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a b s t r a c t 

In this paper, we revisit, with further enhancements and clarifications, the self-consistent first-principles 

approach developed previously for deriving the vector radiative transfer theory for a discrete random 

medium with a sparse concentration of particles. We specifically consider the case of a plane-parallel 

particulate layer embedded in an otherwise homogeneous unbounded medium. The solution method is 

based on the far-field Foldy equations, an order-of-scattering expansion for the total field derived under 

the Twersky approximation, the computation of the coherent field by assuming that the positions of the 

particles are uncorrelated, and the ladder approximation for the coherency dyadic. The latter yields an 

integral equation for the diffuse specific coherency dyadic, defined through an angular spectrum repre- 

sentation for the coherency dyadic, which in turn, gives the vector radiative transfer equation for the 

diffuse specific intensity column vector. We analyze specifically the computation of the coherent field 

for inhomogeneous particulate media and multiple species of particles, the continuous extension of the 

far-field representation to the near field, the Foldy approximation, and the Foldy integral equation for the 

coherent field. Finally, we discuss the transition from the vector to the scalar radiative transfer equation. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In a series of papers we aim to analyze several methods for de-

iving the radiative transfer theory for a discrete random layer with

 sparse concentration of particles from the macroscopic Maxwell

quations. For such media we make the following generic assump-

ions adhered to in most cases: 

1. The positions of the particles are uncorrelated (statistically in-

dependent), and the spatial distribution of the particles is sta-

tistically uniform. 

2. Each particle is located in the far-field regions of all the other

particles, and the observation point is also located in the far-

field region of any particle (but in the near-field region of the

entire group). 

In the first two papers, we consider non-spherical particles

istributed in a domain confined to a layer with non-scattering

oundaries, while in the third paper, we consider spherical par-

icles distributed in a layer with scattering boundaries. Roughly
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peaking, the solution methods rely on (i) the far-field Foldy equa-

ions obtained under the far-field approximation, (ii) the Dyson

nd the Bethe–Salpeter equations derived from the Foldy equa-

ions, and (iii) the Wigner transform of the Bethe–Salpeter equa-

ion for the dyadic correlation function. Our overarching goal is to

nalyze whether the different methods give consistent results, as

ell as to emphasize the similarities and differences between the

nderlying assumptions. 

The first method to be discussed is the self-consistent first-

rinciples approach for addressing the scattering by sparse discrete

andom media developed in Refs. [1–4] . The main advantage of

his approach is that the statistical properties of the radiation

eld are not postulated but rather follow from specific underlying

ssumptions about the micro- and macrophysical properties of the

andom particulate medium. Furthermore, this approach addresses

xplicitly the two fundamental problems of macroscopic electro-

agnetics as applied to discrete random media: (i) how to quantify

he reading of a specific detector of electromagnetic energy flow

alled a well-collimated radiometer, and (ii) how to quantify the

nergy budget of a finite volume of particulate medium [3,4] . As a

onsequence, all primary and derivative optical observables (such

s the Poynting–Stokes dyad, the dyadic correlation function, the

https://doi.org/10.1016/j.jqsrt.2018.09.004
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Fig. 1. (a) A system of particles confined to a layer with non-scattering boundaries, 

and (b) the geometry for computing the field exciting particle i due to particle j . 
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coherent and diffuse specific intensity column vectors, etc.) emerge

naturally and have a well-defined physical and practical meaning. 

Below we supplement the summary of this approach by sev-

eral mathematical enhancements and clarifications. In particular,

we analyze the computation of the coherent field for inhomoge-

neous particulate media and multiple species of particles, the con-

tinuous extension of the far-field representation to the near field,

the Foldy approximation, and the Foldy integral equation for the

coherent field. We also outline an approach to derive the scalar ra-

diative transfer theory. 

2. Scattering problem 

We consider a discrete random medium [5] in the form of a

group of N identical particles centered at R 1 , R 2 , ... , R N , and dis-

tributed in a domain D confined to a laterally infinite plane-parallel

layer with imaginary (non-scattering) boundaries ( Fig. 1 (a)). For

simplicity, we assume that the particles are homogeneous, have

the same orientation, and that the particle coordinate systems are

aligned with the global coordinate system. The permittivities of

the nonabsorbing background medium and the particles are ε1 

and ε2 , respectively, while the wavenumbers are k 1 and k 2 = m k 1 ,

where m is the relative refractive index of the particles. The dis-

crete medium is characterized by the number concentration (the

number of particles per unit volume) n 0 = N/V, where V is the vol-

ume occupied by the particles. If n 0 is small then the particulate

medium is sparse; otherwise the medium is dense. Because the

medium is infinite in the horizontal directions, we let V → ∞ and

N → ∞ such that n 0 is constant. The particulate layer is illuminated

by a plane electromagnetic wave with propagation direction ̂

 s and

amplitude E 0 ( ̂  s ) , 

E 0 (r , t) = E 0 (r ) e −j ωt , E 0 (r ) = E 0 ( ̂  s ) e jk 1 ̂ s ·r , ̂  s · E 0 ( ̂  s ) = 0 , (1)

where j = 

√ −1 , t is time, and ω is the angular frequency. The har-

monic time dependence will be implicit form now on. 

3. Optical observables and assumption of ergodicity 

In the discipline of electromagnetic scattering by particles, the

computation of the scattered field in and of itself is usually not

the end goal since in most cases this field is not directly observ-

able, especially in the optical and infrared range of frequencies

[6] . Furthermore, any actual measurement takes a finite amount

of time over which any first moment in the electromagnetic field

would vanish as a result of an extremely high frequency of time-

harmonic oscillations. One must therefore be careful in defining

relevant optical observables as measurable second moments in the

field such that they do not vanish upon temporal averaging. An-

other key aspect is the presumed temporal randomness of the par-

ticulate medium. The computation of the instantaneous scattered
eld followed by averaging over time of an optical observable rep-

esent an exceedingly difficult problem since they require the in-

ocation of an explicit dynamical model of the medium. We will

eal with this aspect by assuming full ergodicity of the random

ulti-particle group and replacing temporal averaging by ensemble

veraging [2,3] . However, it is imperative to recognize that ensem-

le averaging is not a primordial physical concept and can only be

sed as a substitute for time averaging. As summarized eloquently

y Truesdell [7] , “The purpose of statistical mechanics, for phe-

omena in equilibrium, is to calculate time averages, and the en-

emble theory is useful only as a tool enabling us to calculate time

verages without knowing how to integrate the equations of mo-

ion. The ensemble theory is a mathematical device; we are wast-

ng our time if we try to explain it by itself.”

Before proceeding we give a brief summary of the proba-

ility theory needed. Let �N = 

{
R 1 , . . . , R N 

}
be a spatial con-

guration of N particles, and p ( �N )d �N be the probability

p(R 1 , . . . , R N ) d 

3 
R 1 . . . d 

3 
R N of finding the particles in a configura-

ion in which the first particle resides in the volume element d 

3 R 1 

entered at the point R 1 , the second particle resides in the vol-

me element d 

3 R 2 centered at the point R 2 , and so on up to R N .

e assume that the integral of the joint probability density func-

ion p(�N ) = p(R 1 , . . . , R N ) over all configurations is normalized to

nity, and that the N particles are indistinguishable, so that the

rder of the arguments of p is irrelevant. According to the Bayes

heorem, we have 

p(�N ) = p(R i ) p(�i 
N−1 | R i ) 

= p(R i ) p(R j | R i ) p(�i j 
N−2 

| R i , R j ) , (2)

here p ( R i ) is the probability of finding particle i at the point

 i , p(�i 
N−1 

| R i ) with �i 
N−1 

= �N \ { R i } is the conditional probabil-

ty of finding the remaining particles at the corresponding points,

 ( R j | R i ) is the conditional probability of finding particle j at the

oint R j if it is known that particle i is at the point R i , and

p(�i j 
N−2 

| R i , R j ) with �i j 
N−2 

= �N \ { R i , R j } is the conditional prob-

bility of finding the remaining particles at the corresponding

oints. Note that p ( �N ) can also be expressed in terms of joint

robability density functions, e.g., 

p(R i , R j ) = p(R i ) p(R j | R i ) , (3)

here p ( R i , R j )d 

3 R i d 

3 R j is the joint probability of finding particle i

n d 

3 R i and particle j in d 

3 R j . The configuration average of a func-

ion f ( r , �N ) is given by 

f (r , �N ) 
〉
= 

∫ 
f (r , �N ) p(�N ) d �N 

= 

∫ 
f (r , �N ) p(R i ) p(�i 

N−1 | R i ) d �i 
N−1 d 

3 
R i 

= 

∫ 
p(R i ) 

〈
f (r , �N ) 

〉
i 
d 

3 
R i , (4)

here 

f (r , �N ) 
〉
i 
= 

∫ 
f (r , �N ) p(�i 

N−1 | R i ) d �i 
N−1 (5)

s the conditional configuration average of f ( r , �N ) while holding

he position of particle i fixed. In particular, if the positions of the

articles are statistically independent (i.e., their positions are un-

orrelated), we have, for example, p(R j | R i ) = p(R j ) , and so, 

p(�N ) = p(R i ) p(�i 
N−1 ) = p(R i ) p(R j ) p(�i j 

N−2 
) = . . . = 

∏ 

i 

p(R i ) , 

(6)

here the multiplication runs implicitly from i = 1 to i = N. More-

ver, if the particles are distributed uniformly throughout the scat-

ering layer then the positions of all the particles are equally
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robable within the volume V , and the single particle probability

ensity function is 

p(R i ) = 

1 

V 

. (7) 

onsequently, if the positions of the particles are independent and

he particles are uniformly distributed, the configuration average of

he sum �i f ( r , R i ) computes as 

 

i 

〈
f (r , R i ) 

〉
= N 

∫ 
f (r , R i ) p(R i ) d 

3 
R i = n 0 

∫ 
f (r , R i ) d 

3 
R i , (8)

here, again, the summation runs implicitly from i = 1 to i = N. 

