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ABSTRACT 1 
New technologies are emerging on the private vehicle market. Conventional propulsion systems 2 

are set to be replaced by alternative, more environment-friendly ones (e.g. electric vehicles), while 3 

certain new features, like autonomous driving, will possibly change the way private cars are 4 

employed. In order to assess the impact of such technologies, one must estimate how often and for 5 

which trips these vehicle types will be used. Another issue is the exact localization of certain 6 

vehicle types on the network, in order to assess environmental effects and identify where specific 7 

roadside infrastructure (e.g. charging stations) will be required. 8 

This paper presents four approaches on how to forecast car usage by vehicle type using a 9 

macroscopic travel demand model in combination with a vehicle fleet or technology diffusion 10 

model. Integrating the two types of models requires tools ranging from assumptions and 11 

extrapolation of empirical data to synthetic or incremental discrete choice models. The approaches 12 

are employed in a case study forecasting travel demand using privately owned autonomous 13 

vehicles (AVs) in Germany in 2030. Despite identical input data, the estimated proportion of 14 

vehicle miles travelled (VMT) using AVs varies between 11 and 23 percent of overall car VMT, 15 

depending on the approach chosen. The reasons for this variation in results are investigated and 16 

some recommendations are given. To avoid the difficulties of fitting a synthetic model to observed 17 

data and increase the accuracy of the results, we recommend formulating the vehicle type choice as 18 

an incremental model added to the travel demand model. 19 

Keywords: Travel Demand Modeling, Vehicle Use, Fleet Modeling, Vehicle Technology 

Diffusion, Autonomous Vehicles  
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INTRODUCTION 1 
Motorized individual transport is currently the dominant form of transportation in many Western 2 

countries and is forecasted to remain at comparably high levels in the coming decades. The 3 

expected continuity in car travel demand seems to indicate a status quo, which is far from being 4 

true. Several developments with wide-ranging implications can already be observed. The 5 

increasing focus on environmental issues spurs on the development of cleaner vehicles (e.g. 6 

electric or hybrid cars). Pollution in urban areas due to traffic-related emissions is also a growing 7 

concern and authorities are in search of policy measures to tackle this issue. Finally, a 8 

technology-driven evolution will bring new functionalities to the vehicles, the most discussed of 9 

these being automation. The emergence of autonomous vehicles (AVs) has the potential to 10 

severely influence the way private cars are used. 11 

Understanding the relationship between the types of vehicles employed and their usage 12 

patterns is necessary to enhance forecasting in some situations where the differences between 13 

vehicles are relevant. For instance, in order to accurately model local traffic-related emissions, the 14 

traffic flows assigned to the network model should be split up according to vehicle emission 15 

profiles. Separate traffic flows for each vehicle propulsion system (e.g. petrol, diesel, electric), 16 

size, vintage etc. should be calculated. As will be shown in this paper, this modeling step is not 17 

trivial. Conversely, the emergence of new vehicle types and technologies might also have an 18 

impact on overall car travel demand. In the case of AVs, a decrease in travelers’ valuation of travel 19 

time might lead to an overall increase in car travel (2). Furthermore, governments and local 20 

agencies might devise policy measures to encourage (or discourage) the use of specific vehicle 21 

types, a pertinent example being the current debate on the negative environmental effects of diesel 22 

cars in German city centers (3). Restricting diesel vehicle access in city centers would certainly 23 

have an impact on (diesel) car traffic in these areas, but it might also affect overall mode choice, 24 

destination choice and trip generation. The complex relationship between the composition of the 25 

vehicle fleet (shares of different vehicle types) and car travel demand (by vehicle type) should 26 

ideally be addressed in travel demand models (TDMs). 27 

This paper investigates the possibility of embedding a differentiation by vehicle type into 28 

travel demand models. The objective of this paper is not to forecast the adoption of different 29 

technologies in the vehicle fleet, but rather to examine the interaction between a forecasted vehicle 30 

stock and the travel demand associated with it. 31 

First, we present an overview of past research related to this subject. Then, the overall 32 

model framework is described and the target variables are defined. We propose four different 33 

approaches to integrating vehicle type choice into TDMs, and discuss their underlying 34 

assumptions, advantages and disadvantages. A case study, forecasting the demand for trips using 35 

private autonomous vehicles in Germany in the year 2030, is used to illustrate the different 36 

approaches. Finally, some conclusions and recommendations for further research are offered. 37 

LITERATURE REVIEW 38 
Research on vehicle type differentiation has been conducted since the 1970s, when the first vehicle 39 

fleet models (VFMs) were estimated (4). Such models predict long term choices made by 40 

individuals or households deciding on the number and type of vehicles they own or purchase. 41 

VFMs, also known as vehicle stock, holdings or car ownership models, can vary significantly in 42 

terms of their complexity, ranging from simple time series to multivariate discrete choice models 43 

(5). For an excellent review of state-of-the-art VFMs pertaining to the adoption of electric and 44 

hybrid vehicles, see the work of Al-Alawi and Bradley (6). Other recent studies by Litman (7) and 45 

