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a b s t r a c t 

A modified scheme of the discrete sources method for modeling the nonlocal optical response of a plas- 

monic dimer consisting of two identical axisymmetric metallic particles has been developed. The optical 

cross sections have been computed in the frequency domain for prolate spheroids with different aspect 

ratios and for different gap sizes. The results show that the generalized nonlocal optical response model 

leads to a blue shift, a plasmon mode damping, and a plasmon mode broadening of the optical cross 

sections as compared to the local-response approximation. These effects more pronounced when the as- 

pect ratio of the spheroid increases and the gap size decreases. It has been confirmed that the additional 

boundary condition appears to be the main origin for the blue shift. 
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. Introduction 

Interaction of light with plasmonic metallic nanostructures is

f increasing interest in various research fields. The encountered

ffects are useful in different areas of science and technology,

hich include scanning near-field optical microscopy, metal en-

anced fluorescent spectroscopy, biomedical sensors, optical data

torage, solar cells and liquid crystal displays [1] . Plasmonics

llows to manipulate light at the nanoscale and to obtain strong

nd very confined electromagnetic fields. This is achieved via a

ocalized surface plasmon resonance, which is a well-known phe-

omenon that occurs in metal nanoparticles due to the collective

scillation of free electrons in nanosized structures when sub-

ected to an incident electromagnetic field [2] . Interest in metallic

tructures with nanogap features has been propelled mostly by

mportant applications in spectroscopy, and in particular, by the

xperimental reports of surfaceenhanced Raman scattering from

ingle molecules [3] . The extreme level of sensitivity possible

ith such structures arises from the localized surface plasmon

esonances that is associated with the nanogap, in which electric

eld intensity enhancements can reach large values. 

The optical response of plasmonic nanostructures is generally

ell-described by classical electromagnetics based on the incorpo-

ation of local connection between displacement and electric field
∗ Corresponding author. 
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y using frequency-dependent dielectric function. Such a classical

pproach produces predictive results for nanostructures until sizes

own to 10 nm. If the structure size is less than 10 nm or there is

 sharp change of the surface topography the classical Maxwell’s

heory based on the local connection is no longer sufficient and a

ew approach is required going beyond classical electromagnetics

o describe the occurring physical effects. 

Plasmonic resonance modeling based on classical solution of

axwell’s equations predicts monotonically increasing electric 

eld enhancements with decreasing the gap size, prompting the

evelopment of nanotechnology for producing plasmonic struc-

ures with nano sized gaps. The collective oscillation of conduc-

ion electrons subject to driving optical fields has been conceptu-

lly analyzed in the framework of the local response approxima-

ion (LRA), where the material response occurs only in the point

f the perturbation. For pure dielectrics, this is a well-established

nd accurate approach, while it is traditionally being applied to

etals too. Despite its simplifications, the LRA framework has fos-

ered both predictions and experimental confirmations of novel

lasmonic phenomena, such as the squeezing of light beyond the

iffraction limit, the tunability of the optical properties of metal-

ic structures with size and shape, and the large enhancement of

he electric field in metal geometries with sharp surface topogra-

hy corrugation, as well as in dimers with vanishing gaps [4] . In

lasmonic nanogaps, three regimes for the gap size d can be dis-

inguished. 

https://doi.org/10.1016/j.jqsrt.2018.05.026
http://www.ScienceDirect.com
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(  
1. For d > 2 nm, the classical LRA gives basically the same results

as a nonlocal response approximation (NLR) [5] (see Appendix

for an overview of the nonlocal response theories) . 

2. For 0.5 nm ≤ d ≤ 2 nm, strong nonlocal effects appear; both the

local and nonlocal descriptions predict a similar qualitative be-

havior, but quantitative differences emerge. 

3. For d < 0.5 nm, pure quantum effects, such as the electron tun-

neling between the nanoparticles, are present [6,7] . 

Zuloaga et al. [8] used the time-dependent density-function-

theory (TDDFT) to perform fully quantum mechanical simulations

of the linear response of plasmonic dimers. However, this approach

is computationally unfeasible for large plasmonic structures (par-

ticle sizes exceeding 10 nm) because the number of electrons to

be accounted for is extremely large [9] . To address this situation,

semi-classical approaches, in which quantum effects are incorpo-

rated into the Maxwell equations, have been proposed in [10–

15] . For large plasmonic structures with nanogaps, Esteban et al.

[16] developed a quantum corrected model (QCM) to incorporate

the electron tunneling effect into the local classical formalism. The

quantum relationship between the oscillating field and current is

reproduced by assigning a local effective conductivity to the gap.

By analyzing the QCM results, it has been found that the ‘threshold

tunneling-distance’ is of about 4 Å . For larger gap sizes, the QCM

results are identical to those of the LRA model as the tunneling

effect is negligible [6] . David et al. [17] found that the extension

of the hydrodynamic model to cope with inhomogeneous density

profiles can provide a relatively fast and accurate way of describing

the optical response of metal surfaces at subnanometer distances.

Comparison results for gold sphere dimers are in a good agree-

ment with well-established density-functional theory within the

jellium model approach. An other approach called projected dipole

model (PDM) can be applied to simulate dimers. PDM consists

in placing an infinitely thin layer of dipoles on the correspond-

ing surface. These dipoles are placed normal to the interface and

their polarizabilities are defined by employing the time-dependent

density-functional theory (TDDFT) within the jellium approxima-

tion and the following generalization for an arbitrary surface. As it

was demonstrated by comparison with direct TDDFT computation

for 2D dimers of arbitrary shapes PDM works well until vanishing

gap size [18] . 