To simplify the statement about the assumptions that we use,

e adopt the following convention: when we say that the posi-

ions of the particles are statistically independent, we also mean

hat the particles are uniformly distributed. Thus, p ( �N ) is given

y Eq. (6) in conjunction with Eq. (7) . 

. Far-field Foldy equations 

From now on, we will assume that (i) each particle is located

n the far zones of all the other particles, and (ii) the observation

oint is located in the far zones of all the particles forming the

articulate layer. Note that since the particulate medium is infi-

ite, the observation point always resides in the near field of the

edium. 

The total field at position r sums the contribution of the inci-

ent field and of the fields scattered by all particles 

 ( r ) = E 0 ( r ) + 

∑ 

i 

E sct i (r ) . (9)

he field exciting particle i , E 

(i ) 
exc i 

(r i ) , is a superposition of the in-

ident field E 

(i ) 
0 

(r i ) and of the exciting fields E 

(i ) 
exc i j 

produced by all

articles j excepting i , that is, 

 

(i ) 
exc i 

(r i ) = E 

(i ) 
0 

(r i ) + 

∑ 

j � = i 
E 

(i ) 
exc i j 

(r i ) . (10)

ere, the superscript ( i ) indicates that the fields are written in the

oordinate system of particle i . 

In the far-field region, the field scattered by particle i is 

 sct i (r ) = E 

(i ) 
sct i 

(r i ) = 

e jk 1 r i 

r i 
E 

∞ 

sct i ( ̂  r i ) , r i → ∞ , (11)

here E 

∞ 

sct i 
( ̂  r i ) is the (electric) far-field pattern. Using the approx-

mation ̂

 r j ≈ ̂ R i j , implying ( Fig. 1 (b)) 

e jk 1 r j 

r j 
≈ e jk 1 R ij 

R i j 

e jk 1 ̂
 R ij ·r i , (12) 

e find that locally, the contribution of the j th particle to the field

xciting particle i is a plane electromagnetic wave of amplitude E ij 

ropagating in the direction ̂

 R i j , i.e., 

 

(i ) 
exc i j 

(r i ) = E 

( j) 
sct j 

(r j ) = 

e jk 1 r j 

r j 
E 

∞ 

sct j ( ̂  r j ) ≈ e j k 1 ̂
 R i j ·r i E i j , (13)

here 

 i j = E 

(i ) 
exc i j 

(0) = 

e jk 1 R ij 

R i j 

E 

∞ 

sct j ( ̂
 R i j ) . (14)

Inserting Eq. (13) in Eq. (10) and using 

 

(i ) 
0 

(r i ) = E 0 (R i ) e 
jk 1 ̂ s ·r i (15)

ields 

 

(i ) 
exc i 

(r i ) = E 0 (R i ) e 
jk 1 ̂ s ·r i + 

∑ 

j � = i 
E i j e 

j k 1 ̂  R i j ·r i , (16)
nd we see that the field exciting particle i , E 

(i ) 
exc i 

(r i ) , a super-

osition of the incident plane electromagnetic wave of amplitude

 0 ( R i ) propagating in the direction ̂

 s and of local plane electromag-

etic waves of amplitudes E ij propagating in the directions ̂  R i j and

oming from all particles j excepting i . The far-field pattern of the

eld scattered by particle i is then 

 

∞ 

sct i ( ̂  r i ) = A ( ̂  r i , ̂  s ) · E 0 (R i ) + 

∑ 

j � = i 
A ( ̂  r i , ̂  R i j ) · E i j , (17)

here A is the far-field scattering dyadic [1–3] . With the notation

 (r i , ̂  s ) = g 0 (r i ) A ( ̂  r i , ̂  s ) , (18)

here, excepting the normalization factor 4 π , g 0 (r) = exp (jk 1 r) / r

s the scalar Green’s function of wavenumber k 1 , the total field is 

 ( r ) = E 0 ( r ) + 

∑ 

i 

g 0 (r i ) E 

∞ 

sct i ( ̂  r i ) 

= E 0 ( r ) + 

∑ 

i 

e jk 1 r i 

r i 
A ( ̂  r i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

i 

∑ 

j � = i 

e jk 1 r i 

r i 
A ( ̂  r i , ̂  R i j ) · E i j . (19) 

q. (17) can be transformed into an implicit equation for the am-

litudes E ij . Writing the far-field pattern representation (17) for the

eld scattered by particle j , choosing ̂  r j = ̂

 R i j , multiplying the re-

ulting equation by g 0 ( R ij ), and using Eq. (14) give 

 i j = U (R i j , ̂  s ) · E 0 (R j ) + 

∑ 

k � = j 
U (R i j , ̂

 R jk ) · E jk , i � = j. (20)

qs. (19) and (20) are the multiple scattering equations for sparse

edia, and are referred to as the far-field Foldy equations. The full

erivation of the approximate far-field Foldy equations from the

igorous integral Foldy equations can be found in Refs. [2,3] . 

. The Twersky approximation 

Eq. (20) for the amplitudes of the exciting fields is solved by

teration. Inserting the iterated solution of this equation, otherwise

nown as the Neumann series, i.e., 

 i j = U (R i j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

k � = j 
U (R i j , ̂

 R jk ) · U (R jk , ̂  s ) · E 0 (R k ) + · · · , i � = j, (21) 

nto the equation for the total field (19) , gives a series expansion

or the total field. Each term in this series corresponds to a scat-

ering path involving one or more particles. In a scattering path,

 particle can appear once or more than once. The paths in which

articles appear only once are called self-avoiding scattering paths,

nd in the Twersky approximation [8] , only self-avoiding scattering

aths are assumed to contribute to the total field. The result is an

rder-of-scattering expansion for the total field 

 (r ) = E 0 ( r ) + 

∑ 

i 

U (r i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

i 

∑ 

j � = i 
U (r i , ̂  R i j ) · U (R i j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

i 

∑ 

j � = i 

∑ 

k � = i, j 

U (r i , ̂  R i j ) · U (R i j , ̂
 R jk ) 

· U (R jk , ̂  s ) · E 0 (R k ) + · · · . (22) 

he first term on the right-hand sides of Eq. (22) corresponds to

he incident field, the second term corresponds to the sum of all

aves scattered by one particle, the third term corresponds to the
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Fig. 2. Scattering geometry showing relevant quantities in computing integrals over 

particle positions. 
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sum of all waves scattered by two particles, and so on. Note that

since only self-avoiding scattering paths are considered, the terms

corresponding to the case k = i in the triple sum of Eq. (22) have

been excluded. For large N , the Twersky approximation includes

the majority of multiple-scattering paths. Indeed, for the n th order

scattering term, the difference between the number of terms in the

exact series N(N − 1) n −1 and the number of terms in the Twersky

series N! / (N − n )! goes to zero as N → ∞ . It should be pointed out

that the order-of-scattering expansion (22) is a purely mathemati-

cal construct, and not a real physical phenomenon [2,3] . An impor-

tant assumption which we make in the following is that the (far-

field) Neumann series for the total field (22) converges uniformly

with respect to r . In this case, we can operate on the Neumann

series (22) , e.g., we can integrate the series term by term. 

The order-of-scattering expansion for the total field can be rep-

resented diagramatically as 

E (r ) = �— + 

∑ 

i 

i ◦ �— + 

∑ 

i, j j � = i 

i ◦ j ◦ �— + · · · . (23)

Here, the symbol — represents the incident field E 0 , while the

symbols ◦ and — mean multiplying a field by the dyadic A , and

by the field propagator g 0 ( r i ), respectively. Equivalently, the com-

posed symbol —◦ denotes multiplying a field by the dyadic U . 

Let us give an interpretation of the Twersky approximation.

For this purpose, we consider a configuration of N particles �N ={
R 1 , . . . , R N 

}
and a configuration of N − 1 particles �i 

N−1 
, in which

particle i is absent (removed from the group). Inserting the iter-

ated solution for E ij as given by Eq. (21) in Eq. (16) gives the ex-

pression for the field exciting particle i at a point r i near particle i

( Fig. 1 (b)): 

E 

(i ) 
exc i 

(r i ) = E 0 (R i ) e 
jk 1 ̂ s ·r i 

+ 

∑ 

j � = i 
e j k 1 ̂

 R i j · r i e 
jk 1 R ij 

R i j 

A ( ̂  R i j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

j � = i 

∑ 

k � = i, j 

e j k 1 ̂
 R i j ·r i e 

jk 1 R ij 

R i j 

e jk 1 R jk 

R jk 

× A ( ̂  R i j , ̂
 R jk ) · A ( ̂  R jk , ̂  s ) · E 0 (R k ) + · · · . (24)

Upon removing particle i from the group, the total field at the

same field point r i (produced by the rest of N − 1 particles) in the

coordinate system centered at the origin of particle i before the re-

moval, is computed by applying the order-of-scattering expansion

(22) to the configuration �i 
N−1 

and at the field point r = R i + r i .

This field, denoted by E 

(i ) (r i | �i 
N−1 

) , is given by 

E 

(i ) (r i | �i 
N−1 ) = E 

(i ) 
0 

(r i ) + 

∑ 

j � = i 

e jk 1 r j 

r j 
A ( ̂  r j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

j � = i 

∑ 

k � = i, j 

e jk 1 r j 

r j 

e jk 1 R jk 

R jk 

× A ( ̂  r j , ̂  R jk ) · A ( ̂  R jk , ̂  s ) · E 0 (R k ) + · · · . (25)

From Eqs. (24) and (25) , we find by using the approximations ̂  r j ≈
 R i j and (12) as well as the incident field representation (15) , that

E 

(i ) 
exc i 

(r i ) = E 

(i ) (r i | �i 
N−1 ) . (26)

In other words, in the framework of the Twersky approximation,

the field exciting particle i and calculated at a point r i near particle i

is the total electric field that would exists at that point if the particle

i were removed from the group . 

6. Coherent field 

As we have mentioned in Section 3 , averaging the total elec-

tromagnetic field over time is meaningless since it yields a zero
esult. However, it is sometimes instructive to consider the time

verage of a quantity obtained by artificially stripping the time-

armonic factor off the field. As usual, the temporal averaging is

eplaced by ensemble averaging based on the ergodicity assump-

ion, and the resulting quantity is called the coherent field. It

hould always be recognized, however, that the coherent field is

 purely mathematical, physically non-existent entity [2,3,5] . 