Bansal and Kockelman (8) have forecasted the long-term adoption levels of AVs in the United 46 
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States, while Kröger et al. have estimated AV adoption rates in the German car fleet using an 1 

s-shaped market-take-up vehicle technology diffusion model (9). 2 

VFMs forecast the number and type of vehicles owned, but only rarely address vehicle 3 

usage metrics (e.g. the average number of trips per day and car, average mileage per year and car 4 

etc.). An example of a VFM also considering vehicle use is Bhat and Sen’s multiple 5 

discrete-continuous extreme value (MCDEV) model (10), employed to predict both the vehicle 6 

holdings and the yearly vehicle miles of travel (VMT) per vehicle type. Bhat and Sen use the 7 

demographic characteristics of the household, vehicle specifications and land-use attributes as 8 

explanatory variables for both vehicle type ownership and use.  9 

While such approaches may deliver aggregate results pertaining to vehicle type-specific 10 

use, they are limited in several ways. Firstly, as they do not operate with single trips or tours, they 11 

cannot link relevant trip or route attributes (e.g. distance, tolls required, available infrastructure 12 

etc.) to the use of vehicles. Secondly, they are responsive only to a limited range of policy 13 

measures, like changes in the vehicle registration fees or fuel taxes. The impact of highly localized 14 

policy tools, targeting only specific zones (e.g. city centers) or roads (e.g. special toll roads), 15 

cannot be assessed using such models. Finally, the total VMT estimated with such a model does 16 

not necessarily correspond to the VMT outputted by a dedicated TDM, making the interpretation 17 

of results difficult. 18 

More recent studies have incorporated specific types of privately owned vehicles as an 19 

extra mode of transport in travel demand models. Auld et al. (11) and Childress et al. (12) both 20 

explored the impacts of autonomous vehicles on travel demand using activity-based models for the 21 

Chicago and Puget Sound regions respectively. Zhao and Kockelman (13) employed a 22 

macroscopic travel demand model to anticipate the impact of automated vehicles in Austin, Texas. 23 

However, the integration of VFM results into the TDM was not discussed in these approaches, 24 

with the AV penetration rates being scenario-based assumptions rather than model results. 25 

To our knowledge, the integration of vehicle type differentiation into TDMs has not been 26 

thoroughly discussed before. Even in studies on the traffic-induced environmental effects, travel 27 

demand shares by vehicle type are either assumed (14) or not differentiated at all (15). The 28 

modeling framework proposed in this paper attempts to rectify these shortcomings. 29 

MODELING FRAMEWORK 30 

Overview 31 
The aim of this paper is to present an approach to estimate car travel demand by vehicle type by 32 

integrating results from a vehicle fleet model (VFM) into a travel demand model (TDM). This 33 

implies splitting up the overall car travel demand for each origin-destination (OD) pair in the study 34 

area depending on attributes of the vehicles, the trip-maker and the trip itself. Using this setup, the 35 

model can assess the impact of a wide range of policy measures on both overall car travel demand 36 

and vehicle-type specific demand. Furthermore, as separate OD matrices for each vehicle type are 37 

generated and can be assigned to the network, this approach can also be used to forecast traffic 38 

counts by vehicle type on each road section, which is essential e.g. for fine-grained emission 39 

modeling. 40 

For the purpose of this study, the structure and setup of the TDM are irrelevant. The model 41 

framework shown here is compatible with various macroscopic travel demand models, whether set 42 

up as traditional four-step, gravity, logit, hierarchical, simultaneous models etc. More 43 

differentiation in the TDM (e.g. by population groups/demographics, trip purposes, time of day 44 

etc.) will lead to more detailed and possibly more accurate results by vehicle type. It is worth 45 
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noting that the approach shown here is only required when using a macroscopic TDM dealing with 1 

“person groups” or “representative persons” and not individuals or individual households. In 2 

microscopic simulations (or multi-agent tools), each individual is assigned a specific vehicle type 3 

and thus results by vehicle type can easily be aggregated rather than split up from overall car 4 

demand. However, as such models are still difficult to implement in certain large-scale 5 

applications (e.g. statewide or national models, long-term forecasting) due to computing 6 

limitations and data availability, the approach shown in this paper is (still) considered to be 7 

relevant. In the context of this paper, results from the TDM shall be noted them as 
ijT , indicating a 8 

matrix with the number of car trips from origin i  to destination j . 9 

The methodology and functionality of the VFM will not be discussed here, only its results 10 

will be considered here. Let 
1 2, ,..., nC C C  be vehicle categories (types) in which cars are grouped 11 

according to their attributes. Results from the VFM can be noted as the following vector of vehicle 12 

fleet shares vs  13 

  
1 2
, ,...,

nC C Cvs vs vsvs    (1.1) 14 

where the sum of all vehicle fleet shares equals unity. 15 

 1C

C

vs   (1.2) 16 

Depending on the granularity of the VFM, results may be available on an individual/household 17 

level or at any superior level of aggregation (e.g. traffic zones, counties, regions etc.). For the sake 18 

of simplicity, the indices denoting the spatial distribution of the vehicle fleet shares will be omitted 19 

in this paper. 20 

The target variable is defined as the proportion of car trips using a vehicle from category 21 