Along with electron tunneling, nonlocal screening [19] is an-

other quantum effect that influences the plasmon resonances of

a metallic dimer. Unlike the local classical model, in which the

plasmon-induced charge densities are strictly confined to the sur-

faces, in the framework of a nonlocal hydrodynamic (NLHD) model,

these charges are effectively pushed inside the material. This is a

consequence of the choice of the boundary conditions on the free

electron current at the metal–vacuum interface [12,20] . As a result,

the plasmon resonances obtained with the NLHD model are always

blue shifted with respect to the wavelengths predicted by the LRA

model. The nonlocal screening effect also reduces the electric field

enhancement in the gap of plasmonic dimers. The blue shift and

the electric field enhancement predicted by the NLHD model cor-

rectly explain the measured effect of nonlocal screening for noble

metals such as Au and Ag [7] . Mortensen et al. [11] proposed a

generalized nonlocal response (GNOR) model in which an electron

diffusion term is added to the NLHD model. This model predicts

a progressive broadening of bonding modes in the subnanometer

gap regime, which is in good agreement with the quantum TDDFT

results [7] . To get a more physical insight into the role of the dif-

fusion term incorporated in the GNOR description of the electron

gas, the relaxation dynamics has to be considered. Under the influ-

ence of an external electric field, the free electrons in an initially

charge-neutral metallic nanostructure are drawn away from their

equilibrium positions. The electrons leaving regions near the sur-
aces originate excess and deficit densities of charge. At the same

ime, of course, the whole bulk remains uncharged, since the posi-

ive ions remain fully screened by a corresponding density of neg-

tively charged conduction electrons. As a consequence of entropy,

he induced spatially inhomogeneous charge density will relax to-

ards its equilibrium position. Classically, this process is described

s diffusion, and in a drift-diffusion theory, it is captured by the

iffusion constant. Since diffusion relaxes the induced charge, it

lso relaxes the polarization field, and consequently, it is a damp-

ng mechanism [21] . 

To provide reliable, accurate and controllable simulation results,

 numerical electromagnetic model should account for all features

f interaction in the plasmonic structures down to Ångstrom

imension. An overview of the different numerical methods for

nalyzing nanoplasmonic structures can be found in [22–24] . The

ost popular approaches are (I) methods applicable directly to the

axwell system (finite difference time domain [14,25] and finite

lements method [26] ), in particular in [14] the FDTD method was

pplied to analyze spherical dimers and arbitrary shaped cylin-

rical dimers, (II) semi-analytical volume based methods (discrete

ipole approximation [24] and volume integral equations [23] ),

nd (III) semi-analytical surface based methods (surface integral

quations [23] , T-matrix [27] , multiple multipole method [28] , and

iscrete sources method [29] ). For plasmonic structures consisting

f homogeneous plasmonic particles, surface based methods seem

o be the most appropriate [23] . The reason is that the inclusion of

he nonlocal response requires the solution of a vector Helmholtz

quation with a very large wavenumber. Most direct methods

hen applied to the 3D case are restricted to a discretization step

f about 0.2 nm, which is not sufficient for modeling the nonlocal

esponse. As a matter of fact, the discretization is determined

y the Fermi wavelength inside the particle; for Ag, the Fermi

avelength λF = 0 . 52 nm requires a discretization step smaller

han 0.1 nm to achieve a reasonable accuracy [30] . 

The discrete sources method (DSM) is a semi-analytical surface

ased method, in which the electromagnetic fields are approxi-

ated by linear combinations of discrete sources whose ampli-

udes are determined from the boundary conditions. As compared

o other surface based approaches, the method (I) does not require

ny mesh generation or an integration procedure over the particle

urface, (II) provides the near and far fields in clear analytical form,

III) solves simultaneously the scattering problem for all external

xcitations and polarizations, (IV) can handle particles with high

efractive indices, and (V) allows the estimation of the computa-

ional errors via the residual of the surface fields [31] . These theo-

etical and numerical advantages recommend the discrete sources

ethod for analyzing plasmonic structures in the presence of non-

ocal response. It worth to mention that the DSM method can be

pplied considering “jellium edge” [17] as a set of discrete homo-

eneous shells, but in this case the DSM model simulation will be

ather time consuming. 

> In this paper we analyze the plasmon resonances of a

etallic dimer by means of a modified scheme of the discrete

ources method which accounts on the nonlocal optical response.

he paper is organized as follows. In Section 2 we summarize

he generalized nonlocal optical response model, and formulate

he transmission boundary value problem for a dimer consist-

ng of two identical axisymmetric homogeneous metallic particles.

ection 3 is devoted to the description of the modified scheme

f the discrete sources method, while in Section 4 , computer-

imulated results are reported and discussed. 

. Generalized nonlocal optical response model 

We consider the scattering of an electromagnetic plane wave

 E , H ) by a dimer consisting of two identical axisymmetric ho-
0 0 
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Fig. 1. Scattering geometry of a dimer consisting of two identical metallic prolate spheroids. 
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ogeneous metallic particles placed in an isotropic homogeneous

edium as shown in Fig. 1 . The particle i occupies the domain

 i with smooth boundary ∂D i , where i = 1 , 2 . By assumption, the

edia are nonmagnetic and the particles have a common axis of

ymmetry Oz . The incident electromagnetic plane wave propagates

n the Oxz plane and along a direction which encloses the angle

− θ0 with the Oz axis. 