The procedure of configuration averaging requires the computa-

ion of integrals over particle positions. To integrate over all posi-

ions of particle i we use a local coordinate system with the origin

t the observation point P , to integrate over all positions of particle

 we use a local coordinate system with the origin at particle i , and

o on. In other words, we make the changes of variables 

 i = r + p , R j = R i + R ji , . . . . (27)

he integration domain is D . As shown in Fig. 2 , for direction ̂

 p , p

anges from zero at the observation point P to the corresponding

alue at the point C (where the straight line with direction vector
 

 crosses the lower plane boundary); for direction 

̂ R ji , R ji ranges

rom zero at the origin of particle i to the corresponding value

t the point C i (where the straight line with direction vector ̂ R ji 

rosses the lower plane boundary), etc. 

Under the assumption that the positions of the particles are un-

orrelated , the configuration average of the total field (22) , or the

oherent field E c (r ) = 

〈
E (r ) 

〉
, is 

 c (r ) = E 0 (r ) + n 0 

∫ 
D 

e jk 1 r i 

r i 
A ( ̂  r i , ̂  s ) · E 0 (R i ) d 

3 
R i 

+ n 

2 
0 

∫ 
D 

e jk 1 r i 

r i 

e jk 1 R ij 

R i j 

× A ( ̂  r i , ̂  R i j ) · A ( ̂  R i j , ̂  s ) · E 0 (R j ) d 

3 
R j d 

3 
R i + · · · . (28)

o compute the single-scattering term in Eq. (28) , we make the

hange of variable (cf. Eq. (27) ) R i = r + p , switch to spherical co-

rdinates, i.e., d 

3 p = p 2 d p d 

2 ̂ p , and use the incident field represen-

ation 

 0 (R i ) = e jk 1 ̂ s ·p E 0 (r ) (29)

ogether with the asymptotic spherical waves representation for

he plane wave exp (jk 1 ̂  s · p ) [9] , 

 

j k 1 ̂ s ·p = 

2 π

j k 1 p 

[ 
δ( ̂  p −̂ s ) e j k 1 p − δ( ̂  p + ̂

 s ) e −j k 1 p 
] 
, k 1 r → ∞ , (30)

here δ( ̂  p ) is the solid-angle delta function. We thus obtain 

 1 (r ) = 

(
j 
2 π

k 
n 0 

)[ 
A ( ̂  s , ̂  s ) 

∫ s 

d p − A (−̂  s , ̂  s ) 

∫ s 

e 2 j k 1 p d p 

] 
· E 0 (r ) 
1 0 0 
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= 

(
j 
2 π

k 1 
n 0 

)[ 
s A ( ̂  s , ̂  s ) − e 2jk 1 s − 1 

2jk 1 
A (−̂  s , ̂  s ) 

] 
· E 0 (r ) . (31) 

ere, s = s (r , −̂  s ) = ̂

 s · (r − r A ) and s = s (r , ̂  s ) = ̂

 s · (r B − r ) , where

 A and r B are the points where the straight lines with the direc-

ion vectors −̂  s and ̂

 s going through the observation point cross the

ower and the upper boundary of the layer, respectively. Because

he medium is infinite in the horizontal directions, when switch-

ng to spherical coordinates, we exclude the direction characterized

y the polar angle θp = π/ 2 , where p = (p, θp , ϕ p ) ; consequently,

he single-scattering field is finite. By assuming that the particles

re separated by distances much larger than the wavelength, i.e.,

 1 s 	 1 (except for points in the immediate vicinity of the bound-

ry), and taking account of 

e 2jk 1 s − 1 

2j 

∣∣∣ = 

1 

2 

∣∣∣e 2jk 1 s − 1 

∣∣∣ ≤ 1 

2 

(∣∣∣e 2jk 1 s 

∣∣∣+ 1 

)
= 1 , (32)

e find 

 	 1 

k 1 
≥
∣∣∣e 2jk 1 s − 1 

2jk 1 

∣∣∣. (33) 

hus, the second term in the right-hand side of Eq. (31) is much

maller than the first term, and the result is 

 1 (r ) = 

(
j 
2 π

k 1 
n 0 s 

)
A ( ̂  s , ̂  s ) · E 0 ( r ) . (34) 

imilarly, for the double-scattering term in Eq. (28) , we make the

hanges of variables R i = r + p and R j = R i + R ji , and employ the

pherical waves representations for the plane waves exp (jk 1 ̂  s · p )

nd exp (jk 1 ̂  s · R ji ) ; we get 

 2 (r ) = n 

2 
0 

∫ 
D 

e jk 1 p 

p 
e jk 1 ̂ s ·p 

[ ∫ 
D 

e jk 1 R ij 

R i j 

e jk 1 ̂ s ·R ji 

× A (−̂ p , −̂ R ji ) · A (−̂ R ji , ̂  s ) · E 0 (r ) d 

3 
R ji 

] 
d 

3 
p 

= 

(
j 
2 π

k 1 
n 0 

)2 

A ( ̂  s , ̂  s ) · A ( ̂  s , ̂  s ) · E 0 ( r ) 

∫ s 

0 

(∫ s −p 

0 

d R ji 

)
d p 

= 

1 

2 

(
j 
2 π

k 1 
n 0 s 

)2 

A ( ̂  s , ̂  s ) · A ( ̂  s , ̂  s ) · E 0 ( r ) , (35) 

ontinuing this procedure, we find that Eq. (28) is the series ex-

ansion of a dyadic exponential function; the sum of the series is

 c (r ) = exp 

[ 
j 
2 π

k 1 
n 0 s(r , −̂  s ) A ( ̂  s , ̂  s ) 

] 
· E 0 ( r ) . (36)

rom ̂

 s · E 0 (r ) = 0 and ̂

 s · A ( ̂  s , ̂  s ) = 0 , we deduce that the coherent

eld is a transverse field, i.e., ̂  s · E c (r ) = 0 . Diagramatically, we have

he representation 

 c (r ) = � = 

〈�— + 

∑ 

i 

i ◦ �— + 

∑ 

i, j j � = i 

i ◦ j ◦ �— + · · ·
〉
, 

here the symbol � represents the coherent field. 

Further transformations of Eq. (36) yield 

 c (r ) = t ( ̂  s , s (r , −̂  s )) · E 0 (r A ) , (37)

here 

 ( ̂  s , s ) = exp [j k ( ̂  s ) s ] (38)

ith s = s (r , −̂  s ) is the coherent transmission dyadic and 

 ( ̂  s ) = k 1 I + 

2 π

k 1 
n 0 A ( ̂  s , ̂  s ) , (39)

ith I being the identity dyadic, is the dyadic propagation constant

or direction ̂

 s . In matrix form, the dyadic propagation constant is

 ( ̂  s ) = 

∑ 

η,μ= s,θ ,ϕ 

[ K ( ̂  s )] ημ̂ η( ̂  s ) � ̂ μ( ̂  s ) , (40)
here � is the dyadic product sign, and for η = s, θ, ϕ, we have,

espectively, ̂ η( ̂  s ) = ̂

 s , ̂ θ( ̂  s ) , ̂ ϕ ( ̂  s ) , and similarly for μ. The 3 × 3

atrix K ( ̂  s ) corresponding to the dyadic k ( ̂  s ) is 

 ( ̂  s ) = 

[
k 1 0 

0 k ( ̂  s ) 

]
, (41)

nd the 2 × 2 propagation constant matrix k ( ̂  s ) is expressed in

erms of the amplitude matrix S ( ̂  s , ̂  s ) by the relation 

 ( ̂  s ) = k 1 I 2 + 

2 π

k 1 
n 0 S ( ̂  s , ̂  s ) , (42)

here I 2 is the 2 × 2 identity matrix. For the coherent transmis-

ion dyadic, we have a similar representation 

 ( ̂  s , s ) 
∑ 

η,μ= s,θ ,ϕ 

[ t ( ̂  s , s )] ημ̂ η( ̂  s ) � ̂ μ( ̂  s ) (43)

ith the coherent transmission matrix t being given by 

 ( ̂  s , s ) = 

[
exp (jk 1 s) 0 

0 exp [j k ( ̂  s )s] 

]
. (44)

Some properties of the coherent field are listed below [2,3] : 

1. Taking the derivative of Eq. (37) with respect to s = s (r , −̂  s ) ,

and using 

d t ( ̂  s , s ) 

d s 
= j k ( ̂  s ) · t ( ̂  s , s) , (45)

gives 

d E c (r ) 

d s 
= j k ( ̂  s ) · E c (r ) . (46)

To find a matrix form representation of the above equation, we

express the coherent field as 

E c (r ) = E c θ (r ) ̂  θ( ̂  s ) + E c ϕ (r ) ̂  ϕ ( ̂  s ) , (47)

define the two-dimensional vector E c by 

E c (r ) = 

[
E c θ (r ) 
E c ϕ (r ) 

]
, (48)

and obtain 

d E c (r ) 

d s 
= j k ( ̂  s ) E c (r ) . (49)

2. By direct calculation it can be shown that the coherent trans-

mission dyadic satisfies the second-order ordinary differential

equation 

d 

2 
t ( ̂  s , s ) 

d s 2 
= −k 

2 
( ̂  s ) · t ( ̂  s , s ) . (50)

As a result, the coherent field satisfies the dyadic wave equation

d 

2 
E c (r ) 

d s 2 
+ k 

2 
( ̂  s ) · E c (r ) = 0 . (51)

3. Starting from the identity 

d E c (r ) 

d s 
E † c (r ) + E c (r ) 

d E 
† 
c (r ) 

d s 

= 

d 

d s 

[ ∣∣E c θ (r ) 
∣∣2 E c θ (r ) E � c ϕ (r ) 

E c ϕ (r ) E � 
c θ

(r ) 
∣∣E c ϕ (r ) 

∣∣2 
] 

, (52) 

where † stands for conjugate transpose, and using Eq. (49) to-

gether with Eqs. (40) –(42) , we obtain 

d J c (r ) 

d s 
= −n 0 K J ( ̂  s ) J c (r ) , (53)
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where 