C , and will be noted as the (matrix) vector 22 

  
1 2, , ,, ,...,

nij ij C ij C ij Cus us usus  (2.1) 23 

where the sum of all usage shares also equals unity. 24 

 
, 1ij C

C

us   (2.2) 25 

Note that unlike the vehicle fleet shares vs , which denote attributes of the population and are only 26 

influenced by the home location of the travelers, the usage shares might be different for each 27 

origin-destination (OD) pair ij  and should therefore be noted as a vector ijus . In other words, 28 

vehicles will not automatically be used in equal proportion for all trips. 29 

Multiplying the usage shares of a vehicle category with the total car trip matrix ijT  then 30 

gives the trip matrix for that vehicle category: 31 

 , ,ij C ij C ijT us T  (3.1) 32 

with 33 

 ,ij C ij

C

T T  (3.2) 34 

The key in determining car travel demand by vehicle type is forecasting the usage shares vector 35 
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ijus , as this information is not included in either the TDM or the VFM alone. Using the vehicle 1 

fleet shares vs  from a VFM as input, there are several methods of estimating ijus . Four of these, 2 

numbered A1 to A4, will be discussed in the following section. Depending on the model 3 

application and data availability, each one of them might seem attractive to use at some point. 4 

However, as will be shown in the case study, results might greatly differ, so the adequacy of the 5 

method employed must be well weighted. 6 

Approaches to Estimating Vehicle Usage Shares 7 

A1. Trivial Approach 8 

A simple approach to link the results from the TDM and VFM would be to consider that the vehicle 9 

usage shares are equal to the vehicle fleet shares (obtained from the VFM) for all OD pairs: 10 

 ij us vs  (4.1) 11 

 , ,ij C ij C ij C ijT us T vs T   (4.2) 12 

A1 works under the assumption that all vehicles are used equally often, independent of any 13 

attribute of the vehicle itself (e.g. size, comfort, fuel costs etc.) or of the trip undertaken (e.g. trip 14 

purpose, distance, travel time etc.). The obvious advantage of A1 is given by its simplicity and 15 

ease of use. This approach does not require any additional data and there are no model parameters 16 

to be estimated or calibrated. 17 

Results using A1 will be unrealistic whenever there is good reason to assume that certain 18 

car attributes are correlated to specific usage statistics. For instance, the average annual mileage of 19 

a petrol-fueled car in Germany amounts to ca. 10,000 km, while diesel vehicles are driven on 20 

average ca. 17,000 km (own analyses on national household survey data). In this case, the 21 

assumption of equal usage would obviously lead to wrong forecast results. An argument could be 22 

made that the independence of the choice outcome with respect to vehicle and trip attributes is 23 

indeed given for a large proportion of the population – those individuals or households that only 24 

possess one vehicle and thus cannot choose between multiple vehicles for each trip. However, it is 25 

not unreasonable to assume that these decision makers will consider their predicted annual mileage 26 

when buying a car, thus correlating the available vehicles to their travel patterns. Therefore, while 27 

A1 does deliver a very rough estimation of vehicle usage shares, it is not suited for precise 28 

forecasting and should rather be used as a benchmarking tool for the more complex approaches 29 

shown in the following sections. 30 

A2. Trip Segmentation Approach 31 

The Trip Segmentation Approach (A2) derives the usage shares from observed data in the base 32 

year. The concept revolves around the idea that, by segmenting trips into homogenous groups, all 33 

relevant differences in the car usage patterns can be identified. Assuming that all relevant 34 

explanatory factors have been identified in the base year analysis, the empirically derived usage 35 

shares can then also be used for forecasting. 36 

In order to provide statistically reliable results, comprehensive data on the vehicle usage in 37 

the base year is required. Ideally, a trip database should be available containing information on the 38 

trip itself, as well as on the characteristics of the vehicle used. Regional or national household 39 

surveys should provide this information for a sufficiently large number of trips. For instance, the 40 

German national household survey (1) reports on ca. 70,000 car trips and the corresponding ca. 41 
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35,000 vehicles used on these trips. 1 

TABLE 1 Observed Vehicle Usage Shares in Germany 2 

  

Small Compact Mid-Size Large Σ 

Distance Purpose < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs 

 

< 20 km 

Commute 0.072 0.078 0.133 0.104 0.096 0.167 0.092 0.089 0.154 0.005 0.002 0.010 1 

Business 0.059 0.051 0.089 0.112 0.116 0.159 0.148 0.117 0.120 0.006 0.009 0.015 1 

Other 0.067 0.069 0.097 0.117 0.104 0.162 0.098 0.107 0.165 0.003 0.003 0.007 1 

20-50 km 

Commute 0.085 0.081 0.104 0.115 0.118 0.155 0.097 0.099 0.131 0.004 0.004 0.006 1 

Business 0.057 0.075 0.057 0.159 0.062 0.115 0.229 0.097 0.137 0.009 0.000 0.004 1 

Other 0.070 0.069 0.080 0.119 0.102 0.172 0.114 0.114 0.151 0.002 0.002 0.005 1 

50-100 km 

Commute 0.062 0.057 0.084 0.160 0.135 0.116 0.114 0.113 0.138 0.000 0.003 0.017 1 

Business 0.060 0.060 0.036 0.131 0.071 0.083 0.262 0.119 0.119 0.012 0.036 0.012 1 

Other 0.076 0.069 0.057 0.116 0.079 0.169 0.113 0.143 0.146 0.004 0.008 0.019 1 

100-200 km 

Commute 0.107 0.019 0.049 0.107 0.097 0.136 0.252 0.087 0.136 0.000 0.010 0.000 1 

Business 0.050 0.033 0.017 0.150 0.083 0.050 0.283 0.083 0.183 0.050 0.017 0.000 1 

Other 0.060 0.060 0.044 0.129 0.096 0.107 0.151 0.159 0.173 0.011 0.005 0.005 1 

> 200 km 

Commute 0.057 0.068 0.034 0.080 0.148 0.136 0.239 0.068 0.125 0.034 0.000 0.011 1 