An overview of the nonlocal response theories is given in the

ppendix. In summary and referring to the GNOR model, the fol-

owing conclusions are relevant for our analysis: 

1. The local-response Ohm law J (r ) = σE (r ) is corrected for non-

local dynamics as [12] 

ξ 2 

ε b 
∇[ ∇ · J (r )] + J (r ) = σE (r ) , (1)

where for a time dependence exp (j ωt ) of the fields, 

ξ 2 = ε b 

[ 
β2 

ω(ω − j γ ) 
+ j 

D 

ω 

] 
(2) 

is the length scale of the GNOR model, ε b the permittivity as-

sociated to bound charges, ω the frequency, β2 = (3 / 5) v 2 F , v F 
the Fermi velocity, γ the Drude damping rate, D the diffusion

constant, and σ the Drude conductivity. 

2. The Maxwell equation for the magnetic field reads as 

∇ × H (r ) = j ωε 0 [ ε + ξ 2 ∇ (∇ ·)] E (r ) , (3)

where 

ε = ε b −
ω 

2 
p 

ω 

2 − j γω 

(4) 

is the Drude permittivity, ε0 the vacuum permittivity, and ω p 

the plasma frequency of the metal. 

3. The field in the metal E sums the contributions of a divergence-

free transverse field E T and a curl-free longitudinal field E L 

solving the vector Helmholtz equation with wavenumbers k 2 T =
k 2 

0 
ε and k 2 L = ε /ξ 2 , respectively, where k 0 = ω 

√ 

ε 0 μ0 is the

wavenumber in vacuum. 

4. The amplitude of the longitudinal wave is computed from the

additional boundary condition [12,35] 

ε 1 ̂  n · E 1 (r ) = ε b ̂  n · E 2 (r ) , (5)

which is imposed at the interface between a dielectric medium

1 and a metallic medium 2. This boundary condition is used

together with the continuity of the tangential components of

the electric and magnetic fields at the interface. 

In the framework of LRA, when nonlocal effects are neglected,

he pertinent equations are obtained by setting ξ = 0 in (1) and
3) , and by ignoring the longitudinal field (and so, the additional

oundary condition (5) ). 

Considering the scattering problem illustrated in Fig. 1 , we are

aced with the solution of the following boundary value prob-

em: Given the incident electromagnetic field ( E 0 , H 0 ), compute the

cattered field (E e , H e ) in D e = R 

3 \ D 1 ∪ D 2 and the internal fields

 E i , H i ) in D i , i = 1 , 2 , satisfying the Maxwell equations 

 × H e = j k 0 ε e E e , ∇ × E e = −j k 0 H e , in D e (6) 

 × H i = j k 0 [ ε i + ξ 2 ∇ (∇ ·)] E i , ∇ × E i = −j k 0 H i , in D i , i = 1 , 2 , 

(7) 

nd the boundary conditions 

 

 i × (E i − E e ) = ̂

 n i × E 0 , (8) 

 

 i × (H i − H e ) = ̂

 n i × H 0 , (9) 

 b ̂  n i · E i = ε e ̂  n i · (E e + E 0 ) , (10) 

n ∂D i , i = 1 , 2 . In addition, the scattered field must satisfy the

ilver–Müller radiation condition. Here, ε e is the permittivity of

he background dielectric medium, and in order to further simplify

he writing, we set 

 1 = ε 2 = ε, (11)

here ε is given by (4) . Note that the field inside particle i is de-

omposed as 

 i = E T i + E L i , (12)

here E T i and E L i are respectively, the transverse and longitudinal

elds satisfying 

 · E T i (r , ω) = 0 and ∇ × E L i (r , ω) = 0 . 

. Discrete sources method 

In the framework of the discrete sources method, the electro-

agnetic fields are constructed as finite linear combinations of the

elds produced by dipoles and multipoles distributed inside the

article. Thus, the solution satisfies Maxwell’ s equations and the

adiation conditions analytically. The unknown amplitudes of the

iscrete sources are determined from the boundary conditions en-

orced at the particle surface. In this section we describe a modi-

ed scheme of the discrete sources method for modeling the non-

ocal optical response. 
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For the incident electromagnetic plane wave 

E 0 (r ) = ̂

 e 0 e 
−j k e ·r (13)

propagating along the direction (π − θ0 , π) and being character-

ized by the wave vector k e = k e ̂
 k e , k e = k 0 

√ 

ε e and polarization

unit vector ̂  e 0 , the corresponding P- and S-polarized incident fields

are given respectively, by 

E 

P 
0 (r ) = ( cos θ0 ̂  e x + sin θ0 ̂  e z ) χ(x, z) , (14)

H 

P 
0 (r ) = −√ 

ε e cos θ0 ̂  e y χ(x, z) , (15)

and 

E 

S 
0 (r ) = 

√ 

ε e cos θ0 ̂  e y χ(x, z) , (16)

H 

S 
0 (r ) = ( cos θ0 ̂  e x + sin θ0 ̂  e z ) χ(x, z) , (17)

where ( ̂  e x , ̂  e y , ̂  e z ) are the Cartesian unit vectors and 

χ(x, z) = e −j k e (x sin θ0 −z cos θ0 ) . (18)

For an axisymmetric dimer, the P- and S-polarized excitations are

treated separately. To account for axial symmetry, we expand each

polarized plane wave into a Fourier series in the azimuthal angle

ϕ by using the basic result 

e ±j x cos ϕ = 

∞ ∑ 

m =0 

(2 − δm 0 )(±j ) m J m 

(x ) cos mϕ, (19)

where J m 

are the cylindrical Bessel functions, and δm 0 the Kro-

necker delta symbol. The scattering problem then decouples over

the azimuthal modes m , and a separate solution for each m is ob-

tained. 