J c (r ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ ⎢ ⎢ ⎣ 

∣∣E c θ (r ) 
∣∣2 

E c θ (r ) E � c ϕ (r ) 

E c ϕ (r ) E � 
c θ

(r ) ∣∣E c ϕ (r ) 
∣∣2 
⎤ ⎥ ⎥ ⎦ 

(54)

is the coherency column vector of the coherent field and K J 
is the coherency extinction matrix. Further, defining the Stokes

column vector of the coherent field I c by 

I c ( r ) = DJ c ( r ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ ⎢ ⎢ ⎣ 

∣∣E c θ (r ) 
∣∣2 + 

∣∣E c ϕ (r ) 
∣∣2 ∣∣E c θ (r ) 

∣∣2 − ∣∣E c ϕ (r ) 
∣∣2 

−E c θ (r ) E � c ϕ (r ) − E c ϕ (r ) E � 
c θ

(r ) 

j[E c ϕ (r )E 

� 
c θ

(r ) − E c θ (r )E 

� 
c ϕ (r )] 

⎤ ⎥ ⎥ ⎦ 

, 

(55)

where μ0 is the magnetic permeability of a vacuum and the

transformation matrix D is given by 

D = 

⎡ ⎢ ⎣ 

1 0 0 1 

1 0 0 −1 

0 −1 −1 0 

0 −j j 0 

⎤ ⎥ ⎦ 

, (56)

we find that I c ( r ) satisfies the differential equation 

d I c (r ) 

d s 
= −n 0 K ( ̂  s ) I c (r ) , (57)

with K ( ̂  s ) being the extinction matrix. Since, by assumption, the

medium is homogeneous, K ( ̂  s ) does not change along the path

s , and so the solution of the above equation is 

I c (r ) = e −K ( ̂ s ) s (r , −̂  s ) I c (r A ) . (58)

In Eq. (58) , the matrix exponential T ( ̂  s , s ) = exp [ −K ( ̂  s ) s (r , −̂  s )]

represents the coherent transmission Stokes matrix. Setting

r = r A in Eq. (37) and accounting for t ( ̂  s , 0) = ̄I , we obtain

E c (r A ) = E 0 (r A ) , and further 

I c (r A ) = I 0 ( ̂  s ) . (59)

Thus, the coherent Stokes column vector is the solution of the

differential equation (57) with the initial condition (59) . 

7. Inhomogeneous medium 

For an inhomogeneous medium, we follow Waterman and Tru-

ell [10] and define the density n ( R i ) of particles at R i by 

n (R i ) = Np(R i ) . (60)

In terms of densities, the joint probability p ( R i , R j ) is 

p(R i , R j ) = p(R i ) p(R j | R i ) = 

n (R i ) n (R j | R i ) 

N(N − 1) 
, (61)

where we have taken into account that any one of the N − 1 re-

maining particles has equal probability of residing in d 

3 R j if one

particle resides in d 

3 R i . The configuration average of the sum �i f ( r ,

R i ) is computed as ∑ 

i 

〈
f (r , R i ) 

〉
= N 

∫ 
f (r , R i ) p(R i ) d 

3 
R i = 

∫ 
f (r , R i ) n (R i ) d 

3 
R i , 

(62)

and if the positions of the particles are independent, i.e.,

n (R j | R i ) = n (R j ) , the configuration average of the double sum

�i �j � = i f ( r , R i , R j ) is computed as ∑ 

i 

∑ 

j � = i 

〈
f (r , R i , R j ) 

〉
= N(N − 1) 

∫ 
f (r , R i , R j ) p(R i , R j ) d 

3 
R j d 

3 
R i 
≈
∫ 

f (r , R i , R j ) n (R i ) n (R j ) d 

3 
R j d 

3 
R i . (63)

pplying these configuration average rules to the order-of-

cattering expansion for the total field given by Eq. (22) , we obtain

compare to Eq. (36) ) 

 c (r ) = T ( ̂  s , s ) · E 0 ( r ) , (64)

here s = s (r , −̂  s ) , and with the notation of Fig. 2 , the dyadic

 ( ̂  s , s ) is 

 ( ̂  s , s ) = I + j 
2 π

k 1 

[ ∫ s 

0 

n(s ′ ) d s ′ 
] 

A ( ̂  s , ̂  s ) 

+ 

(
j 
2 π

k 1 

)2 { ∫ s 

0 

n(s ′ ) 
[ ∫ s ′ 

0 

n(s i ) d s i 

] 
d s ′ 
} 

A 

2 
( ̂  s , ̂  s ) + · · · . (65)

ssuming that the series (65) can be differentiated term by term,

e find that T satisfies the differential equation 

d T ( ̂  s , s ) 

d s 
= j 

2 π

k 1 
n(s) A ( ̂  s , ̂  s ) · T ( ̂  s , s) (66)

ith the initial condition T ( ̂  s , 0) = I . The solution to Eq. (66) is 

 ( ̂  s , s ) = exp 

{ 
j 
2 π

k 1 

[ ∫ s 

0 

n(s ′ ) d s ′ 
] 

A ( ̂  s , ̂  s ) 
} 
, (67)

nd we recover Eq. (37) with 

 ( ̂  s , s ) = exp 

[ 
j 

∫ s 

0 

k ( ̂  s , s ′ ) d s ′ 
] 

(68)

nd 

 ( ̂  s , s ′ ) = k 1 I + 

2 π

k 1 
n (s ′ ) A ( ̂  s , ̂  s ) . (69)

. Multiple species of particles 

In this section, we extend the above results to the case where

here are P different species of particles. Each species can have a

istinct size, shape, and permittivity, which in turn implies that

ach species p = 1 , . . . , P is characterized by the far-field scattering

yadic A p . If N p is the number of particles of species p , we denote

y n p = N p /V the corresponding number concentration, and clearly,

rom N = 

∑ P 
p=1 N p , we see that n 0 = 

∑ P 
p=1 n p . 

For multiple species of particles, an order-of-scattering expan-

ion for the total field reads as 

 (r ) = E 0 ( r ) + 

P ∑ 

p=1 

N p ∑ 

i p =1 

U p (r i p , ̂  s ) · E 0 (R i p ) 

+ 

P ∑ 

p,q =1 

N p ∑ 

i p =1 

N q ∑ 

j q =1 , j q � = i p δpq 

U p (r i p , ̂
 R i p j q ) 

· U q (R i p j q , ̂  s ) · E 0 (R j q ) + · · · , (70)

ith 

 p (r i p , ̂  q ) = g 0 (r i p ) A p ( ̂  r i p , ̂  q ) , (71)

 q (R i p j q , ̂  q ) = g 0 (R i p j q ) A q ( ̂  R i p j q , ̂  q ) , (72)

or any direction 

̂ q . Assuming that the positions of the particles

f different species are independent and that these particles are

niformly distributed, we have 

p(�N 1 , . . . , �N P ) = 

P ∏ 

p=1 

p(�N p ) , (73)

ith 

p(�N p ) = 

N p ∏ 

i p =1 

p(R i p ) and p(R i p ) = 1 /V, (74)
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here �N p = { R i p } N p i p =1 
is the spatial configuration of the parti-

les of species p . Taking the configuration average of Eq. (70) , we

btain 

 c (r ) = E 0 (r ) 

+ 

P ∑ 

p=1 

n p 

∫ 
D 

e 
jk 1 r i p 

r i p 
A p ( ̂  r i p , ̂  s ) · E 0 (R i p ) d 

3 
R i p 

+ 

P ∑ 

p,q =1 

n p n q 

∫ 
D 

e 
jk 1 r i p 

r i p 

e jk 1 R i p j q 

R i p j q 

A p ( ̂  r i p , ̂
 R i p j q ) 

· A q ( ̂  R i p j q , ̂  s ) · E 0 (R j q ) d 

3 
R j q d 

3 
R i p + · · · . (75) 

he integrals in Eq. (75) are computed by using the same proce-

ure as in Section 6 ; for example, we have 

 1 (r ) = 

(
j 
2 π

k 1 
s 

)[ P ∑ 

p=1 

n p A p ( ̂  s , ̂  s ) 
] 

· E 0 ( r ) , (76) 

nd 

 2 (r ) = 

1 

2 

(
j 
2 π

k 1 
s 

)2 [ P ∑ 

p , q=1 

n p n q A p ( ̂  s , ̂  s ) · A q ( ̂  s , ̂  s ) 
] 

· E 0 ( r ) 

= 

1 

2 

(
j 
2 π

k 1 
s 

)2 [ P ∑ 

p=1 

n p A p ( ̂  s , ̂  s ) 
] 2 

· E 0 ( r ) . (77) 

hen, using the computation rule 

P ∑ 

p 1 , ... ,p k =1 

n p 1 · · · n p k A p 1 ( ̂  s , ̂  s ) · . . . · A p k ( ̂  s , ̂  s ) = 

[ P ∑ 

p=1 

n p A p ( ̂  s , ̂  s ) 
] k 

, 

(78) 

here as usual, X 

n = X 

n −1 · X for n ≥ 1, we find that the coherent

eld is given by 

 c (r ) = exp 

{ 
j 
2 π

k 1 
s(r , −̂  s ) 

[ P ∑ 

p=1 

n p A p ( ̂  s , ̂  s ) 
] } 

· E 0 ( r ) . (79)

efining the species-averaged far-field scattering dyadic by 

A ( ̂  s , ̂  s ) 
〉
s 

= 

1 

n 0 

P ∑ 

p=1 

n p A p ( ̂  s , ̂  s ) = 

1 

N 

P ∑ 

p=1 

N p A p ( ̂  s , ̂  s ) , (80)

e express Eq. (79) as 

 c (r ) = exp 

[ 
j 
2 π

k 1 
n 0 s(r , −̂  s ) 

〈
A ( ̂  s , ̂  s ) 

〉
s 

] 
· E 0 ( r ) . (81)

hus, the representation for the coherent field given by Eq. (36) re-

ains valid with the species-averaged dyadic 
〈
A ( ̂  s , ̂  s ) 

〉
s 

in place of

 ( ̂  s , ̂  s ) . In particular, for spherical particles with a continuous size

istribution characterized by the probability density function p ( a ),

he species- or the size-averaged far-field scattering dyadic is (cf.

q. (80) ) 

A ( ̂  s , ̂  s ) 
〉
s 

= 

1 

N 

∫ ∞ 

0 

A a ( ̂  s , ̂  s ) d N(a ) = 

∫ ∞ 

0 

p(a ) A a ( ̂  s , ̂  s ) d a, 

here a is the particle radius, A a ( ̂  s , ̂  s ) is the far-field scattering

yadic of a spherical particle of radius a , and d N(a ) = Np(a ) d a is

he number of particles with the radius in the interval [ a, a + d a ] . 