Business 0.000 0.000 0.022 0.200 0.000 0.044 0.467 0.089 0.156 0.000 0.022 0.000 1 

Other 0.057 0.049 0.036 0.166 0.117 0.101 0.178 0.117 0.162 0.004 0.000 0.012 1 

Vehicle fleet shares 0.067 0.075 0.121 0.104 0.097 0.185 0.083 0.089 0.160 0.004 0.003 0.011 1 

              

TABLE 1 exemplifies an analysis using the Trip Segmentation Approach on German data. Car 3 

trips are grouped according to four distance categories and three trip purposes, while vehicles are 4 

differentiated according to their size and age. Each row shows the vehicle usage shares ijus  for 5 

that particular trip category. The vehicle fleet shares vs  (proportion of vehicles in a category from 6 

the total car fleet) are also given at the bottom of the table for comparison. 7 

The empirical data in TABLE 1 indicates that trip purpose and distance are not independent 8 

of the size and age of the vehicle employed. For short trips, the usage shares closely resemble the 9 

vehicle fleet shares, suggesting that for these trips, car attributes have little explanatory power. 10 

This is exactly the assumption followed by the Trivial Approach (A1). For longer trips, however, 11 

the usage shares of both larger and newer vehicles increase. This is particularly evident for 12 

business trips, where the disparity between the usage and vehicle fleet shares is the largest. As long 13 

trips have a significantly higher impact on the overall VMT, this also shows the limitations of A1. 14 

Using the Trip Segmentation Approach for forecasting is straightforward. Each OD 15 

relation from the forecasted overall car travel matrix is split up according to the corresponding trip 16 

category usage shares ijus  from TABLE 1. If the trip structure in the forecast is different from the 17 

base year (e.g. higher proportion of long trips, other trip purposes etc.), then different overall car 18 

usage shares will result. 19 

The Trip Segmentation Approach is more complex than A1 and delivers more accurate 20 

results. This improvement comes at the price of increased data requirements. A comprehensive 21 

database containing observed trips and vehicles is necessary. In the absence of sufficient trip 22 

observations in the database, segmentation by too many criteria can lead to statistically unreliable 23 
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usage shares. 1 

A difficulty using A2 arises when forecasting the usage of vehicle types that will only 2 

become available in the future and for which there is no empirical usage data available. Another 3 

drawback of A2 is given by the fact that the future usage shares are not responsive to changes in 4 

the forecasted vehicle fleet shares (distribution of car types by age, size etc.). For instance, with 5 

this approach, an increase in the proportion of “large and new” vehicles would not lead to higher 6 

vehicle usage shares for these cars. In order to make the results responsive to multiple factors, a 7 

more complex modeling approach is required.  8 

A3. Choice Model Approach 9 

Mocanu and Winkler (16) present an approach to differentiate car travel demand using the discrete 10 

choice model framework. They propose splitting results from the TDM into different vehicle 11 

categories using a nested logit-structured model extension. This model setup adds car type choice 12 

at the lowest level of the TDM choice hierarchy. Thus, a two-level nested logit is created, where 13 

destination and mode choice are calculated in the upper nest and vehicle type choice is calculated 14 

in the lower nest. 15 

The choice of vehicle type in the lower nest is formulated as a standard multinomial logit 16 

(MNL), with the usage shares vector ijus  resulting from the individual utilities V  of each vehicle 17 

category C : 18 

 
,

,

,

exp( )

exp( )

ij C

ij C

ij C

C

V
us

V







 (5) 19 

where   defines the logsum scale parameter of the (lower) vehicle type choice nest. 20 

The utilities V  are given as a function of the vehicle fleet shares vs  and all other relevant 21 

variables, e.g. travel time, access and egress time, cost etc. 22 

  , , ,, , ,...ij C C ij C ij CV f vs tt c  (6) 23 

Using the model structure proposed by Mocanu and Winkler, it is possible to fully embed the 24 

vehicle type choice in the TDM and also to create a link back from the vehicle type choice to the 25 

TDM using the logsum (also called inclusive value or maximum expected utility) over all 26 

available alternatives. The authors show that, despite linking up the two models using the nested 27 

logit framework, the model can be implemented independently of the original TDM setup and the 28 

required modifications to the TDM are minimal. 29 

The Choice Model Approach enables the entire TDM to be responsive to measures that 30 

only affect some vehicle types. Imagine a policy measure like a pollution tax for city centers, 31 

applicable only to conventionally-fueled vehicles (but not to electric cars). The model should not 32 

only forecast a decreasing number of car trips using conventional vehicles in city centers, but also 33 

a general reduction of car traffic (in those areas), changes in the destination choice and possibly 34 

also changing trip rates. Conversely, adding a very attractive vehicle type (e.g. AVs) will increase 35 

the car logsum and influence mode choice, destination choice and trip generation, thus creating the 36 

expected induced traffic. Using forms of composite costs over all vehicle types other than the 37 

logsum (e.g. simple or weighted averages) might lead to undesired model results, as was shown for 38 

instance by Williams as early as 1977 (17). 39 

One issue with A3 is the fact that this choice model is only a hypothetical construct, due to 40 
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two reasons. On the one hand, vehicle purchase and ownership are long-term decisions, while 1 

vehicle type usage for each trip is a short-term decision. On the other hand, not all individuals have 2 

the freedom of choosing between all vehicle types for each of their trips. As each household owns 3 

only a limited number of cars, the long-term ownership decision restricts the available choice set in 4 

the short-term decision. Consequently, separate models should be set up for each combination of 5 

available vehicles. Due to the large number of possible vehicle type ownership combinations and 6 

the ensuing computing time and number of parameters required, such a model setup is not feasible. 7 

