
Structure preserving Multi-Contact Balance Control for
Series-Elastic and Visco-Elastic Humanoid Robots

Alexander Werner*, Bernd Henze*, Manuel Keppler*, Florian Loeffl*,
Sigrid Leyendecker†, Christian Ott*

Abstract— This paper proposes an integration of
multi-body and actuator control for multi-contact bal-
ancing for robots with highly elastic joints. Inspired
by the structure preserving control concept for series-
elastic fixed-base robots, the presented approach aims
to minimize the control effort by keeping the sys-
tem structure intact. Balancing on multiple contacts
requires to solve the force distribution problem. In
locomotion, contacts change quickly, requiring a swift
redistribution of contact forces. This is a challenge
for elastic robots as the actuator dynamics and limits
prevent instantaneous changes of contact forces. The
proposed dynamically consistent force distribution is
implemented as a model predictive controller which
resolves redundancy while complying with contact
force and actuator constraints.

I. Introduction

Locomotion capabilities are essential for legged hu-
manoid robots. For rigid robots, this problem has been
in the focus of research for quite some time. However
rigid humanoid robots still have little practical applica-
tions, partially because the risk of falling cannot fully
be avoided by control, which creates the potential of
mechanical damages. Elastic robots solve this robustness
problem by smoothing impacts and enable efficiency
gains for cyclic tasks such as locomotion. However, they
also complicate the system dynamics by adding the state
of the motor side. For series-elastic robots with high
stiffness the effects can be dealt with on joint level by
closed loop torque control. However, efficient locomotion
requires lower stiffness values. This in turn necessitates
treating the elasticity on multi-body level in the control
approach.

For legged locomotion this means that the balancing
and force distribution controllers have to consider the
additional actuator dynamics. Conventional approaches
for balancing assume full access to the contact forces
or joint torques [1]–[3]. An example is our previously
published passivity based multi-contact balancing con-
troller [4] for rigid humanoid robots. This controller
uses Cartesian impedance control of the center of mass
(CoM) of the robot to create a stable balancing behavior.
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The advantage of using the passivity-based design is to
minimize the reshaping of the system dynamics.

The same aspect is relevant for series-elastic robots,
where we believe that passivity-based control approaches
that preserve the system structure have a big potential.
This was recently addressed by a structure preserving
control for series-elastic systems (ESπ) [5] [6]. This con-
trol approach essentially implements a link-side torque
interface on series-elastic robots.

Visco-elastic actuators [7] improve torque bandwidth
and efficiency for creating link-side damping on elastic
robots. Recently we transferred the structure preserving
control concept to these joint types (V ESπ) [8].

Previously we applied the multi-contact balancer with
a motor-position based inner torque loop on our series-
elastic legged robot C-Runner [9]. However the achieved
performance especially for dynamic locomotion lags sig-
nificantly behind the systems maximum capabilities,
computed by optimal control [9]. One core problem
was that the Cartesian tracking performance of link-
side quantities was not adequate, because the approach
did not account for the actuator dynamics and limits.
We want to improve on this by applying a structure
preserving control approach which models those limits
explicitly.

Previous experiments showed that contact force dy-
namics generated by the balancing controller were not
compatible with the actuator limits. This is resolved by
the proposed dynamically consistent force distribution.
Hereby the instantaneous force distribution problem for
rigid robots is extended to a model predictive control
problem. The latter respects the actuator dynamics and
limits as well as contact force constraints.

With the increasing number of elastic legged robots,
a number of control concepts were developed for such
robots. Some approaches use operational-space control
concepts to formulate the multi-body control part [10]–
[12]. Inverse-dynamics approaches were also applied to
successfully balance while walking [13]. In contrast to
these related works, this paper does not focus on the
multi-body part of the problem, instead the focus is on
a closer integration of multi-body and series-elastic joint
control. Integration of such approaches is also achieved
with hybrid-zero dynamics based controllers [14], [15].
However, the solutions usually focus on the implemen-
tation of efficient cyclic locomotion. Also some of these
robots exhibit very low mass legs which results in more
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Fig. 1. Concept of the proposed balance controller for elastic systems. WT are the task force and τd are the desired link-side torques.

favorable relation between motor and link inertia. It must
be stated that the problems addressed in this paper
are most prevalent in robots which have significant link
mass, and are designed for highly dynamic locomotion
which results in significant motor inertia. We believe
that future full-body humanoids designed for a large
variety of applications, including significant locomotion
performance, will have similar properties.

