma. Notice
that the fact that (A.3.5) holds has been already established in Lemma 36. To
prove the current lemma, we will �rst show the existence of the partial derivative
∂Φ
∂γ by making use of Lemma 35. Then, we will use Leibniz rule to show the
truth of (A.3.7).

For each k ∈ {1, . . . , n}, introduce the column vector ek =
(
ek,1 · · · ek,n

)T
given by

(∀j ∈ {1, . . . , n})
[
ek,j =

{
0 j 6= k

1 j = k

]
.

Moreover, let X̃ = X× Iγ and introduce the function g : X̃× It → Rn+1 with

g(x̃, t) =


g1(x̃, t)

...
gn(x̃, t)
gn+1(x̃, t)

 =

∂f
∂x (ξ(x̃n+1, t),w(t))

x̃1

...
x̃n


0

 , (A.3.8)

where x̃ =
(
x̃1 · · · x̃n+1

)T
. Finally, let χw : dom(χw) → X̃ denote the

transition map such that for each (t0, ỹ0) ∈ It × X̃, the function χw(., t0, ỹ0)
provides the maximal solution ỹ : Dw(t0, ỹ0)→ X̃ to the initial value problem

˙̃y(t) = g(ỹ(t), t), ỹ(0) = ỹ0 ∈ X̃, t0 ∈ It. (A.3.9)

A closer look at (A.3.8) shows then that Dw(t0, ỹ0) must always be equal to It
since the n + 1'th state remains constant and the remaining n states satisfy a
linear di�erential equation. Consequently, we have dom(χw) = I2

t × X̃.
Let us now choose an arbitrary integer k ∈ {1, . . . , n} and a parameter γ ∈

Iγ . Evaluating the transition map χw at an arbitrary pair of times (t, t0) ∈ I2
t

and at the initial state ỹ0 =
(
eTk γ

)T
, we have then according to (A.3.5)-

(A.3.6) and (A.3.8)-(A.3.9)

χw

(
t, t0,

(
ek
γ

))
=

(
Φ(γ, t, t0)ek

γ

)
. (A.3.10)

Since our choice for k was arbitrary, this shows that each column of Φ can
be related to the �rst n elements of the transition map χw if t0 and ỹ0 are
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appropriately chosen. It is important to notice here that by assumption (B5)
the partial derivative of g with respect to its �rst argument is described by a
continuous function ∂g

∂x̃ : X̃×It → R(n+1)×(n+1). Since w has a �nite number of
discontinuities in It, this in turn means that g is locally Lipschitz with respect to
its �rst argument and that the transition map χw is continuously di�erentiable
with respect to the initial state ỹ0, see Lemma 35. This �nally implies by
(A.3.10) that the partial derivative of Φ with respect to γ always exists and is
described by a continuous function which we denote by ∂Φ

∂γ : Iγ × I2
t → Rn×n.

We will next show how to derive an expression for this function in terms of ξ,f
and Φ.

As we can see from our discussion above, for each given (γ, t0) ∈ Iγ ×
It the columns of the transition matrix Φ(γ, ., t0) solve the linear di�erential
equation given by (A.3.5), see (A.3.8)-(A.3.10). Consequently, by integrating
this equation and making use of the di�erent initial states described by the
vectors ek, with k ∈ {1, . . . , n}, we can see that for each (γ, t, t0) ∈ Iγ × I2

t we
have

Φ(γ, t, t0) = Id +

∫ t

t0

∂f

∂x
(ξ(γ, s),w(s)) Φ(γ, s, t0)ds.

Since the product in the above integral is continuously di�erentiable with respect
to γ at each (γ, s, t0) ∈ Iγ × (It\Ew) × It and since It ∩ Ew is �nite, we can
then apply Leibniz rule to obtain the following relation:

∂Φ

∂γ
(γ, t, t0) =

∫ t

t0


(
∂ξ
∂γ (γ, s)

)T
∂2f1

∂x2 (ξ(γ, s),w(s))

...(
∂ξ
∂γ (γ, s)

)T
∂2fn
∂x2 (ξ(γ, s),w(s))

Φ(γ, s, t0)ds

+

∫ t

t0

∂f

∂x
(ξ(γ, s),w(s))

∂Φ

∂γ
(γ, s, t0)ds, (A.3.11)

where (γ, t, t0) ∈ Iγ × I2
t . Di�erentiating the expression above with respect to

time, we can now see that ∂Φ
∂γ (γ, ., t0) solves an inhomogeneous linear di�erential

equation with the boundary condition ∂Φ
∂γ (γ, t0, t0) = 0. Furthermore, the solu-

tion to this di�erential equation can be explicitly described using the transition
matrix function Φ(γ, ., .) generated by ∂f

∂x (ξ(γ, .),w(.)) and this �nally leads to
the equality (A.3.7), as desired5.

Making use of Lemma 38 we can �nally extend PMP as follows.

Theorem 39. (Second Order Minimum Principle) Let Σ be a control system
satisfying assumptions (B1)-(B5), and (x,u) an admissible controlled trajectory
which is de�ned on D = [0, tf ]. Moreover, assume that the control u solves the
GOCP with the �nal time tf > 0, the initial state x0 ∈ X and the two-times

5See for instance Theorem 2.15 in [34] for the description of solutions to inhomogeneous
linear di�erential equations in terms of transition matrix functions.
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continuously di�erentiable function V : X→ R. In addition, let λ : D → (Rn)∗

be the piecewise continuously di�erentiable function which solves the initial value
problem

λ̇(t) = −λ(t)
∂f

∂x
(x(t),u(t)) , (A.3.12)

with the boundary condition

λ(tf ) =
∂V
∂x

(x(tf )) . (A.3.13)

Furthermore, let µs : D ×D → Rn, (tβ , t) → µs(tβ , t) be the variational vector
solving the initial value problem

∂µs
∂t

(tβ , t) =
∂f

∂x
(x(t),u(t))µs(tβ , t),

with the boundary condition

µs(tβ , tβ) = −f (x(tβ),u(tβ)) ,

and µs,f : D → Rn the function given by

µs,f (tβ) = µs(tβ , tf ) + f (x(tf ),u(tf )) .

Similarly, let µc : D × U ×D → Rn, (tα,v, t) → µc(tα,v, t) be the variational
vector solving the initial value problem

∂µc
∂t

(tα,v, t) =
∂f

∂x
(x(t),u(t))µc(tα,v, t),

with the boundary condition

µc(tα,v, tα) = f (x(tα),v)− f (x(tα),u(tα)) .

Finally, let H : X × U × (Rn)∗ → R denote the Hamiltonian function given by
(A.2.4) and EH : U ⇒ D the set-valued function given by

EH(v) = {t ∈ [0, tf )|H (x(t),u(t),λ(t)) = H (x(t),v,λ(t))} . (A.3.14)

Then, the following four conditions hold.

1. First Minimum Condition: For each t ∈ D, we have

H (x(t),u(t),λ(t)) = min
v∈U

H (x(t),v,λ(t)) . (A.3.15)

2. Second Minimum Condition: For each v ∈ U and each tα ∈ EH(v) we
have ∫ tf

tα

µTc (tα,v, s)
∂2H
∂x2

(x(s),u(s),λ(s))µc(tα,v, s)ds+

µTc (tα,v, tf )
∂2V
∂x2

(x(tf ))µc(tα,v, tf )+

λ(tα)

[
∂f

∂x
(x(tα),v)− 2

∂f

∂x
(x(tα),u(tα))

]
f (x(tα),v)+

λ(tα)
∂f

∂x
(x(tα),u(tα))f (x(tα),u(tα)) ≥ 0. (A.3.16)



APPENDIX A. MINIMUM PRINCIPLES 159

3. First Hamiltonian Condition: For each t ∈ D, we have

H (x(t),u(t),λ(t)) = −λa, (A.3.17)

where λa ∈ R is a constant scalar.

4. Second Hamiltonian Condition: For each tβ ∈ D, we have∫ tf

tβ

µTs (tβ , s)
∂2H
∂x2

(x(s),u(s),λ(s))µs(tβ , s)ds+

µTs,f (tβ)
∂2V
∂x2

(x(tf ))µs,f (tβ)+

λ(tf )

[
∂f

∂x
(x(tf ),u(tf )) +

∂f

∂x
(x(tβ),u(tβ))

]
µs(tβ , tf )+

λ(tβ)
∂f

∂x
(x(tβ),u(tβ))f (x(tβ),u(tβ))+

λ(tf )
∂f

∂x
(x(tf ),u(tf ))f (x(tf ),u(tf )) ≥ 0. (A.3.18)

Proof. Let Σ, (x,u), D,V,λ,µs,µs,f ,µc,H and EH satisfy the hypotheses of the
theorem. Moreover, let E ⊂ D denote the �nite set of times at which u is not
continuous. According to Theorem 37, there exists then a costate λ̃ : D → (Rn)∗

which solves the initial value problem (A.3.12) with the boundary condition

λ̃(tf ) = v
∂V
∂x

(x(tf )) ,

where v > 0 is a positive scalar. Moreover, according to (A.2.3) and (A.2.5) we
have for each t ∈ D

H
(
x(t),u(t), λ̃(t)

)
= min
v∈U

H
(
x(t),v, λ̃(t)

)
= −λ̃a, (A.3.19)

where λ̃a ∈ {−1, 0, 1} is a constant scalar. Notice that due to the linearity
of the di�erential equation in (A.3.12) and the boundary condition (A.3.13),
we have the equality λ = 1

v λ̃. Consequently, by (A.3.19), the linearity of the
Hamiltonian function H in its third argument and the positivity of v, the two
conditions (A.3.15) and (A.3.17) both hold for each t ∈ D if we set λa = λ̃a

v ∈ R.
To conclude the proof, we will next derive, in two steps, the remaining conditions
(A.3.16) and (A.3.18).

1. Proving the Second Minimum Condition

We will �rst show that the inequality in (A.3.16) must hold for each v ∈ U and
each tα ∈ EH(v). For this, let v be an arbitrary element of U and tα an element
of the set EH(v). Moreover, assume �rst that the control u is continuous at tα,
i.e. tα /∈ E. Following the second step of the proof of Theorem 37, we can then
construct, using (A.2.23), the function ξc : Iw × (−δw, tf + δw)→ X for which
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the inequality (A.2.48) must hold if (x,u) is an optimally controlled trajectory.
Based on this last inequality, let us introduce the continuously di�erentiable
function gc : Iw → R with

gc(α) =

∫ α

tα

∂V
∂x

(ξc(s, tf ))
∂ξc
∂α

(s, tf )ds. (A.3.20)

According to (A.2.32)-(A.2.34), the derivative dgc
dα : Iw → R of this function is

then given by

dgc
dα

(α) =
∂V
∂x

(ξc(α, tf ))
∂ξc
∂α

(α, tf )

=
∂V
∂x

(ξc(α, tf )) Φc(α, tf , α)
∂ξc
∂α

(α, α), (A.3.21)

where

∂ξc
∂α

(α, α) = f (ξc(α, α),v)− f (ξc(α, α),uex(α)) . (A.3.22)

Moreover, by construction we have for each t ∈ D

x(t) = ξc(tα, t) ∧ λ(t) =
∂V
∂x

(ξc(tα, tf )) Φc(tα, tf , t). (A.3.23)

Now, since tα ∈ EH(v) it follows from (A.3.14) and (A.3.21)-(A.3.23) that the
derivative dgc

dα is equal to zero at α = tα, i.e.
dgc
dα (tα) = 0. Consequently,

provided that gc is two times di�erentiable at α = tα the condition (A.2.48)
implies the following second-order condition:

d2gc
dα2

(tα) ≥ 0. (A.3.24)

In the following, we will make use of the Hamiltonian Condition (A.3.17),
Lemma 38 and properties of transition matrix functions to show that the deriva-
tive in (A.3.24) indeed exists. This will also directly lead to the condition in
(A.3.16).

In order to show that the derivative d2gc
dα2 exists at α = tα, we need to show

that the limit limh→0

dgc
dα (tα+h)− dgc

dα (tα)

h exists. For this, notice �rst that for each
t ∈ (−δw, tf + δw) we have

∂V
∂x

(ξc(tα, tf )) Φc(tα, tf , t)f (ξc(tα, t),uex(t)) = −λa. (A.3.25)

Indeed, for t ∈ D this follows directly from the Hamiltonian Condition (A.3.17).
For t ∈ (−δw, 0) and t ∈ (tf , tf + δw), on the other hand, it follows from
the fact that uex remains constant on these intervals with uex(t) = u(0) and
uex(t) = u(tf ), respectively. More speci�cally, taking the time-derivative of the
left-hand side of (A.3.25) it can be seen that this term must remain constant
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in these intervals. The provided equality follows then from the fact that the
left-hand side of (A.3.25) must be continuous at t = 0 and t = tf .

Let now Ic,h denote the set (−δw, δw) and introduce the six real-valued
continuous functions Kc,1,Kc,2,Kc,3,Kc,4,Kc,5 and Kc,6 de�ned on Ic,h with

Kc,1(h) =
∂V
∂x

(ξc(tα + h, tf )) Φc(tα + h, tf , tα + h),

Kc,2(h) =
∂V
∂x

(ξc(tα, tf )) Φc(tα, tf , tα + h),

Kc,3(h) =
∂ξc
∂α

(tα + h, tα + h),

Kc,4(h) = f (ξc(tα + h, tα + h),v) ,

Kc,5(h) = f (ξc(tα + h, tα + h),uex(tα + h)) ,

and
Kc,6(h) = f (ξc(tα, tα + h),uex(tα + h)) .

According to (A.3.25), we have then by de�nition

(∀h ∈ Ic,h) [Kc,2(h)Kc,6(h) = Kc,1(0)Kc,5(0)] . (A.3.26)

Noting that we also have the equalityKc,1(0) = Kc,2(0) andKc,3(h) = Kc,4(h)−
Kc,5(h), we obtain the following expression for the desired limit:

lim
h→0

dgc
dα

(tα + h)− dgc
dα

(tα)

h
= lim
h→0

Kc,1(h)Kc,3(h)−Kc,1(0)Kc,3(0)

h

= lim
h→0

[
Kc,1(h)−Kc,1(0)

h
Kc,3(h)

+ Kc,1(0)
Kc,3(h)−Kc,3(0)

h

]
= lim
h→0

[
Kc,1(h)−Kc,1(0)

h
Kc,3(h)

+ Kc,1(0)
Kc,4(h)−Kc,4(0)

h
+Kc,1(0)

Kc,5(0)−Kc,5(h)

h

]
= lim
h→0

[
Kc,1(h)−Kc,1(0)

h
Kc,3(h)

+Kc,1(0)
Kc,4(h)−Kc,4(0)

h
+Kc,2(h)

Kc,6(h)−Kc,5(h)

h

+
Kc,2(h)−Kc,2(0)

h
Kc,5(h)

]
. (A.3.27)

By the smoothness properties of ξc,Φc,f and V, we can take the limit of each
of the four terms in the last equality as h → 0. More speci�cally, for the �rst
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term we have

lim
h→0

Kc,1(h)−Kc,1(0)

h
Kc,3(h) =

∂ξc
∂α

T

(tα, tf )
∂2V
∂x2

(
x(tf )

)
Φc(tα, tf , tα)Kc,3(0)

+
∂V
∂x

(
x(tf )

) ∂Φc

∂α
(tα, tf , tα)Kc,3(0)

+
∂V
∂x

(
x(tf )

) ∂Φc

∂t0
(tα, tf , tα)Kc,3(0)

=
∂ξc
∂α

T

(tα, tf )
∂2V
∂x2

(
x(tf )

) ∂ξc
∂α

(tα, tf )

+

∫ tf

tα

λ(s)


(
∂ξc
∂α

(α, s)
)T

∂2f1
∂x2 (ξ(α, s),uex(s))

∂ξc
∂α

(tα, s)

...(
∂ξc
∂α

(α, s)
)T

∂2fn
∂x2 (ξ(α, s),uex(s))

∂ξc
∂α

(tα, s)

ds

− λ(tα)
∂f

∂x
(x(tα),uex(tα))

∂ξc
∂α

(tα, tα), (A.3.28)

where we have used of Lemma 38 when computing the partial derivative of Φc
with respect to its �rst argument. Similarly, for the other three terms we have

lim
h→0

Kc,1(0)
Kc,4(h)−Kc,4(0)

h
=
∂V
∂x

(x(tf )) Φc(tα, tf , tα)
∂f

∂x
(x(tα),v)

∂ξc
∂α

(tα, tα)

+
∂V
∂x

(x(tf )) Φc(tα, tf , tα)
∂f

∂x
(x(tα),v)

∂ξc
∂t

(tα, tα)

= λ(tα)
∂f

∂x
(x(tα),v)

∂ξc
∂α

(tα, tα)

+ λ(tα)
∂f

∂x
(x(tα),v)f (x(tα),uex(tα)) , (A.3.29)

lim
h→0

Kc,2(h)
Kc,6(h)−Kc,5(h)

h
= −∂V

∂x
(x(tf )) Φc(tα, tf , tα)·

∂f

∂x
(x(tα),uex(tα))

∂ξc
∂α

(tα, tα)

= −λ(tα)
∂f

∂x
(x(tα),uex(tα))

∂ξc
∂α

(tα, tα),

(A.3.30)

and

lim
h→0

Kc,2(h)−Kc,2(0)

h
Kc,5(h) =

∂V
∂x

(x(tf ))
∂Φc
∂t0

(tα, tf , tα)f (x(tα),uex(tα)) ,

= −λ(tα)
∂f

∂x
(x(tα),uex(tα))f (x(tα),uex(tα)) .

(A.3.31)

Summing now all the four limits (A.3.28)-(A.3.31) and taking into account the
de�nition of uex, H and µc, we can see that the condition (A.3.16) is equivalent
to (A.3.24). Moreover, since our choice for tα ∈ EH(v)\E was arbitrary, we can
conclude that (A.3.16) must hold whenever u is continuous at tα.
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To show that (A.3.16) also holds when tα ∈ E, we can make use of the fact
that u is left-continuous at tα. More speci�cally, let us introduce the control
strategy ũex,tα : R→ U with

ũex,tα =

{
uex(tα) t ∈ (−∞, tα)

uex(t) t ≥ tα
,

which is clearly continuous at tα. Noting that the corresponding transition map
ψũex,tα will also lead to trajectories of Σ, we can use this map, instead of ψuex ,
to construct the parameterized family of controlled trajectories ξc. Following
the steps above, we will then obtain the exactly same condition. Noting �nally
that our choice for v ∈ U was arbitrary, this shows the truth of the Second
Minimum Condition.

2. Proving the Second Hamiltonian Condition

To conclude the proof of the theorem, we will show that (A.3.18) holds for
each tβ ∈ D. For this, let us �rst assume that tβ ∈ (0, tf )\E. Following
the �rst and sixth steps of Theorem 37, we can then construct the functions
ξs : Iβ × (−δs, tf + δs)→ X and ξs,f : Iβ̄ → X, with Iβ̄ = (tβ − δ̄s, tβ + δ̄s) ⊂ Iβ ,
which will in turn lead to the optimality condition (A.2.45). Based on this
condition, let us introduce the continuously di�erentiable function gs : Iβ̄ → R
with

gs(β) =

∫ β

tβ

∂V
∂x

(
ξs,f (s)

) dξs,f
dβ

(s)ds. (A.3.32)

According to (A.2.44), the derivative dgs
dβ : Iβ̄ → R of this function is given by

dgs
dβ

(β) =
∂V
∂x

(
ξs,f (s)

) dξs,f
dβ

(s)

=
∂V
∂x

(
ξs,f (s)

)
f (ξs (β, tf + β − tβ) ,uex(tf + β − tβ))

− ∂V
∂x

(
ξs,f (s)

)
Φs(β, tf + β − tβ , β)f (x(tβ),uex(β)) , (A.3.33)

and is equal to zero at tβ , see (A.2.46). Consequently, provided that gs is
two times di�erentiable at this time (A.2.45) implies the following second-order
condition:

d2gs
dβ2

(tβ) ≥ 0. (A.3.34)

We will next show that the derivative in (A.3.34) indeed exists. This will in
turn lead to our desired condition (A.3.18).

Notice that by construction we have, as with ξc and Φc, for each t ∈ D

x(t) = ξs(tβ , t) ∧ λ(t) =
∂V
∂x

(ξs(tα, tf )) Φs(tα, tf , t).
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Consequently, following the arguments used in the �rst step of the current proof
we get, similar to (A.3.25), the equality

∂V
∂x

(ξs(tβ , tf )) Φc(tβ , tf , t)f (ξc(tβ , t),uex(t)) = −λa, (A.3.35)

which holds for each t ∈ (−δ̄s, tf + δ̄s). Let now Is,h denote the set (−δ̄s, δ̄s) and
introduce the six real-valued continuous functions Ks,1,Ks,2,Ks,3,Ks,4,Ks,5

and Ks,6 de�ned on Is,h with

Ks,1(h) =
∂V
∂x

(
ξs,f (tβ + h)

)
,

Ks,2(h) = Φs(tβ + h, tf + h, tβ + h)f (x(tβ),uex(tβ + h)) ,

Ks,3(h) = f (ξs(tβ + h, tf + h),uex(tf + h)) ,

Ks,4(h) = Φs(tβ , tf , tβ + h)f (ξs(tβ , tβ + h),uex(tβ + h)) ,

Ks,5(h) = Φs(tβ , tf , tf + h)f (ξs(tβ , tf + h),uex(tf + h)) ,

and
Ks,6(h) = Ks,3(h)−Ks,2(h).

It follows then from (A.3.35) and our de�nitions above that we have

Ks,1(0)Ks,4(h) = Ks,1(0)Ks,5(h) =

Ks,1(0)Ks,3(0) = Ks,1(0)Ks,2(0), (A.3.36)

for each h ∈ Is,h. Exploiting the relation above, we can then obtain the following
expression for the desired limit:

lim
h→0

dgs
dβ

(tβ + h)− dgs
dβ

(tβ)

h
= lim
h→0

Ks,1(h)Ks,6(h)−Ks,1(0)Ks,6(0)

h

= lim
h→0

[
Ks,1(h)−Ks,1(0)

h
Ks,6(h)

+ Ks,1(0)
Ks,6(h)−Ks,6(0)

h

]
= lim
h→0

[
Ks,1(h)−Ks,1(0)

h
Ks,6(h)

+ Ks,1(0)
Ks,3(h)−Ks,3(0)

h
−Ks,1(0)

Ks,2(h)−Ks,2(0)

h

]
= lim
h→0

[
Ks,1(h)−Ks,1(0)

h
Ks,6(h)

+ Ks,1(0)
Ks,3(h)−Ks,5(h)

h
−Ks,1(0)

Ks,2(h)−Ks,4(h)

h

]
.