Instead, restrictions in the available choice set have to be applied aggregately on only one model 8 

using the vehicle fleet shares vs , as discussed by Mocanu and Winkler (16).  9 

This implementation of a discrete choice model has wide-ranging implications for the 10 

estimation of preferences and model parameters. Because individual choices, as modeled, cannot 11 

be observed in reality, a model estimation using standard techniques is virtually impossible. Stated 12 

preference experiments and revealed preference data cannot simulate sufficient variation in the 13 

input variable vs , while at the same time keeping all other variables unchanged, in order to 14 

estimate the impact of this variable on utility. Therefore, the calibration of the vehicle type choice 15 

parameters, and also the logsum scale parameter  , must occur heuristically. 16 

Due to the difficulties in estimating the vehicle type choice parameters, it becomes evident 17 

that the more vehicle categories and differentiation criteria are considered, the harder it is to fit 18 

such a model to observed data. Furthermore, it is not only important to replicate observed car 19 

usage patterns, but also to ensure that the choice model reacts in a predictable manner to variable 20 

input and exhibits plausible elasticities and substitution patterns. This is especially difficult when 21 

differentiating vehicles by multiple criteria (e.g. propulsion system and size), as this setup 22 

obviously violates the MNL assumption of independently distributed error terms. Under these 23 

circumstances, formulating and estimating a vehicle type choice model to fit the data in TABLE 1 24 

is no trivial task. 25 

A4. Incremental Approach 26 

Both the Trip Segmentation Approach (A2) and the Choice Model Approach (A3) can deliver 27 

plausible results for the differentiation of car travel, but both also have significant drawbacks and 28 

weaknesses. A2 is based on the assumption that the observed vehicle type usage will remain 29 

unchanged for similar trips, while A3 has difficulties in reproducing the observed data if the 30 

vehicle classification is too complex. 31 

The goal of the Incremental Approach (A4) is to enhance the Trip Segmentation Approach 32 

with the advantages offered by the Choice Model Approach. Observed vehicle type usage 33 

preferences should be reproduced in the base year, while at the same time making the choice 34 

sensitive to variable input. This is possible by setting up the vehicle type choice as an incremental 35 

(or pivot-point) choice model, as described for instance in (18). The forecasted vehicle type usage 36 

shares vector 
F

ijus  will then be: 37 

 
, , ,

,

, , ,

exp( ( ))

exp( ( ))

BY F BY

ij C ij C ij CF

ij C BY F BY

ij C ij C ij C

C

us V V
us

us V V









 (7) 38 

where ,

BY

ij Cus  denotes the observed vehicle type usage shares from the base year, as exemplified in 39 

TABLE 1, and ,

F

ij CV , ,

BY

ij CV   the utilities of vehicle category C  in the forecast and base year 40 

respectively. 41 
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This model formulation presents several advantages compared to A3. Firstly, the observed usage 1 

shares can be replicated exactly, independent of the formulation of utility 
,ij CV . Running a 2 

“forecast” under the assumption that , ,

F BY

ij C ij CV V  is exactly what is assumed in A2 and leads to 3 

, ,

F BY

ij C ij Cus us . Therefore, A4 is a more general formulation of A2. Secondly, if the vehicle fleet 4 

share 
Cvs  is incorporated into the utility 

,ij CV , the model results become responsive to changes in 5 

the vehicle fleet structure. The lack of such sensitivity was mentioned above as one of the major 6 

limitations of A2. Finally, as only differences in utility are relevant, the model can be specified 7 

with fewer variables than A3. This should simplify the process of parameter estimation and make 8 

the assessment of elasticities and overall model responsiveness easier to handle. Nevertheless, the 9 

difficulties in estimating the model parameters mentioned in the previous section also apply to A4. 10 

CASE STUDY 11 

Scope 12 
The following case study will be used to exemplify the modeling framework proposed in this 13 

paper. The primary goal of the study is to compare the differences in the four approaches presented 14 

above. The object of the study is a forecast of travel demand by autonomous vehicles (AV) in 15 

Germany in 2030. The relevant measure of travel demand considered here is VMT per average 16 

working day. 17 

The aim of the case study is not to comprehensively analyze all aspects related to the future 18 

development of demand for AVs in Germany. There are many factors of technical, behavioral and 19 

legal nature not considered in this case study. The focus here lies more on the methodology and 20 

less on the actual results. In order to simplify the model implementation and the interpretation of 21 

results, the following restrictions apply: 22 

 Only commuting trips are considered. 23 

 Only privately owned vehicles are considered (no car sharing, vehicles on demand, 24 

robotaxis, car rentals etc.). 25 

 AV are considered to be only those vehicles with full automation (e.g. Highway Pilot 26 

technology, Level 4 and above), all other vehicles are defined as non-autonomous 27 

(non-AV). 28 

 Empty AV trips are not considered in the VMT calculations. 29 

 Overall mode and destination choice is not affected by the vehicle type choice; hence the 30 

overall number of car trips and car VMT is equal in all approaches. 31 

The last bullet point on the list is necessary in order to enable a comparison between those 32 

approaches that can model the effects on mode and destination choice (A3 and A4) and those that 33 

cannot (A1 and A2). Furthermore, in order to exemplify the impact that user preferences have on 34 

the vehicle type usage, we also assume that AVs lead to a decrease in the users’ valuation of travel 35 

time savings (vtts), as the in-vehicle time can also be used for other activities instead of driving. 36 