The presented approach targets our planar testbed
robot, described in [16], which has a mixture of series-
elastic and visco-elastic joints.

The remainder of the paper is organized as follows.
First the assumed model is presented in section II.
Section III summarizes the relevant parts of the multi-
contact balancer. Section IV presents the core of the
structure preserving control approaches for series-elastic
and visco-elastic robots. Section V describes how both
concepts can be combined. Section VI presents the novel
dynamically consistent force distribution approach. Sec-
tion VII describes the implementation and shows the
simulation results. Section VIII concludes the paper.

II. Model

The minimal coordinates of the link-side are

y =

[
x
q

]
∈ RND (1)

with the under-actuated base coordinates x ∈ RNB and
the joint coordinates q ∈ RNJ actuated by elastic actu-
ators. The link side dynamics of the robot is described
by

M(y)ÿ+C(y, ẏ)ẏ+g(y) =

[
0
τ

]
+

NC∑
i=0

JTC,i(y)WC,i (2)

with the inertia matrix M ∈ RND×ND , Coriolis matrix
C ∈ RND×ND , gravity terms g ∈ RND , and joint torques
τ ∈ RNJ . The robot has NC contacts with the Jacobians
JC,i ∈ R6×ND , and contact forces WC,i ∈ R6. For clarity,
the dependencies will be omitted for the remainder of

the paper. The contact forces WC,i have to respect
the inequality constraints formulating unilaterality, the
friction cone, and the zero moment point (ZMP) to
maintain a contact with the environment:

GC,iWC,i > 0 (3)

with the contact state dependant constraint matrix GC .
The motor dynamics are coupled to the link side

dynamics only through linear springs forming an SEA
or optionally with non-zero D a SVEA [17]:

Bθ̈ = τm − τ (4)

τ = K(θ − q) +D(t)(θ̇ − q̇) (5)

where K ∈ RNJ×NJ is the stiffness matrix, D ∈ RNJ×NJ
the damping matrix, θ ∈ RNJ the motor positions, B ∈
RNJ×NJ the diagonal motor inertia matrix, and τm ∈
RNJ the motor torque. The actuator dynamics is subject
to constraints on the input τm and the velocity θ̇:

−θ̇max ≤ θ̇ ≤ θ̇max (6)

−τm,max ≤ τm ≤ τm,max (7)

III. Multi-Contact Balancing for Rigid
Humanoids

In order to maintain the balance, the controller stabi-
lizes the CoM position xc ∈ R2 and the hip orientation
Rb ∈ R2×2 by generating a Cartesian compliance force
Wx,d ∈ R3 consisting of the stiffness matrix KCoM and
damping matrix DCoM. Each foot can be operated in
two different modes. In balancing mode, the contacts are
actively used for supporting the robot by generating the
required contact wrenchesWC,i. In interaction mode, the
pose of the foot is stabilized by a Cartesian compliance
generating WC,i,d which allows the foot to be lifted and
moved to a different location. For a bipedal robot the
vector of task wrenches is then defined as:

WT =

 Wx,d

WC,1,d

WC,2,d

 (8)



As detailed in [4], the desired error dynamics of the
closed loop system can be defined as

Λ

 ∆v̇x
∆v̇C,1

∆v̇C,2

+ µ

 ∆vx
∆vC,1

∆vC,2

 = Wext −

 Wx,d

WC,1,d

WC,2,d

 (9)

with the end effector velocities vC,i = JC,i [ vT
x q̇T ]

T
.

Note that the translational velocity of the CoM and the
rotational velocity of the hip are stacked into vx. The
Cartesian inertia and Coriolis matrix are given by Λ
and µ. The ∆ in (9) denotes the difference between the
actual state of the system and the desired trajectory.
Wext combines all external wrenches acting on the end
effectors.