(A.3.37)



APPENDIX A. MINIMUM PRINCIPLES 165

By the smoothness properties of ξs, ξs,f ,Φs,f and V, we can take the limit of
each of the three terms in the last equality as h→ 0. Indeed, for the �rst term
we have

lim
h→0

Ks,1(h)−Ks,1(0)

h
Ks,6(h) =

dξs,f
dβ

T

(tβ)
∂2V
∂x2

(x(tf )) ·

[f (x(tf ),uex(tf ))− Φs(tβ , tf , tβ)f (x(tβ),uex(tβ))]

=
dξs,f
dβ

T

(tβ)
∂2V
∂x2

(x(tf ))
dξs,f
dβ

(tβ). (A.3.38)

Similarly, for the ratio in the second term we have

lim
h→0

Ks,3(h)−Ks,5(h)

h
= lim
h→0

[
Φs(tβ , tf + h, tf + h)f

(
ξs(tβ + h, tf + h),uex(tf + h)

)
h

−
Φs(tβ , tf , tf + h)f

(
ξs(tβ , tf + h),uex(tf + h)

)
h

]

=
∂Φs

∂t
(tβ , tf , tf )f

(
x(tf ),uex(tf )

)
+ Φs(tβ , tf , tf )

∂f

∂x

(
x(tf ),uex(tf )

) ∂ξs
∂β

(tβ , tf )

=
∂f

∂x

(
x(tf ),uex(tf )

) dξs,f

dβ
(tβ), (A.3.39)

and for the ratio in the third term we have

lim
h→0

Ks,2(h)−Ks,4(h)

h
= lim
h→0

[
Φs(tβ + h, tf + h, tβ + h)f (ξs(tβ , tβ),uex(tβ + h))

h

− Φs(tβ , tf , tβ + h)f (ξs(tβ , tβ + h),uex(tβ + h))

h

]
= −Φs(tβ , tf , tβ)

∂f

∂x
(x(tβ),uex(tβ)) f (x(tβ),uex(tβ))

+
∂Φs

∂β
(tβ , tf , tβ) f (x(tβ),uex(tβ))

+
∂Φs

∂t
(tβ , tf , tβ) f (x(tβ),uex(tβ))

= −Φs(tβ , tf , tβ)
∂f

∂x
(x(tβ),uex(tβ)) f (x(tβ),uex(tβ))

−
∫ tf

tβ

Φs(tβ , tf , s)


(
∂ξs
∂β (tβ , s)

)T ∂2f1
∂x2 (ξs(tβ , s),uex(s))

∂ξs
∂β (tβ , s)

.

.

.(
∂ξs
∂β (tβ , s)

)T ∂2fn
∂x2 (ξs(tβ , s),uex(s))

∂ξs
∂β (tβ , s)

 ds

+
∂f

∂x
(x(tβ),uex(tβ)) Φs(tβ , tf , tβ)f (x(tβ),uex(tβ)) , (A.3.40)

where we have again made use of Lemma 38 when computing the derivative ∂Φs
∂β .

Noting that Ks,1(0) is equal to ∂V
∂x (x(tf )) = λ(tf ), we can �nally substitute the

three limits (A.3.38)-(A.3.40) into (A.3.37) and this will lead to the desired
condition (A.3.18) for tβ ∈ (0, tf )\E if we additionally take account of the
de�nitions of uex,H,µs and µs,f . The fact that the condition also holds for
tβ ∈ {0, tf} ∪E follows from the fact that the left-hand side of (A.3.18) is, as a
function of tβ , left continuous at each point of the �nite set {0} ∪ E and right
continuous at tf .



Appendix B

Proofs

In this appendix, we will show how to derive the propositions which are stated
in Chapters 3-6 without proof.

B.1 Mass-Spring Systems

In this part of the appendix, we will prove Prop. 1 by mainly using (3.2.14). Be-
fore starting with the proof, however, we want to reformulate this equation such
that the in�uence of the TDP on the sign of dTp

dφmax
becomes more evident. For

this, we start by making a change of variables in the two integrals on the right-
hand side of (3.2.14) such that integration is done with respect to the torque
in the spring. Since dTp

dφmax
is only a function of φmax, the resulting expression

becomes independent of the value of τJs = τJ(φs) ∈ (0, τJ(φmax)). Taking the
limit of this expression as τJs → 0+ leads then to the desired reformulation:

dTp
dφmax

(φmax)

4τJ(φmax)
= lim
τJs→0+

[
τ−1
Js

|φ̇|
(
τ−1
J (τJs), φmax

)−
∫ τJ (φmax)

τJs

s−2ds

|φ̇|
(
τ−1
J (s), φmax

)] , (B.1.1)

where τ−1
J denotes the continously di�erentiable inverse of τJ . We will next

show how to prove Prop. 1 using (B.1.1).

Proof of Prop. 1. Let τJ be a TDP which satis�es the hypotheses of the propo-
sition and choose a MSS having this TDP with an arbitrary mass M > 0. In
order to prove the proposition, we need to consider three di�erent cases depend-
ing on the sign of d2τJ

dφ2 .

Let us �rst assume that d2τJ
dφ2 (φ) is equal to zero for each φ ∈ (0, ϕmax). By

(A1)− (A3), τJ(φ) will then for each φ in the interval (−ϕmax, ϕmax) be equal
to τJ,l(φ) = keφ with ke = KJ(0) > 0. Substituting this expression for τJ into

166
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(B.1.1) and using (3.1.6), we can conclude that for each φmax ∈ (0, ϕmax) we
have

dTp
dφmax

(φmax)

4τJ(φmax)
√
keM

= lim
τJs→0+

τJs
(
τ2
J (φmax)− τ2

Js

)− 1
2

τ2
J (φmax)

= 0,

and thus dTp
dφmax

(φmax) = 0 as expected from Table 3.1d.

Looking now at the case where d2τJ
dφ2 (φ) is negative for each φ ∈ (0, ϕmax),

we can not directly evaluate the limit in (B.1.1) as in the previous case. Never-
theless, in order to prove the proposition we only need to determine the sign of
this limit for φmax ∈ (0, ϕmax). To achieve this, we will next construct for an
arbitrary φmax in that interval a linear TDP τ̄J satisfying τ̄J(φmax) = τJ(φmax).

In addition, we will build the product φ̇max
4τJ (φmax)

dTp
dφmax

(φmax) once for the chosen
MSS and once for a MSS having the same mass as the chosen system but the
linear TDP τ̄J . The sign of the limit in (B.1.1) will then directly follow from
comparing the resulting two products and using the sign of d2τJ

dφ2 (φ) together
with the fact that the product for the second MSS is equal to zero due to the
linearity of τ̄J .

Let us �rst �x a φmax ∈ (0, ϕmax) and construct the linear TDP τ̄J as just
described. Moreover, construct a second MSS with the TDP τ̄J and the mass
M . Using a bar to denote the various variables corresponding to this second
MSS, let us also introduce the function H : (0, τJ(φmax))→ R given by

H(s) =
φ̇max

|φ̇|
(
τ−1
J (s), φmax

) − ˙̄φmax

| ˙̄φ|
(
τ̄−1
J (s), φmax

) . (B.1.2)

Note that the �rst term in the right-hand side of (B.1.2) gives for the chosen
MSS the ratio between the maximum velocity and the magnitude of the attained
velocity at the torque value s. Similarly, the second term there gives the same
ratio for the second MSS with the linear TDP. In both terms, the maximum
de�ection value is equal to φmax and at this de�ection both systems have the
same torque in their springs. Comparing now the aforementioned products
corresponding to these systems shows thatH(s) and dTp

dφmax
are related as follows:

φ̇max
dTp

dφmax
(φmax)− ˙̄φmax

dT̄p
dφmax

(φmax)

4τJ(φmax)

(B.1.1)
=

lim
τJs→0+

[
H(τJs)

τJs
−
∫ τJ (φmax)

τJs

H(s)

s2
ds

]

⇒ dTp
dφmax

(φmax) = − lim
τJs→0+

∫ τJ (φmax)

τJs

4τJ(φmax)H(s)ds

φ̇maxs2
, (B.1.3)

where we have applied L'Hospital's rule to conclude that limτJs→0+
H(τJs )
τJs

= 0



APPENDIX B. PROOFS 168

holds1. Moreover, we have also used the fact that dT̄p
dφmax

(φmax) = 0 holds since
τ̄J is a linear TDP.

It is important to notice here that the equality in (B.1.3) holds for any τJ
which satisfy the assumptions (A1)− (A3). Indeed, in deriving this relation we
have only used (B.1.1) and not considered any of the properties of the derivative
d2τJ
dφ2 . For the current case we are investigating, this derivative is known to be
negative for each φ ∈ (0, φmax). As we next show, this property can be used
together with (B.1.3) to �nd the sign of dTp

dφmax
.

Let us �x a s ∈ (0, τJ(φmax)) and focus on the �rst term of H(s). From
the negativity of d2τJ

dφ2 it follows that KJ is strictly decreasing on [0, φmax]. By
making use of this monoticity of KJ together with (3.1.4) and (3.1.6), we can
see that the �rst term of H(s) satis�es

φ̇max

|φ̇|
(
τ−1
J (s), φmax

) =

√
1 +

Epot
(
τ−1
J (s)

)
Epot(φmax)− Epot

(
τ−1
J (s)

)
=

√√√√√1 +

∫ s
0

ξdξ

KJ(τ−1
J (ξ))∫ τJ (φmax)

s
ξdξ

KJ(τ−1
J (ξ))

<

√
1 +

s2

τJ(φmax)2 − s2

=
˙̄φmax

| ˙̄φ|
(
τ̄−1
J (s), φmax

) ,
where the last equality follows from Table 3.1b with τ̄J(φmax) = τJ(φmax). From
the inequality above it follows that the function H(s) and thus the integrand
in (B.1.3) are always negative when s ∈ (0, τJ(φmax)). Consequently, we can
conclude that dTp

dφmax
(φmax) is positive.

Looking �nally at the case where d2τJ
dφ2 (φ) is positive for each φ ∈ (0, ϕmax),

we can use again (B.1.3) together with the sign of d2τJ
dφ2 to show that for each

φmax ∈ (0, ϕmax) the resulting function H takes positive values in its domain of
de�nition. This will then imply that dTp

dφmax
(φmax) is negative for each φmax ∈

(0, ϕmax), as desired.

B.2 Switching Control Strategies

The main aim of this appendix is to provide the proofs of Prop. 2 and 4.
Note that in both propositions switching control strategies satisfying the two
conditions (4.2.6) and (4.2.7) play an important role. For that reason, we want
to �rst clarify the implications of these two conditions on control strategies as

1Notice that we have lims→0+ H(s) = lims→0+
dH
ds

(s) = 0.
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well as on the corresponding trajectories. This is done by the following two
lemmas.

Lemma 40. Let i ≥ 0 be a non-negative integer and uS,i : DS,i → U an

admissible switching control with |0uS,i| = θ̇max and DS,i = [0, tmin(i+ 1)].
Moreover, assume that uS,i has i switchings and that in case i 6= 0 holds we
have both

tS,k = tmin(k), (B.2.1)

and
kuS,i = (−1)k 0uS,i, (B.2.2)

for each k ∈ {1, . . . , i}. Then, along the trajectory xS,i which corresponds to uS,i
and which starts from the origin, i.e. xS,i(0) = 0, we have for each k ∈ Si+1

kxS,i = (−1)k+12k

(
0

0uS,i

)
. (B.2.3)

Proof. To prove this lemma, we will use the principle of mathematical induction.

Base Case (i = 0) For i = 0, the control uS,i satisfying the hypotheses of the
lemma will be a constant function de�ned on [0, tmin(1)] such that it is either
equal to −θ̇max or θ̇max. In both cases, along the trajectory x which corresponds
to this control with x0 = 0 we will have x1(0) = 0 and ẋ1(0) = sgn(0uS,i)θ̇max =

sgn(0uS,i)
0φ̇max leading to the relative energy 0Erel = 1

2Mθ̇2
max. Note that by

de�nition the period Tp related to this energy is given exactly by 2tmin(1), see
(4.2.11)-(4.2.12). Using our results on trajectories of EJ's in Sec. 4.1, we can

then see that xf will be equal to sgn(0uS,i)
(
0 2θ̇max

)T
. Comparing the initial

and terminal values of x with the values provided by (B.2.3), we can �nally
conclude that the lemma holds for i = 0.

Inductive Step (i ∈ {0, 1, . . .}) Let i be any non-negative integer and assume
that Lemma 40 holds for this integer. We want to show that the same lemma
holds for i + 1, as well. For this assume now that uS,i+1 : DS,i+1 → U is an
admissible switching control satisfying the hypotheses of the lemma. Then, since
i + 1 > 0 we know that for each k ∈ {1, . . . , i + 1} the two conditions (B.2.1)
and (B.2.2) will hold. Let us now introduce the function ūS,i : [0, tmin(i)]→ U
with

ūS,i(t) =

{
uS,i+1(t) t ∈ [0, tmin(i))

−iuS,i+1 t = tmin(i)
. (B.2.4)

It can then be seen that the control ūS,i de�ned above satis�es the hypotheses
of the lemma. Moreover, due to this de�nition the restriction of both controls
uS,i+1 and ūS,i to the time interval [0, tmin(i)) are equal to each other. From
our induction hypothesis and from the continuity of the states it then follows
that along the trajectory x corresponding to uS,i+1 with x0 = 0, (B.2.3) holds
for each k ∈ Si+1. In order to prove the lemma, we need to now show that
(B.2.3) also holds for k = i+ 2.



APPENDIX B. PROOFS 170

Noting that iuS,i+1 equals to (−1)i 0uS,i, we have ix1 = 0 and iẋ1 =
(−1)i(2i+1) 0uS,i along the trajectory x, see (B.2.3). Consequently, the relative
energy iErel, which is constant in the time interval [tmin(i), tmin(i+ 1)], equals
to 1

2M(2i + 1)2θ̇2
max. According to (4.2.11)-(4.2.12) the period Tp related to

this energy is now given by 2 (tmin(i+ 1)− tmin(i)). Using again our results on
trajectories of EJ's in Sec. 4.1 we can �nally conclude that (B.2.3) also holds
for k = i+ 2 as desired.

Lemma 41. Let (x, u) be an admissible controlled trajectory such that x0 equals
to 0 and u satis�es the two conditions (4.2.6) and (4.2.7). Then u ∈ SU is a
switching control with the switching number i given by

i = min
{
k ∈ {1, 2, . . .}

∣∣∣tf ≤ tmin(k)
}
− 1. (B.2.5)

Moreover, for each k ∈ Si ku and kx are given by the right-hand sides of (B.2.2)
and (B.2.3) with 0uS,i = 0u, respectively. Finally, if i ≥ 1 holds then for each
k ∈ {1, . . . , i} the switching time tS,k is given by (B.2.1).

Proof. Let us note here �rst that the set of admissible controlled trajectories
satisying the hypothesis of the lemma are not empty. This follows directly from
Lemma 40 as for each non-negative integer i the controlled trajectory (xS,i, uS,i)
with xS,i(0) = 0 satis�es both (4.2.6) and (4.2.7), see Sec. 4.1. It is clear that
these trajectories also satisfy the conclusions of the lemma.

Choose now any admissible controlled trajectory (x, u) satisfying the hypoth-
esis of the lemma. Since u ∈ PCU, condition (4.2.6) together with the initial
condition x0 = 0 implies that we can always �nd a su�ciently small time tε,0
such that sgn (x1(t)) = sgn (u(0)) 6= 0 holds for each t ∈ (0, tε,0] ⊂ (0, tf ]. More-
over, due to (4.2.7) u(t) will then be equal to u(0) in [0, tε,0] with |u(0)| = θ̇max.
Depending on the value of the �nal time tf we look at two di�erent cases.

Case 1 (tf ∈ (0, tmin(1)]) We want to show that for this case u(t) must be
equal to u(0) for each t ∈ [0, tf ]. Since u is an element of PCU, it su�ces to
show that u(t) = u(0) holds for each t ∈ [0, tf ). Assume now by contradiction
that there exists at least one t̄ ∈ [0, tf ) such that u(t̄) 6= u(0) and let St̄,1 denote
the non-empty set of all such times, i.e.

St̄,1 := {t ≥ 0|u(t) 6= u(0) ∧ t < tf}. (B.2.6)

By our discussion above, this set is then bounded below by tε,0 > 0 and its
in�mum exists. Let t̃1 ∈ [tε,0, tf ) denote this in�mum. From (4.2.7) and from
the continuity of x1, it then follows that x1(t̃1) must be equal to 0. Moreover,
since t̃1 is the in�mum of the set St̄,1 the control u is constant and equals to
u(0) in t ∈ [0, t̃1). This means that the relative energy along (x, u) is equal to
1
2Mθ̇2

max in this time interval. However, since x1(0) = 0 and ẋ1(0) = u(0) 6= 0
hold tmin(1) is then the �rst time x1 equals to zero after t = 0 and therefore
we must have t̃1 ≥ tmin(1), see (4.2.11)-(4.2.12) and Chapter 3. This leads to a
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contradiction since t̃1 is less than tf and we conclude that the set St̄,1 must be
empty.

We have thus shown that for any tf ∈ (0, tmin(1)] u is a switching control
with i = 0 switchings consistent with (B.2.5). Moreover, for k ∈ Si it follows
directly from the initial conditions on the state and controls that the values
for kx and ku are given by the right-hand sides of (B.2.2) and (B.2.3) with
0uS,i = 0u, respectively.

Case 2 (tf > tmin(1)) For this case we will �rst use induction to show that
tf being greater than tmin(i− 1) implies for any i ∈ {2, ...} that the controlled
trajectory (xS,i, uS,i) de�ned in Lemma 40 and the trajectory (x, u) are equal
to each other if they are restricted to the time interval [0, tmin(i− 1)] and if we
have uS,i(0) = u(0).

Let us �rst set i to 2 and show that tf > tmin(1) implies that (x(t), u(t)) =
(xS,2(t), uS,2(t)) holds for each t ∈ [0, tmin(1)]. Recall that there always exists
a tε,0 > 0, such that the control u is equal to u(0) for all t ∈ [0, tε,0] ⊂ D.
The value of tε,0 must, however, in this case be less than tf , since otherwise
we would have x1(tmin(1)) = 0 and ẋ1(tmin(1)) = −u(0) and there would
then exist a time tε,1 > tmin(1) such that sgn (x1(t)) = − sgn (u(0)) holds for
t ∈ (tmin(1), tε,1] ⊂ (tmin(1), tf ]. This contradicts the condition (4.2.7).

We have thus just shown that the set St̄,1 as de�ned in (B.2.6) is not empty.
Following the same arguments used for the �rst case, we can also conclude that
t̃1 ≥ tmin(1) must hold for the in�mum of this set. We want to next show that t̃1
is equal to tmin(1) and that it is an element of St̄,1. For this, note that the control
u(t) must be equal to u(0) for each t ∈ [0, tmin(1)) ⊂ [0, t̃0). From the continuity

of the states, it then follows that x (tmin(1)) equals to
(
0 2u(0)

)T
. Since u

is an admissible control, we know that at t = tmin(1) u(t) ∈ [−θ̇max, θ̇max]
must hold. This means that regardless of the value of the control the sign of
ẋ1 (tmin(1)) = u (tmin(1))−x2 (tmin(1)) will always be equal to − sgn (u(0)), as
we have |u(0)| = θ̇max. Consequently, we can �nd a time tε,1 > tmin(1) such
that sgn (x1(t)) = − sgn (u(0)) holds for each t ∈ (tmin(1), tε,1] ⊂ (tmin(1), tf ].
From condition (4.2.7) and from the continuity properties of elements of PCU it
�nally follows that at u (tmin(1)) must be equal to −u(0) so that tmin(1) is the
in�mum of the set St̄,1. We have thus shown that the restriction of u to the time
interval [0, tmin(1)] is equal to the restriction of uS,2 to the same time-interval if
u(0) = uS,2(0). The restriction of the two trajectories x and xS,i to [0, tmin(1)]
will then also be equal to each other and this proves the desired implication for
the base case with i = 2.

Let us now choose any i ∈ {2, 3, . . .} and assume that tf > tmin(i − 1)
implies that (x(t), u(t)) = (xS,i(t), uS,i(t)) holds for each t ∈ [0, tmin(i − 1)]
if u(0) = uS,i(0). We want to now show that if tf > tmin(i) holds then
(x(t), u(t)) = (xS,i+1(t), uS,i+1(t)) will also hold at each t ∈ [0, tmin(i)] pro-
vided u(0) equals to uS,i+1(0). For this, �rst note that tmin(i) is greater than
tmin(i−1). By the induction hypothesis we have then for each t ∈ [0, tmin(i−1)]
that (x(t), u(t)) is equal to (xS,i(t), uS,i(t)) and thus also to (xS,i+1(t), uS,i+1(t))
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if u(0) = uS,i(0) = uS,i+1(0). By Lemma 40, we have then x1(tS,i−1) = 0 and
ẋ1(tS,i−1) = (−1)i−1u(0)(2i − 1) 6= 0. Introduce now the set St̄,i−1 = {t ≥
tmin(i − 1)|u(t) 6= u (tmin(i− 1)) ∧ t < tf}. Following analogous arguments as
done for the base case, it can be shown that the set St̄,i−1 is not empty and
that its in�mum t̃i−1 is equal to tmin(i) and thus an element of St̄,i−1. Finally,
noting that a sign change of u must occur at t = tmin(i), we arrive at the desired
implication. This concludes the inductive step.

Note that as i goes to in�nity, the magnitude of xS,i at tmin(i + 1) goes
to in�nity. Using the fact that the state x de�ned on D must be bounded
and the relation we have just shown to exist between (x, u) and the controlled
trajectories described by Lemma 40, we can conclude that there must exist a
positive integer l ≥ 2 such that tf ∈ (tmin(l−1), tmin(l)] holds. The proof of the
lemma for tf > tmin(1) follows now from the equalities (B.2.1)-(B.2.3) in Lemma
40 and that the sign of x1(t) must remain constant in t ∈ (tmin(l − 1), tf ].

With Lemmas 40-41, Prop. 2 and 4 can easily be proved as we next show.

Proof of Prop. 2. We will again make use of mathematical induction.

Base case (i = 0) Let u ∈ SU be a control with 0 switchings. Moreover, let x
be the trajectory corresponding to u with x0 = 0. By de�nition, u is a constant
function with u ≡ 0u and it follows from (2.1.5) and (4.1.2) together with the
condition on the initial state that the following relation holds for 0Erel:

0Erel =
1

2
M 0u2 ≤ 1

2
Mθ̇2

max. (B.2.7)

Assume now that both (4.2.6) and (4.2.7) hold for the control u as stated in
the proposition. Then, 0u is either equal to −θ̇max or θ̇max. Moreover, we have
tf ≤ 1

2Tp(
0φmax) with Epot(0φmax) = 1

2Mθ̇2
max, since for larger �nal times x1

and thus u will change its sign. Regardless of these values we easily see from
(B.2.7) that the inequality (4.2.5) holds with equality in this case.