The vtts reduction assumed is 25 percent starting with the eleventh minute of travel on, following 37 

the results of an extensive literature study (9). Note that the vtts reduction only affects the choice 38 

between AV and non-AV and not the overall mode and destination choice, once again in order to 39 

enable the comparison between the four approaches. 40 
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TDM and VFM input 1 
Total car travel demand for Germany was leveraged from the DEMO national travel demand 2 

model (19) in form of trip matrices 
ijT . For the purpose of this case study, only the results 3 

pertaining to commuting trips are relevant. TABLE 2 shows the forecasted overall number of car 4 

trips and VMT. 5 

TABLE 2 Forecasted Overall Car Travel Demand in Germany, 2030 6 

 (commuting trips only) 

Total number of car trips per average working day 30.5m trips 

Total car VMT per average working day 568.1m vehicle km  

Average trip length 18.6km per trip 

  

A VFM was used to forecast the shares of autonomous vehicles in the German fleet. The model 7 

setup is briefly presented in (9) and uses an s-shaped market-take-up curve to model the diffusion 8 

of automation technologies. Vehicles were grouped into four size categories in order to enable 9 

different technology diffusion rates, while vehicle vintage is a model result. In this case study we 10 

assumed that AV technology will first be available for large vehicles starting with 2020 and 11 

subsequently also for the smaller car segments. TABLE 3 shows the main results from the VFM.  12 

TABLE 3 Forecasted Vehicle Fleet Shares in Germany, 2030 13 

 

AV non-AV Σ AV available starting 

Small 0.000 0.227 0.227 n.a. 

Compact 0.033 0.310 0.343 2024 

Mid-Size 0.075 0.346 0.421 2021 

Large 0.004 0.005 0.009 2020 

Σ 0.112 0.888 1.000  

     

Implementation of the Linking Approaches 14 

A1 15 

The implementation of the Trivial Approach is straightforward. AV usage shares for all trips result 16 

from the vehicle fleet shares given in TABLE 3, meaning that irrespective of trip purpose and 17 

distance the share of AV trips from all car trips will be 11.2 percent. 18 

A2 19 

The Trip Segmentation Approach used the analysis shown in TABLE 1. The German car fleet was 20 

segmented into the 12 categories shown (four size x three age categories). The vehicle usage 21 

shares given in TABLE 1 were applied to the forecasted car travel demand matrix, thus obtaining 22 

the usage share of each of the 12 vehicle categories for every OD relation. 23 

In order to estimate demand for autonomous vehicles, the assumption was made that for 24 

each of the 12 vehicle categories, AV and non-AV usage shares are equal to the vehicle fleet shares 25 

in that category. This implies that usage preferences for new and large AV are equal to those for 26 

new and large non-AV, and so on. Thus, differences in the utilization of AV and non-AV only result 27 

from the car size and age. 28 
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A3 1 

In order to illustrate the Choice Model Approach, a simple model was set up with two vehicle 2 

categories: autonomous ( AV ) and non-autonomous ( nAV ) vehicles. The utility function for these 3 

vehicle categories was adopted from the German National TDM (10). This simplified utility 4 

function takes the linear form: 5 

 ln( ) ( )ij vs tt ij aet ij c ij ijV vs tt aet fc pc         (8) 6 

where 
ijtt   denotes travel time, 

ijaet   access and egress time, 
ijfc   fuel costs and 

ijpc  parking fees. 7 

Note that car size and age do not enter the utility function. The differences in AV and non-AV 8 

utility are given only by the vehicle fleet shares and the reduced valuation of travel time. As only 9 

differences in utility are relevant in the logit model setup, with the logsum scale parameter 1    10 

and the vehicle fleet shares parameter 1vs   the resulting vehicle usage shares can be formulated 11 

as follows: 12 

 
  

    
,

exp

exp exp

AV ij

ij AV

AV ij nAV tt ij

vs f tt
us

vs f tt vs tt



 (9.1) 13 

 
 

    
,

exp

exp exp

nAV tt ij

ij nAV

AV ij nAV tt ij

vs tt
us

vs f tt vs tt







 (9.2) 14 

As the utility function V  is linear in travel times and costs, the vtts reduction by 25 percent from 15 

the eleventh minute on can be formulated as: 16 

     max , min 10min 10min
1.25

tt
ij tt ij ij ttf tt tt tt


 
 

   
 

 (10) 17 

The travel time parameter used for this case study was 0.06tt   . 18 

A4 19 

The Incremental Approach employs the vehicle usage shares from TABLE 1 as base year values in 20 

an incremental (pivot-point) model. Each of the vehicle categories was split into two 21 

corresponding vehicle types, with and without autonomous technology respectively. The vehicle 22 

fleet shares 
BY

vs  and usage shares 
BY

us  in the base year are considered to be 0 for AV and 1 for 23 

non-AV for all vehicle size and age categories, as this technology does not yet exist in the base 24 

year. For the forecast, the VFM provides the vehicle fleet shares 
F

vs , as given in TABLE 3. The 25 

utility formulation is identical to the implementation of A3, including the parameters and the 26 

reduction of travel time valuation shown in eq. (10). Thus, the incremental model for each vehicle 27 

category can be formulated as: 28 

 
  