Comparing (9) with the dynamic model in task space
coordinates (detailed in [4]) leads to the controller, given
here for the double support phase:[

0
τd

]
=

[
mg0 −Wx

0

]
−
[
JT

C,1,u JT
C,2,u

JT
C,1,l JT

C,2,l

] [
WC,1,d

WC,2,d

]
+

[
Wff

τff

]
(10)

with the total mass of the robot m, the gravity vector
g0, the desired joint torques τd. The Jacobian matrices
are partitioned into JC,i,u (non-actuated, related to x),
JC,i,l (actuated, related to q). The last part Wff and τff

represents feed-forward terms similar to PD+ control as
detailed in [4].

Note that the first line of (10) is underdetermined,
which represents the force distribution problem of bal-
ancing on multiple end effectors. The redundancy is
resolved and the task forces WT are mapped to contact
forces WC,i by minimization of the cost function

ΓT =

∣∣∣∣∣∣
∣∣∣∣∣∣G
JTu,C,1 JTu,C,1

I 0
0 I

[ŴC,1

ŴC,2

]
−WT

∣∣∣∣∣∣
∣∣∣∣∣∣ (11)

with the positive semidefinite weight matrix G. The
values in G corresponding to the CoM task are constant.
The value corresponding to the foot impedance forces are
non-zero when the foot is not to be used in balancing
mode. Additionally, the cost function is minimized with
respect to the inequality constraints (3). This constraint
quadratic optimization problem thus saturates the task
wrenches WT if they are not compatible with (3). The
commanded joint torques τd are computed from WC,i

via the lower part of (10).

IV. Structure preserving control of elastic
robots

The next step is to realize the computed link-side
torques τd trough the serial-elastic and visco-elastic ac-
tuators. To this end, we apply ESπ and VESπ control
that allow us to generate a torque series-elastic and visco-
elastic robots while preserving the elastic structure and
inertial properties. These control schemes are designed
for the complete link-side and motor-side system. In this
section only the torque-realizing part is described. The

structure preserving impedance controller was previously
used to control manipulators featuring a fixed-base [5].

A. Visco-Elastic Structure Preserving Impedance Control

Let us consider a fixed-base manipulator robot with
visco-elastic actuators of the form (5). Defining the con-
trol input τm as

τm =BD−1
(
−Dq̈ +

(
Ḋ + κ(η − q)

)
(η̇ − q̇)

)
+BD−1( ˙̂τ − Ḋθ̇) + τd −Dηη̇,

(12)

where

τ̂ =Dq̇ −K(θ − q) + τd. (13)

This yields the following link and motor dynamics

Mq(q)q̈ +Cq(q̇, q) + gq(q) =τv(η̇,η, q̇, q) + τd (14)

Bη̈ + τv(η̇,η, q̇, q) =−Dηη̇. (15)

where Mq, Cq, and gq describe the dynamic properties
of the manipulator robot. The new motor coordinates
η are implicitly defined via the following coordinate
transformation

τv(θ̇,θ, q̇, q) = τv(η̇,η, q̇, q) + τd(t, q̇, q). (16)

B. Elastic Structure Preserving Impedance Control

For an equivalent manipulator with series-elastic actu-
ators of the form (5) with D = 0 defining the control
input as

τm = BK−1τ̈d + τd −Dηη̇ (17)

yields the following link and motor dynamics

Mq(q)q̈ +Cq(q̇, q) + gq(q) =τe(η̇,η, q̇, q) + τd (18)

Bη̈ + τe(η̇,η, q̇, q) =−Dηη̇. (19)

The new motor coordinates η are implicitly defined via
the following coordinate transformation

τe(θ̇,θ, q̇, q) = τe(η̇,η, q̇, q) + τd(t, q̇, q). (20)

An appropriate design of motor damping matrix Dη is
given in [5]

This controller realizes τd with the exception of the
disturbance caused by the motor inertia B (which can
still be shaped). Note that derivatives of the desired
torque up to τ̈d have to be provided.