The discrete sources are placed on the axis Oz (the axis of sym-

metry of the dimer), and in this regard, we denote by { z e n } N 
m 
e 

n =1 
the

positions of discrete sources for the scattered field representation,

by { z T i n } N 
m 
T i 

n =1 
the positions of discrete sources for representing the

transverse field inside particle i , and finally, by { z L i n } N 
m 
L i 

n =1 
the posi-

tions of discrete sources for representing the longitudinal field in-

side particle i . Note that the numbers of discrete sources N 

m 

e , N 

m 

T i 
and N 

m 

L i 
may depend on the azimuthal mode m . 

For transverse field approximation, the discrete sources are con-

structed from the vector potentials 

A 

1 e ,i 
mn (r ) = Y e ,i m 

(
� , z e , T i n 

)
cos [(m + 1) ϕ] ̂  e x 

− Y e ,i m 

(
� , z e , T i n 

)
sin [(m + 1) ϕ] ̂  e y , (20)

A 

2 e ,i 
mn (r ) = Y e ,i m 

(
� , z e , T i n 

)
sin [(m + 1) ϕ] ̂  e x 

+ Y e ,i m 

(
� , z e , T i n 

)
cos [(m + 1) ϕ] ̂  e y , (21)

A 

3 e ,i 
mn (r ) = Y e ,i 

0 

(
� , z e , T i n 

)̂
 e z , (22)

where 

 

e 
m 

( � , z e n ) = h 

(2) 
m 

(
k e R z e n 

)( ρ

R z e n 

)m 

, (23)

 

i 
m 

( � , z T i n ) = j m 

(k T R z T i n 
) 
(

ρ

R z T i n 

)m 

, (24)

k T = k 0 
√ 

ε , � = (ρ, z) , ρ2 = x 2 + y 2 , and 

R 

2 
z n 

= ρ2 + (z − z n ) 
2 , (25)
hile for longitudinal field approximation, the discrete sources are

onstructed from the scalar potentials �mn and �n as given below.

or a P-polarized excitation, the approximate solution is given by 

 

N 
e , T i (r ) = 

M ∑ 

m =0 

N m e , T i ∑ 

n =1 

p e , T i mn 

j 

k 0 ε e ,i 
∇ × ∇ × A 

1 e ,i 
mn (r ) 

+ q e , T i mn 

j 

ε e ,i 
∇ × A 

2 e ,i 
mn (r ) 

+ 

N 0 e , T i ∑ 

n =1 

r e , T i n 

j 

k 0 ε e ,i 
∇ × ∇ × A 

3 e ,i 
n (r ) , (26)

 

N 
L i (r ) = 

M ∑ 

m =0 

N m L i ∑ 

n =1 

p L i mn ∇�mn (r ) + 

N 0 L i ∑ 

n =1 

r L i n ∇�n (r ) , (27)

 

N 
e ,i (r ) = 

j 

k 0 
∇ × E 

N 
e , T i (r ) , (28)

here the scalar potentials �mn and �n are defined respectively

y 

mn (r ) = j m +1 (k L R z L i n 
) cos [(m + 1) ϕ] , (29)

n (r ) = j 0 
(
k L R z L i n 

)
, (30)

 

2 
L = ε/ξ 2 , and M is the maximum number of azimuthal modes.

or an S-polarized excitation, we have 

 

N 
e , T i (r ) = 

M ∑ 

m =0 

N m e , T i ∑ 

n =1 

p e , T i mn 

j 

k 0 ε e ,i 
∇ × ∇ × A 

2 e ,i 
mn (r ) 

+ q e , T i mn 

j 

ε e ,i 
∇ × A 

1 e ,i 
mn (r ) 

+ 

N 0 e , T i ∑ 

n =1 

r e , T i n 

j 

ε e ,i 
∇ × A 

3 e ,i 
n (r ) , (31)

 

N 
L i (r ) = 

M ∑ 

m =0 

N m L i ∑ 

n =1 

p L i mn ∇�mn (r ) , (32)

 

N 
e ,i (r ) = 

j 

k 0 
∇ × E 

N 
e , T i (r ) , (33)

here the scalar potential �mn is now defined by 

mn (r ) = j m +1 (k L R z L i n 
) sin [(m + 1) ϕ] . (34)

ome remarks are in order: 

1. N is a multi-index incorporating both the maximum number

of azimuthal modes M , and the number of discrete sources N 

m 

e ,

N 

m 

T i 
and N 

m 

L i 
. 

2. From (28) and (33) it is apparent that only the transverse field

E T i contributes to the magnetic field H i inside particle i . 

3. In the case of an S-polarized excitation, the azimuthal inde-

pendent harmonic does not contain the nonlocal term ∇�n ( r )

appearing in (27) . The reason is that in this case, there is no

normal component of the electric field, and so, the additional

boundary condition is not required. 

As the electromagnetic fields given by (26) –(28) and (31) –(33)

olve the Maxwell equations (6) and (7) , we have to determine the

mplitudes of discrete sources 

p e , T i mn , p 
L i 
mn , q 

e , T i 
mn , r 

e , T i 
n , r L i n 

}
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c  

T  
uch that the boundary conditions (8) –(10) are fulfilled. By means

f the generalized point matching technique, we obtain the follow-

ng relations for amplitudes computation: 

 

 i ×
∫ 2 π

0 

[ E T i ( � l , ϕ) + E L i ( � l , ϕ) − E e ( � l , ϕ)] e −j mϕ d ϕ 

= ̂

 n i ×
∫ 2 π

0 

E 0 ( � l , ϕ ) e −j mϕ d ϕ , (35) 

 

 i ×
∫ 2 π

0 

[ H i ( � l , ϕ) − H e ( � l , ϕ)] e −j mϕ d ϕ 

= ̂

 n i ×
∫ 2 π

0 

H 0 ( � l , ϕ ) e −j mϕ d ϕ , (36) 