Inductive step (i ∈ {0, 1, . . .}) Let i be any non-negative integer and assume
that Prop. 2 holds for this integer. We want to show that the same proposition
holds for i+ 1, as well. Let Σ be, as before, a given control system and u ∈ SU
now a control with i + 1 switchings. Moreover, let x denote the trajectory
corresponding to u with x0 = 0. According to (3.1.3) and (4.1.2)-(4.1.4), the
two relative energies iErel and i+1Erel along this trajectory are then related to
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each other as follows:

i+1Erel = Epot(
i+1x1) +

Ekin

(
i+1u− iu+ lim

t→t−S,i+1

ẋ1(t)

)
= iErel + lim

t→t−S,i+1

ẋ1(t)M(i+1u− iu) +

1

2
M(i+1u− iu)2 (B.2.8)

≤ iErel + 2Mθ̇max

(
iφ̇max + θ̇max

)
, (B.2.9)

where we used the fact that iErel remains constant for t ∈ Di together with
the continuity of Ekin, Epot and x. Clearly, the control u restricted to the time-
interval [0, tS,i+1) is a switching control with i switchings and from our induction

hypothesis it follows that kErel ≤ (2k+1)2

2 Mθ̇2
max for each k ∈ Si. Note that this

also implies that iφ̇max ≤ (2i+ 1)θ̇max. Using these two inequalities in (B.2.9),
we have now

i+1Erel ≤
(2i+ 3)2

2
Mθ̇2

max,

showing that (4.2.5) holds for each k ∈ Si+1.
Assume now that both (4.2.6) and (4.2.7) hold for the control u as stated

in the proposition. From Lemma 40 it follows then that tf must be an element
of the interval (tmin(i+ 1), tmin(i+ 2)]. More importantly, according to this
lemma (B.2.2)-(B.2.3) hold for each k ∈ Si+1. Consequently, for each k ∈ Si+1

kErel equals to Ekin(kẋ1) = (2k+1)2

2 Mθ̇2
max as desired.

Proof of Prop. 4. Let (x, u) be any admissible controlled trajectory satisfying
the hypothesis of the lemma. Since EEJ(u, tf ) equals to Emax(i) it follows from
(4.2.4)-(4.2.5) directly that iErel must be equal to Er,max(i). We want to �rst
show that this is only possible if for each k ∈ Si the de�ection at tS,k is equal
to zero and the relative energy at that time equals to Er.max(k). For this we
will make use of the following inequality for the relative energy iErel:

iErel − 0Erel =

i−1∑
k=0

k+1Erel − kErel

=

i−1∑
k=0

Ekin(k+1ẋ1)− Ekin
(

lim
t→t−S,k+1

ẋ1(t)

)
(4.1.4)

=
1

2
M

i−1∑
k=0

(k+1u− ku)2 +

M

i−1∑
k=0

(k+1u− ku) lim
t→t−S,k+1

ẋ1(t) (B.2.10)
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⇒ iErel ≤
1

2
M 0φ̇2

max + 2Mθ̇max

[
i+

i−1∑
k∈0

kφ̇max

]
, (B.2.11)

where the last inequality can hold with equality only if kx1 = 0 holds for each
k ∈ {1, . . . , i}, see the second summation in (B.2.10).

Assume now by contradiction that there either exists a k̄ ∈ Si with k̄x1 6= 0
and thus |k̄ẋ1| < k̄φ̇max or with k̄Erel 6= Er,max(k̄). In the �rst case, k̄ must
be greater than 0 since we have x0 = 0. Consequently, (B.2.11) will hold with
inequality. Noting from Prop. 2 that for each k ∈ Si the maximum value for
kφ̇max is equal to (2k + 1)θ̇max, we conclude then that iErel must be less than
Er,max(i). In the second case, i.e. k̄Erel 6= Er,max(k̄), k̄ must clearly be less
than i. Assuming that k̄ ∈ Si−1, we know from Prop. 2 that k̄φ̇max must be
less than (2k̄ + 1)θ̇max and the inequality (B.2.11) will then again imply that
iErel is less than Er,max(i).

Based on our discussion so far, we now know that for each k ∈ Si we must
have kx1 = 0 and kErel = Er,max(k) > 0. Moreover, as already discussed in Sec.
4.2 it follows from (4.2.3)-(4.2.4) that i+1x1 = x1(tf ) must be equal to zero in
order for EEJ(u, tf ) to be equal to Emax(i). Note now that a MSS with the

energy kErel > 0 and with zero initial de�ection requires at least Tp(kφmax)
2 to

reach a de�ection of zero for the second time, see Chapter 3. This proves the
inequality (4.2.11).

Finally, using the exact same arguments just used to prove (4.2.11) we can
show that in case this inequality holds with equality for k = i+1 it must also hold
with equality for each k ∈ Si\{0} . From Lemma 40 and the properties of the
trajectories of EJ's as discussed in Sec. 4.1 it follows then that in this case both
(4.2.6) and (4.2.7) will hold in t ∈ [0, tf ] with x1(tf ) = 0 and tf = tmin(i + 1).
The fact that the three conditions (4.2.6), (4.2.7) and (4.2.9) are su�cient for
the inequality (4.2.11) to hold with equality for each k ∈ {1, . . . , i + 1} follows
from Lemma 41.

B.3 Optimal Control Strategies

B.3.1 Existence

In this part of the appendix, we will �rst prove Prop. 5 by making use of the
inequality (5.1.2). Then, making use of this proposition we establish the exis-
tence and uniqueness of solutions of (2.1.4) when an initial state is given together
with an admissible control. Finally, using Filippov's Theorem, PMP and Sturm
Comparison Theorem we prove Prop. 6. In order to simplify our discussions,
we �rst give the following straightforward lemma clarifying the relation between
the de�ection x1 and ψmax along trajectories of Σ.

Lemma 42. Let x be a trajectory of Σ de�ned on D and assume that along
this trajectory |x1(t)| and ψmax(t) are equal to each other in a non-empty open
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time interval D̄ ⊂ D. Then, for each t ∈ D̄ we have

x(t) = 0. (B.3.1)

Proof. Let x be an admissible controlled trajectory de�ned on D and D̄ a time
interval satisfying the hypothesis of the lemma. Notice that, according to (4.2.1)
and (5.1.1) we must then have x2(t) = 0 and thus ẋ2(t) = τJ (x1(t))

M = 0 for each
t ∈ D̄. This shows that x(t) = ẋ(t) = 0 must hold for each t ∈ D̄.

With Lemma 42, we can now see that along a trajectory of Σ with positive
EEJ the inequality (5.1.2) can never hold with equality in a �nite time-interval.
Using this property and rewriting (5.1.2) in terms of ψmax, we can then prove
Prop. 5 as follows.

Proof of Prop. 5. Let (x, u) be an admissible controlled trajectory de�ned on
D = [0, tf ]. Depending on the value of ψmax along (x, u), we will �rst discuss
two di�erent cases to prove (5.1.3).

Case 1 (∀t ∈ D) [ψmax(t) 6= 0] In this case the maximal de�ection ψmax is al-
ways positive. Moreover, using (4.2.2) and (5.1.1) we can see that this de�ection
is di�erentiable almost everywhere with its derivative given by

dψmax
dt

(t) =
τJ (x1(t))

τJ (ψmax(t))
u(t), (B.3.2)

at each t ∈ D where this derivative exists. Note that both the magnitude of u
and x1 are bounded by θ̇max and ψmax, respectively. The relation (5.1.3) follows
then from integrating (B.3.2) and using Lemma 42 together with the continuity
of x2.

Case 2 (∃t̄ ∈ D) [ψmax(t̄) = 0] By contradiction, assume that there exists a
t̂ ∈ (0, tf ] such that |ψmax(t̂) − ψmax(0)| ≥ θ̇maxt̂ and de�ne the set St̄ :=
{t ∈ [0, t̂]|ψmax(t) = 0}. Notice that if this set is empty, we can directly apply
our results from the �rst case above to show that |ψmax(t̂) − ψmax(0)| must
be less than θ̇maxt̂ leading to a contradiction. Assuming therefore additionally
that the set St̄ is non-empty, let t̄inf and t̄sup denote its in�mum and supre-
mum, respectively. Our initial assumption on ψmax implies that we have either
ψmax(t̂) ≥ ψmax(0) + θ̇maxt̂ or ψmax(t̂) ≤ ψmax(0) − θ̇maxt̂. We want to next
show that none of these two possibilities can actually occur.

Focusing on the �rst possibility, it follows from the continuity of ψmax that
we must have ψmax(t̄sup) = 0, i.e. t̄sup ∈ St̄. Furthermore, since ψmax(t̂) is
positive ψmax(t) will be positive at each t ∈ (t̄sup,1, t̂] and thus also di�erentiable
almost everywhere in this interval. Consequently, using again our results from
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the �rst case and in particular (B.3.2) we get

ψmax(t̄sup) = ψmax(t̂) +

∫ t̄sup

t̂

τJ (x1(s))

τJ (ψmax(s))
u(s)ds

> ψmax(t̂)− θ̇max(t̂− t̄sup)
⇒ ψmax(t̄sup) > ψmax(0) + θ̇maxt̄sup ≥ 0,

which is a contradiction.
For the second possibility, it follows from the non-negativity of ψmax that

t̂ must be less than or equal to min{ψmax(0)

θ̇max
, tf}. Moreover, ψmax(0) must be

positive, as t̂ is positive, which implies together with the continuity of ψmax
that the in�mum t̄inf will be an element of (0, t̂] with ψmax(t̄inf ) = 0. It follows
then that ψmax(t) is positive in [0, t̄inf,) and thus also di�erentiable almost
everywhere in this interval. Consequently, we have ψmax(t̄inf ) = ψmax(0) +∫ t̄inf

0
τJ (x1(s))

τJ (ψmax(s))u(s)ds > ψmax(t̂) which leads again to a contradiction.
Our discussion above proves the relation (5.1.3). To prove the remaining

part of the proposition, notice �rst that (5.1.3) together with the de�nitions
(5.1.4)-(5.1.5) imply that ψmax(t) ∈ [ψlb, ψub] holds, with ψub > ψlb ≥ 0, at
each t ∈ D. With (3.1.2)-(3.1.4) and (4.2.1), this then directly implies (5.1.7)
with the set SEb given by (5.1.6). Note that the compactness of SEb follows from
the fact that the function EMSS is continuous and radially unbounded.

When discussing the construction of trajectories corresponding to switching
controls, we have seen in Sec. 4.1 that for each initial state and admissible
switching control, there exists a unique trajectory of Σ which starts from this
initial state and corresponds to that control. With Prop. 5, we can now show
that this existence and uniqueness result actually holds for any admissible con-
trol. This is illustrated in the following lemma.

Lemma 43. For each initial state x0 ∈ R2 and control u ∈ PCU, there exists a
unique trajectory x ∈ Traj(Σ) starting from x0 and corresponding to u.

Proof. Let the initial state x0 ∈ R2 and the admissible control u : [0, tf ] → U
be given. Moreover, de�ne the function f̄(t,x) : [0, tf ] × R2 → R2 with

f̄(t,x) = f(x, u(t)). Then, each term in the gradient ∂f̄∂x (t,x) =

(
0 −1

KJ (x1)
M 0

)
is continuous in x implying that f̄ is locally Lipschitz with respect to its second
argument. Moreover, since u is piecewise continuous the function t→ f̄(t,y(t))
is also piecewise continuous for each continuous function y : D → R2. Conse-
quently, we can �rst apply Theorem 4.22 from [34] to conclude that there exists
a unique maximal solution x : I → R2 to the initial value problem

ẋ(t) = f̄(t,x(t)),x(0) = x0, (B.3.3)

where I ⊂ [0, tf ] is the maximal interval of existence containing the origin.
Moreover, making use of Prop. 5 it can be also shown that this interval must
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be exactly equal to D. Indeed, by contradiction assume that the necessarily
bounded interval I is not equal to D and set ω = sup I. Then, for each compact
set S there must exist a scalar σ ∈ I with σ < ω such that x(t) /∈ S for each
t ∈ (σ, ω), see Theorem 4.25 in [34]. Choose now as a compact set the set SEb
in (5.1.6) with ψlb = 0 and ψub = θ̇maxtf . In addition, �x the scalar σ ∈ I and
choose an arbitrary time t̄ ∈ (σ, ω). Then, the restriction of x to the interval
[0, t̄] is a trajectory of Σ. This, however, leads to a contradiction since we have
x(t̄) ∈ SEb by (5.1.7). Consequently, I = [0, tf ] and x is the unique trajectory
of Σ which starts from x0 and corresponds to u.

Prop. 5 remains also valid, if we de�ne admissible controls as Lebesgue mea-
surable functions taking values in U almost everywhere (a.e.) and if we further
de�ne the corresponding trajectories as absolutely continuous functions satisfy-
ing a.e. the di�erential equation (2.1.4). Indeed, the proof of the proposition
can also be used for this more general case if the integrals there are regarded
as Lebesgue integrals. Consequently, based on our discussion in Sec. 5.1 we
can apply Filippov's Theorem to conclude that for each tf > 0 there exists an
optimal measurable control minimizing the cost functional (2.3.1). In the fol-
lowing, we want to show how to use this fact together with PMP to prove Prop.
6. The proof will require the following lemma which is mainly an application of
the Sturm Comparison Theorem and which can be used to �nd a lower and an
upper bound for the number of times at which optimal controls must necessarily
switch. The lemma will also be of importance in Appendix B.3.3 when we prove
Prop. 15.

Lemma 44. Let tf be a positive scalar, Ω : [0, tf ] → (0,∞) a continuous
function and λ : [0, tf ]→ (R2)∗ the unique solution to the initial value problem

λ̇(t) = λ(t)

(
0 1

−Ω2(t) 0

)
, λ(0) = λ0, (B.3.4)

with λ0 ∈ (R2)∗\{0}. Moreover, let Ωmin and Ωmax denote the minimal and
maximal values of Ω, respectively; i.e.

Ωmin = min
t∈[0,tf ]

Ω(t) ∧ Ωmax = max
t∈[0,tf ]

Ω(t). (B.3.5)

Finally, let StS denote the set

StS = {t ∈ (0, tf )|λ1(t) = 0}.

Then, StS is �nite. Moreover, using i ≥ 0 to denote the number of elements of
StS and introducing the scalars

ilb = max

{
0,

⌈
Ωmintf
π

⌉
− 2

}
, (B.3.6)

and

iub =

⌈
Ωmaxtf

π

⌉
+ 1, (B.3.7)
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we have
ilb ≤ i ≤ iub. (B.3.8)

Proof. Let Ω and λ be two given functions satisfying the hypothesis of the
proposition with tf > 0 and λ0 6= 0. Note that being a continuous function
de�ned on a compact interval, the minimum and maximum values of Ω, i.e.
Ωmin and Ωmax, both exist and they will also be positive since Ω only takes
positive values. We will prove the proposition in �ve steps. Our arguments will
resemble to those used in Chapter 2.2 of [3] where the zeros of functions solving
a homogeneous second-order di�erential equation are analysed.

1. Zeros of λ1 and λ2 are isolated.

Let us �rst note that since the di�erential equation in (B.3.4) is linear and since
λ0 is non-zero, we have the following relation for λ:

(∀t ∈ [0, tf ]) [λ(t) 6= 0] . (B.3.9)

Assume now that there exists a t̄ ∈ [0, tf ] such that λ1(t̄) = 0. Then, by
(B.3.4) λ̇1(t̄) is equal to −Ω2(t̄)λ2(t̄) and this product is non-zero since Ω(t̄) is
positive by de�nition and λ2(t̄) 6= 0 by (B.3.9). Noting that both Ω and λ2

are continuous, this also means that there exists a su�ciently small ε > 0 such

that sgn
(
λ̇1

)
is constant and non-zero on the interval (t̄ − ε, t̄ + ε) ∩ [0, tf ].

Consequently, on this interval λ1 will be strictly monotone and thus be equal
to zero only at t = t̄. This shows that the zeros of λ1 are all isolated.

Similarly, assume that there exists a t̄ ∈ [0, tf ] such that λ2(t̄) = 0. Then,
by (B.3.4) and (B.3.9) we have λ̇2(t̄) = λ1(t̄) 6= 0. Since λ1 is continuous, this
implies as above that t̄ is an isolated zero of λ2. Consequently, we conclude that
the zeros of λ2 are also all isolated.

2. The set of zeros of λ2 is �nite.

We want to show that the set SτS given by

SτS = {t ∈ [0, tf ]|λ2(t) = 0},

is �nite. For this, let us �rst take the time-derivative of the second column of
(B.3.4) which according to its �rst column leads to the following second-order
di�erential equation for λ2:

λ̈2(t) + Ω2(t)λ2(t) = 0. (B.3.10)

We will next compare the location of the zeros of λ2 with the location of the
zeros of the function ymax : [0, tf ] → R, t → ymax(t) = sin(Ωmaxt), which is a
solution to the di�erential equation

ÿmax(t) + Ω2
maxymax(t) = 0. (B.3.11)
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Using the zeros of ymax, let us introduce a partition of the set [0, tf ) =

∪kmaxj=1
jImax with

kmax :=

⌈
Ωmaxtf

π

⌉
≥ 1, (B.3.12)

and

jImax :=

{[
Ωmax
π (j − 1), Ωmax

π j
)

j < kmax[
Ωmax
π (j − 1), tf

)
j = kmax

.

Fixing now a positive integer j ∈ Skmax\{0}, we can see that the restriction of
λ2 to the interval jImax can not have more than one zero in that interval. Indeed,
this clearly holds if this restriction is equal to a non-zero multiple of ymax|jImax .
More speci�cally, in this case λ2|jImax has exactly one zero at t = Ωmax

π (j − 1).
Similarly, in case λ2 is not a non-zero multiple of ymax in jImax, λ2 can still not
have more than one zero in jImax. To see this, assume �rst by contradiction
that there exist two consecutive2 zeros τ̃ and τ̄ of λ2 in jImax with τ̃ < τ̄ and
λ2(τ̃) = λ2(τ̄) = 0. Then, since λ2 is a non-trivial solution to (B.3.10) and since
Ωmax is the maximum value of Ω, it follows from Sturm Comparison Theorem3

that ymax must have at least one zero in (τ̃ , τ̄) ⊂ (Ωmax
π (j− 1), Ωmax

π j). This is,
however, not possible by the de�nition of ymax and leads to a contradiction.

Our discussion above shows that for each j ∈ Skmax\{0}, there can exist at
most one zero of λ2 in the interval jImax. Noting that the union of all such
intervals is equal to [0, tf ), we can thus conclude that the number of elements
of Sτ is bounded above by kmax + 1 and that this set is �nite.

3. The set StS is �nite.

By contradiction, assume that the set StS is not �nite and let t̃1 denote the
in�mum of this set, i.e. t̃1 = inf StS . Since λ1 is continuous and since the
zeros of λ1 are isolated, t̃1 is then necessarily an element of StS . Similarly, since
StS has in�nitely many elements we can inductively build a strictly increasing
sequence (t̃k)k≥1 in StS using the following relation:

t̃k+1 = inf{t ∈ StS |t > t̃k}. (B.3.13)

Fixing now a k ≥ 1, let us note that by the continuity of λ1 and by the de�nition
in (B.3.13), the sign of λ1 must remain constant and non-zero on (t̃k, t̃k+1).
Moreover, according to (B.3.4) and (B.3.9) both λ̇1(t̃k) and λ̇1(t̃k+1) will be

non-zero and must therefore di�er in their signs. This also means that λ2 = − λ̇1

Ω2

will have at least one zero in (t̃k, t̃k+1), since λ2 is continuous. In fact, there
exists exactly one zero of λ2 in this interval. This follows directly from the fact
that the sign of λ̇2 = λ1 is always non-zero and constant on (t̃k, t̃k+1) so that
λ2 is strictly monotone on [t̃k, t̃k+1].

Noting that there exists exactly one zero of λ2 in (t̃k, t̃k+1), our assumption
on the set StS being in�nite implies that the set of zeros of λ2 is also in�nite.
We have thus reached a contradiction showing that the set StS must be �nite.

2Note that the zeros of λ2 are all isolated as shown in the �rst step.
3See Theorem 2.10 in [3].
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4. Between two consecutive zeros of λ2 there exists exactly one zero of λ1

Assume that t̄1 and t̄2 are two consecutive zeros of λ2 with t̄1 < t̄2. Then,
the sign of λ̇1 = −Ω2λ2 will remain constant on (t̄1, t̄2) and λ1 will be strictly
monotone on [t̄1, t̄2]. Moreover, the sign of λ̇2 = λ1 will be non-zero both at
t̄1 and t̄2 according to (5.3.1). Consequently, the sign of λ̇2, and thus of λ1, at
these two times must be di�erent in order for the sign of λ2 to remain constant
on (t̄1, t̄2). This implies that λ1 indeed has exactly one zero in (t̄1, t̄2).

5. The number of elements of StS is bounded by ilb and iub.

Let i ≥ 0 denote the number of elements of the set StS , which we know is �nite.
Moreover, let ilb and iub be de�ned as in (B.3.6) and (B.3.7). We want to �rst
show that i ≤ iub.

If i ∈ {0, 1}, the inequality i ≤ iub clearly holds since we have iub ≥ 2
according to (B.3.7). Let us now assume that i ≥ 2 and set t̃1 to inf StS .
Furthermore, use (B.3.13), with k ∈ {1, . . . , i − 1}, to determine all the other
elements of the set StS . Following the arguments used in the third step, we can
then see that for each k ∈ {1, . . . , i−1} there exists exactly one zero of λ2 in the
interior of the interval [t̃k, t̃k+1]. Consequently, there exists exactly i−1 zeros of
λ2 in the interior of the interval [t̃1, t̃i] which is a strict subset of (0, tf ). Recall
now that in our discussion in the second step we have shown that the number
of zeros of λ2 in the interval [0, tf ) is bounded above by kmax. This leads then
as desired to the inequality i ≤ kmax + 1 = iub.

In order to show that i ≥ ilb, let us note that for tf ∈ (0, 2π
Ωmin

] this inequality
is always satis�ed as in this case we have ilb = 0, see (B.3.6). Assume now
that tf > 2π

Ωmin
and introduce the function ymin : [0, tf ] → R, t → ymin(t) =

sin(Ωmint) which solves the di�erential equation

ÿ(t) + Ω2
miny(t) = 0.

Furthermore, introduce the partition of the interval [0, tf ) = ∪kminj=1
jImin with

kmin :=

⌈
Ωmintf
π

⌉
≥ 3, (B.3.14)

and

jImin :=

{[
Ωmin
π (j − 1), Ωmin

π j
)

j < kmin[
Ωmin
π (j − 1), tf

)
j = kmin

.