V. Elastic Balancing

The balancing scheme described in section III uses
task wrenches WT to stabilize the robot which are
distributed onto the available contacts. These contact
forces WC,i,d are then realized via JTC,i,l and the desired
torques τd, which represent the control input on non-
elastic humanoid robots.

For elastic robots τi, the link torques τ can only be
accessed indirectly via the actuator dynamics. The struc-
ture preserving control approach presented in section IV
provides a method to apply a balancing controller which



assumes rigid joints (as the one described in section III)
to a robot with elastic joints while preserving the struc-
ture of the system dynamics.

Combining the balancing controller (Section III) with
the ESP/VESP concept (Section IV) results in the
control architecture which is illustrated in Fig. I: the
link side impedance part, which consists of the multi-
contact balancer plus the dynamically consistent force
distribution, and the motor side part, which is repre-
sented by the ESP/VESP controller. The resulting closed
loop dynamics of combination of the balancing and the
ESP/VESP controller is derived in the appendix.

No formal stability analysis of the complete structure
is presented in this paper. It is just pointed out that both,
multi-contact balancing and ESπ/V ESPπ, have indi-
vidual stability proofs. For the multi-contact balancer
there is the restriction that the task wrenches WT need
to be realizable with the available contacts, that the
contacts with the environment actually exist, and that
the configuration is not singular [4].

VI. Dynamically consistent force distribution

Note that the instantaneous force distribution of the
balancer presented in section III does not account for
the actuator dynamics and limitations, which can lead
to a mismatch between the desired and the realized
wrenches, especially in transient situations. On non-
elastic humanoid robots, an instantaneous redistribution
of the load between contacts is possible when no un-
derlying dynamics is assumed. For elastic humanoids an
instantaneous redistribution would require a step in τd,
which is physically not possible due to the actuator dy-
namics. Note that this problem can be triggered when the
contact force constraints (3) switch from a deactivated
into an activated state. In this case τ̇d is not continuous
anymore and thus cannot be tracked by the actuators.
These problems of an instantaneous force distribution are
now remedied by the use of a model predictive control
approach which resolves the force distribution problem,
respects the actuator dynamics (4), and actuator con-
straints (7) (see next section).

The dynamically consistent force distribution improves
the instantaneous force distribution described in sec-
tion III. It is a way to integrate the following aspects
into one controller:

• Minimizing the deviation between the desired task
wrenches WT and the realized ones

• Contact wrench constraints (3)
• Contact wrench redundancy resolution (10)
• Actuator constraints on τm and θ̇ (7)
• Regularization on control input τm instead of the

contact wrenches as in [9]

where the last two items are novel contributions. Note
that constraints require a preview of the actuator dynam-
ics and therefore lead to a model predictive controller.

The basic mapping of the task wrenches WT stays the
same as in the instantaneous force distribution approach.

The contact wrenches WC,i can be by associated motor

positions θ̂ and motor velocities
˙̂
θ in a singularity free

configuration by:[
ŴC,1

ŴC,2

]
=

[
J−T
C,1,l

J−T
C,2,l

]
τ̂d =

[
J−T
C,1,l

J−T
C,2,l

] [
K D

] [[θ̂
˙̂θ

]
−
[
q
q̇

]]
(21)

Note that θ̂ and
˙̂
θ are just internal variables of the

force distribution algorithm and are not passed to the
ESπ/VESπ control as Fig. I illustrates. The mapping of
the contact force to task forces and (21) can be combined
into:

WT = P

[[
θ̂
˙̂θ

]
−
[
q
q̇

]]

P =

JTC,1,u JTC,2,u
I 0
0 I

[J−T
C,1,l

J−T
C,2,l

] [
K D

] (22)

which comprises the link side configuration dependant
aspect (JC,i) of the system dynamics. Note that the force
distribution only works on the motor side dynamics and
assumes that the state of the link side is known. This can
be justified by the different time constants of the link side
and the motor side.