 

 i ·
∫ 2 π

0 

[ ε b E T i ( � l , ϕ) + ε b E L i ( � l , ϕ) − ε e E e ( � l , ϕ)] e −j mϕ d ϕ 

= ̂

 n i ·
∫ 2 π

0 

ε e E 0 ( � l , ϕ ) e −j mϕ d ϕ , (37) 

here { � l } L l=1 
is the set of matching points distributed in the

zimuthal plane ϕ = const . For each m , the numbers of discrete

ources and matching points are chosen as 

 N 

m 

e + 2 N 

m 

T i + N 

m 

L i < 5 L, (38)

n which case, we are led to an overdetermined system of equa-

ions for amplitudes determination. The system of equations is

olved by QR matrix factorization for a given set of incident an-

les θ0 , and simultaneously, for P- and S-polarized excitations. 

Once the amplitudes of discrete sources are known, the compo-

ents of the far-field pattern 

 (θ, ϕ) = F θ (θ , ϕ) ̂  e ϑ + F ϕ (θ, ϕ) ̂  e ϕ , (39)

efined through the relation 

 e (r ) = 

e −j k e r 

r 
F (θ, ϕ) + o 

(
1 

r 

)
, r → ∞ , (40)

re computed for a P-polarized excitation as 

 θ (θ , ϕ) = j k e 

M ∑ 

m =0 

( j sin θ ) m cos [(m + 1) ϕ] 

×
N m e ∑ 

n =1 

(p e mn cos θ + q e mn ) e 
−j k e z 

e 
n cos θ

−j k e sin θ

N 0 e ∑ 

n =1 

r e n e 
−j k e z 

e 
n cos θ , (41) 

 ϕ (θ, ϕ) = −j k e 

M ∑ 

m =0 

( j sin θ ) m sin [(m + 1) ϕ] 

×
N m e ∑ 

n =1 

(p e mn + q e mn cos θ ) e −j k e z 
e 
n cos θ (42) 

nd for an S-polarized excitation as 

 θ (θ , ϕ) = j k e 

M ∑ 

m =0 

( j sin θ ) m sin [(m + 1) ϕ] 

×
N m e ∑ 

n =1 

(p e mn cos θ − q e mn ) e 
−j k e z 

e 
n cos θ (43) 

 ϕ (θ, ϕ) = j k e 

M ∑ 

m =0 

( j sin θ ) m cos [(m + 1) ϕ] 
×
N m e ∑ 

n =1 

(p e mn cos θ − q e mn ) e 
−j k e z 

e 
n cos θ

+ j k e sin θ

N 0 e ∑ 

n =1 

r e n e 
−j k e z 

e 
n cos θ . (44) 

he differential scattering cross section is then calculated as 

(θ, ϕ) = | F θ (θ , ϕ) | 2 + | F ϕ (θ, ϕ) | 2 , (45)

he scattering cross section as 

sct = 

∫ 2 π

0 

∫ π

0 

σ (θ, ϕ) sin θd θd ϕ, (46) 

nd the extinction cross section for a P- and an S-polarized excita-

ion as 

ext = −4 π

k e 
Im [ F θ (π − θ0 , π)] (47)

nd 

ext = 

4 π

k e 
Im [ F ϕ (π − θ0 , π)] , (48)

espectively. From (41) –(44) it is readily seen that the components

f the far-field pattern are expressed through finite linear combi-

ations of elementary functions, and so, that no integration proce-

ure is required for their computation. Besides, the errors in the

olution can be estimated by computing the residual norm of the

urface fields at the particle surfaces ∂D i , i = 1 , 2 . 

. Numerical analysis 

In this section we analyze the scattering of a plasmonic dimer

onsisting of two identical metallic prolate spheroids. Each prolate

pheroid has an equivolume diameter of D p = 16 nm. The material

f the spheroids is gold (Au) or silver (Ag). For these materials,

he frequency dependent refractive indices n i = 

√ 

ε i = 

√ 

ε are taken

rom [32] . The corresponding GNOR parameters are [12] : 

h̄ ω p = 9 . 02 eV , h̄ γ = 0 . 071 eV , v F = 1 . 39 μm/s , 

D = 1 . 90 × 10 

8 μm 

2 /s 

or Au, and 

h̄ ω p = 8 . 99 eV , h̄ γ = 0 . 025 eV , v F = 1 . 39 μm/s , 

D = 3 . 61 × 10 

8 μm 

2 /s 

or Ag. In [33] , it has been found that for this scattering problem,

he plasmonic resonance seems to be more pronounced for a P-

olarized excitationand the incident angle θ0 = 90 ◦, when the in-

ident electric field E 0 is parallel to the Oz axis (the axis of sym-

etry of the prolate spheroids). For this reason, the incident angle

s chosen as θ0 = 90 ◦. For the physical reason of this choice the

nterested reader is referredto Nordlander et al. [34] . 

The main numerical problem of simulating the nonlocal re-

ponse is the large difference between the longitudinal and trans-

erse wavenumbers k L and k T , respectively. The results illustrated

n Fig. 2 show that k L exceeds k T by about two order of magni-

udes. Therefore, 

1. the number of discrete sources for the longitudinal field N 

m 

L i 
is

approximately three to four times larger than that for the trans-

verse field N 

m 

T i 
, 

2. the number of matching points L is ten times larger than that

used in the local-response approximation (leading to a dis-

cretization step of about 0.1 nm or less). 