  
,

exp

exp

F

AV ij tt ijF

ij AV F F

AV ij tt ij nAV

vs f tt tt
us

vs f tt tt vs








 
 (11.1) 29 
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  

,

exp

F
F nAV
ij nAV F F

AV ij tt ij nAV

vs
us

vs f tt tt vs


 
  (11.2) 1 

Note the simplifications 2 

 
, 0
lim

BY BY
AV AV

F BY
FAV AV
AVBY

us vs
AV

vs us
vs

vs
  (11.3) 3 

and 4 

 
1

1

F BY F
FnAV nAV nAV
nAVBY

nAV

vs us vs
vs

vs
   (11.4) 5 

in eq. (11.1) and (11.2). 6 

Results and Interpretation 7 
TABLE 4 gives an overview of the aggregated results obtained with the four segmentation 8 

approaches. The number of AV and non-AV trips is given, as well as overall VMT and the ensuing 9 

average trip distances. The differences in results are significant, particularly regarding the VMT 10 

shares. 11 

TABLE 4 Overview of the Case Study Results 12 

 

Total number of car 
trips 

Total car VMT Average car trip 
length considers higher AV usage due to: 

[m] [m veh. km] [km] 

 AV non-AV AV non-AV AV non-AV AV size and age vtts reduction 

A1 3.4 27.1 63.7 504.4 18.6 18.6 not not 

A2 4.8 25.7 102.1 466.0 21.1 18.1 yes not 

A3 3.9 26.7 84.5 483.6 21.9 18.1 not yes 

A4 5.5 25.1 130.5 437.6 23.9 17.5 yes yes 

         

A1 forecasts the lowest share of trips and VMT using AV. In contrast to the other approaches, with 13 

A1 there is no reason why autonomous cars should be used more often than non-AVs. The vehicle 14 

usage shares are equal for all trips, thus leading to an equal average trip distance for AVs and 15 

non-AVs. Furthermore, the assumed reduction in the valuation of travel time cannot be considered 16 

using this approach. 17 

A2 forecasts a significantly higher share of AV trips and VMT. This result is due to VFM 18 

results showing that autonomous cars are larger and newer than the average car, and observed data 19 

shows such vehicles are being used more often and for longer trips. This also explains the longer 20 

average AV trip distances. The Trip Segmentation Approach, however, cannot consider the 21 

additional assumption of reduced vtts for AVs. If differentiated results for each vehicle category 22 

(grouped by size and age as in TABLE 1) were shown, usage shares and trip distances for 23 

autonomous and non-autonomous vehicles would be equal inside each category. 24 

A3 also predicts more AV trips and VMT than A1. This approach considers the relative 25 

advantage of AVs due to the assumed vtts reduction, thus leading to more AV trips and longer 26 

average trip distances. However, A3 does not take into consideration that AVs are more often 27 
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larger and newer vehicles, which have been shown to be used relatively more often, irrespective of 1 

whether they have or do not have any automation technology onboard. 2 

Finally, A4 attempts to consider both AV comparative advantages and thus leads to the 3 

highest number of AV trips and VMT. Compared to A2, average AV trip distances increase by a 4 

further 2.8 km due to the vtts assumptions. 5 

The results in TABLE 4 suggest that A1 is only suited for very rough first estimations. If 6 

the vehicle usage differs considerably between the vehicle categories, then A1 cannot deliver 7 

accurate results. A comparison between A2 and A3 is difficult, as in their implementation in the 8 

case study shown above they both focus on different usage aspects. Ideally, a discrete choice 9 

modeling approach could and should also incorporate vehicle size and age in the utility function, 10 

which would make the results easier to compare to A2. If all relevant input data was captured in 11 

such an ideal model, one would expect the results to be similar to those obtained using A4. The 12 

problem is that such a model is difficult to formulate and estimate, as discussed in the section 13 

pertaining to the Choice Model Approach. Thus, further research is required to enhance the 14 

discrete choice modeling approach. 15 

A4 offers an attractive and apparently easy to implement option of incorporating the 16 

advantages of the other two approaches, and would seem to deliver the most plausible results in 17 

this case study. However, this hybrid empirical and choice model construct should be studied 18 

further and implemented in other case studies as well in order to better understand the overall 19 

model responsiveness and the predictability of results. 20 

The case study shown here does not contain any spatially heterogeneous policy measures, 21 

which would not affect car travel demand uniformly over the entire OD matrix, but only influence 22 

certain OD pairs. Such measures cannot be adequately assessed using A1 or A2. A modeled 23 

approach like A3 or A4 would be necessary to assess such scenarios. Furthermore, overall mode 24 

and destination choice was kept unchanged in the four approaches even though A3 and A4 offer 25 

the possibility of also estimating induced traffic. Enabling this feature will likely further increase 26 

the AV VMT shares using A3 and A4. 27 

CONCLUSIONS AND OUTLOOK 28 
The work presented in this paper is driven by the need to better forecast the impact of new 29 

technologies on motorized individual transport demand. As vehicle attributes are correlated to 30 

usage patterns, it becomes necessary to differentiate car travel demand according to these 31 

attributes. This becomes even more important when assessing the environmental effects of car 32 

traffic. 33 

The aim of this paper was to present a modeling framework for splitting up overall car 34 

travel demand originating from a macroscopic travel demand model. A necessary prerequisite for 35 

this method is the existence of an independent vehicle fleet model forecasting the composition of 36 

the car fleet. Four approaches to linking the results from these two models were discussed. 37 