Fixing now, as in the second step, the integer j ∈ Skmin\{0, kmin} we can see
that the restriction of λ2 to the interval jImin must have at least one zero in
that interval. Indeed, this clearly holds if this restriction is equal to a non-zero
multiple of ymin|jImin . More speci�cally, in this case λ2|jImin has exactly one
zero at t = Ωmin

π (j − 1). Similarly, in case λ2 is not a non-zero multiple of ymin
in jImin, λ2 must still have at least one zero in jImin. This follows from Sturm
Comparison Theorem, since λ2 is a non-trivial solution to (B.3.10) and since
Ωmin is the minimum value of Ω. Based on our discussion, we can thus now see
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that the zeros of λ2 in [0, tf ] must be greater than or equal to kmin − 1 which
under our assumption on tf is equal to ilb + 1, see (B.3.6). Since there is a zero
of λ1 between every two consecutive zeros of λ2, as we have shown in the fourth
step, this then leads to the inequality i ≥ ilb as desired.

Using Lemma 44, we can now prove Prop. 6 as follows.

Proof of Prop. 6. Let tf > 0 be an arbitrary scalar, D = [0, tf ] and u : D → U
be the measurable control which minimizes the cost functional in (2.3.1) and
whose existence is ensured by Filippov's Theorem. Moreover, let x be the
absolutely continuous function de�ned on D such that x0 is the origin and the
pair (x, u) satis�es a.e. the di�erential equation (2.1.4). Since u is an optimal
control, it follows then from PMP that Prop. 7 still remains valid for (x, u), if we
relax the second and third conditions, i.e. (5.2.2) and (5.2.4), such that they hold
a.e. in D. Let λ denote the corresponding continuously di�erentiable costate
from Prop. 7 which satis�es the di�erential equation (5.2.1). By introducing

the continuous function Ω : D → (0,∞), t → Ω(t) =
√

KJ (x1(t))
M and noting

further that λ(tf ) 6= 0 holds due to (5.2.5), we can then see that λ will solve
the initial value problem in (B.3.4) with λ0 6= 0. Consequently, we can apply
the results from Lemma 44.

According to Lemma 44, the set of zeros of λ1 in D, which we will denote
by E, is �nite. This means that the relation in (5.2.6) will uniquely determine
a control uPC : D → U in the space PCU. Furthermore, from the properties of
the set E and the condition (5.2.2) it follows that u(t) and uPC(t) are equal to
each other a.e. in D. Therefore, (x, uPC) is an admissible controlled trajectory
of Σ and uPC is a solution to the LVMP as de�ned in Sec. 2.3.

B.3.2 Basic Properties

Minimum Principle

Proof of Prop. 8. Let Λ = (x, u,λ, λa) be an extremal lift satisfying the hy-
pothesis of the lemma. We want to �rst show that the �rst costate λ1 can never
be equal to zero in a �nite time interval. To show this, we will prove that the
time-derivative of λ1 is non-zero whenever λ1 equals to zero.

Assume that tS is an element of D such that λ1(tS) = 0. According to
(5.2.1), λ̇1(tS) is then given by the product −KJ (x1(tS))

M λ2(tS). Due to our
assumption on the SDP KJ the �rst term of this product is always negative.
Moreover, λ2(tS) must be non-zero since otherwise we would have λ ≡ 0 due to
the linearity of the costate dynamics in (5.2.1) which in turn would contradict
the transversality condition (5.2.5) and thus the fact that Λ is an extremal lift.
Being a product of a negative and a non-zero term, we can �nally conclude that
λ̇1(tS) 6= 0 holds.

Based on our discussion above, it follows now from (5.2.6) that u is a switch-
ing control and satis�es (5.2.8) with λ̇1(0) 6= 0 in case λ1(0) = 0. Moreover, if
tS ∈ (0, tf ) is a switching time of u it follows from that same relation that λ1(tS)
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must be equal to zero. Conversely, if λ1(tS) is equal to zero it follows from the
inequality λ̇1(tS) 6= 0 that u will have a switching at tS . The equality (5.2.9)
follows then from (5.2.3)-(5.2.4) if we additionally use the relation between λ̇1

and λ2 in (5.2.1) together with the fact that KJ is always positive.
In order to prove the last statement of the proposition, i.e. (5.2.10), let us

�rst assume that i is an arbitrary non-negative integer. Then, by evaluating the
Hamiltonian function in (5.2.4) at the �nal time tf = tS,i+1 and using (5.2.5)
we can arrive at the following relation for i+1x1:

τJ(i+1x1) =
M

v
λa ≥ 0. (B.3.15)

This shows that the sign of i+1x1 is equal to λa ∈ {0, 1} and also proves (5.2.10)
for the case when i = 0. Let us now assume that i > 0. If λa = 0, it follows
directly from (5.2.9) and (B.3.15) that (5.2.10) is true. We will conclude the
proof of the proposition by using the principle of mathematical induction to
show that (5.2.10) also holds when λa = 1.

Let k̄ ∈ Si+1\{0} and assume that we have sgn(k̄x1) = (−1)k̄+i+1. Moreover,
by contradiction assume that sgn(k̄−1x1) 6= 0 has the same sign as sgn(k̄x1).
Evaluating (5.2.9) once at tS,k̄−1 and once at tSk̄, we will then have sgn(k̄−1λ̇1) =

sgn(k̄λ̇1) 6= 0. This, however, leads to a contradiction since λ1 never changes
its sign in (tS,k̄−1, tS,k̄) and is always non-zero. Consequently, sgn(k̄−1x1) =

(−1)k̄+i and since we also have (B.3.15) it follows from induction that (5.2.10)
is true when λa = 1.

Costates with u ∈ SU In this part of the appendix, we will show how to
derive Prop. 9 which establishes a link between the solutions to the ordinary
di�erential equation (5.2.1) and the solutions to the partial di�erential equation
(5.2.12). For this, we will �rst state two lemmas which clarify the properties
of solutions of (5.2.12). The mathematical expressions provided there are also
made use of in Sec. 5.2.2 when constructing the trajectories of the costates, see
Table 5.1.

Lemma 45. Let η(x, φmax) : DTφ → R be a solution to the partial di�erential
equation (5.2.12). Then, we have

η(x, φmax) =
|φ̇|(x, φmax)

φ̇max

[
η(0, φmax) +

ηc
Mφ̇max
τJ(φmax)

∂Tφ
∂φmax

(x, φmax)

]
, (B.3.16)

for each (x, φmax) ∈ DTφ .

Proof. Assume that η is a solution to (5.2.12). Fixing an arbitrary φ̄max ∈
(0,∞), we can then de�ne a function η̄ : (−φ̄max, φ̄max)→ R such that η̄(x) =
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η(x, φ̄max) holds at each x ∈ (−φ̄max, φ̄max). According to (5.2.12), this func-
tion satis�es the following �rst-order linear di�erential equation:

dη̄

dx
+ ā(x)η̄ − b̄(x) = 0, (B.3.17)

where ā : (−φ̄max, φ̄max)→ R and b̄ : (−φ̄max, φ̄max)→ R are given by

ā(x) =
τJ(x)

2
∫ φ̄max
x

τJ(s)ds
, (B.3.18)

and
b̄(x) = − ηc(

|φ̇|(x, φ̄max)
)2 , (B.3.19)

respectively. It is important to note here that ā and b̄ are both continuous
functions. Consequently, we can solve (B.3.17) to express η̄ in terms of these
two functions together with the value of η̄ at x = 0, i.e. η̄(0). Indeed, making
use of the integrating factor µ̄ : (−φ̄max, φ̄max)→ (0,∞) with

µ̄(x) = e
∫ x
0
ā(s)ds, (B.3.20)

we can show that η̄ is given by [8]:

η̄(x) =
η̄(0) +

∫ x
0
µ̄(s)b̄(s)ds

µ̄(x)
, (B.3.21)

where x ∈ (−φ̄max, φ̄max).
Based on our discussion so far, we now know that for each x ∈ (−φ̄max, φ̄max),

η̄(x) and thus η(x, φ̄max) are given by the expression on the right-hand side of
(B.3.21). In order to prove the lemma, we next show that this expression is
exactly equal to the expression on the right-hand side of (B.3.16) if φmax is set
to φ̄max.

Let us introduce the function ȳ : (−φ̄max, φ̄max) → (0,∞) with ȳ(x) =∫ φ̄max
x

τJ(φ)dφ. Using this function, we can apply a change of variables when
evaluating the integral in (B.3.20) which in turn leads to a simpli�ed expression
for the integrating factor µ̄ as follows:

µ̄(x) = e
∫ x
0

τJ (s)

2ȳ(s)
ds = e

−
∫ ȳ(x)

ȳ(0)
ds
2s

=

√
ȳ(0)

ȳ(x)
=

√√√√ M ˙̄φ2
max

2
∫ φ̄max
x

τJ(φ)dφ

=
˙̄φmax

|φ̇|(x, φ̄max)
, (B.3.22)

where x ∈ (−φ̄max, φ̄max) and ˙̄φmax := |φ̇|(0, φ̄max). If we now substitute this
new expression for µ̄ into (B.3.21) and use (B.3.18)-(B.3.19), we can �nd a
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new expression for η̄ as well. It is easily seen that this expression is, as desired,
exactly equal to the expression on the right-hand side of (B.3.16) if φmax = φ̄max
holds in the latter expression. Noting that our choice for φ̄max was arbitrary,
we can �nally conclude from the de�nition of η̄ that (B.3.16) holds for each
(x, φmax) ∈ DTφ .

Having shown how to describe the solution of (5.2.12) in terms of physical
quantities, we discuss in the following lemma the behaviour of this solution at
the boundaries of its domain.

Lemma 46. Let η : DTφ → R be a solution of (5.2.12) and φmax an arbi-
trary positive scalar. Moreover, let φb a boundary point of the interval Dφ =
(−φmax, φmax). Then, the following equalities hold4:

lim
Dφ3x→φb

η(x, φmax) = − sgn(φb)
Mηc

τJ(φmax)
, (B.3.23)

and

lim
Dφ3x→φb

∂η
∂x (x, φmax)

1
|φ̇|(x,φmax)

= −ηc
4

dTp
dφmax

(φmax)

− sgn(φb)
η(0, φmax)
Mφ̇max
τJ (φmax)

. (B.3.24)

Proof. Let η, φmax, Dφ and φb all satisfy the hypotheses of the lemma. Since
η is a solution to (5.2.12), we know by Lemma 45 that η(x, φmax) satis�es the
equality in (B.3.16) for each x ∈ Dφ. Taking the limit of both sides of this
equality as Dφ 3 x→ φb we then get

lim
Dφ3x→φb

η(x, φmax) =
Mηc

τJ(φmax)
lim

Dφ3x→φb

{
|φ̇|(|x|, φmax)·

sgn(x)
∂Tφ
∂φmax

(|x|, φmax)

}
(3.2.14)

=
Mηc sgn(φb)

τJ(φmax)
lim

x→φ−max
−τJ(φmax)

τJ(x)

= − sgn(φb)
Mηc

τJ(φmax)
,

where we have made use of the symmetry properties of |φ̇| and ∂Tφ
∂φmax

to-

gether with the fact that in (3.2.14) both φs and φ̇s can take arbitrary val-
ues as long as they are positive and satisfy EMSS(φs, φ̇s) = Epot(φmax) and
φ̇s = |φ̇|(φs, φmax). This proves the equality (B.3.23).

4Given a nonempty subset E ⊂ R and a function g : E → R, limE3x→y g(x) denotes the
limit of this function as x goes to y in the set E, see [62].
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In order to prove the equality (B.3.24), let us �rst note that η is a solution

to (5.2.12) so that the following relation holds for the ratio
∂η
∂x (x,φmax)

1
|φ̇|(x,φmax)

at each

x ∈ Dφ:
∂η
∂x (x, φmax)

1
|φ̇|(x,φmax)

= −

[
η(x, φmax) τJ (x)

M + ηc

]
|φ̇|(x, φmax)

. (B.3.25)

If we now substitute the expression in (B.3.16) for η into (B.3.25) and make
use of the symmetry properties of |φ̇|, ∂Tφ

∂φmax
and τJ , we can rewrite (B.3.25) as

follows:
∂η
∂x (x, φmax)

1
|φ̇|(x,φmax)

= − τJ(|x|)ηc
τJ(φmax)

·
[
∂Tφ
∂φmax

(|x|, φmax)+

τJ(φmax)

τJ(|x|) · |φ̇|(|x|, φmax)

]
− sgn(x)

η(0, φmax)
Mφ̇max
τJ (|x|)

. (B.3.26)

Finally, taking the limit of (B.3.26) as Dφ 3 x→ φb and using (3.2.14), we can
see that (B.3.24) holds as desired.

With Lemmas 45-46, we can now �nally prove Prop. 9.

Proof of Prop. 9. Let x, u, i,λ, η, ηc, k, vφ and D̄k = (t̄k,0, t̄k,f ) ⊂ Dk all satisfy
the hypotheses of the proposition and assume further that there exists a t̄ ∈ D̄k

such that both λ2(t̄) = η
(
x1(t̄), kφmax

)
and H (x(t̄), u(t̄),λ(t̄)) = −ηc hold.

From our results in Chapter 4, we know �rst of all that ẋ1 will be continuous
in D̄k. Moreover, according to (5.2.13) the sign of ẋ1 will remain constant and
non-zero in that time interval. Consequently, the restriction of the �rst state on
D̄k, i.e. x1|D̄k , will be a C1−di�eomorphism with a well-de�ned interse x1|−1

D̄k
.

Finally, since ẋ1 is non-zero the system's relative energy in D̄k and thus kφmax
will be positive.

In order to prove the proposition, we want to �rst show that the Hamiltonian
H (x(t), u(t),λ(t)) is constant in the time interval D̄k. For this, let us introduce
the function hk(t) : Dk → R with

hk(t) = H
(
x(t), ku,λ(t)

)
= λ(t)f(x(t), ku). (B.3.27)

Taking the time-derivative of this function, it follows then from (2.1.4),(5.2.1)
and (5.2.3) that we have for each t ∈ Dk

ḣk(t) =
∂H
∂x

(
x(t), ku,λ(t)

)
f
(
x(t), ku

)
+

∂H
∂λ

(
x(t), ku,λ(t)

)
λ̇
T

(x(t),λ(t))

= λ(t)
∂f

∂x

(
x(t), ku

)
f
(
x(t), ku

)
− fT

(
x(t), ku

) ∂f
∂x

T (
x(t), ku

)
λT (t)

= 0. (B.3.28)
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According to (B.3.28), we can now see that the Hamiltonian is indeed constant
on D̄k. Consequently, our assumption on the value of the Hamiltonian at t̄
implies that the following equality holds at each t ∈ D̄k:

λ1(t)ẋ1(t) + λ2(t)
τJ (x1(t))

M
+ ηc = 0. (B.3.29)

In the following, we will make use of this last equality to show that λ and η are
related to each other as given by (5.2.15).

Without loss of generality, let us assume that x1 is strictly increasing5 on
D̄k, i.e. ẋ1(t) > 0 for each t ∈ D̄k. We can then de�ne a function η̄ : Ēk → R
with Ēk := (x1(t̄k,0), x1(t̄k,f )) and

η̄(x) = λ2

(
x1|
−1

D̄k
(x)
)
. (B.3.30)

From the inverse function theorem and the chain rule, it follows that this func-
tion is di�erentiable with its derivative dη̄

dx : Ēk → R given by

dη̄

dx
(x) =

λ1

(
x1|
−1

D̄k
(x)
)

ẋ1

(
x1|−1

D̄k
(x)
) . (B.3.31)

Notice that using the equalities t = x1|
−1

D̄k
(x) and ẋ1(t) = |φ̇|(x,k φmax) together

with (B.3.30)-(B.3.31), (B.3.29) can now be rewritten such that it becomes an
equality depending only on x. More speci�cally, the resulting expression will be
a di�erential equation for the function η̄ which is given by(

|φ̇|(x,k φmax)
)2 dη̄

dx
+
τJ (x)

M
η̄ + ηc = 0, (B.3.32)

with x ∈ Ēk.
It is important to remark here that the condition (5.2.13) ensures that Ēk

is a subset of (−kφmax, kφmax). Consequently, the coe�cient of dη̄
dx in (B.3.32)

remains non-zero. Being a �rst-order linear di�erential equation with coe�cients
that are continuous in x, η̄(x) is therefore the unique solution of (B.3.32) which
attains the value λ2(t̄) at x1(t̄) ∈ Ēk, see (B.3.30). Comparing now (5.2.12) and
(B.3.32), we can see that η(x, kφmax) is also uniquely determined by the value
of λ2(t̄) and equals to η̄(x) for each x ∈ Ēk. The equality in (5.2.15) follows
�nally from this relation between η and η̄, (B.3.30)-(B.3.32) and the equality
ẋ1(t) = vφ · |φ̇|(x1(t), kφmax).

To prove the remaining part of the proposition, let t̄b be a boundary point
of D̄k. It follows then from the continuity of λ that λ(t̄b) is given by the
limit of the right-hand side of (5.2.15) as t goes to t̄b in the set D̄k. More-
over, if limD̄k3t→t̄b ẋ1(t̄b) is non-zero it follows from the continuity proper-
ties of x1, ẋ1, τJ and η that this limit can be directly obtained by evaluating

5The proof for the other case, where x1 is strictly decreasing, can be done using the exact
same arguments, if we de�ne Ēk as the interval

(
x1(t̄k,f ), x1(t̄k,0)

)
and note that ẋ1(t) is

given this time by the negative of |φ̇|
(
x1(t), kφmax

)
for each t ∈ D̄k.
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(5.2.15) at t = t̄b. Let us now assume that limD̄k3t→t̄b ẋ1(t̄b) = 0 and let
x̄1b ∈ {−kφmax, kφmax} denote the de�ection value attained at t̄b. Making use
of (B.3.30)-(B.3.31) together with x = x1|D̄k(t) and t = x1|

−1

D̄k
(x), the desired

limit can then be rewritten in this case as follows:

lim
D̄k3t→t̄b

λ(t) = lim
D̄k3t→t̄b

(
∂η
∂x (x1(t), kφmax)ẋ1(t)
η(x1(t), kφmax)

)T

= lim
Ēk3x→x̄1b

(
vφ

∂η
∂x (x,kφmax)

1

|φ̇|(x,kφmax)

η(x, kφmax)

)T
.

Finally, it follows from Lemma 46 that the last limit above is equal to (5.2.16).

Switching and Terminal State Conditions

Lemma 47. Let Λ = (x, u,λ, λa) be an extremal lift for the LVMP and u a
control with i ≥ 0 switchings. Moreover, let k ∈ Si such that kErel > 0 and
j ∈ Smk . Then, for each t ∈ [tS,kj , tS,kj+1

] we have

λ1(t) = lim
Dkφ\{0}3x→x1(t)

[
λaC(x, kφmax)− kη0,j

]
τJ(x)

kvφ,jM kφ̇max
, (B.3.33)

where Dkφ = (−kφmax, kφmax).

Proof. Let Λ, i, k, kErel and j all satisfy the hypotheses of the lemma. Further-
more, let t ∈ [tS,kj , tS,kj+1

]. Since kErel is positive, kφmax is also positive and we
have |x1(t)| ≤ kφmax. Moreover, the sign of ẋ1 in Dkj is non-zero and constant
so that we can always �nd a non-empty open time interval D̄kj ⊂ Dkj such that
t is a boundary point of D̄kj and the following relation holds:(

∀t̃ ∈ D̄kj

) [
|x1(t̃)| < kφmax ∧ x1(t̃) 6= 0

]
.

The set {x1(t̃)|t̃ ∈ D̄kj} ⊂ Dkφ will then also be a non-empty open interval with
x1(t) being one of its boundary points. Using now (5.2.15) in Prop. 9 together
with the expression for the function η in Table 5.1a we can see that the following
equality will hold for each t̃ ∈ D̄kj :

λ1(t̃) =

[
λaC

(
x1(t̃), kφmax

)
− kη0,j

]
τJ
(
x1(t̃)

)
kvφ,jM kφ̇max

. (B.3.34)

Notice that if on the right-hand side of (B.3.34) we set x1(t̃) to x, the re-
sulting expression becomes a continuous function of x which is de�ned on the
set Dkφ\{0}. Furthermore, for each boundary point φb of this set, i.e. for
φb ∈ {−kφmax, 0, kφmax}, the limit of the function as x approaches φb exists
and is �nite6. Clearly, since λ1 is a continuous function λ1(t) will be equal to

6This directly follows from the de�nition of the function C and its properties, see (5.2.23),
(5.2.27) and (5.2.30).
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the limit limD̄kj3t̃→t λ1(t̃). It follows then from the equality in (B.3.34), the

properties of its right-hand side just discussed and the continuity of x1, that
this limit is equal to the limit on the right-hand side of (B.3.33) as desired.

Proof of Prop. 10. Let Λ, i, k, kErel, j, t, φ and Sφb all satisfy the hypotheses of
the proposition. We will only prove the part of the proposition which gives a
su�cient and necessary condition for tS,kj to be a switching time and which
further provides the de�ection value attained at such a time. The remaining
part of the proposition can be proved very similarly and is omitted for brevity7.

Let us �rst assume that tS,kj is the k'th switching time. By de�nition, we
have then k > 0, x1(tS,kj ) = kx1 and sgn(φ − kx1) = kvφ,j . We will next
show that kx1 is an element of Sφ. First of all, notice that |kx1| ≤ kφmax
always holds. Furthermore, by Prop. 8 the �rst costate λ1 is zero at tS,kj .
Consequently, applying Lemma 47 and using the fact that limDkφ\{0}3x→s

s
τJ (s)

is positive for each s ∈ [−kφmax, kφmax], we can arrive at the following relation:

lim
Dkφ\{0}3x→kx1

[
kη0,j − λaC(x, kφmax)

]
x = 0. (B.3.35)

With (B.3.35) we can �nally conclude that kx1 ∈ Sφ.
Conversely, assume that k > 0 and that there exists a φb ∈ Sφb such that

sgn(φ−φb) = kvφ,j . By contradiction, assume further that tS,kj is not a switch-
ing time. Then, λ1(t̃) must be non-zero for each t̃ ∈ [tS,kj , t] and x1(tS,kj ) must
be equal to −kvφ,j kφmax. Moreover, since we have |φb| ≤ kφmax and since
x1|[tS,kj ,t] is a strictly monotone and continuous function, there must exist a
time tb ∈ [tS,kj , t) such that x1(tb) = φb. This, however, implies according to
(5.2.24) and Lemma 47 that λ1(tb) must be equal to zero and thus leads to a
contradiction.

To conclude the proof, we need to now show that (5.2.25) holds if tS,kj is
a switching time. For this, let us �rst note that λ1 is always non-zero in Dkj .
Consequently, following the arguments we used to derive (B.3.35) we obtain the
following inequality which holds at each t̃ ∈ Dkj :

lim
Dkφ\{0}3x→x1(t̃)

[
kη0,j − λaC(x, kφmax)

]
x 6= 0. (B.3.36)

Assuming from now on that tS,kj is a switching time, recall that in this case kx1

is an element of Sφ. If now kvφ,j = −1, the non-empty open interval (φ, kx1)
will be a subset of the image of x1|Dkj . According to (5.2.24) and (B.3.36),
kx1 ∈ Sφb will then be the minimum of the set {φb ∈ Sφb |φb > φ}. Similarly,
if kvφ,j = 1 the non-empty open interval (kx1, φ) will be a subset of the image
of x1|Dkj , and

kx1 will be the maximum of {φb ∈ Sφb |φb < φ}. This proves
(5.2.25) as desired.