In Fig. 3 , we plot the extinction and scattering cross-sections

omputed by means of LRA and GNOR models for a gold dimer.

he half-axes of the spheroid are a = 12 . 7 μm and b = 25 . 4 μm,
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d  
and the gap size d = 1 nm. The background medium is water ( n e =√ 

ε e = 1 . 33 ) and glass ( n e = 

√ 

ε e = 1 . 52 ). The results show a blue

shift and a plasmon mode damping for both background media,

and a larger difference between the extinction and scattering cross

sections, and so, a larger absorption cross section, in the case of

GNOR than in the case of LRA. 

The variations of the extinction and scattering cross-sections

with respect to the aspect ratio r = b/a and the gap size d are il-

lustrated in Figs. 4 and 5 . The material of the particles is gold and

the background medium is water. As before, a blue shift, a plas-

mon mode damping, and a plasmon mode broadening are visible

for both cross sections. Besides, the blue shift, the plasmon mode

damping, and the plasmon mode broadening increase when the

aspect ratio r increases, and the gap size d decreases. The plots

in Fig. 6 demonstrate that the electric field intensity in the center

point in between of the spheroids increases when the spheroids

approach each other. Besides based on further simulations we did

not find any shift between the far and near field intensity which is

in agreement with paper [38] . 

The physical predictions of a nonlocal response model are sen-

sitive to the correct implementation of the additional boundary

condition [35] . In Fig. 7 we illustrate a comparison of the results
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Fig. 3. Extinction and scattering cross sections computed by LRA and GNOR. The geome

(left) and glass (right). 
btained by using the additional boundary condition (cf. (10) ) 

 b ̂  n i · E i ( r l ) = ε e ̂  n i · [ E e ( r l ) + E 0 ( r l )] , (49)

ased on the continuity of the normal component of the free cur-

ent density, and an additional boundary condition based on the

ontinuity of the normal component of the electric field [36,37] ,

hat is, 

 

 i (r l ) · E i (r l ) = ̂

 n i (r l ) · [ E e (r l ) + E 0 (r l )] . (50)

he plots show that the blue shift and the plasmon mode damping

re considerably different; they are more pronounced for (50) than

or (49) . For a detailed discussion of the physical meaning of

oundary conditions (49) and (50) we refer to [35] . On the other

and, in the framework of LRA, the continuity of the tangential

omponents of the electric and magnetic fields yields the continu-

ty of the normal component of the displacement field 

 i ̂  n i (r l ) · E i (r l ) = ε e ̂  n i (r l ) · [ E e (r l ) + E 0 (r l )] . (51)

n interesting exercise is to use a nonlocal response model in

hich the LRA boundary condition (51) is used as additional

oundary condition. The results illustrated in Fig. 8 show that

n the case of boundary condition (51) , a smaller plasmon mode

amping is present and that no blue shift is visible. This is a con-

equence of the fact that the use of the boundary condition (51) re-

uces the nonlocal screening which appears to be the main origin

or the blue shift [7] . 

. Conclusions 

A modified scheme of the discrete sources method based on

he generalized nonlocal optical response model has been applied

o analyze the scattering by a plasmonic dimer consisting of two

dentical axisymmetric metallic particles.In the new scheme, the

iscrete sources for the transverse field (curl and double curl of

ector potentials) and for the longitudinal field (gradient of scalar

otentials) approximation are constructed based on the system of

owest order distributed multipoles [39] . Because the longitudinal

avenumber exceeds the transverse wavenumber by about two or-

er of magnitude, special attention has been payed to the numer-

cal implementation of the discrete sources model. In this context,

t has been found that the number of matching points should be

t least ten times larger than that used in the local-response ap-

roximation. 

The extinction and scattering cross sections of a plasmonic

imer consisting of two identical metallic prolate spheroids have
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Fig. 4. Extinction (left) and scattering (right) cross sections for different aspect ratios r . The results are computed by LRA and GNOR for a gold dimer in water with a gap 

size d = 1 nm. 
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een computed in the frequency domain for different spheroid as-

ect ratios and gap sizes. Comparing the results obtained by the

iscrete sources method with the generalized nonlocal optical re-

ponse model and those with the local-response approximation, a

lue shift, a plasmon mode damping, and a plasmon mode broad-

ning of the optical cross sections has been evidenced. These ef-

ects are more pronounced under the deformation of the con-

tituent spheroids when the aspect ratio of the spheroid increases

nd the gap size decreases. This is in agreement with the results

f Filter et al. [40] where dimer consisted of small plasmonic par-

icles (size 6.7 nm) of different shapes excited by a vertical electric

ipole located inside the gap was investigated based on COMSOL

pplication. 

A significant difference in the optical cross sections has been

ound when using as additional boundary condition the continu-

ty of the normal component of the free current density and the

ontinuity of the normal component of the electric field. These re-

ults emphasizes that a correct implementation of the additional

oundary condition is absolutely demanding. 
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Appendix. Nonlocal response theories 