The linear actuator dynamics can be written in state
space form as:

∂

∂t

[
θ

θ̇

]
Θ̇

=

[
0 I

−B−1K −B−1D

]
︸ ︷︷ ︸

A∗

[
θ

θ̇

]
Θ

+

[
0
B−1

]
B∗

τm+

+

[
0 0

B−1K B−1D

]
︸ ︷︷ ︸

G∗

[
q
q̇

] (23)

which is a linear system with known disturbance in form
of q and q̇. Using the substitutions:

Θ =

[
θ

θ̇

]
; Q =

[
q
q̇

]
(24)

the state space representation can be put into a more
concise form

Θ̇ = A∗Θ +B∗τm +G∗Q (25)

This resulting optimal control problem has 2NJ states,
NJ constraint inputs, NJ constraints on the velocity
state, and 8NC constraints on the position state, and
a quadratic cost function.

A. Cost

While the error term ΓT is the same as in the rigid
robot solution a new regularization term ΓR is added on
the system input τm, the input derivative τ̇m and the

motor velocities
˙̂
θ:

ΓR = ||Rτmτm||+ ||Rτ̇m τ̇m||+
∣∣∣∣∣∣Rθ̇

˙̂θ
∣∣∣∣∣∣ (26)



using regularization weights Rτm , Rτ̇m and Rθ̇. In order
to handle singular configurations, a damped inverse of

JC,i,l is used. The regularization terms on ˙̂θ and τ̂m
stabilize the solution in the nullspace of this inverse.

The complete cost is given by the integral of the
errors ΓT + ΓR over the prediction horizon tp:

Γ =

∫ tp

0

ΓT + ΓR (27)

ΓT can be rewritten as a function of θ and q using
the following substitutions and dropping the time indices
into

ΓT = ||G [P [Θ−Q]−WT ]|| . (28)

Then, we can extract the constant parts which depend
on the disturbance and formulate the required quadratic
form

ΘTP TGTGPΘ−
− 2

[
QTP TGTGP +WTG

TGP
]
Θ+

+QTP TGTGPQ+ 2WTG
TGPQ+W T

T G
TGWT︸ ︷︷ ︸

const. w.r.t. Θ
(29)

which denotes the implemented cost function.
In the initial phase of the development of this con-

troller, the authors tried to avoid the use of a model
predictive approach. This was grounded on the idea
that the desired torque and derivatives τd, τ̇d, and τ̇d

required for the ESP* controller can be provided using
the instantaneous force distribution and derivates of the
associated input signals at least for the unconstrained
case. Clearly this requires the minimization of relevant
derivatives of the cost function (28). While this allows
a dynamically consistent distribution of forces, there
cannot be any guarantees w.r.t. the actuator constraints
(7). To increase propagation of the derivatives across
the model predictive controller in presence of course
discretization of the horizon this idea is still useful. For
this ΓT is differentiated to penalize the mismatch of ẆT

and Θ̇

ΓT1 =
∣∣∣∣∣∣G1

[
Ṗ [Θ−Q] + P

[
Θ̇− Q̇

]
− ẆT

]∣∣∣∣∣∣ (30)

which depends on θ̈ for D > 0 which then again
depends on τm. Θ̇ can be substituted with the system
dynamics (23). This allows to split the cost function into
a state and an input dependant part

ΓT1 =||G1[Ṗ [Θ−Q] +

+ P
[
A∗Θ +B∗τm +G∗Q− Q̇

]
− ẆT ]||

(31)

This can be repeated for ẄT . For series-elastic systems
this shows a direct relation between ẄT and the control
input τm:

ΓT2 =||G2[P̈ [Θ−Q] + 2Ṗ
[
Θ̇− Q̇

]
+

+ P
[
Θ̈− Q̈

]
− ẄT ]||

(32)

where Θ̈ is

Θ̈ = A∗Θ̇ +B∗τ̇m +G∗Q̇

= A∗
[
A∗Θ +B∗τm +G∗Q− Q̇

]
+B∗τ̇m +G∗Q̇

(33)
Note that this cost function has the same redundancy
properties as the cost function of the instantaneous force
distribution.

B. Constraints

The constraints (3) on WC which are already used in
the balancer are applied for the prediction horizon. The
constraints again depend on the desired contact state at
this time of the prediction horizon. (21) is substituted
into (3) to formulate the constraint as a function of θ.