7Notice that the �rst costate is equal to zero both at the switching times and at the terminal
time, see (5.2.5) and Prop. 8.
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B.3.3 Extremals for the LVMP

In this part of the appendix, we will �rst state three straight-forward lemmas
and one corollary which are all related to extremal lifts for the LVMP. The
lemmas follow mainly from the linearity of the costate dynamics, the fact that
the system's admissible trajectories can always be constrained to a compact set
and are uniquely determined by their control and initial state, see Prop. 5 and
Lemma 43, and �nally from the properties of the zeros of the �rst costate, see
Prop. 44. They have been already used in our discussions in Sec. 5.3 and will
also be used when proving Prop. 13.

Lemma 48. Let Λ = (x, u,λ, λa) be a four-tuple such that (x, u) is an ad-
missible controlled trajectory de�ned on D = [0, tf ], λ : D → (R2)∗ is the
unique solution to (5.2.1) with the initial condition λ0 ∈ (R2)∗\{0} and λa =
−λ0f (x0, u(0)). Moreover, assume that the Minimum Condition (5.2.2) is sat-
is�ed. Then, u is a switching control. Moreover, for each scalar κs the pair
(x̃, ũ) = (sgn(κs)x, sgn(κs)u) is an admissible controlled trajectory, λ̃ = κsλ
solves the di�erential equation (5.2.1) with λ̃0 = κsλ0 and for each t ∈ D we
have

H(x̃(t), ũ(t), λ̃(t)) = min
v∈U

H(x̃(t), v, λ̃(t)) = −|κs|λa.

Lemma 49. Let x0 ∈ R2, λ0 ∈ (R2)∗\{0} be given and introduce the following
three variables:

v0 =

{
θ̇max sgn(λ20) λ10 = 0

−θ̇max sgn(λ10) λ10 6= 0
,

ϕmax = E−1
pot (Ekin(v0 − x20) + Epot(x10)) ,

and

Ωmin = min
[0,ϕmax]

√
KJ(φ)

M
.

Then, there exists a unique four-tuple Λ = (x, u,λ, λa) such that the following
three conditions hold:

(1) (x, u) is an admissible controlled trajectory which starts from x0 and is
de�ned on D = [0, tf ].

(2) λ : D → (R2)∗ solves (5.2.1), starts from λ0, satis�es λ1(t) 6= 0 for each
t ∈ (0, tf ) and terminates at λf =

(
0 λ2f

)
∈ (R2)∗\{0}.

(3) For each t ∈ D, we have

H(x(t), u(t),λ(t)) = min
v∈U

H(x(t), v,λ(t)) = λ0f (x0, v0) .

Moreover, we have the following upper bound on the terminal time tf :

tf ≤
2π

Ωmin
.
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Lemma 50. For each tf > 0,x0 ∈ R2 and λ0 ∈ (R2)∗\{0}, there exists a
unique four-tuple Λ = (x, u,λ, λa) for which the following three conditions hold:

(1) (x, u) is an admissible controlled trajectory which starts from x0 and is
de�ned on D = [0, tf ].

(2) λ : D → (R2)∗ solves (5.2.1) and starts from λ0.

(3) For each t ∈ D, we have

H(x(t), u(t),λ(t)) = min
v∈U

H(x(t), v,λ(t)) = −λa,

with
λa = −λ0f (x0, u0) .

Similarly, for each i ≥ 0, x0 ∈ R2 and λ0 ∈ (R2)∗\{0} there exists a unique
four-tuple Λ = (x, u,λ, λa) for which the three conditions from above hold with
the additional conditions that u switches i times and λ1(tf ) = 0.

Corollary 51. For each i ≥ 0 and λ0 ∈ (R2)∗\{0}, for which the conditions
(5.3.1)-(5.3.2) and (5.3.4)-(5.3.5) are satis�ed, there exists a unique extremal
lift Λ = (x, u,λ, λa) for the LVMP such that λ starts from λ0 and the control
u switches i times.

Having clari�ed the properties of extremal lifts regarding their dependence
on the initial costate, the �nal time and the switching number of their controls,
we will next provide the proofs of Prop. 11-15.

Abnormal Extremal Lifts

Proof of Prop. 11. Let (x, u) satisfy the hypothesis of the proposition and as-
sume �rst that (x, u) is an abnormal extremal. Then, there exists an abnormal
extremal lift Λ = (x, u,λ, λa) containing this extremal with λ10 = λa = 0 and
λ20 6= 0, see (5.3.1)-(5.3.2). Moreover, by Prop. 8 the control u is a switching
control with i ≥ 0 switchings and according to (5.3.3) the initial control is given
by 0u = (−1)iθ̇max. Our discussion in Sec. 5.3.1 already shows that u will solve
the EMP if i = 0. We want to next show that u will also solve the EMP if i > 0.
For this, we will use complete induction to show that for each positive integer i
and k ∈ Si the following relations always hold:

kErel > 0 ∧ kx1 = k+1x1 = 0, (B.3.37)

kη0,0

λ20
=

kvφ,0
sgn(λ20)

= (−1)k, (B.3.38)

tS,k+1 = tmin(k + 1), (B.3.39)

and

(∀t ∈ (tS,k, tS,k+1))

[
u(t)

θ̇max
= sgn (x1(t)) 6= 0

]
. (B.3.40)



APPENDIX B. PROOFS 191

Let i > 0 be �xed. Since the truth of (B.3.37)-(B.3.40) for k = 0 has already
been established in the beginning of Sec. 5.3.1, it is su�cient to show the
inductive step. Let k̄ ∈ Si−1 and assume that (B.3.37)-(B.3.40) hold for each
k ∈ Sk̄. According to Table 5.2a, (5.2.4), (5.2.17) and (5.2.20) we then have
mk̄ = 1, k̄vφ,1 = −k̄vφ,0 and k̄η0,1 = −k̄η0,0. Moreover, by applying Prop. 9
and using (B.3.37)-(B.3.38) we can �nd the following equality for the costate λ
at tS,k̄+1:

k̄+1λ = (−1)k̄+1
(
0 λ20

)
. (B.3.41)

In addition, if we use x̃ to denote x|[0,tmin(k̄+1)] and ũ to denote the continuous
extension of u|[0,tmin(k̄+1)) to the interval [0, tmin(k̄ + 1)], the pair (x̃, ũ) will
be an admissible controlled trajectory which according to (B.3.39) will satisfy
the hypothesis of Lemma 40. Therefore, using (B.2.3) we can also arrive at the
following condition for the state x at tS,k̄+1 = tmin(k̄ + 1):

k̄+1x = (−1)k̄+i2(k̄ + 1)

(
0

θ̇max

)
. (B.3.42)

According to (5.3.3), this last equality implies that we have

lim
t→t−

S,k̄+1

ẋ1(t) = (−1)i+k̄+1(2k̄ + 1)θ̇max, (B.3.43)

and
k̄+1ẋ1 = k+1φ̇max = (−1)i+k̄+1(2k̄ + 3)θ̇max. (B.3.44)

Since k̄ ≥ 0, both terms above are non-zero and share the same sign. Conse-
quently, we have

k̄+1Erel > 0, (B.3.45)

and
k̄+1vφ,0
sgn(λ20)

=
k̄+1η0,0

λ20
= (−1)k̄+1, (B.3.46)

where we have also used (B.3.38), Prop. 9 and (B.3.41)-(B.3.42). Since k̄+1Erel
is positive, we can now use, as above, Table 5.2a, (5.2.4), (5.2.17) and (5.2.20)
to conclude that we have mk̄+1 = 1, k̄+1vφ,1 = −k̄+1vφ,0,

k̄+1η0,1 = −k̄+1η0,0

and
k̄+2x1 = 0. (B.3.47)

Moreover, according to (B.3.39) and (B.3.44) we can additionally arrive at the
following equality:

tS,k̄+2 = tmin(k̄ + 2). (B.3.48)

Note that (B.3.42) and (B.3.45)-(B.3.48) show that the relations (B.3.37)-(B.3.39)
all hold for k = k̄+ 1. Furthermore, if we evaluate (5.2.22) in Dk̄+10

and Dk̄+11

using the derived values for k̄+1η0,0,
k̄+1η0,1,

k̄+1vφ,0 and k̄+1vφ,1 we can see that
(B.3.40) also holds for k = k̄+1 since both u and the sign of x1 remains constant
in (tS,k̄+1, tS,k̄+1). This �nally proves the inductive step. Since our choice for i
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was arbitrary, we can now see that (x, u) will always satisfy the three conditions
(4.2.6), (4.2.7) and (4.2.9) regardless of the value of i > 0. According to Prop.
3-4 this means that the control u always solves the EMP.

Conversely, assume now that the control u in the given admissible controlled
trajectory (x, u) is a switching control with i ≥ 0 switchings, solves the EMP and
satis�es 0u = (−1)iθ̇max. By Prop. 3-4 and Lemma 40, we then know that both
(B.2.1) and (B.2.3) hold8 for each k ∈ Si+1\{0}. Consequently, for each k ∈ Si
we have mk = 1 and kvφ,1 = −kvφ,0 = (−1)i+k+1. Let λ : D → (R2)∗ denote
now a solution of (5.2.1) such that λ10 = 0, λ20 ∈ R and sgn(λ20) = (−1)i.
Since the relative energy along x is always positive, we can make use of Prop. 9
to construct this costate λ as discussed in Sec. 5.2.2. In particular, noting that
kx1 is equal to zero for each k ∈ Si we can use Prop. 9, (5.2.17), (5.2.20) and
the principle of mathematical induction to show that we have9

(∀k ∈ Si)
[
kηc = 0, kη0,1 = −kη0,0 = (−1)k+1λ20

]
, (B.3.49)

and
(∀k ∈ Si+1)

[
kλ = (−1)k(0, λ20)

]
. (B.3.50)

With (B.3.49)-(B.3.50) we can now easily see that for the 4-tuple Λ = (x, u,λ, λa)
with λa = 0 all the three conditions (5.2.1), (5.2.4) and (5.2.5) are satis-
�ed. Moreover, the condition (5.2.2) is satis�ed as well. To see this, let k
be an arbitrary element of Si and let j ∈ Smk . Substituting the values for
kvφ,j and kη0,j into the ratio on the left hand side of (5.2.22) and noting that
sgn(x1(t)) = kvφ,0 holds for each t ∈ Dkj , we can then see that this expres-

sion is equal to (−1)i+k =
ku
θ̇max

. That is the equality in (5.2.22) holds at each
t ∈ Dkj . Since our choice for k and j was arbitrary, it follows then from the
continuity properties of the control u and from Prop. 9 that u indeed minimizes
the Hamiltonian function in (5.2.2) at each t ∈ D. Therefore, we can conclude
that Λ is an abnormal extremal lift and that (x, u) is an abnormal extremal.

Finally, to conclude the proof of the proposition we need to show that for an
abnormal extremal (x, u) both (5.3.8) and (5.3.9) hold for each k ∈ Si+1\{0}.
This directly follows from (B.3.39), which we have shown to hold for each k ∈ Si,
and from Lemma 40.

Proof of Prop. 12. Let Λ = (x, u,λ, λa) be an abnormal extremal such that u is
a control with i ≥ 0 switchings. It follows then from our discussion in Sec. 5.3.1
and from the proof of Prop. 11, that for each k ∈ Si we will have kErel > 0,
mk = 1, kη0,1 = −kη0,0 = (−1)k+1λ20 and kvφ,1 = −kvφ,0 = (−1)k+1 sgn(λ20)
regardless of the value of i. If we now choose an arbitrary k ∈ Si and t ∈ Dk,
t will either be an element of Dk0

∪ Dk1
or a boundary point of this union.

Consequently, using Prop. 9 and noting that we have kη0,0 ·kvφ,0 = kη0,1 ·kvφ,1 =
|λ20| we can conclude that λ(t) will be given by

λ(t) =
|λ20|
kφ̇max

(
− τJ (x1(t))

M ẋ1(t)
)
. (B.3.51)

8with 0uS,i = (−1)iθ̇max and kxS,i = kx.
9This step is omitted for brevity.
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This proves the proposition, since our choice for k ∈ Si and t ∈ Dk was arbitrary.

Parameterization of Extremals When proving Prop. 13, we will make use
of the following lemma which for a constant control strategy shows that state
and costate trajectories always depend continuously on their initial conditions.
In addition, the lemma implies that the zeros of the �rst costate depend also
continuously on these conditions when the initial costate is non-trivial.

Lemma 52. Let D = [0, tf ] and Iα ⊂ R be two given non-degenerate intervals
and v ∈ U a constant scalar. Moreover, let 0ξ : Iα → R2 and 0η : Iα → (R2)∗ be
two continuous functions and assume that 0ξ is bounded. Finally, consider the
following four conditions for the functions ξ : Iα ×D → R2 and η : Iα ×D →
(R2)∗:

(1) For each α ∈ Iα, ξ(α, .) is the unique solution to the initial value problem

∂ξ

∂t
(α, t) = f (ξ(α, t), v) , ξ(α, 0) = 0ξ(α). (B.3.52)

(2) For each α ∈ Iα, η(α, .) is the unique solution to the initial value problem

∂η

∂t
(α, t) = η(α, t)

(
0 1

−KJ (ξ1(α,t))
M 0

)
, η(α, 0) = 0η(α). (B.3.53)

(3) There exists a scalar κ ∈ {−1, 1} and an open set Uα ⊂ Iα such that for
each α ∈ Uα we have

0η(α) 6= 0, (B.3.54)

and either
sgn

(
0η1(α)

)
κ

= 1, (B.3.55)

or

sgn
(

0η1(α)
)

= 0 ∧ sgn
(

0η2(α)
)

κ
= −1. (B.3.56)

In addition, for each α ∈ Uα the set

StS (α) = {η1(α, t)|t ∈ (0, tf )}, (B.3.57)

is non-empty.

(4) The functions 0ξ and 0η are both continuously di�erentiable and the TDP
τJ is two-times continuously di�erentiable.

Then, if the conditions (1)-(2) are satis�ed ξ and η are both continuous func-
tions. In addition, if the conditions (1)-(3) are satis�ed the function tS : Uα →
(0, tf ) with

tS(α) = inf StS (α), (B.3.58)
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is continuous and we have

(∀α ∈ Uα)

[
sgn (η2 (α, tS(α)))

κ
= 1

]
. (B.3.59)

Finally, if the conditions (1), (2) and (4) are satis�ed, then ξ and η are continu-
ously di�erentiable and if all the four conditions are satis�ed tS is a continuously
di�erentiable function.

Proof. Let D, Iα, v, 0ξ, 0η satisfy the hypothesis of the proposition and de�ne

the function f̄ : R2 → R2 with f̄(x) = f(x, v) =
(
v − x2

τJ (x1)
M

)
. From our

discussions in Sec. 3.1 and 4.1, we know that for each x0 ∈ R2 there exists a
unique maximal solution x : R→ R2 to the initial value problem

ẋ(t) = f̄ (x(t)) , x(0) = x0 ∈ R2. (B.3.60)

Consequently, we can de�ne a �ow ξF : R × R2 → R2 with the condition
that for each ξ0 ∈ R2 the function ξF (., ξ0) gives the solution of (B.3.60) with
x0 = ξ0. Notice that due to our assumption on the TDP τJ being continuously
di�erentiable, the function f̄ is also continuously di�erentiable. Consequently,
both f̄ and ξF are locally Lipschitz which implies that ξF is continuous [34].

Assume �rst that the conditions (1)-(2) both hold. Based on the de�nitions
of ξ and ξF , we have then ξ(α, t) = ξF (t, 0ξ(α)) for each α ∈ Iα and t ∈ D.
Since both 0ξ and ξF are continuous, this shows that ξ is continuous. Moreover,
notice that the boundedness of 0ξ and D imply by Prop. 5 that ξ is bounded.
To show the continuity of η, let us �x an arbitrary pair (ᾱ, t̄) ∈ Iα × D and
assume that ((αk, tk))k≥1 is a sequence in Iα × D which converges to (ᾱ, t̄).
Moreover, for each k ∈ {1, 2, . . .} introduce the following initial value problem
for the continuously di�erentiable function λk : D → (R2)∗:

λ̇k(t) = λk(t)Ak(t), λk(0) = 0η(αk) ∈ (R2)∗, (B.3.61)

where Ak : D → R2×2 is the matrix-valued function given by

Ak(t) =

(
0 1

−KJ (ξ1(αk,t))
M 0

)
. (B.3.62)

Comparing the two problems (B.3.53) and (B.3.61), one can see that for each
k ≥ 1 and t ∈ D we have λk(t) = η(αk, t). In order to prove that η is continuous
at (ᾱ, t̄), we need to therefore show that the sequence (λk(tk))k≥1 converges to
η(ᾱ, t̄). This can be done by exploiting the continuous parameter dependence
of linear systems of di�erential equations as discussed in [38]. More speci�cally,
the �rst theorem there can be applied for the introduced sequence of initial
value problems in (B.3.61) since ξ,KJ and 0η are all continuous and since ξ is
bounded. This leads us then to the fact that the sequence (λk(t̄))k≥1 converges
to η(αk, t̄). Using also the fact that solutions to (B.3.61) are always continuous
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in D we then get10

lim
k→∞

‖λk(tk)− η(ᾱ, t̄)‖ ≤ lim
k→∞

‖λk(tk)− λk(t̄)‖
+ lim

k→∞
‖λk(t̄)− η(ᾱ, t̄)‖

⇒ lim
k→∞

‖λk(tk)− η(ᾱ, t̄)‖ = 0. (B.3.63)

Equation (B.3.63) shows now that η is continuous at the pair (ᾱ, t̄) ∈ Iα ×D.
Since our choice for this pair was arbitrary, we conclude that η is continuous.

Let us now assume that the conditions (1)-(3) hold with the scalar κ ∈
{−1, 1} and the sets Uα and StS . Following the proof of Prop. 44 with Ω :

D → (0,∞), t→
√

KJ (ξ1(α,t))
M , λ0 = 0η(α) and λ = η(α, .), it can then be seen

that for each α ∈ Uα the zeros of η1(α, .) will be isolated. Consequently, the
conditions (1)-(3) ensure that the function tS : Uα → (0, tf ) is well-de�ned by
the relation (B.3.58). We want to show that this function is also continuous and
that (B.3.59) holds. For this, choose an arbitrary ᾱ ∈ Uα and notice �rst that
the following relation holds by the de�nition of tS :

η1 (ᾱ, tS(ᾱ)) = 0. (B.3.64)

In the following, we will use the implicit function theorem11 in [29] together with
the continuity of η and (B.3.53) to construct an open neighborhood V 0

1 ⊂ Uα
of ᾱ and an open neighborhood V 0

2 ⊂ D of t̄S := tS(ᾱ) such that for all α̃ ∈ V 0
1

the equality
η1(α̃, t̃) = 0,

has a unique solution t̃ in V 0
2 given by the continuous function τS : V 0

1 → V 0
2

with
τS(α̃) = t̃,

and
τS(ᾱ) = tS(ᾱ).

Without loss of generality, assume that κ = 1. Then, either 0η1(ᾱ) is posi-
tive or 0η1(ᾱ) is equal to zero and the time-derivative ∂η1

∂t (ᾱ, t) is positive, see
(B.3.53) and (B.3.55)-(B.3.56). Moreover, since t̄S is the �rst time η1(ᾱ, .) is
equal to zero in (0, tf ), η1(ᾱ, .) is positive on (0, t̄S). Finally, since η(ᾱ, 0) 6= 0
it follows from (B.3.53) that (B.3.59) holds, as desired, and that the derivative
∂η1

∂t (ᾱ, t̄S) is negative. Notice that this derivative is continuous. Therefore, we
can �nd a su�ciently small εS > 0 such that ∂η1

∂t (α, t) takes negative values
for each pair (α, t) ∈ (ᾱ − εS , ᾱ + εS) × (t̄S − εS , t̄S + εS) ⊂ Uα × D. For
each α ∈ (ᾱ − εS , ᾱ + εS) the function η1(α, .) will then be strictly decreasing
on (t̄S − εS , t̄S + εS). This means that we have found an open neighborhood
V1 = (ᾱ − εS , ᾱ + εS) of ᾱ and an open neighborhood V2 = (t̄S − εS , t̄S + εS)
of t̄S such that for each α ∈ V1 the function η1(α, .) is locally one-to-one. This

10We use �‖.‖� to denote the norm in R2, see for instance [62].
11See also [27].
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shows according to Theorem 2.1 in [29] the existence of the two sets V 0
1 and V 0

2

and the continuous function τS as described above.
Using the function τS it is now possible to show that tS is continuous at

ᾱ. To see this more clearly, we will construct an open neighborhood Vᾱ ⊂ V 0
1

of ᾱ such that tS |Vᾱ = τS |Vᾱ . Notice �rst that we can use, similar to our
discussion above, the continuity of η, (B.3.53) and (B.3.55)-(B.3.56) to �nd a
su�ciently small ε0 such that η1 is positive on I0 = (ᾱ− ε0, ᾱ+ ε0)× (0, ε0] ⊂
Uα × D with the inequality ε0 < τS(α) holding for each α ∈ (ᾱ − ε0, ᾱ + ε0).
Similarly, since τS(ᾱ) = tS(ᾱ) is the �rst time η1(ᾱ, .) equals to zero in (0, tf ) it
follows from the continuity and non-triviality of η(ᾱ, .) that η2 (ᾱ, τS(ᾱ)) must
be positive, see (B.3.53). Using the continuity of KJ , ξ,η and τS , we can then
�nd a su�ciently small εf such that the continuous derivative ∂η1

∂t is negative on
If =

{
(α, t) ∈ V 0

1 ×D ||α− ᾱ| < εf , t ∈ [τS(α)− εf , τS(α)]
}
. Finally, assume

without loss of generality that we have ε0 + εf < tf and build an open cover of
the compact set {(ᾱ, t) ∈ Uα×D|t ∈ [ε0, tf −εf ]} by �rst choosing for each pair
(ᾱ, t̃) of this set an open neighborhood Ĩ = (ᾱ− ε̃, ᾱ+ ε̃)×(t̃− ε̃, t̃+ ε̃) ⊂ Uα×D,
with ε̃ > 0, such that η1 is non-zero in this neighborhood and then building the
union of the resulting neighborhoods. By extracting a �nite subcover and taking
the two sets I0 and If into account, we can then �nd a su�ciently small scalar
ε > 0 such that for each α ∈ Vᾱ = (ᾱ− ε, ᾱ+ ε) the following relation holds:

(∀t ∈ (0, τS(α))) [η1(α, t) > 0] . (B.3.65)

According to (B.3.65), we now see that for each α ∈ Vᾱ the function η1(α, .) will
be equal to zero at τS(α) for the �rst time in (0, tf ). In other words, we have
shown that tS |Vᾱ is equal to τS |Vᾱ . Since τS is continuous, this also means that
tS will be continuous at ᾱ. Finally, since our choice for ᾱ ∈ Uα was arbitrary
we conclude that tS is a continuous function.