In this appendix we review the nonlocal response theories by

closely following the analysis given in [12,35] . The constitutive re-

lation relating the displacement field D and the electric field E is

D (r , ω) = ε 0 

∫ 
ε(r , r ′ , ω) E (r ′ , ω) d 

3 
r , (52)

where ω is the frequency, ε0 the vacuum permittivity, and ε( r,

r ′ , ω) the (scalar) nonlocal permittivity of the metal. In the local-

response approximation, nonlocal effects are neglected; we have

ε(r , r ′ , ω) = δ(r − r ′ ) ε(ω) , giving 

D (r , ω) = ε 0 ε(ω ) E (r , ω ) , (53)

where ε( ω) is the spatially independent permittivity. In a nonlocal

response model, the vector wave equation for the electric field is

given by 

∇ × ∇ × E (r , ω) = 

(
ω 

c 

)2 1 

ε 0 
D (r , ω) 
= 

(
ω 

c 

)2 ∫ 
ε(r , r ′ , ω) E (r ′ , ω) d 

3 
r , (54)

here c = 1 / 
√ 

ε 0 μ0 is the speed of light in vacuum. The nonlocal

ermittivity is written as 

(r , r ′ , ω) = δ(r − r ′ ) ε(ω) + f (r − r ′ , ω) , (55)

here f (r − r ′ , ω) is a scalar nonlocal response function. The non-

ocal response function is assumed to be symmetric and short-

anged, which means that 
 

f (r , ω) r d 

3 
r = 0 and 

∫ 
f (r , ω) r 2 d 

3 
r = 2 ξ 2 , 

here r 2 = x 2 ̂ e x + y 2 ̂ e y + z 2 ̂ e z , ( ̂  e x , ̂  e y , ̂  e z ) are the Cartesian unit

ectors, and ξ is the length scale of the nonlocal response function.

nder this assumption and by considering a second-order Taylor

xpansion of E ( r ′ , ω) around r , the integral in (54) can be com-

uted analytically; the vector wave equation (54) then takes the

orm 

 × ∇ × E (r , ω) = 

(
ω 

c 

)2 

[ ε(ω) + ξ 2 � ] E (r , ω) . (56)

rom (56) it is apparent that the scalar nonlocal response is repro-

uced by the Laplacian term in the vector wave equation. The hy-

rodynamical model and the generalized nonlocal optical response

odel are nonlocal response theories leading to a vector wave

https://doi.org/10.13039/501100001659
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quation as in (56) , that give simple computational formulas for

he length scale of the nonlocal response function ξ . 

In the hydrodynamical model for the free-electron gas, the en-

rgy of the electron plasma is expressed in terms of the electron

ensity n ( r , t ) and the velocity field v ( r , t ). The dynamics of n ( r ,

 ) and v ( r , t ) due to the electric field E ( r , t ) are obtained by dif-

erentiating the energy with respect to these variables. Differenti-

tion of the energy with respect to the velocity field and electron

ensity gives the hydrodynamic equation of motion and the conti-

uity equation, respectively. These equations are solved by using a

inearization approach; the physical fields are expanded in a non-

scillating term and a (small) first-order dynamic term. In the fre-

uency domain, we are led to the vector wave equation 

 × ∇ × E (r , ω) = 

(
ω 

c 

)2 

ε b E (r , ω) − j ωμ0 J (r , ω) (57)

nd the constitutive relation for the current density 

β2 

ω 

2 − j γω 

)
∇[ ∇ · J (r , ω)] + J (r , ω) = σ (ω ) E (r , ω ) . (58)

ere, J (r , ω) = −en 0 v (r , ω) is the current density due to free

harges, n 0 the equilibrium electron density of the free electrons,
2 = (3 / 5) v 2 F , v F the Fermi velocity, γ the Drude damping rate, 

 

2 
p = 

n 0 e 
2 

ε 0 m 

he plasma frequency of the metal, 

(ω) = −j ε 0 
ω 

2 
p 

ω − j γ

he Drude conductivity, related to the Drude permittivity ε( ω) by 

(ω) = ε b − j 
σ (ω) 

ε 0 ω 

= ε b −
ω 

2 
p 

ω 

2 − j γω 

, 

nd ε b the permittivity associated to bound charges (ions and elec-

rons). Obviously, in the limit β → 0, i.e., v F → 0 , the constitutive

elation (58) simplifies to Ohm’s law J = σE . 

The hydrodynamic model includes the convective current but

eglects the currents due to diffusion. In the generalized nonlo-

al optical response model the hydrodynamic theory is extended

o account for electron diffusion. The inclusion of electron diffu-

ion changes the continuity equation, which in its linearized form

s the convection-diffusion equation. In this model, the free current

ensity includes a diffusion contribution 

 (r , ω) = −en 0 v (r , ω) + eD ∇n (r , ω) , 

here D is the diffusion constant, while the constitutive relation

or the free current density is (compare with (58) ) 

β2 

ω 

2 − j γω 

+ j 
D 

ω 

)
∇[ ∇ · J (r , ω)] + J (r , ω) = σ (ω ) E (r , ω ) . (59)

To derive a vector wave equation as in (56) , the current den-

ity is eliminated from Eqs. (57) and (59) . Applying the operator

( ∇ · ) to Eq. (57) , accounting of the identity ∇ · (∇ × F ) = 0 , and

nserting the result in (59) gives 

 (r ) = σE (r ) + j ωε 0 ξ
2 ∇[ ∇ · E (r )] , (60)

o that the vector wave equations (57) becomes 

 × ∇ × E (r , ω) = 

(
ω 

c 

)2 

[ ε(ω) + ξ 2 (ω) ∇ (∇ ·)] E (r , ω) , (61)

here ξ is the length scale of the generalized nonlocal optical re-

ponse model, 

2 (ω) = ε b 
β2 + D (γ + j ω) 

ω 

2 − j γω 

. (62) 

D  
bviously, the vector wave equation (61) is as in (56) but in which

he Laplace operator is replaced by the gradient-of-divergence op-

rator ∇( ∇ · ). In fact, the presence of the Laplace operator in

56) is a consequence of using the scalar nonlocal response func-

ion f (r − r ′ , ω) . From (54) and (61) , it follows that in the nonlocal

esponse theory, the displacement field incorporating the contribu-

ions of bound and free charges is given by 

 (r , ω) = ε 0 [ ε(ω) + ξ 2 (ω) ∇ (∇ ·)] E (r , ω) . (63) 