Additional constraints on Θ and τm are added to the
problem (7).

C. Extrapolation

The desired task forces WT (t) and the link side state
for the disturbance term in (23) and the contact states
have to be provided for the horizon. We use the error
dynamics of the system without contact force and actu-
ator constraints for extrapolation. In essence, this means
the force distribution problem is solved twice in the
controller. First, the desired trajectory and associated
contact forces are realized by an unconstrained system to
obtain future link side states. Then the model predictive
control approach uses this result and ensures feasibility
w.r.t. the actuator and contact force constraints. The
approach builds on the assumption that the prediction
error in the unconstrained extrapolation is small.

If the desired contact set does not allow the generation
of all task forces WT , the unconstrained extrapolation
is no longer correct. This can however be resolved by
defining stiffness and damping matrices of the task com-
pliances such that only forces in feasible direction are
generated [9].

The described predictive controller is now discretized
and implemented as quadratic optimization problem
with linear inequality constraints. The solution contains
the inputs τm from which using (23) and (5) the motor
side states Θ and the desired torques τd, τ̇d, and τ̈d are
computed.

D. Horizon Length

To estimate how long the prediction horizon should be
the actuator constraints and inputs are used. Let us con-
sider the rather extreme example of a fully loaded joint
spring being unloaded solely by motor displacement. This
situation is described by the following simplified system
dynamics with the scalar joint stiffness K and the scalar
motor inertia B

Bθ̈ = −Kθ + τm (34)

using θ(0) = τmax/K, θ̇(0) = 0 and τm = τm,max. This
is conservative as for any D 6= 0 (visco-elastic case)



the required time is shorter. The system is limited to
the maximum velocity (7) which typically creates an
acceleration phase and a constant velocity phase. The
required time tmin can be approximated with

tmin =
τmax

Kθ̇
(35)

In order to capture the actuator dynamics accurately,
the MPC algorithm must have a prediction horizon with
a length of tmin or longer. For an optimal solution for
the case of a non-zero regularization term in the cost
function, the time horizon has to be longer.

For the robot C-Runner with τm,max = 400Nm, τmax =
200Nm, θ̇max = 5.2rad/s, and B = 1.62kg ·m2, we obtain
a minimum length of tmin = 0.08s.

VII. Results

The controller was implemented for the planar elastic
bipedal robot C-Runner [16].

A. Implementation

For the dynamically consistent force distribution, the
prediction horizon was discretized into 10 intervals with
a constant interval of 0.01s. This results in computation
times below 1ms on recent desktop hardware which
makes implementation of the approach on a real-time
system feasible.

For extrapolation of the impedance forces the Carte-
sian mass Λ was assumed be constant. It was also as-
sumed that P stays constant over the prediction horizon
which is acceptable for low link-side velocities. As the
time-constants of the foot impedances are very small due
to small inertias, the extrapolation is unreliable and did
not improve stability, hence they were neglected.

We use qpOASES [18] to implement the constraint
optimization problem.

B. Simulation

A custom variable step multi-body simulation was used
to verify the controller. For realistic simulation joint and
motor side viscous and coulomb friction are implemented.

The conducted simulation task consist of shifting the
load from a double stance with equal force distribution
onto the left foot. Afterwards the right foot is lifted.
Fig. 2 shows a comparison of the instantaneous force
distribution (QP) and the dynamically consistent force
distribution (MPC). The figure shows the transients of
normal contact forces. When the static force distribution
received the signal to disable the contact at t = 0.9s,
it shifts all force onto the remaining leg. In contrast,
the dynamically consistent approach received the set of
active contacts over a preview window. This gives time
to react in advance so that the contact force is already
zero when the contact is disabled at t = 0.97s. The shape
of the transient is defined by the cost function (28) and
the constraints (7). The effect of the preview horizon
discretization can be seen in Fig. 3 in the discontinuous
system input τm. Fig. 3 also shows torque tracking
performance of the structure preserving controller.