Assume now that conditions (1)-(2) and (4) are satis�ed and consider the
following initial value problem for the continuously di�erentiable function γ :
R→ R4:

γ̇(t) = l(γ(t)), γ(0) = γ0 ∈ R4, (B.3.66)

where l : R4 → R4 is the function which at each x ∈ R4 satis�es

l(x) =


v − x2
τJ (x1)
M

τJ (x1)
M − KJ (x1)

M x4

x3

 . (B.3.67)

The existence and uniqueness of a solution γ : R→ R4 to this problem follows
from the uniqueness of solutions to the IVP's in (B.3.60)-(B.3.61). Moreover,
based on this property we can again de�ne a �ow γF : R × R4 with γF (.,γ0)
giving the solution to (B.3.66). As in this case τJ is two-times continuously dif-
ferentiable, the function l in (B.3.67) is continuously di�erentiable and therefore
also the �ow γF is continuously di�erentiable [52]. Finally, according to the def-
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initions of ξ, η and γF we have for each (α, t) ∈ Iα ×D(
ξ(α, t)
ηT (α, t)

)
= γF

(
t,

(
0ξ(α)

0ηT (α)

))
, (B.3.68)

and since both 0ξ and 0η are continuously di�erentiable this shows, as desired,
that ξ and η are also continuously di�erentiable.

Finally, assume that the conditions (1)-(4) all hold so that ξ and η are
continuously di�erentiable. We want to show that tS is also continuously di�er-
entiable. Recall that conditions (1)-(3) already ensure that tS is a continuous
function. Moreover, by its de�nition, the positiveness of KJ and the nontrivi-
ality of 0η we have the following two conditions:

η1 (α, tS(α)) = 0 ∧ ∂η1

∂t
(α, tS(α)) 6= 0,

which hold for each α ∈ Uα, see (B.3.53) and (B.3.58). Since η is continuously
di�erentiable, we can then apply the classical implicit function theorem [62] to
conclude that tS is indeed continuously di�erentiable with its derivative dtS

dα :
Uα → R given by

dtS
dα

(α) =
M

KJ (ξ1(α, tS(α)))

∂η1

∂α (α, tS(α))

η2(α, tS(α))
.

Using Lemma 52, we can now prove Prop. 13 as follows.

Proof of Prop. 13. Let us �rst note that for any extremal lift Λ = (x, u,λ, λa)
for the LVMP, the pair (−x,−u) will be an admissible controlled trajectory and
the four-tuple Λ̃ = (−x,−u,−λ, λa) will satisfy all the �rst three conditions in
Prop. 7, see Lemma 48. Moreover, using i ≥ 0 to denote the switching number
of the control u there will exist a unique extremal lift Λ̄ = (x̄, ū, λ̄, λa) for the
LVMP such that ū is a switching control with i + 1 switchings and λ̄0 = −λ0,
see Corollary 51. Finally, if tf denotes the terminal time of u it follows from
Lemma 50 that x̄ = −x|[0,tf ] and λ̄ = −λ|[0,tf ] must hold. Consequently, the
terminal time of Λ and the i + 1'th switching time of Λ̄ will be equal to each
other. Furthermore, the states reached at these times, i.e. x(tf ) and x̄(tf ), will
only di�er in their signs. Noting that our choice for Λ was arbitrary and that
the function λext0 is symmetric with respect to the origin, this implies by the
de�nition of the functions ktextS : Dα → R and kxextS : Dα → R2 in Sec. 5.3.3
that the equalities (5.3.17) and (5.3.18) hold for each k ∈ {1, 2, . . .} and α ∈ Dα.

We want to next make use of mathematical induction to show that for each
k ∈ {1, 2, . . .} the functions ktextS and kxextS are continuous and satisfy the
equalities (5.3.19)-(5.3.22).
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Base Case (k = 1) In view of Lemma 52, introduce the variables Iα =
(0, 2π], v = θ̇max and the continuous and bounded functions 0η : Iα → (R2)∗

and 0ξ : Iα → R2 given by

0η(γ) =


(
− sin(γ) − cos(γ)

)
γ ∈ (0, π](

0 1
)

γ ∈ (π, 2π]
, (B.3.69)

and
0ξ(γ) = 0,

respectively. Moreover, let D = [0, tf ] be a non-degenerate interval and ξ :
Iα×D → R2 and η : Iα×D → R2 functions de�ned by the �rst two conditions
of Lemma 52, see (B.3.52) and (B.3.53). Finally, assume that for each α ∈ Iα the
set StS (α) in (B.3.57) is non-empty which according to Lemma 49 can always
be ensured if tf is chosen su�ciently large. With the introduced variables and
functions we can now directly apply Lemma 52. More speci�cally, since the �rst
three conditions of this lemma are satis�ed with κ = −1 and Uα = (0, 2π), we
can conclude that ξ,η and tS are continuous where tS : Uα → (0, tf ) is the
function given by (B.3.58).

Let us now choose an arbitrary parameter ᾱ ∈ (0, 1) ⊂ Dα and introduce
the scalar γ̄ ∈ (0, π) with

γ̄ = atan2
(
−λext20 (ᾱ),−λext10 (ᾱ)

)
. (B.3.70)

Moreover, de�ne the functions x̄ : D̄ → R2, ū : D̄ → U and λ̄ : D̄ → (R2)∗, with
D̄ = [0, tS(γ̄)], such that for each t ∈ D̄ we have

x̄(t) = ξ(γ̄, t) ∧ ū(t) = v ∧ λ̄(t) = η(γ̄, t). (B.3.71)

Then, by setting λ̄a = v sin γ̄ > 0 we can see that the four tuple Λ̄ = (x̄, ū, λ̄, λ̄a)
satis�es the hypothesis of Lemma 48. Consequently, choosing κs = 1

v sin γ̄ as a

scaling factor we can see that Λ = (x̄, ū, κsλ̄, 1) will be an extremal lift for
the LVMP with λ0 = κsλ̄0 = λext0 (ᾱ), see (B.3.69)-(B.3.71). This implies the
following equalities for 1textS and 1xextS :

1textS (ᾱ) = tS(γ̄), (B.3.72)

and

1xextS (ᾱ) = x̄ (tS (γ̄))

= ξ (tS (γ̄) , γ̄) . (B.3.73)

Noting that our choice for ᾱ ∈ (0, 1) was arbitrary, that the relation in (B.3.70)
de�nes a continuous mapping from (0, 1) to (0, π), and �nally that both tS and
ξ are continuous, the two equalities (B.3.72) and (B.3.73) show that 1textS and
1xextS are continuous on (0, 1). More generally, since 1textS is an even function
and 1xextS an odd function, these two functions are both continuous on Dα.
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Taking the limit of the mapping described by (B.3.70) as ᾱ goes to 1− one
can see that γ̄ converges to π and thus λ̄0 to

(
0 1

)
, see (B.3.69). Noting that

this initial costate leads to an abnormal extremal it follows then from (B.3.72)-
(B.3.73) and Prop. 11 that the two equalities in (5.3.20) and (5.3.22) indeed
hold for k = 1. The fact that the two equalities in (5.3.19) and (5.3.21) also
hold for k = 1, can be seen from Table 5.3 if we set there i to zero and take
the limit of the provided expressions as λ20 goes to minus in�nity, see also the
function λext0 in Table 5.5a and 1xextS in (5.3.11).

Inductive Step (k̄ ∈ {1, 2, . . .}) Let us assume that k̄textS and k̄xextS are both
continuous and that the equalities in (5.3.19)-(5.3.22) all hold for k = k̄. Similar
to our discussion in the base case, we will make use of Lemma 52. For this,
introduce the variables Iα = (−1, 2), v = (−1)kθ̇max and the continuous and
bounded12 functions 0η : Iα → (R2)∗ and 0ξ : Iα → R2 given by

0η(α) =
(
0 (−1)k

)
, (B.3.74)

and

0ξ(α) =


limα→0+

kxextS (α) α ∈ (−1, 0]
kxextS (α) α ∈ (0, 1)

limα→1−
kxextS (α) α ∈ [1, 2)

, (B.3.75)

respectively. Moreover, let D = [0, tf ] be a non-degenerate interval and ξ :
Iα×D → R2 and η : Iα×D → R2 functions de�ned by the �rst two conditions
of Lemma 52. Finally, assume that tf is su�ciently large so that for each α ∈ Iα
the set StS (α) in (B.3.57) is non-empty. It follows then from Lemma 52, with
κ = (−1)k−1 and Uα = Iα, that ξ,η and tS are continuous with tS : Uα → (0, tf )
being the function de�ned by (B.3.58).

Let us now choose an arbitrary scalar ᾱ ∈ (0, 1) and de�ne the functions
x̄ : D̄ → R2, ū : D̄ → U and λ̄ : D̄ → (R2)∗, with D̄ = [0, tS(ᾱ)], such that for
each t ∈ D̄ we have

x̄(t) = ξ(ᾱ, t) ∧ ū(t) = v ∧ λ̄(t) = η(ᾱ, t). (B.3.76)

Then, by setting13 λ̄a = (−1)k+1 τJ(kxextS (α))
M > 0 we can see that the four tuple

Λ̄ = (x̄, ū, λ̄, λ̄a) satis�es the hypothesis of Lemma 48. Consequently, choosing
κs = M

τJ(|kxextS (α)|) as a scaling factor and using additionally Lemma 50 by

setting i,x0 and λ0 once to k̄,0 and λext0 (ᾱ) and once to 0, x̄(0), κsλ̄(0) we get
the following relations for k̄+1textS and k̄+1xextS :

k̄+1textS (ᾱ) = k̄textS (ᾱ) + tS(ᾱ), (B.3.77)

and

k̄+1xextS (ᾱ) = x̄ (tS (ᾱ))

= ξ (ᾱ, tS (ᾱ)) . (B.3.78)
12Notice that the boundedness of 0ξ follows from Prop. 3.
13Notice that the positivity of λ̄a follows from Prop. 8 and in particular (5.2.10).
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Noting that our choice for ᾱ ∈ (0, 1) was arbitrary, the two equalities (B.3.77)
and (B.3.78) show, similar to the base case, the continuity of the functions
k̄+1textS and k̄+1xextS .

Finally, since the functions tS and ξ are continuous on Iα and on Iα × D,
respectively, it follows from (B.3.77)-(B.3.78) that the limits of k̄+1textS and
k̄+1xextS as α→ 0+ and as α→ 1− exist. Moreover, these limits can be computed
by analysing the pair (x̄, λ̄) de�ned by (B.3.76) if we set ᾱ once to 0 and once to
1. Noting the relation between abnormal extremal lifts and the initial conditions
determined by (B.3.74)-(B.3.75), it follows then from Prop. 11 that all the
equalities in (5.3.19)-(5.3.22) indeed hold for k = k̄ + 1.

In order to conclude the proof of the proposition, we need to show that for
each k ∈ {1, 2, . . .} the functions ktextS and kxextS are not only continuous but
also continuously di�erentiable in case the TDP τJ is two-times continuously
di�erentiable. This can be done, as above, using Lemma 52 and mathematical
induction if we additionally note that λext0 is continuously di�erentiable, see
(5.3.11) and Table 5.5a. The proof is very similar and omitted for brevity.

We conclude this part of the appendix with the proof of Prop. 15.

Proof of Prop. 15. Let tf > 0, βext ∈ (0,∞) and assume that tf = textS (βext)
holds. Moreover, let ωmin and ωmax be given by (5.3.30) and (5.3.31), re-
spectively. Finally, let αext = (−1)i(βext − i) with i = dβexte − 1. Then, by
de�nition there exists an extremal lift Λ = (x, u,λ, λa) for the LVMP, de�ned on
D = [0, tf ], such that u has i switchings and λ0 = λext0 (αext). Now, according to
Prop. 8 the �rst costate λ1 in this lift has exactly i zeros in the interval (0, tf ).

Consequently, applying Lemma 44 with Ω : D → (0,∞), t→ Ω(t) =
√

KJ (x1(t))
M ,

we can see that the variables Ωmin and Ωmax in (B.3.5) provide a lower and
an upper bound for the integer i, see (B.3.6)-(B.3.8). The desired relation
(5.3.34) for βext follows then directly from these bounds by noting that we have
ωmin ≤ Ωmin and ωmax ≥ Ωmax due to Prop. 5.

Let us now assume that βext solves the NPP described by (5.3.24)-(5.3.26)
so that (x, u) is an optimal extremal and x2(tf ) = xext2 (βext). Then, as we
have already discussed in Sec. 5.1 it follows from Prop. 5 that the maximal
energy attained by the extremal (x, u) will be bounded above by Epot(θ̇maxtf ).

Consequently, in accordance with (5.3.35) we have xext2 (βext) <

√
2Epot(θ̇maxtf )

M .
Finally, since u solves the LVMP xext2S (βext) must be greater than or equal to
the terminal link velocity of each admissible controlled trajectory (x̄, ū) which
is de�ned on D if x̄0 = 0. Noting that the control ū : D → U with

ū(t) =


0 t

tmin(1) <
⌈

tf
tmin(1)

⌉
− 1

θ̇max
t

tmin(1) ≥
⌈

tf
tmin(1)

⌉
− 1

,

always leads to a positive velocity x̄2(tf ) > 0, see (2.1.4) and (5.3.11), we can
conclude that xext2S (βext) is positive.
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B.3.4 Resonance Energies

In this part of the appendix, we will �rst provide the proof of Prop. 16 and
then the proofs of Prop. 17-18. For the �rst proof, we will require the following
lemma which clari�es for control systems with linear TDP's the relation between
applied control strategies and the resulting inner products of state and costate
trajectories14.

Lemma 53. Let τJ be a linear TDP and (x, u) an admissible controlled trajec-
tory which is de�ned on D = [0, tf ]. Moreover, let λ : D → (R2)∗ be a continu-
ously di�erentiable function solving the di�erential equation (5.2.1). Then, for
each t ∈ D we have

λ(t)x(t)− λ0x0 =

∫ t

0

λ1(s)u(s)ds. (B.3.79)

Proof. Let τJ , (x, u) and λ satisfy the hypothesis of the lemma and let E denote
the set of times at which u is discontinuous. Then, taking the time-derivative
of the product λx and noting that the terms ∂f

∂x and ∂f
∂u are constant we obtain

the following equality which holds at each s ∈ D\E:
d(λx)

dt
(s) = λ̇(s)x(s) + λ(s)ẋ(s)

= −λ(s)
∂f

∂x
(x(s), u(s))x(s)

+ λ(s)

(
∂f

∂x
(x(s), u(s))x(s) +

∂f

∂u
(x(s), u(s))u(s)

)
= λ1(s)u(s). (B.3.80)

The relation (B.3.79) follows now directly from integrating (B.3.80) from 0 to
t.

With Lemma 53, we can now prove Prop. 16 as follows.

Proof of Prop. 16. Let τJ be a linear TDP and Λ = (x, u,λ, λa) an extremal
lift for the LVMP which is de�ned on D = [0, tf ]. Similarly, assume that (x̄, ū)
is an admissible controlled trajectory, de�ned on D̄ = [0, t̄f ] ⊂ D, such that
x̄0 = 0. Let us �rst note that due to the linearity of τJ the di�erential equation
(5.2.1) does not depend on the state trajectory. Consequently, we can apply
Lemma 53 by choosing (x̄, ū) as the admissible controlled trajectory and λ|D̄
as the solution to (5.2.1). According to (B.3.79) this leads us to the following
relations for the product λ(t̄f )x̄(t̄f ):

λ(t̄f )x̄(t̄f ) =

∫ t̄f

0

λ1(s)ū(s)ds

≥ −
∫ t̄f

0

|λ1(s)|θ̇maxds. (B.3.81)

14See also the discussion on the reachable sets of linear systems in [30].
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Since our choice for (x̄, ū) was arbitrary, (B.3.81) shows that the product
λ(t̄f )x̄f is bounded below for any trajectory x̄ of Σ which starts from the origin
and terminates at t̄f ∈ (0, tf ]. Notice now that the pair (x|D̄, ū) is an admissible
controlled trajectory containing such a trajectory if the control ū is given by
the relation (5.4.1). Moreover, by de�nition the control ū and λ1 always take
opposite signs whenever λ1 is non-zero, see (5.2.6). As the magnitude of ū is
always equal to θ̇max, it follows then from (B.3.81) that ū indeed minimizes the
cost functional J̄ in (5.4.2). The fact that ū is the unique control follows from
the fact that λ1 never remains at zero in a �nite time-interval, see the proof of
Prop. 8.

Noting that our choice for t̄f ∈ (0, tf ] was arbitrary, let us set now t̄f to tf .
Then, u = ū is the unique control minimizing the cost functional J̄ = −x̃2f , see
(5.2.5). Consequently, Λ is optimal and moreover xf belongs to the boundary of
the time-tf -reachable set ReachΣ,tf (0). Since the origin is an equilibrium point
of Σ, this also means that15 xf ∈ ∂ReachΣ,≤tf (0). We conclude the proof of the
proposition by showing that x is a time-optimal trajectory. In view of Lemma
7.1.1 in [53] this will also show that (x, u) is a boundary trajectory.

By contradiction, assume that x is not a time-optimal trajectory so that
there exists an admissible controlled trajectory (x̄, ū), as de�ned above, such
that t̄f < tf and x̄f = xf . Moreover, let λ̄ : D̄ → (R2)∗ be a solution to the
di�erential equation (5.2.1) such that λ̄f = λf . Applying then Lemma 53 and
making use of the fact that the linear di�erential equation described by (5.2.1)
is time-independent, we can obtain the following relations:

λ̄(t̄f )x̄(t̄f ) =

∫ t̄f

0

λ̄1(s)ū(s)ds

=

∫ t̄f

0

λ1(s+ tf − t̄f )ū(s)ds

≥ −θ̇max
∫ t̄f

0

|λ1(s+ tf − t̄f )|ds

= −θ̇max
∫ tf

tf−t̄f
|λ1(s)|ds

⇒ x2f > x̄2f , (B.3.82)

where for the last inequality we have again made use of the properties of the
control u as well as the fact that λ1 never remains at zero in a �nite time-
interval. Clearly, (B.3.82) contradicts the condition x̄f = xf and we conclude
that x is a time-optimal trajectory.

Proof of Prop. 17. Let (x, u) be an optimally controlled trajectory, de�ned on
D = [0, tf ], so that u minimizes the cost functional J in (2.3.1). As we have
discussed in the proof of Prop. 16 above, the terminal state xf is then an
element of ∂ReachΣ,≤tf (0). Consequently, in order to prove the proposition it
is su�cient to show that x is a time-optimal trajectory, see Lemma 7.1.1 in [53].

15Notice that we have ReachΣ,≤tf (0) = ∪t∈[0,tf ]ReachΣ,t(0).
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By contradiction assume that x is not time-optimal. There exists then a
trajectory x̄ ∈ Traj(Σ) with x̄f = xf and t̄f = T (x̄) < tf . Noting that the
origin is an equilibrium point of Σ, this implies that for each y ∈ Traj(Σ) we
have

T (y) ∈ [t̄f , tf ]⇒ y2f ≤ x2f . (B.3.83)

Without loss of generality, assume now that Λ̄ = (x̄, ū, λ̄, λ̄a) is an optimal
extremal for the LVMP. Then, according to (B.3.83) the terminal link velocity
x̄2f must be equal to x2f . Depending on the value of λ̄a, we consider next two
di�erent cases.

Case 1 (λ̄a = 1) In this case, we know from Prop. 8 and in particular (5.2.10)
that x̄1f > 0 must hold. According to (2.1.3), this means that the acceleration
˙̄x2f at the �nal time will also be positive. Consequently, by keeping the control
constant after t̄f we can always construct an admissible controlled trajectory
(x̃, ũ) with a �nal time t̃f ∈ (t̄f , tf ] and with a link velocity x̃2f > x̄2f = x2f .
This contradicts (B.3.83).

Case 2 (λ̄a = 0) In this case, we can �nd a positive integer i ≥ 1 such
that t̄f = tmin(i), see Prop. 11. Let us choose a �nal time t̃f ∈ (t̄f , tf ], with
t̃f < tmin(i+1), and let (x̃, ũ) denote the optimal extremal for the LVMP de�ned
on D̃ = [0, t̃f ]. According to (B.3.83), we have then x̃2f = x2f . Moreover,
by Prop. 11 the pair (x̃, ũ) is a normal extremal due to our choice for t̃f .
Consequently, based on our discussion for the �rst case above ˙̃x2f is positive
and this leads again to a contradiction with (B.3.83).

Having shown the existence of a contradiction for each possibility for λ̄a, we
can conclude that x is a time-optimal trajectory and that (x, u) is a boundary
trajectory.

To prove Prop. 18, i.e. the last proposition of Sec. 5.4, we will make use of
the following two lemmas.

Lemma 54. Let n ≥ 2 be a positive integer and A : R → Rn×n a matrix-
valued function with continuous entries. Moreover, for each k ∈ Sn\{0} let
kξ : R→ Rn be a continuously di�erentiable function such that we have

kξ̇(t) = A(t) kξ(t), (B.3.84)

for each t ∈ R. Similarly, let η : R → (Rn)∗be a continuously di�erentiable
function which satis�es

η̇(t) = −η(t)A(t), (B.3.85)

for each t ∈ R. Finally, let F : R → Rn×n be the matrix-valued function given
by

F (t) =
(

1ξ(t) . . . nξ(t)
)
.
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Then, for each t ∈ R we have

det
(
F (t)

)
= det

(
F (0)

)
+

∫ t

0

tr (A(s)) det
(
F (s)

)
ds, (B.3.86)

and
η(t)F (t) = η(0)F (0). (B.3.87)

Proof. Let n,A, kξ, with k ∈ Sn\{0}, η and F satisfy the hypothesis of the
proposition. Moreover, let us introduce the functions a1 : R → R, t → a1(t) =
det
(
F (t)

)
and a2 : R → (Rn)∗, t → a2(t) = η(t)F (t). Focusing �rst on the

function a1, we can use Jacobi's formula to take its time-derivative which leads
to

da1

dt
(s) = tr

(
adj (F (s))

dF

dt
(s)

)
(B.3.84)

= tr (adj (F (s))A(s)F (s))

= tr (F (s)adj (F (s))A(s))

= det (F (s)) tr (A(s)) = a1(s)tr (A(s)) ,

where s ∈ R. This shows that (B.3.86) holds.
Similarly, the truth of (B.3.87) can be shown by taking the time-derivative

of a2. Indeed, by making use of (B.3.84) and (B.3.85) we get the following
equality which holds at each t ∈ R and shows that a2 is constant:

da2

dt
(t) = η̇(t)F (t) + η(t)Ḟ (t)

= η(t)A(t)F (t) (−1 + 1)

= 0.