. Continuous extension of the far-field representation 

In the above derivation we employed the far-field approxima-

ion which assumes that each particle is located in the far-field

egions of all the other particles, and that the observation point

s also located in the far-field region of any particle. Although the
cattered field representations are valid in the far-field regions,

hen computing the configuration average and integrating over

he particle positions we allowed the particles to come into the

ear-field regions of each other. This approach tacitly assumes that

he far-field representation of the scattered field is “extended by

ontinuity” to the near-field region. To explain the meaning of this

rocess, we use the hole-correction approximation. In this case, the

robability density function p ( R i ; r ) is constructed as 

p(R i ; r ) = 

1 

V − V R 

�R (R i ; r ) , 

R (R i ; r ) := 

{
1 , R i ∈ D − D R (r ) 
0 , rest 

, (82) 

here D is the domain occupied by the particles, D R ( r ) is a ball

f radius R around r with the property that the far-field approxi-

ation of the scattered field is valid in the exterior of D R ( r ), and

 R = (4 / 3) πR 3 . The joint probability p ( R i , R j ; r ) is constructed in a

imilar manner; we have 

p(R i , R j ; r ) = p(R i ; r ) p(R j | R i ; r ) , 

p(R j | R i ; r ) = 

1 

V − 2 V R 

�R (R j | R i ; r ) , 

R (R j | R i ; r ) := 

{
1 , R j ∈ D − (D R (r ) ∪ D R (R i )) 
0 , rest 

, (83) 

howing that (cf. Eq. (3) ) 

 = 

∫ 
D 

p(R i , R j ; r ) d 

3 
R i d 

3 
R j 

= 

∫ 
D 

p(R i ; r ) 
[ ∫ 

D 

p(R j | R i ; r ) d 

3 
R j 

] 
d 

3 
R i . (84) 

hus, the hole-correction approximation takes into account that

ach particle is situated outside the far-field spheres of all the

ther particles, and further assumes the uniform distribution out-

ide the far-field sphere around the observation point. The config-

ration average of a function f ( r , R i ) is computed as 

f (r , R i ) 
〉
= 

∫ 
f (r , R i ) p(R i ; r ) d 

3 
R i , (85)

hile for a function f ( r , R i , R j ), we have 

f (r , R i , R j ) 
〉
= 

∫ 
f (r , R i , R j ) p(R i , R j ; r ) d 

3 
R j d 

3 
R i . (86) 

Taking the configuration average of the total field in Eq. (22) ,

nd accounting of Eqs. (85) and (86) , we obtain (compare to

q. (28) ), 

 c (r , R ) = E 0 ( r ) + N 

∫ 
D 

e jk 1 r i 

r i 
A ( ̂  r i , ̂  s ) · E 0 (R i ) p(R i ; r ) d 

3 
R i 

+ N(N − 1) 

∫ 
D 

e jk 1 r i 

r i 

e jk 1 R ij 

R i j 

A ( ̂  r i , ̂  R i j ) · A ( ̂  R i j , ̂  s ) 

· E 0 (R j ) p(R i ; r ) p(R j | R i ; r ) d 

3 
R j d 

3 
R i + · · · . (87) 

he technique for computing the integrals in Eq. (87) also relies on

he asymptotic representation of a plane wave in spherical waves

y means of solid-angle delta functions. For example, and referring

o Fig. 3 , the double-scattering term in Eq. (87) computes as 

 2 (r , R ) = N(N − 1) 

∫ 
D 

e jk 1 r i 

r i 

e jk 1 R ij 

R i j 

A ( ̂  r i , ̂  R i j ) · A ( ̂  R i j , ̂  s ) 

· E 0 (R j ) p(R i ; r ) p(R j | R i ; r ) d 

3 
R j d 

3 
R i 

= 

N(N − 1) 

(V − V R )(V − 2 V R ) 

(
j 
2 π

k 1 

)2 

A ( ̂  s , ̂  s ) · A ( ̂  s , ̂  s ) · E 0 ( r ) 

×
∫ s 

h (p| R, s − R ) 
[ ∫ s 

h (R ji | R, s − p − 2 R ) d R ji 

] 
d p, (88) 
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Fig. 3. Geometry showing the positions of particles i and j for computing the inte- 

gral (88) . The boundary is situated in the far-field region of particle i . 
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where s = s (r , −̂  s ) , and the function h ( x | a , b ) is defined by 

h (x | a, b) = 

{
1 , 

0 , 

if a ≤ b and a ≤ x ≤ b 
rest 

(89)

It is not hard to check that in the limit R → 0, we have 

lim 

R → 0 

∫ s 

0 

h (p| R, s − R ) 
[ ∫ s 

0 

h (R ji | R, s − p − 2 R ) d R ji 

] 
d p 

= 

∫ s 

0 

h (p| 0 , s ) 
[ ∫ s 

0 

h (R ji | 0 , s − p) d R ji 

] 
d p 

= 

∫ s 

0 

(∫ s −p 

0 

d R ji 

)
d p 

so that by approximating 

lim 

R → 0 

N(N − 1) 

(V − V R )(V − 2 V R ) 
= n 

2 
0 , 

we find that lim R → 0 E 2 (r , R ) = E 2 (r ) , where E 2 ( r ) is given by

Eq. (35) . Similar estimates hold for the rest of the terms in the se-

ries (87) . Assuming now that the series (87) converges uniformly

with respect to R , we get lim R → 0 E c (r , R ) = E c (r ) ; hence E c (r ) is

the limit of E c (r , R ) at the point R = 0 . 

10. The Foldy approximation 

We have seen that according to the Twersky approximation, the

field exciting particle i at a point r i near particle i is the total elec-

tric field that would exists at that point if the particle i were re-

moved from the group, i.e., (cf. Eq. (26) ) 

E 

(i ) 
exc i 

(r i ) = E 

(i ) (r i | �i 
N−1 ) . (90)

Taking the configuration average of Eq. (90) with the position of

particle i held fixed, and using Eq. (5) yields 〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
= E 

(i ) 
c (r i | �i 

N−1 ) . (91)

Thus, the average field exciting particle i at a point r i near particle

i is the coherent field that would exists at that point if the particle i

were removed from the group . 

The Foldy approximation [11] states that the coherent field at a

point r i near particle i is the conditional average of the field exciting

particle i at that point , 

E 

(i ) 
c (r i ) = 

〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
. (92)

There are some interesting results which follow from the deriva-

tion of the coherent field under the Twersky approximation. 

Corollary 1: The Twersky approximation implies the Foldy approxi-

mation . To show this, we take the configuration average of E 

(i ) 
exc i 

(r i )

(given by Eq. (24) ) with the position of particle i held fixed, and

employ exactly the same technique as that used when computing

the coherent field; we obtain 〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
= e jk 1 ̂ s ·r i exp 

[ 
j 
2 π

k 
n 0 s(R i , −̂  s ) A ( ̂  s , ̂  s ) 

] 
· E 0 (R i ) . (93)
1 
n the other hand, setting r = R i + r i in Eq. (36) and using E 0 (r i ) =
xp (jk 1 ̂  s · r i ) E 0 (R i ) gives 

 c (r ) = E 

(i ) 
c (r i ) = e jk 1 ̂ s ·r i exp 

[ 
j 
2 π

k 1 
n 0 s(r , −̂  s ) A ( ̂  s , ̂  s ) 

] 
· E 0 (R i ) . 

(94)

f the point r i is near particle i , and the boundary is in the far-field

egion of particle i , we approximate 

 (R i , −̂  s ) ≈ s (r , −̂  s ) . (95)

ence, from Eqs. (93) and (94) , the Foldy approximation (92) read-

ly follows. As a consequence, we note that by owing to

qs. (91) and (92) , we have 

 

(i ) 
c (r i ) = E 

(i ) 
c (r i | �i 

N−1 ) , (96)

hat is, the coherent field at a point r i near particle i is the coherent

eld that would exist at that point if the particle i were removed from

he group . 

Corollary 2: The coherent field near a particle can be analytically

pproximated by a plane electromagnetic wave of wavenumber k 1 and

ropagation direction ̂  s . To prove this assertion, we set r = R i ( r i =
 ) in Eq. (94) and use Eq. (93) to obtain 

 c (R i ) = exp 

[ 
j 
2 π

k 1 
n 0 s(R i , −̂  s ) A ( ̂  s , ̂  s ) 

] 
· E 0 (R i ) 

= e −jk 1 ̂ s ·r i 
〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
; (97)

hus, 

E 

(i ) 
exc i 

(r i ) 
〉
i 
= e jk 1 ̂ s ·r i E c (R i ) . (98)

rom Eqs. (92) and (98) , we then get 

 

(i ) 
c (r i ) = e jk 1 ̂ s ·r i E c (R i ) , (99)

nd the assertion is proved. 