Apart from the trivial solution of splitting up demand according only to the shares of 38 

respective vehicles in the fleet, the other three approaches all have their merits, but also their 39 

shortcomings. The Trip Segmentation Approach relies on observed usage patterns and 40 

assumptions and is therefore not sensitive to modifications in the input parameters. The Choice 41 

Model Approach is versatile, but the logit model parameters leading to a good fit to observed data 42 

are difficult to estimate. Finally, the Incremental Approach attempts to combine the advantages of 43 

the other approaches, but its responsiveness to variable input is somewhat difficult to ascertain. 44 

Results obtained using the four approaches were compared in a case study forecasting 45 

demand for travel with private autonomous vehicles in Germany in the year 2030. The results 46 
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showed significant differences, particularly in the prediction of AV VMT. As expected, the 1 

forecasted demand for AV travel was lowest using the Trivial Approach and highest using the 2 

Incremental Approach. 3 

In the case study shown, the Discrete Choice Approach was implemented using a very 4 

simple model formulation. Further work is required to enhance the utility function by also 5 

incorporating other vehicle attributes. It is expected that an ideally formulated and calibrated 6 

Discrete Choice Approach should lead to similar results to the Incremental Approach. The 7 

theoretical and practical difficulties related to the model estimation require further analyses. 8 

Until a more complex Discrete Choice Approach can be implemented, the Incremental 9 

Approach seems to be a better suited method of linking macroscopic travel demand and vehicle 10 

fleet models. The approach should be put to use in other case studies as well, in order to better 11 

understand the way it responds to different input data.12 
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TABLE 1 Observed Vehicle Usage Shares in Germany 

  

Small Compact Mid-Size Large Σ 

Distance Purpose < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs < 4yrs 4-8yrs > 8yrs 

 

< 20 km 

Commute 0.072 0.078 0.133 0.104 0.096 0.167 0.092 0.089 0.154 0.005 0.002 0.010 1 

Business 0.059 0.051 0.089 0.112 0.116 0.159 0.148 0.117 0.120 0.006 0.009 0.015 1 

Other 0.067 0.069 0.097 0.117 0.104 0.162 0.098 0.107 0.165 0.003 0.003 0.007 1 

20-50 km 

Commute 0.085 0.081 0.104 0.115 0.118 0.155 0.097 0.099 0.131 0.004 0.004 0.006 1 

Business 0.057 0.075 0.057 0.159 0.062 0.115 0.229 0.097 0.137 0.009 0.000 0.004 1 

Other 0.070 0.069 0.080 0.119 0.102 0.172 0.114 0.114 0.151 0.002 0.002 0.005 1 

50-100 km 

Commute 0.062 0.057 0.084 0.160 0.135 0.116 0.114 0.113 0.138 0.000 0.003 0.017 1 

Business 0.060 0.060 0.036 0.131 0.071 0.083 0.262 0.119 0.119 0.012 0.036 0.012 1 

Other 0.076 0.069 0.057 0.116 0.079 0.169 0.113 0.143 0.146 0.004 0.008 0.019 1 

100-200 km 

Commute 0.107 0.019 0.049 0.107 0.097 0.136 0.252 0.087 0.136 0.000 0.010 0.000 1 

Business 0.050 0.033 0.017 0.150 0.083 0.050 0.283 0.083 0.183 0.050 0.017 0.000 1 

Other 0.060 0.060 0.044 0.129 0.096 0.107 0.151 0.159 0.173 0.011 0.005 0.005 1 

> 200 km 

Commute 0.057 0.068 0.034 0.080 0.148 0.136 0.239 0.068 0.125 0.034 0.000 0.011 1 

Business 0.000 0.000 0.022 0.200 0.000 0.044 0.467 0.089 0.156 0.000 0.022 0.000 1 

Other 0.057 0.049 0.036 0.166 0.117 0.101 0.178 0.117 0.162 0.004 0.000 0.012 1 

Vehicle fleet shares 0.067 0.075 0.121 0.104 0.097 0.185 0.083 0.089 0.160 0.004 0.003 0.011 1 
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TABLE 2 Forecasted Overall Car Travel Demand in Germany, 2030 

 (commuting trips only) 

Total number of car trips per average working day 30.5m trips 

Total car VMT per average working day 568.1m vehicle km  

Average trip length 18.6km per trip 
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TABLE 3 Forecasted Vehicle Fleet Shares in Germany, 2030 

 

AV non-AV Σ AV available starting 

Small 0.000 0.227 0.227 n.a. 

Compact 0.033 0.310 0.343 2024 

Mid-Size 0.075 0.346 0.421 2021 

Large 0.004 0.005 0.009 2020 

Σ 0.112 0.888 1.000  
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TABLE 4 Overview of the Case Study Results 

 

Total number of car 
trips 

Total car VMT Average car trip 
length considers higher AV usage due to: 

[m] [m veh. km] [km] 

 AV non-AV AV non-AV AV non-AV AV size and age vtts reduction 

A1 3.4 27.1 63.7 504.4 18.6 18.6 not not 

A2 4.8 25.7 102.1 466.0 21.1 18.1 yes not 

A3 3.9 26.7 84.5 483.6 21.9 18.1 not yes 

A4 5.5 25.1 130.5 437.6 23.9 17.5 yes yes 

         

 