Actually, the vector wave equation (61) is equivalent to the

axwell equations for nonmagnetic media, 

 × E (r , ω) = -j ω μ0 H (r , ω ) , (64) 

 × H (r , ω) = j ω ε 0 [ ε(ω ) + ξ 2 (ω) ∇ (∇ ·)] E (r , ω) . (65) 

sage of the transformations 
√ 

ε 0 E (r , ω) → E (r , ω) and
 

μ0 H (r , ω) → H (r , ω) , then yields the dimensionless form of

he Maxwell equations 

 × E (r , ω) = −j k 0 H (r , ω) , (66) 

 × H (r , ω) = j k 0 [ ε(ω) + ξ 2 (ω) ∇ (∇ ·)] E (r , ω) , (67) 

here k 0 = ω 

√ 

ε 0 μ0 is the wavenumber in vacuum. 

The electric field sums the contributions of a divergence-free

ransverse field and a curl-free longitudinal field, i.e., 

 (r , ω) = E T (r , ω) + E L (r , ω) , (68)

ith 

 · E T (r , ω) = 0 , ∇ × E L (r , ω) = 0 . (69)

nserting (68) in (61) and using the identity ∇ × ∇ × F = ∇(∇ ·
 ) − � F , we find that the transverse and longitudinal fields solve

he Helmholtz wave equation 

 E T (r , ω) + k 2 T (ω ) E T (r , ω ) = 0 , (70) 

 E L (r , ω) + k 2 L (ω ) E L (r , ω ) = 0 , (71) 

here the transverse and longitudinal wavenumbers are given by

 

2 
T (ω) = 

(
ω 

c 

)2 

ε(ω) (72) 

nd 

 

2 
L (ω) = 

ε(ω) 

ξ 2 (ω) 
, (73) 

espectively. Thus, the nonlocal response leads to a longitudinal

ave in the metallic medium. This wave is associated with charge

ensity waves but not with radiation as long as E L does not con-

ribute to the magnetic field H ; we have H = ( j /ωμ0 ) ∇ × E T and

 · H = 0 . 

The presence of the longitudinal wave requires an additional

oundary condition which is considered together with the usual

ontinuity conditions for the tangential components of E and H . To

erive the additional boundary condition we consider a dielectric

edium 1 and a metallic medium 2 separated by an interface S .

t a point r on S , let ̂  n be the normal unit vector pointing into the

ielectric medium 1. The displacement field as given by (63) can

e written as (we omit the dependence on frequency ω) 

 (r ) = D b (r ) − j 

ω 

J (r ) , (74) 

here according to (60) , the free current density J reproduces the

onlocal response, while 

 b (r ) = ε 0 ε b E (r ) = ε 0 E (r ) + P (r ) , (75)
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is the displacement field due to bound charges, and P the polar-

ization vector. From Gauss’ electric field law ∇ · D b = ρ, where ρ
is the free charge density, a ‘pillbox’ argument, and Gauss theorem,

we have the boundary condition ̂

 n · (D b 1 − D b 2 ) = ρs , where 

ρs (r ) = lim 

h → 0 
h [ ρ(r + h ̂

 n ) + ρ(r − h ̂

 n )] (76)

is the free surface charge density. Assuming that the free surface

charge density vanishes at the interface , i.e., ρs = 0 , we obtain the

continuity of the normal component of the displacement field due

to bound charges, ̂ n · D b 1 = ̂

 n · D b 2 , which in turn, gives the addi-

tional boundary condition 

ε 1 ̂  n · E 1 (r ) = ε b ̂  n · E 2 (r ) , (77)

where ε1 is the permittivity of the dielectric medium 1. If ε 1 � =
ε b , the normal component of the electric field is discontinuous at

the interface. This jump in the electric field is due to the surface

charge produced by polarization of the bound electrons both in the

dielectric and the metal. Defining the bound surface charge density

by ρsb = ̂

 n · (P 1 − P 2 ) , we get from (75) and the continuity of ̂ n ·
D b , 

ρsb = ε 0 ̂  n · (E 2 − E 1 ) . (78)

On the other hand, from the continuity equation ∇ · J = −j ωρ,

we have the boundary condition 

̂ n · (J 1 − J 2 ) = −j ωρs . Again, un-

der the assumption that the free surface charge density vanishes

at the interface, we obtain the continuity of the normal compo-

nent of the free current density ̂  n · J 1 = ̂

 n · J 2 . As dielectrics do not

support free currents (there are no free electrons in dielectrics), it

follows that J 1 = 0 . Hence, at the interface, the normal component

of the free current density in the metal vanishes, i.e., ̂ n · J 2 = 0 . In

other words, no free electrons are moving across the metal surface.

From (74) it is then apparent that the continuity of the normal

component of the displacement field due to bound charges, and

the continuity of the normal component of the free current den-

sity imply the continuity of the displacement field, ̂ n · D 1 = ̂

 n · D 2 .

A few comments are in order on this topic: 

1. The boundary condition (77) is equivalent to the assumption

that the static electron density n 0 has a step profile, i.e., n 0 is

constant in metal and rapidly goes to zero at the interface. 

2. Taking divergence of the Maxwell equation for the magnetic

field corresponding to the vector wave equation (57) 

∇ × H (r ) = j ωε 0 ε b E (r ) + J (r ) , (79)

yields 

j ωε 0 ∇ · [ ε b E (r )] + ∇ · J (r ) = 0 , (80)

so that by means of a ‘pillbox’ argument, Gauss theorem, and

the continuity of the normal component of the free current

density, we rediscover (77) . 
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