Corollary 3: The coherent field solves an integral equation, the so-

alled Foldy integral equation . To derive this equation, we consider

he expression of the far-field pattern E 

∞ 

sct i 
( ̂  r i ) as given by Eq. (17) .

nserting the iterated solution for E ij given by Eq. (21) in Eq. (17) ,

e find 

 

∞ 

sct i ( ̂  r i ) = A ( ̂  r i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

j � = i 

e jk 1 R ij 

R i j 

A ( ̂  r i , ̂  R i j ) · A ( ̂  R i j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

j � = i 

∑ 

k � = i, j 

e jk 1 R ij 

R i j 

e jk 1 R jk 

R jk 

A ( ̂  r i , ̂  R i j ) 

· A ( ̂  R i j , ̂
 R jk ) · A ( ̂  R jk , ̂  s ) · E 0 (R k ) + · · · . (100)

aking the conditional average of Eq. (100) and applying the same

echnique as that used when computing the coherent field, we

btain 

E 

∞ 

sct i ( ̂  r i ) 
〉
i 
= A ( ̂  r i , ̂  s ) · exp 

[ 
j 
2 π

k 1 
n 0 s(R i ) A ( ̂  s , ̂  s ) 

] 
· E 0 (R i ) . (101)

rom Eqs. (93) and (101) , we see that 

E 

∞ 

sct i ( ̂  r i ) 
〉
i 
= e −jk 1 ̂ s ·r i A ( ̂  r i , ̂  s ) ·

〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
. (102)

he configuration average of the first equation in Eq. (19) is 

 c (r ) = E 0 ( r ) + n 0 

∫ 
D 

g 0 (r i ) 
〈
E 

∞ 

sct i ( ̂  r i ) 
〉
i 
d 

3 
R i , (103)

o that using Eqs. (98) and (102) , we find 

 c (r ) = E 0 ( r ) + n 0 

∫ 
D 

g 0 (r i ) A ( ̂  r i , ̂  s ) · E c (R i ) d 

3 
R i . (104)

q. (104) is the Foldy integral equation for the coherent field [12] .

asically, we showed that if the coherent field is given by Eq. (36) ,
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hat is, derived under the Twersky approximation, then it satisfies

he Foldy integral equation (104) . The converse result, namely that

he solution of Eq. (104) is Eq. (36) , will be proved in a forthcom-

ng paper. 

1. Second-order moment in the electromagnetic field 

In this section we are concerned with the computation of the

onfiguration average of energetic quantities, which are quadratic

n the field amplitudes. The configuration average of an ener-

etic quantity must be computed explicitly, because the pro-

ess of averaging cannot be expect to commute with the nonlin-

ar operation of squaring the absolute value of a field quantity.

rom the perspective of quantifying the reading of a (polarization-

ensitive) well-collimated radiometer [3] , the most appropriate

uantity to average over the ensemble is the dyadic correlation

unction. However, we will simplify the discussion by considering

he configuration-averaged coherency dyadic. 

1.1. Ensemble-averaged coherency dyadic 

An instructive second moment in the field is the time-averaged

or, equivalently, ensemble-averaged) coherency dyadic, defined by

he relation 

 (r ) = 

〈
E (r , t) � E 

� (r , t) 
〉

= 

〈
E (r ) e −j ωt 

� [ E (r ) e −j ωt ] � 
〉

= 

〈
E (r ) � E 

� (r ) 
〉
. (105) 

epresenting the total field E as the sum of the coherent field E c 

nd the diffuse (incoherent) scattered field E sct , 

 = E 0 + E sct = E 0 + 

〈
E sct 

〉
+ E sct = E c + E sct , (106)

ith (cf. Eq. (9) ) 

 sct = E sct −
〈
E sct 

〉
= 

∑ 

i 

E sct i −
∑ 

i 

〈
E sct i 

〉
, (107)

nd taking into account that 
〈
E sct 

〉
= 0 , we obtain the following

epresentation for the coherency dyadic: 

 = E c � E 

� 
c + 

〈
E sct � E � sct 

〉
= C c + C d , (108)

here 

 c = E c � E 

� 
c (109) 

s the coherent part of the coherency dyadic, and 

 d = 

〈
E sct � E � sct 

〉
(110) 

s the diffuse (incoherent) coherency dyadic. In view of Eq. (107) ,

he diffuse coherency dyadic (110) can be written as 

 d = C dL + C dC , (111) 

here 

 dL = 

∑ 

i 

〈
E sct i � E 

� 
sct i 

〉
= n 0 

∫ 
D 

〈
E sct i � E 

� 
sct i 

〉
i 
d 

3 
R i (112)

s the diffuse ladder coherency dyadic, and (in general, for a dense

iscrete random medium characterized by the pair distribution

unction g ) 

 dC = 

∑ 

i 

∑ 

j � = i 

〈
E sct i � E 

� 
sct j 

〉
−
∑ 

i 

∑ 

j 

〈
E sct i 

〉
�

〈
E 

� 
sct j 

〉
= n 

2 
0 

∫ 
D 

[ 
〈
E sct i � E 

� 
sct j 

〉
i j 

g(R i j ) 

−
〈
E sct i 

〉
i 
�

〈
E 

� 
sct j 

〉
j 
] d 

3 
R j d 

3 
R i (113) 
s the diffuse cross coherency dyadic. Finally, defining the ladder

oherency dyadic by the relation 

 L = C c + C dL = C c + n 0 

∫ 
D 

〈
E sct i � E 

� 
sct i 

〉
i 
d 

3 
R i , (114)

ields the representation 

 = C L + C dC = C c + C dL + C dC . (115)

hus, the coherency dyadic is written as the sum of two terms:

he configuration average of the dyadic product of the field scat-

ered by one particle i in the presence of other particles (the lad-

er term C L ), and the correlation of the fields scattered by two dis-

inct particles i and j (the cross term C dC ). The ladder term C L cor-

esponds to the incoherent part of the scattered radiation and is

btained by summing the so-called ladder diagrams in a diagram-

atic representation of 
〈
E � E 

� 
〉
, while the cross term C dC , aris-

ng from the interference of pairs of conjugate waves propagating

long the same self-avoiding scattering path but in opposite direc-

ions, corresponds to the coherent part of the scattered radiation

nd is obtained by summing the cyclical diagrams in a diagram-

atic representation of 
〈
E � E 

� 
〉
. 

In the present analysis, we focus only on the incoherent part

f the scattered radiation since it is straightforward to justify the

se of the ladder approximation in the computation of second mo-

ents in the field at observation points in the near zone of the

articulate layer. Indeed, different multi-particle contributions to

he total field at an observation point residing in the far zone of

ny particle are transverse waves that can be characterized by the

orresponding cumulative phases. The extreme sensitivity of the

espective complex exponential phase factors on particle positions

oupled with configuration averaging invariably serves to zero out

he contributions of all second-moment diagrams except those of

he ladder diagrams (see, e.g., Section 8.11 of Ref. [2] or Section

8.2 of Ref. [3] ). 

The quantity in terms of which the radiative transfer equation

ill be formulated is the diffuse specific coherency dyadic ΣdL ,

efined through the angular spectrum decomposition 

 dL (r ) = 

∫ 
ΣdL (r , −̂ p ) d 

2 ̂ p . (116)

he components of the diffuse specific coherency dyadic are the

omponents of the diffuse specific coherency column vector, which

n turn, determine the polarization signal of a detector. Therefore,

he above equation provides an important link between the radia-

ive transfer theory ( ΣdL ) and the multiple scattering theory ( C dL ) .

ccording to Eq. (114) , the (ladder) specific coherency dyadic �L ,

efined by 

 L (r ) = 

∫ 
�L (r , −̂ p ) d 

2 ̂ p , (117)

s related to ΣdL by the relation 

L (r , −̂ p ) = ΣdL (r , −̂ p ) + δ( ̂  p + ̂

 s ) C c ( r ) . (118)

1.2. Ladder approximation of the coherency dyadic 

By virtue of Eqs. (22) and (105) , the coherency dyadic can be

epresented as a series involving all possible schemes of scattering.

his series can be represented diagramatically by means of Feyn-

an diagrams [13] , which were employed in the study of wave

ropagation by Bourret [14] , Furutsu [15] , Tatarski [16] and Frisch

17] . In the ladder approximation, the Feynman diagrams illus-

rated in Fig. 4 can be characterized as follows [1] : 

1. The upper scattering path going through different particles cor-

responds to E , the lower path corresponds to its complex con-

jugate value E 

� , and the dyadic product � of the two paths is

considered. 
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Fig. 4. (a) Diagramatic representation of E �E � , and (b) the ladder coherency dyadic 

C L = 

〈
E � E � 

〉
. 
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2. The two paths can involve one or more common (connected)

particles, and if the number of common particles is two or

more, they can enter the upper and the lower path in the same

order or in a different order. 

3. By virtue of the Twersky approximation, neither the upper nor

the lower path can go through a particle more than once, and

therefore, no particles can be the origin of more than one

connector. 

4. In the ladder approximation, the connected particles (repre-

sented by vertical lines) are in the same order. In other words,

only diagrams with vertical or no connectors are considered. 

Using the diagram representation, the set of scattering schemes

in the order-of-scattering series can be efficiently averaged. The

configuration average over the positions of the unconnected par-

ticles, situated in the upper and the lower path between the en-

trance point, any connected particles and the observation point,

can be computed independently ( Fig. 4 (a)). The result of the aver-

aging process evidences that the source of the incoherent radiation

is the coherent field E c ( Fig. 4 (b)). The upper (or lower) scattering

path corresponds to the wave scattered by the first (right-most)

connected particle which is excited by the coherent field, propa-

gates to the second connected particle, which is again scattered

and propagates to the third connected particle, and so on. 

In Fig. 4 (b), the symbol � represents the coherent field,

while the symbols ◦ and mean multiplying the coherent field

by the far-field scattering dyadic A ( ̂  r i , ̂  s ) , and by the coherent

transmission dyadic t ( ̂  r i , r i ) /r i , respectively. The field 

i ◦� = 

〈 i ◦�— + 

∑ 

n 

i ◦ n ◦ �— + 

∑ 

n,m, m � = n 

i ◦ n ◦ m ◦ �— + · · ·
〉

(119)

s the coherent field at the origin of particle i , i.e., the configuration

average sum of the incident field and the fields coming from the

other particles, while the field 

i ◦ � = 

〈 i ◦ � + 

∑ 

p 

p ◦ i ◦ �

+ 

∑ 

p,q, q � = p 

p ◦ q ◦ i ◦ � + · · ·
〉

(120)

s the configuration average of the field scattered by particle i ,

which is excited by the coherent field, and propagates through the

discrete scattering medium to the observation point r . It is impor-

tant to note that in 

i ◦� , the scattering characteristics of parti-
le i , excited by the coherent field, are described by the far-field

cattering dyadic A ( ̂  r i , ̂  s ) corresponding to an excitation by a plane

lectromagnetic wave with wave number k 1 and propagation di-

ection ̂

 s . Clearly, the use of A ( ̂  r i , ̂  s ) can be explained by means of

oldy’s approximation, according to which, the coherent field near

 particle can be analytically approximated by a plane electromag-

etic wave of wavenumber k 1 (the wavenumber of the background

edium) and propagation direction ̂

 s . 