Fig. 2. Comparison of uninformed (rigid-body) force distribution
(red) and dynamically consistent force distribution (blue). Top: left
foot desired normal force. Bottom: right foot desired normal force.

Fig. 3. Tracking of desired torque (dashed lines) with the structure
preserving elastic joint controller. Top: Right Leg. Bottom: Left
Leg.

VIII. Conclusion

This paper proposes a structure preserving balanc-
ing control scheme with dynamically consistent force
distribution for series-elastic and visco-elastic humanoid
robots. By applying MPC, the controller is able to meet
the needs of considering the dynamics and constraints
of the elastic actuators. This extends our previous work
[9] in a way that contact transitions show a much more
natural behavior.
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IX. Appendix
This appendix derives the closed loop dynamics of the structure preserving balancing controller for the case of a

series-elastic robot. The system dynamics for link and motor sideMb Mbq 0

MT
bq Mq 0

0 0 B

b̈q̈
θ̈

+

Cb Cbq 0
Cqb Cq 0
0 0 0

ḃq̇
θ̇

+

gbgq
0

+

0 0 0
0 K −K
0 −K K

bq
θ

 =

0 0 0
0 0 0
0 0 0

ḃq̇
θ̇

+

 0
0
τm

+

JT
C,u

JT
C,l

0

WC (36)

with b the base coordinates, q the joint coordinates, θ the motor coordinates, and the shorthands JC,u =
[ JT

C,1,u J
T
C,2,u ]T , JC,l = [ JT

C,1,l J
T
C,2,l ]T , and WC = [WT

C,1 W
T
C,2 ]T . Substituting the ESP* coordinate transformation

and the control law
θ = η +K

−1
τd τm = BK

−1
τ̈d + τd −Dηη̇ (37)

in (36) yields a system with the control input τd:Mb Mbq 0

MT
bq Mq 0

0 0 B

b̈q̈
η̈

+

Cb Cbq 0
Cqb Cq 0
0 0 0

ḃq̇
η̇

+

gbgq
0
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0 0 0
0 K −K
0 −K K

bq
η

 =

0 0 0
0 0 0
0 0 −Dη

ḃq̇
η̇

+

 0
τd
0

+

JT
C,u

JT
C,l

0

WC (38)

as a preparation for the Cartesian control a coordinate transformation is applied which replaces the base coordinates
b with the coordinates x which contain the CoM position and the base rotation and also replaces q̇ with Cartesian
velocities ẋT of the contact links, again including the rotation: ẋẋT

η̇

 =

 L 0
JC,u JC,l 0

0 0 I

ḃq̇
η̇

 (39)

with L the CoM Jacobian and mapping for the base rotation velocity, see [4] for details. Substituting this into (38)
yields: Λx ΛxT 0

ΛT
xT ΛT 0
0 0 B

 ẍẍT

η̈
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 Cx CxT 0
CTx CT 0

0 0 0
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 ẋẋT

η̇

 =

0
I
0

WC +
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−I
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 (−J−T
C,l τd)

(40)

where Λ is the Cartesian mass matrix with parts corresponding to the CoM position and base rotation, denoted
with x and parts corresponding to the task space of the contact links, denoted with T . Additionally q = g(x,xT) is
the inverse kinematic mapping from task space into joint space. The balancing control law, given for simplicity for
the regulation case

τd = −JT
C,lWd

mg0 = J
T
C,uWd +Kx(x− xd) +Dx(ẋ− ẋd)

(41)

is substituted into (40) which yields:

Λ

 ẍẍT
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(42)

For the example situation with only one foot in contact the coordinate xT are now split into coordinates used for
balancing (xT1) and interaction (xT2). Thus, the Cartesian impedance force only acts on the sub-rows associated
with T2 and the desired forces on the contact links are

Wd =

[
WT1d

KT2xT2 +DT2ẋT2

]
(43)

with the still unknown contact force WT1d. Substituting (43) in (42) yields
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Finally the contact constraint is applied
0 =

[
I 0

] [ẋT1

ẋT2

]
(45)

which removes the sub-rows related to the coordinates in contact and the unknown contact force WT1d
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