Lemma 55. Let i ≥ 1 be a positive integer and Iα ∈ Dα be an open interval.
Moreover, assume that for each k ∈ Si\{0} the functions ktextS and kxextS are

continuously di�erentiable on Iα. Finally, let D̊xext denote the set16

D̊xext :=
{

(α, t)
∣∣α ∈ Iαext ∧ t ∈ ∪ik=0

(
ktextS (α), k+1textS (α)

)}
.

Then, xext is continuously di�erentiable on D̊xext . Moreover, for each (α, t) ∈
Iαext ×

(
0,1 textS (α)

)
we have

∂xext

∂α
(α, t) = 0. (B.3.88)

16Notice that D̊xext contains in this lemma, in contrary to Prop. 18, also the elements of
the open set Iαext ×

(
0,1 textS (α)

)
.
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In addition, if i ≥ 2 we have for each k ∈ Si\{0} and α ∈ Iα

lim
t→ktextS (α)+

∂x

∂α
(α, t) = lim

t→ktextS (α)−

∂x

∂α
(α, t)

+
2θ̇max

d ktextS

dα (α)

(−1)sgn(α)+k+1

(
1
0

)
. (B.3.89)

Finally, for each (α, t) ∈ D̊xext we have

λext(α, t)
∂xext

∂α
(α, t) = 0. (B.3.90)

Proof. Let k ∈ Si and introduce the set kD̊xext = Iα ×
(
ktextS (α), k+1textS (α)

)
.

Notice that for any extremal lift corresponding to the pair (α, i), with α ∈ Iα,
the control will be constant on the interval

(
ktextS (α), k+1textS (α)

)
and equal

to ku = (−1)sgn(α)+kθ̇max, see Prop. 8 and Table 5.5a. Following then the
arguments used in the proof of Lemma 52 and noting that τJ , ktextS and kxextS are
all continuously di�erentiable, we can conclude that the restriction xext|kD̊xext
is continuously di�erentiable. Consequently, we can di�erentiate (5.4.3) with
respect to α which leads to

∂xext

∂α
(α, t) =

d kxextS

dα
(α)− f

(
kxextS (α), ku

) d ktextS

dα
(α)

+

∫ t

ktextS (α)

∂f

∂x

(
xext(α, s)

) ∂xext
∂α

(α, s)ds, (B.3.91)

for each (α, t) ∈ kD̊xext . Moreover, at each such pair the expression above can
also be di�erentiated with respect to time so that we have

∂

∂t

(
∂xext

∂α
(α, t)

)
=
∂f

∂x

(
xext(α, t)

) ∂xext
∂α

(α, t). (B.3.92)

Notice that since our choice for k ∈ Si was arbitrary, the two equations (B.3.91)
and (B.3.92) are valid for each (k, (α, t)) ∈ Si × kD̊xext . Moreover, noting
that the sets kD̊xext , with k ∈ Si, are all open our discussion also shows that
xext|D̊xext is continuously di�erentiable.

Assume now that k = 0 and recall that in this case we have, by de�nition,
kxextS ≡ 0 and ktextS ≡ 0. Consequently, given an arbitrary ᾱ ∈ Iα we have
according to (B.3.91)

lim
t→0+

∂xext

∂α
(ᾱ, t) = 0,

and this in turn implies by the linear di�erential equation (B.3.92) the relation

(
∀t ∈

(
0,1 textS (ᾱ)

)) [∂xext
∂α

(ᾱ, t) = 0

]
. (B.3.93)
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Since our choice for ᾱ ∈ Iα was arbitrary, we can conclude by (B.3.93) that
(B.3.88) indeed holds.

Let us now assume that i ≥ 2 and choose an arbitrary k ∈ Si\{0}. Moreover,
let ᾱ be again an arbitrary element of Iα. According to (B.3.91) the limit of
∂xext

∂α (ᾱ, t) as t approaches ktextS (ᾱ) from the right will then be given by

lim
t→ktextS (ᾱ)+

∂xext

∂α
(ᾱ, t) =

d kxextS

dα
(ᾱ)

− f
(
kxextS (ᾱ), ku

) d ktextS

dα
(ᾱ). (B.3.94)

To take the limit of ∂x
ext

∂α (ᾱ, t) as t approaches ktextS (ᾱ) from the left, let us �rst
note that according to (5.4.3) we have

xext(α, t) = kxextS (α)−
∫ ktextS (α)

t

f(xext(α, s), k−1u)ds,

for each (α, t) ∈ kD̊xext . Consequently, taking the derivative of this expression
with respect to α we can, as above, use the resulting expression to compute the
limit of ∂x

ext

∂α (ᾱ, t) as t approaches ktextS (ᾱ) from the left. This leads to

lim
t→ktextS (ᾱ)−

∂xext

∂α
(ᾱ, t) =

d kxextS

dα
(ᾱ)

− f
(
kxextS (ᾱ), k−1u

) d ktextS

dα
(ᾱ). (B.3.95)

The equality in (B.3.89) follows now from (B.3.94), (B.3.95) and the equality
ku = −k−1u.

To conclude the proof we want to show that (B.3.90) holds for each (α, t) ∈
D̊xext . For this, choose �rst an arbitrary ᾱ ∈ Iα and de�ne the continuous
matrix-valued function Ā(t) :

(
0,i+1 textS (ᾱ)

)
→ R2×2, t→ Ā(t) = ∂f

∂x (xext(ᾱ, t)).

Notice that according to (B.3.92) ∂xext

∂α (ᾱ, .) satis�es the di�erential equation
(B.3.84), with A = Ā, at each t ∈ ∪i+1

k=0

(
ktextS (ᾱ),k+1 textS (ᾱ)

)
. Similarly, ac-

cording to (5.4.4) λext(ᾱ, .) satis�es the di�erential equation (B.3.85), again
with A = Ā, at each t ∈

(
0,i+1 textS (ᾱ)

)
. Consequently, by Lemma 54 we con-

clude that for each k ∈ Si the product λext(ᾱ, t)∂x
ext

∂α (ᾱ, t) remains constant on(
ktextS (ᾱ),k+1 textS (ᾱ)

)
. In other words, for each k ∈ Si there exists a scalar sk

such that(
∀t ∈

(
ktextS (ᾱ),k+1 textS (ᾱ)

)) [
λext(ᾱ, t)

∂xext

∂α
(ᾱ, t) = sk

]
. (B.3.96)

We next use mathematical induction to show that sk is equal to zero for each
k ∈ Si.

Base Case (k̄ = 0) Choose an arbitrary time t̄ in the interval
(
0,k textS (ᾱ)

)
.

Then, by (B.3.93) and (B.3.96) we have s0 = λext(ᾱ, t̄)∂x
ext

∂α (ᾱ, t̄) = 0.
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Inductive Step (k̄ ∈ Si−1) Let k̄ ∈ Si−1 and assume that sk̄ = 0. Then,
taking the limit of the product in (B.3.96), with k = k̄, as t goes to k̄+1textS (ᾱ)
from the left we get the following expression for sk̄:

sk̄ = lim
t→k̄+1textS (ᾱ)−

λext(ᾱ, t)
∂xext

∂α
(ᾱ, t)

= λext
(
ᾱ, k̄+1textS (ᾱ)

)
lim

t→k̄+1textS (ᾱ)−

∂xext

∂α
(ᾱ, t)

= λext2

(
ᾱ, k̄+1textS (ᾱ)

)
lim

t→k̄+1textS (ᾱ)−

∂xext2

∂α
(ᾱ, t), (B.3.97)

where we have used the fact that λext(ᾱ, .) is continuous and that the �rst
costate λext1 (ᾱ, .) is equal to zero at the switching time k̄+1textS (ᾱ), see Prop.
7-8. Similarly, taking the limit of the product in (B.3.96), with k = k̄ + 1, as t
goes to k̄+1textS (ᾱ) from the right we get

sk̄+1 = lim
t→k̄+1textS (ᾱ)+

λext(ᾱ, t)
∂xext

∂α
(ᾱ, t)

= λext
(
ᾱ, k̄+1textS (ᾱ)

)
lim

t→k̄+1textS (ᾱ)+

∂xext

∂α
(ᾱ, t)

= λext2

(
ᾱ, k̄+1textS (ᾱ)

)
lim

t→k̄+1textS (ᾱ)+

∂xext2

∂α
(ᾱ, t),

and this shows together with (B.3.97) that s̄k + 1 is exactly equal to s̄k since
according to (B.3.89) we have

lim
t→k̄+1textS (ᾱ)−

∂xext2

∂α
(ᾱ, t) = lim

t→k̄+1textS (ᾱ)+

∂xext2

∂α
(ᾱ, t).

Noting that our choice for ᾱ ∈ Iα was arbitrary, we �nally conclude, as
desired, that the relation in (B.3.90) is true for each (α, t) ∈ D̊xext .

We conclude this part of the appendix by showing how to make use of Lemma
54-55 to prove Prop. 18.

Proof of Prop. 18. Let i ≥ 1, Iαext ⊂ Dα, the functions ktextS and kxextS , with
k ∈ Si\{0}, and xext satisfy the hypotheses of the proposition. By Lemma 55,
xext is then continuously di�erentiable on the open set D̊xext . Moreover, we
can de�ne the matrix-valued function F : D̊xext → R2×2 with

F (α, t) =
(
∂xext

∂α (α, t) ∂xext

∂t (α, t)
)
, (B.3.98)

such that F maps each element of D̊xext to the Jacobi matrix of xext at this
element. We want to next show that the determinant of this matrix is always
positive.
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Let (ᾱ, t̄) be an arbitrary element of D̊xext . Then, there must exist an
integer k ∈ Si\{0} such that t̄ ∈

(
ktextS (ᾱ), k+1textS (ᾱ)

)
. Moreover, noting that

the control on this interval is constant we can, according to (2.1.4) and (B.3.91),
di�erentiate each term in F (ᾱ, .) with respect to time which leads to

∂F

∂t
(ᾱ, t) =

∂f

∂x

(
xext(ᾱ, t)

)
F (ᾱ, t), (B.3.99)

for each t ∈
(
ktextS (ᾱ), k+1textS (ᾱ)

)
. Noting now that the trace of ∂f∂x is equal to

zero, we can use Lemma 54 to determine the determinant of F (ᾱ, t̄) as follows:

det (F (ᾱ, t̄)) = lim
t→ktext+S (ᾱ)

det (F (ᾱ, t)) (B.3.100)

(B.3.91)
= det

(
d kxextS

dα (ᾱ) f(kxextS (ᾱ), ku)

)
(3.1.4)

=
∂EMSS

∂x

(
kxext1S (ᾱ), kxext2S (ᾱ)− ku

) dkxextS

dα
(ᾱ)

(5.4.13)⇒ det (F (ᾱ, t̄)) > 0. (B.3.101)

Noting that our choice for (ᾱ, t̄) ∈ D̊xext was arbitrary we conclude that (5.4.14)
indeed holds.

To conclude the proof of the proposition, let us �rst note that there exists
an inverse of the restriction xext to Dxext , with the set Dtextf

as its range, since

xext is a surjective function by assumption. Using µext : Dtextf
→ Dxext ,x →

µext(x) =
(
µext1 µext2

)T
to denote this inverse, we clearly have

(∀(α, t) ∈ Dxext)
[
µext

(
xext(α, t)

)
=

(
α
t

)]
, (B.3.102)

and the desired function textf in the proposition is uniquely determined by µext2 .
Now, it follows from (5.4.14) and the inverse function theorem [62] that the
restriction of textf to D̊xext is continuously di�erentiable and satis�es, in accor-
dance with (B.3.102), the equality

∂textf

∂x

(
xext(α, t)

)
F (α, t) =

(
0 1

)
,

for each (α, t) ∈ D̊xext . In addition, notice that by the Hamiltonian condition
in (5.2.4) and the condition (B.3.90) in Lemma 55, we similarly have

λext(α, t)F (α, t) =
(
0 −1

)
.

According to (5.4.14), this shows that (5.4.16)-(5.4.17) must hold for each
(α, t) ∈ Dxext\D̊xext . The fact that the relation (5.4.17) also holds at points
(α, t) ∈ Dxext\D̊xext follows from the continuity of λext, as one can show using
Lemma 52, and the fact that the determinant of F (α, t) is positive for each
(α, t) ∈ D̊xext , see also Theorem 6.1.1 in [53]. This �nally shows that textf is
continuously di�erentiable, as desired.
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B.4 Maximal Link Velocity

B.4.1 Final Time Dependence

In this �rst part of the appendix, we will provide the proofs of the two propo-
sitions from Sec. 6.1.

Proof of Prop. 19. Let (x, u) be an optimally controlled trajectory with the
�nal time tf > 0. Moreover, let q̇lb : (0,∞) → R and q̇ub : (0,∞) → R be
the two functions de�ned by (6.1.5) and (6.1.6), respectively. It follows then
from the continuity of x and Epot that both q̇lb and q̇ub are continuous on the
intervals (0, tf ) and (tf ,∞). Moreover, since the limits of q̇lb and q̇ub, as t goes
to tf , are both equal to x2(tf ) these two functions are continuous at tf , as well.
Consequently, we conclude that q̇lb and q̇ub are continuous.

Evaluating now q̇lb and q̇ub at tf and noting that x is an optimal trajectory,
we can directly see that we have q̇lb(tf ) = q̇ub(tf ) = q̇max(tf ). This shows that
the inequalities in (6.1.7) hold with equality if t equals to tf . Moreover, notice
that our discussion in the beginning of Sec. 6.1 and in particular the relations
(6.1.3)-(6.1.4) directly imply that q̇lb(t) ≤ q̇max(t) holds for each t ∈ (0,∞).
In order to prove the proposition, it is thus su�cient to show the truth of the
following statement:

(∀t ∈ (0, tf ) ∪ (tf ,∞)) [q̇max(t) ≤ q̇ub(t)] . (B.4.1)

In the remaining of the proof, we will show that the statement above is indeed
true.

Let t̄f be an arbitrary element of (0, tf ) ∪ (tf ,∞). Then, by Prop. 6 there
exists an optimally controlled trajectory (x̄, ū) with the �nal time t̄f such that
x̄2(t̄f ) equals to q̇max(t̄f ). In order to prove (B.4.1), we need to show that
q̇max(t̄f ) is less than or equal to q̇ub(t̄f ). For this, we will investigate two
di�erent cases depending on the value of t̄f .

Case 1 (t̄f ∈ (0, tf )) Notice that the relation (6.1.3) holds for any optimally
controlled trajectory and thus also for (x̄, ū). Consequently, we have the follow-
ing condition for q̇max:

(∀t ∈ (t̄f ,∞)) [x̄2(t̄f ) = q̇max(t̄f ) ≤ q̇max(t)] .

Since in this �rst case tf is greater than t̄f , the condition above implies then,
as desired, that q̇max(t̄f ) is less than or equal to q̇ub(t̄f ) = q̇max(tf ).

Case 2 (t̄f ∈ (tf ,∞)) Due to the optimality of (x̄, ū) and the system dynamics
in (2.1.4), the following equality holds for the value of q̇max at t̄f :

q̇max(t̄f ) = x̄2(t̄f )

= x̄2(tf ) +

∫ t̄f

tf

τJ (x̄1(s))

M
ds. (B.4.2)
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Now, based on the de�nition of q̇max it is clear that x̄2(tf ) ≤ q̇max(tf ) = x2(tf )
must hold. Moreover, since x̄ starts from the origin it follows from Prop. 5
that we will have x̄1(t) < θ̇maxt for each t ∈ (0, t̄f ]. Using these two inequalities
together with (B.4.2) and the fact that t̄f is greater than tf , we arrive then at
the following relation for q̇max:

q̇max(t̄f ) < x2(tf ) +

∫ t̄f

tf

τJ(θ̇maxs)

M
ds

= x2(tf ) +

∫ θ̇max t̄f

θ̇maxtf

τJ(s)

Mθ̇max
ds

(6.1.6)⇒ q̇max(t̄f ) < q̇ub(t̄f ).

With the relation above, we �nally conclude that in this second case the in-
equality in (B.4.1) holds for t = t̄f , as well.

Proof of Prop. 20. We will �rst show that q̇max is a continuous function. For
this, let tf be an arbitrary positive scalar. By Prop. 6, there exists then
an optimally controlled trajectory (x, u) de�ned on D = [0, tf ] with x2(tf ) =
q̇max(tf ). Moreover, using Prop. 19 and in particular (6.1.5)-(6.1.6) we can
construct two continuous functions, q̇lb and q̇ub, for which (6.1.7) will hold.
From the continuity of these functions and the fact that they are both equal to
q̇max(tf ) at tf , it follows that for each scalar ε > 0 there exists a δ ∈ (0, tf ) such
that for each t ∈ Btf (δ) := (tf − δ, tf + δ) we have

|q̇lb(t)− q̇max(tf )| < ε

2
∧ |q̇ub(t)− q̇lb(t)| <

ε

2
.

Looking now at the di�erence |q̇max(t)− q̇max(tf )|, we have for each t in Btf (δ)

|q̇max(t)− q̇max(tf )| ≤ |q̇max(t)− q̇lb(t)|+
|q̇lb(t)− q̇max(tf )|

(6.1.7)

≤ |q̇ub(t)− q̇lb(t)|+
|q̇lb(t)− q̇max(tf )|

< ε.

Since the choice of ε was arbitrary, the inequality above proves the continuity of
q̇max at tf . Similarly, since the choice of tf was also arbitrary we conclude that
q̇max is a continuous function. We next prove that q̇max is a strictly increasing
function.

Let tf and t̄f be two arbitrary scalars with t̄f > tf > 0. Moreover, let (x, u)
as above an optimally controlled trajectory de�ned on D = [0, tf ] and q̇lb the
continuous lower bound de�ned by (6.1.5). Evaluating the inequality (6.1.7) at
t = t̄f , we can then arrive directly at the following condition for q̇max:

q̇ub(t̄f ) = q̇max(tf ) ≤ q̇max(t̄f ).
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Since our choice for tf and t̄f was arbitrary, the inequality above shows that
q̇max is an increasing function. To prove now that q̇max is a strictly increasing
function, assume by contradiction that there exist two scalars tf , t̄f with t̄f >
tf > 0 and q̇max(t̄f ) = q̇max(tf ). Since q̇max is an increasing function, q̇max
must then be constant in the interval [tf , t̄f ], i.e. we must have

(∀t ∈ [tf , t̄f ]) [q̇max(t) = q̇max(tf )] . (B.4.3)

Notice that by Prop. 6 and Prop. 7 there exists an extremal lift Λ = (x, u,λ, λa)
for the LVMP such that (x, u) is an optimally controlled trajectory de�ned on
D = [0, tf ]. In addition, according to (5.2.3)-(5.2.5) the following equality will
hold for the terminal spring de�ection x1f :

τJ(x1f )

M
=
λa
v
, (B.4.4)

where v is a positive scalar and λa ∈ {0, 1}. In the following, we investigate two
cases depending on the value of λa and show that in each case (B.4.3) leads to
a contradiction.

Case 1 (λa = 1) In this case, the terminal de�ection x1f will be positive due
to (B.4.4). De�ning now a control ū : [0, t̄f ]→ U with

ū(t) =

{
u(t) t < tf

u(tf ) t ≥ tf
,

we can see that the trajectory x̄ which starts from the origin and corresponds
to ū will coincide with the optimal trajectory x in the interval D. Moreover,
the time-derivative of x̄2 at t = tf will be positive since it equals to τJ (x1f )

M , see
(2.1.4). Consequently, we can �nd a time t̃f ∈ (tf , t̄f ] at which x̄2(t̃f ) will be
greater than q̇max(tf ). Since q̇max is an increasing function, this implies that
q̇max(t̄f ) > q̇max(tf ) will hold in contrary to (B.4.3).

Case 2 (λa = 0) As we have shown in Prop. 11, the equality λa = 0 implies
that there exists an integer i ≥ 0 such that tf is given by tmin(i+ 1). Since the
time tmin(i+2) will always be greater than tmin(i+1), see (4.2.11)-(4.2.12), we
can then �nd a time t̃f ∈ (tf , t̄f ) which is smaller than tmin(i + 2). Moreover,
by Prop. 6 and Prop. 7 there will again exist an extremal lift Λ̃ = (x̃, ũ, λ̃, λ̃a)
containing an optimally controlled trajectory (x̃, ũ) de�ned on D̃ = [0, t̃f ]. For
this extremal lift, however, λ̃a will be equal to 1 since t̃f ∈ (tmin(i), tmin(i+ 1)).
Following the arguments we used for the �rst case above, we can then see that
q̇max(t̄f ) must be greater than q̇max(t̃f ) ≥ q̇max(tf ) contradicting (B.4.3).

Our discussion of the two cases above shows that (B.4.3) can not be true.
Consequently, q̇max(t̄f ) must be greater than q̇max(tf ). Since our choice for
t̄f and tf was arbitrary, we �nally conclude that q̇max is a strictly increasing
function.
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To conclude the proof of the proposition, it remains to show that (6.1.8) is
true. Focusing �rst at the limit of q̇max as t approaches 0 from the right, let us
�rst note that the following relation holds for q̇max according to Prop. 15:

∀t ∈ (0,∞)

0 < q̇max(t) <

√
2Epot(θ̇maxt)

M

 . (B.4.5)

Since the upper bound for q̇max above, i.e.
√

2Epot(θ̇maxt)
M , goes to zero as

t approaches zero from the right, we can conclude that limt→0+ q̇max(t) = 0
indeed holds.

Focusing now on the second limit, we know from Prop. 11 that for each
non-negative integer i there exists an abnormal extremal (x, u) with the �nal
link velocity x2(tf ) = 2(i + 1)θ̇max. This means that the function q̇max can
never be bounded above by a positive constant. Since q̇max is also an increasing
function, we conclude that q̇max(t) must go to in�nity as x2 goes to in�nity.

B.4.2 Parameter Dependence

In this second part, we will provide the proofs for Prop. 21 and Prop. 23-25
which are stated in Sec. 6.2. Moreover, we will provide two lemmas and a
corollary which are made use of in these proofs as well as in our discussions in
that section. We start with the lemma which will be essential in the proofs of
Prop. 21 and Prop. 25.