In the following, we give an analytical derivation of the lad-

er approximation for sparse media in order to clarify the un-

erlying assumptions. The key point in our derivation is to con-

ider the scattering path from the entrance point in the medium

o the right-most connected particle and from this to the observa-

ion point or to another connected particle as a whole. This way

f proceeding will enable us to prove all results without invoking

oldy’s approximation. 

Let S be the set of all N random scatterers. The order-of-

cattering expansion allows one to represent the field at a point

 as a sum of contributions arising from all self-avoiding scatter-

ng paths going through the particles in the set S . Let A and B be

wo subsets of S , such that the field E sums the contributions of

ll self-avoiding scattering paths connecting particles in the set A ,

hile the complex conjugate field E 

� sums the contributions of all

elf-avoiding scattering paths connecting particles in the set B . The

ubsets A and B can be disjoint, they can contain one common par-

icle, two common particles, and so on. In this regard, (i) we con-

ider two disjoint subsets A 0 and B 0 of S , i.e., A 0 ∩ B 0 = Ø, (ii) we

x a particle, say i , and consider two disjoint subsets A i and B i of

 i = S \ { i } , (iii) we fix two particles, say i and j , and consider two

isjoint subsets A ij and B ij of S i j = S \ { i, j} , and so on. The direct

eld E is the sum of all scattering paths going through the particles

n the sets A 0 , A i ∪ { i }, A ij ∪ { i , j }, etc., while the complex conjugate

eld E 

� is the sum of all scattering paths going through the par-

icles in the sets B , B i ∪ { i }, B ij ∪ { i , j }, etc. As the sets are disjoint

y construction, the configuration average over these sets can be

erformed independently , i.e., 

 (r ) = 

∑ 

A 0 

∑ 

B 0 
{ E (r ) } A 0 � { E 

� (r ) } B 0 
+ n 0 

∫ 
D 

∑ 

A i 

∑ 

B i 

{
E (r ) 

}
A i �

{
E 

� (r ) 
}

B i d 

3 
R i 

+ n 

2 
0 

∫ 
D 

∑ 

A i j 

∑ 

B i j 

{
E (r ) 

}
A i j 

�

{
E 

� (r ) 
}

B i j 
d 

3 
R j d 

3 
R i 

+ · · · , (121)

here 

 (r ) = 〈 E (r ) � E 

� (r ) 〉 := { E (r ) � E 

� (r ) } S . 
he notation { E ( r )} A stands for the configuration average of the

elds corresponding to all self-avoiding scattering paths going

hrough the particles in the set A , and being taken over the po-

itions of the particles in the set A . The sets A 0 and B 0 are not

nique, and the sums 
∑ 

A 0 

∑ 

B 0 
involve all possible realizations of

hese sets. If in general, P(A ) is a self-avoiding scattering path

onnecting particles in the set A , then for each realization of the

ets A 0 and B 0 , only those pairs of self-avoiding scattering paths

(P(A 0 ) , P(B 0 )) which do not appear in previous realizations of A 0 

nd B 0 are taken into account. With this convention we guaran-

ee that the sums are taken over all distinct pairs of self-avoiding

cattering paths. In the following, for large N , we approximate 
 

A 0 

∑ 

B 0 
{ E (r ) } A 0 � { E 

� (r ) } B 0 ≈ { E (r ) } S � { E 

� (r ) } S , (122)

hat is, we extend the sums over the particles in the sets A 0 and

 0 to the whole S . As A 0 and B 0 can be any subsets of S and the

um is taken over all realizations of A 0 and B 0 , we expect that the

pproximation error of Eq. (122) is small as N tends to infinity. The

ame arguments also apply to the sets A and B , in which case, the
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Fig. 5. Scattering paths ending at particle i and connecting particle i and the ob- 

servation point r . 
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=

airs of self-avoiding scattering paths which are taken into account

re of form (P(A i ∪ { i } ) , P(B i ∪ { i } )) . Employing the above assump-

ion to all terms in series (121) yields 

 (r ) = { E (r ) } S � { E 

� (r ) } S + n 0 

∫ 
D 

{
E (r ) 

}
S i �

{
E 

� (r ) 
}

S i d 

3 
R i 

+ n 

2 
0 

∫ 
D 

{
E (r ) 

}
S i j 

�

{
E 

� (r ) 
}

S i j 
d 

3 
R j d 

3 
R i + · · · . (123) 

We are now confronted with the computation of the configura-

ion average of the field taken over the positions of the particles in

he sets S i , S ij , etc., that is, in subsets of S with one, two, and more

xed particles. Let us consider the average field { E (r ) } S i , and let S a 
i 

nd S b 
i 

be two disjoint subsets of S i . As shown in Fig. 5 , the paths

onnecting the observation point r and particle i go through all

articles in the subset S a 
i 
, while the paths connecting the entrance

oint (the first particle struck by the incident field) and particle i

o through all particles in the subset S b 
i 
. By means of the Twersky

pproximation, the field corresponding to a direct path connecting

he observation point P and particle i is 

 

(0) (r ) 

 

i ◦
(�— + 

∑ 

n ∈ S b 
i 

n ◦ �— + 

∑ 

n,m ∈ S b 
i 
; m � = n 

n ◦ m ◦ �— + · · ·
)

= U (r i , ̂  s ) · E 0 (R i ) + 

∑ 

n ∈ S b 
i 

U (r i , ̂  R in ) · U (R in , ̂  s ) · E 0 (R n ) 

+ 

∑ 

n,m ∈ S b 
i 
; m � = n 

U (r i , ̂  R in ) · U (R in , ̂
 R nm 

) 

· U (R nm 

, ̂  s ) · E 0 (R m 

) + · · · , (124) 

he field corresponding to the single-scattering paths connecting P

nd particle i (and going through particle p in Fig. 5 ) is 

 

(1) (r ) 

 

∑ 

p∈ S a 
i 

p ◦ i ◦
(�— + 

∑ 

n ∈ S b 
i 

n ◦ �—

 

∑ 

n,m ∈ S b 
i 
; m � = n 

n ◦ m ◦ �— + . . . 
)

 

∑ 

p∈ S a 
i 

U (r p , ̂  R pi ) · U (R pi , ̂  s ) · E 0 (R i ) 
 

∑ 

p∈ S a 
i 

U (r p , ̂  R pi ) ·
∑ 

n ∈ S b 
i 

U (R pi , ̂
 R in ) · U (R in , ̂  s ) · E 0 (R n ) 

 

∑ 

p∈ S a 
i 

U (r p , ̂  R pi ) ·
∑ 

n,m ∈ S b 
i 
; m � = n 

U (R pi , ̂
 R in ) 

U (R in , ̂
 R nm 

) · U (R nm 

, ̂  s ) · E 0 (R m 

) + · · · , (125)

nd so on. First, we take the configuration average over the posi-

ions of the particles in the set S b 
i 
. Extending the sums over the

articles in the set S b 
i 

(particles n and m in Fig. 5 ) to the whole set

 , we obtain 

 

S b 
i 

{
E 

(0) (r ) 
}

S b 
i 

= 

i ◦
〈�— + 

∑ 

n 

n ◦ �—

 

∑ 

n,m ; m � = n 

n ◦ m ◦ �— + · · ·
〉

 

i ◦ �

 U (r i , ̂  s ) · E c (R i ) 

nd 

 

S b 
i 

{
E 

(1) (r ) 
}

S b 
i 

= 

∑ 

p∈ S a 
i 

p ◦ i ◦
〈�— + 

∑ 

n 

n ◦ �—

 

∑ 

n,m ; m � = n 

n ◦ m ◦ �— + · · ·
〉

 

∑ 

p∈ S a 
i 

p ◦ i ◦ �

 

∑ 

p∈ S a 
i 

U (r p , ̂  R pi ) · U (R pi , ̂  s ) · E c (R i ) . 

he configuration average of the total field taken over the positions

f the particles in the set S b 
i 

is then 

 E (r ) } S b 
i 
= 

i ◦ � + 

∑ 

p∈ S a 
i 

p ◦ i ◦ �

 

∑ 

p,q ∈ S a 
i 
; q � = p 

p ◦ q ◦ i ◦ � + · · · , 

nd what is left is the computation of the configuration average

aken over the positions of the particles in the set S a 
i 
, that is, 

 E (r ) } S i = 

∑ 

S a 
i 

〈 i ◦ � + 

∑ 

p∈ S a 
i 

p ◦ i ◦ �

+ 

∑ 

p,q ∈ S a 
i 
; q � = p 

p ◦ q ◦ i ◦ � + · · ·
〉
. 

o do this, we extend the sums over the particles in the set S a 
i 

particles p and q in Fig. 5 ) to the whole set S , giving 

 E (r ) } S i = 

〈 i ◦ � + 

∑ 

p 

p ◦ i ◦ �

+ 

∑ 

p.q ; q � = p 

p ◦ q ◦ i ◦ � + · · ·
〉

 

〈
U (r i , ̂  s ) · E c (R i ) 
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∑ 

p 

U (r p , ̂  R pi ) · U (R pi , ̂  s ) · E c (R i ) + · · ·
〉
, (126)

and use the stationary phase method for computing integrals of

the form [12] 

I = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

g(x, y ) 
e jk 1 (r 1 +r 2 ) 

r 1 r 2 
d x d y, (127)

where 

r 1 = r 1 (x, y ) = 

√ 

x 2 + y 2 + z 2 , (128)

r 2 = r 2 (x, y ) = 

√ 

(X − x ) 2 + (Y − y ) 2 + (Z − z) 2 . (129)