Lemma 56. Let Cdim > 0 be an arbitrary scalar. Moreover, let Σ be the control
system corresponding to p = (M, τJ , θ̇max) ∈ PΣ and Σ̂ the system corresponding
to p̂ = (1, τ̂J , 1) ∈ PΣ such that the following relation holds between their TDP's:

(∀φ ∈ R)

τ̂J(φ) =
τJ

(
θ̇max
Cdim

φ
)

MCdimθ̇max

 . (B.4.6)

In addition, let u : [0, tf ]→ U and û : [0, Cdimtf ]→ Û = [−1, 1] be two piecewise
continuous controls satisfying

(∀t ∈ [0, tf ])
[
u(t) = θ̇maxû(Cdimt)

]
. (B.4.7)

Finally, let x be a trajectory of the control system Σ which corresponds to the
control u and x̂ a trajectory of Σ̂ corresponding to û. Then, we have

x0 =

(
θ̇max
Cdim

0

0 θ̇max

)
x̂0 ⇔

(∀t ∈ [0, tf ])

[
x(t) =

(
θ̇max
Cdim

0

0 θ̇max

)
x̂(Cdimt)

]
. (B.4.8)
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Proof. Let Cdim,p, p̂,Σ, Σ̂, u, û,x and x̂ all satisfy the hypotheses of the lemma.
Assume �rst that x0 and x̂0 are related to each other as stated on the left hand
side of (B.4.8). We want to show that in this case the right-hand side of (B.4.8)
is true. For this, let us �rst introduce the function y : [0, tf ]→ R2 de�ned by

(∀t ∈ [0, tf ])

[
y(t) =

(
θ̇max
Cdim

0

0 θ̇max

)
x̂(Cdimt)

]
. (B.4.9)

Since x̂ is a trajectory of Σ̂, the function y will be di�erentiable everywhere
except at a �nite number of times where û has a discontinuity. Denoting the
set of these times as E and using the state dynamics in (2.1.4), we can then see
that the following relation holds at each t ∈ [0, tf ]\E:

ẏ(t) =

(
θ̇max (û(Cdimt)− x̂2(Cdimt))

Cdimθ̇maxτ̂J (x̂1(Cdimt))

)
(B.4.6)

=

(
θ̇maxû(Cdimt)− θ̇maxx̂2(Cdimt)

τJ
(
θ̇max
Cdim

x̂1(Cdimt)
)

M

)
(B.4.7),(B.4.9)

=

(
u(t)− y2(t)
τJ (y1(t))

M

)
= f(y(t), u(t)). (B.4.10)

Noting that (B.4.10) holds at almost everywhere in [0, tf ], we can conclude that
y is a trajectory of Σ which corresponds to the control u. Moreover, it follows
from the de�nition of y in (B.4.9) and our assumption on the relation between
x0 and x̂0 that we have y0 = x0. This means that y and x must be equivalent
trajectories and that the right-hand side of (B.4.8) holds as desired.

To conclude the proof of the proposition, we need to show that the right-
hand side of (B.4.8) implies the relation between x0 and x̂0 as stated on its
left hand side. This can simply be done by evaluating the right-hand side at
t = 0.

Lemma 56 shows how to relate trajectories of two di�erent control systems, Σ
and Σ̂, if the parameters to which they correspond, i.e. p and p̂, satisfy a certain
relationship that depends on an arbitrary scalar Cdim > 0. It is important to
note here that the control system Σ̂ in this lemma contains of dimensionless
parameters if this scalar Cdim has the same dimension as θ̇max. We next show
how by appropriately choosing Cdim we can use this lemma to derive Prop. 21.

Proof of Prop. 21. Let p be an arbitrary element of PΣ and Σ the control system
corresponding to p. Then, the TDP τ̂J : R→ R de�ned by (6.2.3) is clearly an
element of C1

τJ . Consequently, the parameter p̂ = (1, τ̂J , 1) is an element of PΣ

and we can construct a control system Σ̂ corresponding to p̂. Notice that Σ and
Σ̂ both satisfy the relation (B.4.6) in Lemma 56 with Cmin = ω0. Moreover,
the following equality holds for the SDP K̂J :

K̂J(φ) =
d

dφ

(
τJ( θ̇maxω0

φ)

Mω0θ̇max

)
=
KJ( θ̇maxω0

φ)

KJ(0)
,
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which means that we have ω̂0 =
√

K̂J (0)

M̂
= 1. We want to next use this last

equality together with Lemma 56 and Prop. 3-4 to show that the equality
ω0tmin(k;p) = tmin(k; p̂) holds for each k ∈ {1, 2, . . .}. This will prove the
proposition, as our choice for p was arbitrary.

Let k be an arbitrary positive integer and (x, u) an admissible controlled
trajectory of Σ which is de�ned on [0, tf ]. Moreover, assume that x0 equals to
0, u is a switching control with k − 1 switchings and all the three conditions
(4.2.6), (4.2.7) and (4.2.9) are satis�ed. By Prop. 3-4, we then know that
tf must be necessarily equal to tmin(k;p). If we now construct a piecewise
continuous control û : [0, t̂f ]→ [−1, 1] such that t̂f is equal to ω0tf and (B.4.7)
is satis�ed, it follows from Lemma 56 that the trajectory x̂ of Σ̂ which starts
from the origin and which corresponds to û will be related to x by the right-
hand side of (B.4.8) with Cmin = ω0. Consequently, the three conditions (4.2.6),
(4.2.7) and (4.2.9) will again be satis�ed if we substitute there u, θ̇max, x1 and tf

with û, ˆ̇
θmax = 1, x̂1 and t̂f , respectively. Since Prop. 3-4 are also valid for Σ̂, we

can then see that t̂f must be equal to tmin(k; p̂), i.e. ω0tmin(k;p) = tmin(k; p̂).
Since our choice for the integer k was arbitrary, this concludes our proof.

Given a function g ∈ C1
τJ , with

dg
dφ (0) = 1, we derive in the following lemma

two closely related expressions for the dimensionless time function ω0tmin(.;p),
which are valid for any p ∈ PΣg . One of these expressions is already used in
Table 6.1 and they will both be important for the proof of Prop. 24 where we
analyse the dependence of tmin on the eigenfrequency ω0.

Lemma 57. Let g ∈ C1
τJ with dg

dφ (0) = 1. Then, for each positive integer k and
each p ∈ PΣg we have

ω0tmin(k;p) = 2

k−1∑
l=0


∫ a(l)

0

ds√
(2l + 1)2Θ̇2

max − 2Epot,g(s)

+

∫ b(l)

0

Θ̇maxds

g

(
E−1
pot,g

(
Θ̇2
max((2l+1)2−s2)

2

))
 , (B.4.11)

where for each l ∈ Sk−1 the pair (a(l), b(l)) is an arbitrary element of (0, ke
lφmax)×

(0, 2l + 1) with

Epot,g(ke
lφmax) =

(2l + 1)2

2
Θ̇2
max, (B.4.12)

and
2Epot,g (a(l)) + Θ̇2

maxb(l)
2 = Θ̇2

max(2l + 1)2. (B.4.13)
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Moreover, the same product can also be expressed as

ω0tmin(k;p) =

k−1∑
l=0

∫ 2l+1

0

2Θ̇maxds

g

(
E−1
pot,g

(
Θ̇2
max((2l+1)2−s2)

2

)) . (B.4.14)

Proof. Let g be an element of C1
τJ with dg

dφ (0) = 1 and p = (M, τJ , θ̇max) an
element of PΣg such that we have

(∀φ ∈ R) [τJ(φ) = Keg(keφ)] , (B.4.15)

with ke > 0 and Ke > 0. Moreover, let k be an arbitrary positive integer. Using
the expression (B.4.15) for τJ in (3.1.6) and (3.1.7), we can �nd the following
relations for Epot, EMSS , |φ̇| and |φ| which hold at each point of their respective
domains:

Epot(φ) =
Ke

ke
Epot,g(keφ), (B.4.16)

EMSS(φ, φ̇) =
Ke

2ke

[
2Epot,g(keφ) + Θ̇2

max

φ̇2

θ̇2
max

]
, (B.4.17)

|φ̇|(φ, φmax) =
ω0

√
2 (Epot,g(keφmax)− Epot,g(keφ))

ke
, (B.4.18)

and

|φ|(φ̇, φ̇max) =
E−1
pot,g

(
Θ̇2
max

2

(
φ̇2
max−φ̇2

θ̇2
max

))
ke

. (B.4.19)

In addition, using the de�nition of tmin in Prop. 4 and the de�nition of Tp in
(3.2.11) we can arrive at the following equality:

ω0tmin(k;p) =
1

2
ω0

k−1∑
l=0

Tp(
lφmax)

= 2ω0

k−1∑
l=0

Tφ(lφs,
lφmax) + Tφ̇(lφ̇s,

lφ̇max), (B.4.20)

where for each l ∈ Sk−1 we have according to (4.2.5), (4.2.12) and (B.4.16)-
(B.4.19)

Epot,g(ke
lφmax) =

(2l + 1)2

2
Θ̇2
max, (B.4.21)

lφ̇max = (2l + 1)θ̇max, (B.4.22)

and

2Epot,g(ke
lφs) + Θ̇2

max

lφ̇2
s

θ̇2
max

= (2l + 1)2Θ̇2
max. (B.4.23)
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Notice that in the last equality the pair (lφs,
lφ̇s) must belong to (0,l φmax) ×(

0, (2l + 1)θ̇max

)
but is otherwise arbitrary, see Sec. 3.2.

With the equations summarized above, it is now possible to derive the two
expressions for ω0tmin(k;p) in (B.4.11) and (B.4.14). Indeed, we can �rst use
(B.4.15)-(B.4.16) and (B.4.18)-(B.4.19) in (3.2.2) and (3.2.4) to rewrite the two
time functions Tφ and Tφ̇ in terms of Epot,g and E

−1
pot,g, respectively. This leads

to

ω0Tφ(φ, φmax) =

∫ keφ

0

ds√
2 (Epot,g(keφmax)− Epot,g(s))

,

which holds at each (φ, φmax) ∈ DTφ and to

ω0Tφ̇(φ̇, φ̇max) =

∫ φ̇

θ̇max

0

Θ̇maxds

g

E−1
pot,g

 Θ̇2
max

(
φ̇2
max
θ̇2max

−s2
)

2

 ,

which holds at each (φ̇, φ̇max) ∈ DTφ̇
. By using these last two relations and

(B.4.21)-(B.4.22) in (B.4.20), the expression for ω0tmin(k;p) in (B.4.11) is then

directly obtained if we set for each l ∈ Sk−1 a(l) = ke
lφs and b(l) =

lφ̇

θ̇max
.

Note that the conditions on a(l) and b(l) as provided in the proposition follow
from the conditions we have found on (lφs,

lφ̇s). Finally, the expression in
(B.4.14) can be derived from (B.4.11) using �rst the fact that for each term in
the sum there the attained value does not change as long as (a(l), b(l)) remains
an element of (0, ke

lφmax) × (0, 2l + 1) which satis�es (B.4.13). The desired
expression then follows by noting that for each l ∈ Sk−1 a(l) goes to zero as b(l)
goes to 2l + 1.

Using the equality (B.4.21) from Lemma 57 together with Prop. 1 and Prop.
21, we next show how to derive Prop. 23.

Proof of Prop. 23. Let g,p, p̃, k and Φmax all satisfy the hypotheses of the

proposition and let K = sgn
(

d2g
dφ2 (Φmax)

)
. Moreover, let l be an arbitrary

positive integer which is less than or equal to k. It is important to �rst note
that for each φ ∈ R, d2τJ

dφ2 (φ) and d2τ̃J
dφ2 (φ) are given by Kek

2
e

d2g
dφ2 (keφ) and

K̃ek̃
2
e

d2g
dφ2 (k̃eφ), respectively. Consequently, (6.2.8) implies the following two re-

lations for the sign of d2τJ
dφ2 and d2τ̃J

dφ2 :(
∀φ ∈

(
0,

2Φmax
ke

))[
sgn

(
d2τJ
dφ2

(φ)

)
= K

]
, (B.4.24)

and (
∀φ ∈

(
0,

2Φmax

k̃e

))[
sgn

(
d2τ̃J
dφ2

(φ)

)
= K

]
. (B.4.25)
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To prove the proposition, we will next consider three di�erent possibilities re-

garding the sign of the di�erence keθ̇max
ω0

− k̃e
˜̇
θmax
ω̃0

.

Let us �rst assume that Θ̇max = keθ̇max
ω0

and ˜̇Θmax = k̃e
˜̇
θmax
ω̃0

are equal to
each other. It follows then from Prop. 22 that ω0tmin(l;p) and ω̃0tmin(l; p̃) are
also equal to each other and (6.2.9) holds.

Let us next assume that Θ̇max is higher than ˜̇Θmax. Then, there exists a

scalar c ∈ (0, 1) such that ˜̇Θmax = cΘ̇max holds. Moreover, using this scalar we

can construct a parameter p̂ = (M̂, τ̂J ,
ˆ̇
θmax) ∈ PΣ with M̂ = M, τ̂J = τJ and

ˆ̇
θmax = cθ̇max such that ˆ̇Θmax = k̂e

ˆ̇
θmax
ω̂0

= kecθ̇max
ω0

equals to ˜̇Θmax. Note that
according to Prop. 22, ω̃0tmin(l; p̃) and ω̂0tmin(l; p̂) will then be equal to each
other. Making use of the de�nition of tmin, this leads to

ω0tmin(l;p)− ω̃0tmin(l; p̃) =

ω0 (tmin(l;p)− tmin(l; p̂)) =

ω0

2

l−1∑
i=0

Tp(
iφmax)− Tp(iφ̂max), (B.4.26)

where for each i ∈ Sl−1 the following equalities will hold for iφmax and iφ̂max
according to (B.4.21):

Epot,g(ke
iφmax) =

(2i+ 1)2

2
Θ̇2
max, (B.4.27)

and

Epot,g(ke
iφ̂max) =

(2i+ 1)2

2
c2Θ̇2

max. (B.4.28)

With (B.4.27)-(B.4.28) and the inequality (6.2.7), we can now see that in the
sum in (B.4.26) the following inequalities hold for each i ∈ Sl−1:

iφ̂max <
iφmax <

2Φmax
ke

.

Consequently, applying Prop. 1 with ϕmax = 2Φmax
ke

we can see that according
to (B.4.26) the di�erence ω0tmin(l;p)−ω̃0tmin(l; p̃) has in this case the opposite

sign of K and thus of d2g
dφ2 (Φmax). Consequently, (6.2.9) holds in this case as

well.
Finally, if we assume that Θ̇max is less than ˜̇Θmax we can again construct a

parameter p̂ with c = Θ̇max
˜̇Θnax

∈ (0, 1) and M̂ = M̃, τ̂J = τ̃J and ˆ̇
θmax = c

˜̇
θmax.

Noting that the di�erence ω0tmin(l;p)− ω̃0tmin(l; p̃) will this time be given by
ω̃0tmin(l; p̂)− ω̃0tmin(l; p̃), we can slightly adjust the arguments we used above

to show that the sign of this di�erence will have the same sign as d2g
dφ2 (Φmax).

This means that (6.2.9) also holds in this last case.
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As already mentioned, the expressions (B.4.11) and (B.4.14) from Lemma
57 will both be made use of in the proof of Prop. 24. To simplify this proof,
we �rst state a corollary which directly follows from (B.4.11) and which shows
that the two expressions are di�erentiable with respect to Θ̇max.

Corollary 58. Let g be an element of C1
τJ with dg

dφ (0) = 1 and k an arbi-

trary positive integer. Moreover, let tdim,k : (0,∞) → (0,∞) be the function
determined by the formula

tdim,k(Θ̇max) = tmin(k; p̂), (B.4.29)

where p̂ is equal to (1, τ̂J , 1) with

(∀φ ∈ R)

[
τ̂J(φ) =

g(Θ̇maxφ)

Θ̇max

]
. (B.4.30)

Then, for each Θ̇max ∈ (0,∞) we have

dtdim,k

dΘ̇max

(Θ̇max) =
tdim,k(Θ̇max)

Θ̇max

+

(−4) ·
k−1∑
l=0

∫ 2l+1

0

K(l, s)ds
g3(E−1

pot,g(K(l,s)))
dg
dφ (E−1

pot,g(K(l,s)))

, (B.4.31)

where K(l, s) is equal to
Θ̇2
max((2l+1)2−s2)

2 .

Proof. For brevity, we will only sketch the proof. Let g, k and tdim,k satisfy
the hypotheses of the lemma. For each Θ̇max > 0, tdim,k(Θ̇max) is then given
by the right-hand side of (B.4.11), see Lemma 57. By applying Leibniz rule
and accounting for the conditions on the integration limits in the sum, we can
di�erentiate this expression with respect to Θ̇max. This then leads to the desired
expression in (B.4.31) if we further exploit our freedom in our choice of the
integration limits as done in the proof of Lemma 57 to derive (B.4.14).

With Corollary 58, we can now prove Prop. 24 as follows.

Proof of Prop. 24. Let g,p, p̃, k and Φmax satisfy the hypotheses of the lemma
and let l be a positive integer in Sk. Moreover, let Θ̇max denote the ratio

keθ̇max
ω0

and ˜̇Θmax the ratio k̃e
˜̇
θmax
ω̃0

. Making use of the function tdim,l : (0,∞)→ (0,∞)
as introduced in Lemma 58, with k = l, and Prop. 21 we can then arrive at the
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following relation for the di�erence ∆tmin,l := tmin(l; p̃)− tmin(l;p):

∆tmin,l =
tdim,l(

˜̇Θmax)

ω̃0
− tdim,l(Θ̇max)

ω0

= −
∫ ω̃0

ω0

tdim,l

(
keθ̇max
ω

)
+ keθ̇max

ω
dtdim,l
dΘ̇max

(
keθ̇max
ω

)
ω2

dω

=

∫ ˜̇Θmax
Θ̇max

tdim,l(Θ̇) + Θ̇
dtdim,l
dΘ̇max

(
Θ̇
)

dΘ̇

keθ̇max
, (B.4.32)

where we have also exploited the equality in (6.2.10) and the di�erentiability of
the function tdim,l. It is important to note here that the two conditions (6.2.10)

and (6.2.11) imply that ˜̇Θmax is greater than Θ̇max. Consequently, in order to
show that (6.2.14) is true and thus to prove the proposition, it is su�cient to

show that the integrand in (B.4.32) is positive for each Θ̇ ∈ [Θ̇max,
˜̇Θmax]. We

will conclude the proof of the proposition by showing that this is indeed the
case.

Let Θ̇ be an arbitrary element of [Θ̇max,
˜̇Θmax] and let I∆(Θ̇) denote the

integrand in (B.4.32) evaluated at Θ̇. If we make use of the two expressions
(B.4.14) and (B.4.31) from Lemma 57 and 58 together with Prop. 21, we can
�nd the following equality for I∆(Θ̇):

I∆(Θ̇)

4Θ̇
=

l−1∑
m=0

∫ 2m+1

0

1− K(m,s) dg
dφ (E−1

pot,g(K(m,s)))
g2(E−1

pot,g(K(m,s)))

g
(
E−1
pot,g (K(m, s))

) ds

=

l−1∑
m=0

∫ a(m)

0

1− Epot,g(s̄) dg
dφ (s̄)

g2(s̄)

Θ̇2s(m, s̄)
ds̄, (B.4.33)

where we have used K(m, s) to denote the term
Θ̇2((2m+1)2−s2)

2 , s(m, s̄) to

denote the term
√

(2m+1)2Θ̇2−2Epot,g(s̄)

Θ̇
and �nally a(m) to denote the positive

scalar given by

a(m) = E−1
pot,g

(
(2m+ 1)2Θ̇2

2

)
. (B.4.34)

According to (6.2.12), the scalar a(m) in (B.4.34) is less than 2Φmax for each
m ∈ Sl−1. Consequently, using the inequality (6.2.13) we can now see that for
each m ∈ Sl−1 the integrand in the right-hand side of (B.4.33) attains positive
values when s̄ ∈ (0, a(m)). This means that I∆(Θ̇) is positive as desired.

It is important to note here that the proof of Prop. 24 can also be used
to show the existence of a function g, a positive integer l and parameters p
and p̃ for which the di�erence ∆tmin,l in (B.4.32) takes a negative value. More
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speci�cally, it follows from (B.4.32) and (B.4.33) that ∆tmin,l will be negative
if the integrals in (B.4.33) can be made negative for Θ̇ = Θ̇max and if p̃ is

su�ciently close to p. This in turn requires the ratio r :=
Epot,g

dg
dφ

g2 , which is
uniquely determined by the function g, to be larger than 1 in a su�ciently large
interval and constructing such a function g together with l,p and p̃ is feasible.
Indeed, the last condition on the ratio r describes a di�erential inequality for
the energy Epot,g and this inequality has multiple solutions leading to a negative
∆tmin,l. For brevity, we do not provide a detailed discussion on these solutions
or the construction procedure. Nevertheless, we note that one possible solution
for the mentioned inequality is given by the function c

d−φ with c > 0 and d > 0.
We conclude this part of the appendix by providing the proof of Prop. 25,

which is based on the application of Lemma 56 with Cdim =
t̂f
tf
.

Proof of Prop. 25. Let p = (M, τJ , θ̇max) ∈ PΣ and tf > 0 be given. Moreover,
let t̂f > 0 be an arbitrary scalar and p̂ = (1, τ̂J , 1) the parameter with the
function τ̂J : R → R de�ned by (6.2.16). Then, p̂ is an element of PΣ since τ̂J
is an element of C1

τJ . Let now (x, u) denote an optimally controlled trajectory
which is de�ned on [0, tf ] and which corresponds to p. Similarly, let (x̂, û)
denote an optimally controlled trajectory which is de�ned on [0, t̂f ] and which
corresponds to p̂. Finally, let Σ denote the control system corresponding to p

and Σ̂ the system corresponding to p̂. Notice that by setting Cdim to t̂f
tf
, we can

apply Lemma 56 to see how trajectories of Σ, which are de�ned on [0, tf ], are
related to trajectories of Σ̂, which are de�ned on [0, t̂f ]. We will next exploit
this relation to show that (6.2.17) holds.

First of all, it follows from Lemma 56 that the function y : [0, tf ] → R2

with y(t) = θ̇max

(
tf
t̂f
x̂1(

t̂f
tf
t) x̂2(

t̂f
tf
t)
)T

is a trajectory of Σ which starts from

the origin. Looking at the terminal link velocity of this trajectory, we can then
arrive at the following inequality:

q̇max(tf ;p) ≥ θ̇maxq̇max(t̂f ; p̂), (B.4.35)

where we have used the optimality of x̂ and the de�nition of the function
q̇max. Similarly, Lemma 56 implies that the function ŷ : [0, t̂f ] → R2 with

ŷ(t) = 1
θ̇max

(
t̂f
tf
x1(

tf
t̂f
t) x2(

tf
t̂f
t)
)T

is a trajectory of Σ̂ which also starts from

the origin. Consequently, by evaluating this function at t = t̂f and noting the
optimality of x we �nd the following inequality:

θ̇maxq̇max(t̂f ; p̂) ≥ q̇max(tf ;p). (B.4.36)

According to (B.4.35)-(B.4.36) and the de�nition of ε, we can now see that

q̇max(t̂f ; p̂) is equal to ε(tf ;p). Moreover, since ˆ̇
θmax is equal to 1 we have

q̇max(t̂f ; p̂) = ε(t̂f ; p̂) and this �nally leads to the desired relation (6.2.17).
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