Note that for the integral (127) , the stationary phase point (x s , y s )

of the function f (x, y ) = r 1 (x, y ) + r 2 (x, y ) is 

x s 

X 

= 

y s 

Y 
= 

r 1 s 
r 1 s + r 2 s 

, (130)

and we have 

I ≈ j 
2 π

k 1 Z s 

g(x s , y s ) e 
jk(r 1 s +r 2 s ) , (131)

with r 1 s = r 1 (x s , y s ) , r 2 s = r 2 (x s , y s ) , and 

Z s = | z| + | Z − z| = 

{ 

Z + 2 | z| , 
Z, 

2 z − Z, 

z < 0 

0 < z < Z 
z > Z 

(132)

If X = Y = 0 , the stationary point is x s = y s = 0 , and from

Eqs. (128) –(129) , we see that r 1 s + r 2 s = | z| + | Z − z| = Z s . For ex-

ample, to compute the second term in Eq. (126) , we use the Carte-

sian coordinate system centered at O i and with the z -axis directed

along the vector r i . Application of the stationary phase method

then yields ∑ 

p 

〈
U (r p , ̂  R pi ) · U (R pi , ̂  s ) · E c (R i ) 

〉
= n 0 

∫ [ ∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

e jk 1 (r p +R pi ) 

r p R pi 

A ( ̂  r p , ̂  R pi ) 

· A ( ̂  R pi , ̂  s ) · E c (R i ) d x pi d y pi 

] 
d z pi 

= n 0 j 
2 π

k 1 
A ( ̂  r i , ̂  r i ) · A ( ̂  r i , ̂  s ) · E c (R i ) 

e jk 1 r i 

z i 

∫ z i 

0 

d z pi 

= 

e jk 1 r i 

r i 
j 
2 π

k 1 
n 0 r i A ( ̂  r i , ̂  r i ) · A ( ̂  r i , ̂  s ) · E c (R i ) , (133)

where (0, 0, z i ) and ( x pi , y pi , z pi ) are the Cartesian coordinates of

the points P and O p in the coordinate system of particle i , respec-

tively. In deriving Eq. (133) , we considered only the contribution

of the interval 0 < z pi < z i , and the fact that in the chosen coordi-

nate system, r i = z i . Note that for z pi > z i and z pi < 0 in Eq. (132) ,

we obtain integrals which can be neglected. For example, in the

case z pi > z i , we have Z s = 2 z pi − z i , and the integral over z pi in

Eq. (133) is 

I(z i , z Bi ) = j 
2 π

k 1 

∫ z Bi 

z i 

e jk 1 (2z pi −z i ) 

2z pi − z i 
d z pi 

= j 
π

k 1 

[ ∫ ∞ 

k 1 z i 

e jt 

t 
d t −

∫ ∞ 

k 1 (2z Bi −z i ) 

e jt 

t 
d t 

] 
= j 

π

k 1 
[ Ei (k 1 z i ) − Ei (k 1 (2z Bi − z i ))] . (134)

Here, (0, 0, z Bi ) are the Cartesian coordinates of the point B , the in-

tersection point of the z -axis and the upper layer boundary, in the
oordinate system of particle i , and Ei( x ) is the modified exponen-

ial integral, 

i (x ) = 

∫ ∞ 

x 

e jt 

t 
d t. (135)

or large values of the argument, Ei( x ) assumes the series repre-

entation (asymptotic expansion) 

i (x ) = j 
e jx 

x 

(
1 − 2! 

x 2 
+ 

4! 

x 4 
− · · ·

)
+ 

e jx 

x 

(
1 

x 
− 3! 

x 3 
+ 

5! 

x 5 
− · · ·

)
, 

(136)

o that, by taking into account that k 1 z i < k 1 (2 z Bi − z i ) , we infer

hat for large values of k 1 z i , the integral (134) behaves as O (1/ k 1 z i ).

hus, if the observation point is in the far-field region of particle i ,

he integral (134) vanishes. The configuration average over the po-

itions of the particles in the set S i is then 

 E (r ) } S i = 

e jk 1 r i 

r i 

[ 
I + j 

2 π

k 1 
n 0 r i A ( ̂  r i , ̂  r i ) + · · ·

] 
· A ( ̂  r i , ̂  s ) · E c (R i ) 

= 

1 

r i 
exp 

{ 
j 

[ 
k 1 I + 

2 π

k 1 
n 0 A ( ̂  r i , ̂  r i ) 

] 
r i 

} 
· A ( ̂  r i , ̂  s ) · E c (R i ) 

= V (r i , ̂  s ) · E c (R i ) , (137)

ith 

 (r i , ̂  s ) = 

t ( ̂  r i , r i ) 

r i 
· A ( ̂  r i , ̂  s ) . (138)

hus, we have shown that 

 E ( r ) } S i � { E 

� ( r ) } S i = V (r i , ̂  s ) · C c (R i ) · V 

† 
(r i , ̂  s ) . (139)

To compute the configuration average with two fixed particles

e proceed analogously and obtain 

 E ( r ) } S i j 
= V (r i , ̂  R i j ) · V (R i j , ̂  s ) · E c (R j ) . (140)

n the ladder approximation for the coherency dyadic the order of

articles i and j in the expressions for { E } S i j 
and { E 

� } S i j 
is consid-

red to be the same. In other words, the ordered set of connected

articles { i , j } is associated with both the direct and the complex-

onjugate field. We obtain 

 E ( r ) } S i j 
� { E 

� ( r ) } S i j 
= V (r i , ̂  R i j ) · V (R i j , ̂  s ) 

· C c (R j ) · V 

† 
(R i j , ̂  s ) · V 

† 
(r i , ̂  R i j ) . (141)

ote that when averaging over the positions of particles i and j ,

he term corresponding to the ordered set { j , i } (the reverse order

f particles i and j ) is much smaller than the term corresponding

o the ordered set { i , j }. More specifically, the contribution of the

erm 

 (r i , ̂  R i j ) · V (R i j , ̂  s ) · [ E c (R j ) � E 

� 
c (R i )] 

· V 

† 
(R ji , ̂  s ) · V 

† 
(r j , ̂  R ji ) (142)

s much smaller than that of the term 

 (r i , ̂  R i j ) · V (R i j , ̂  s ) ·
[
E c (R j ) � E 

∗
c (R j ) 

]
· V 

† 
(R i j , ̂  s ) · V 

† 
(r i , ̂  R i j ) . (143)

his statement has been justified as follows. Using Eq. (138) , the

esult 

t ( ̂  r i , r i ) 

r i 
= 

e jk 1 r i 

r i 
exp 

[ 
j 
2 π

k 1 
n 0 r i A ( ̂  r i , ̂  r i ) 

] 
, (144)

nd the approximation s (R i , −̂  s ) ≈ s (R j , −̂  s ) + ̂

 s · R i j , we find that

q. (142) contains the additional exponential factor exp [jk 1 (r i −
 j −̂ s · R ij )] . This rapidly oscillating factor causes the contribution

f this cyclic term to vanish upon averaging over the positions

f particles i and j . The contribution of the cyclical diagrams
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f

J  
ecomes comparable to the contribution of the ladder diagrams

hen the observation point is in the far-field region of the scat-

ering medium and is in the direction opposite to the direction of

ncidence ( ̂  r = −̂  s ) . In the limit r → ∞ , we have r j = r i −̂ r · R ji =
 i −̂ s · R i j , and the exponential factor becomes identically equal to

nity. Strictly speaking, this never happens to an infinite particu-

ate layer. 

Collecting all results, we arrive at 

 L (r ) = C c ( r ) + n 0 

∫ 
D 

V (r i , ̂  s ) · C c (R i ) · V 

† 
(r i , ̂  s ) d 

3 
R i 

+ n 

2 
0 

∫ 
D 

V (r i , ̂  R i j ) · V (R i j , ̂  s ) · C c (R j ) · V 

† 
(R i j , ̂  s ) 

· V 

† 
(r i , ̂  R i j ) d 

3 
R j d 

3 
R i + · · · . (145) 

n conclusion, our analysis shows that 

1. the ladder approximation depicted in Fig. 4 (b) includes only di-

agrams with vertical or no connectors, 

2. the expression of the field , representing the configuration

average of the wave scattered by particle i and propagating

through the effective medium to the observation point r , is

given by Eqs. (137) and (138) , and 

3. the scattering characteristics of particle i , excited by the coher-

ent field propagating in the direction ̂

 s , are described by the

far-field scattering dyadic A ( ̂  r i , ̂  s ) . 

1.3. Vector radiative transfer equation 

From Eqs. (117) and (145) , the specific coherency dyadic is

ound to be 

L (r , −̂ p ) = δ( ̂  p + ̂

 s ) C c ( r ) + n 0 

∫ 
t (−̂ p , p) · A (−̂ p , ̂  s ) 

· C c (R i ) · A 

† 
(−̂ p , ̂  s ) · t 

† 
(−̂ p , p) d p 

+ n 

2 
0 

∫ 
t (−̂ p , p) · A (−̂ p , −̂ R ji ) · t (−̂ R ji , R ji ) 

· A (−̂ R ji , ̂  s ) · C c (R j ) · A 

† 
(−̂ R ji , ̂  s ) · t 

† 
(−̂ R ji , R ji ) 

· A 

† 
(−̂ p , −̂ R ji ) t 

† 
(−̂ p , p) d R ji d 

2 ̂ R ji d p + · · · , (146) 

here the relevant quantities for integral calculations are illus-

rated in Fig. 2 . The series (146) is the expanded form of the in-

egral equation 

L (r , −̂ p ) = δ( ̂  p + ̂

 s ) C c ( r ) + n 0 

∫ 
t (−̂ p , p) · A (−̂ p , −̂ p 

′ ) 

· �L (r + p , −̂ p 

′ ) · A 

† 
(−̂ p , −̂ p 

′ ) · t 
† 
(−̂ p , p) d 

2 ̂ p 

′ d p, 

(147) 

hich, with the notation of Fig. 2 , s = s (r , ̂  p ) , and ̂

 q = −̂ p , can be

xpressed in a more familiar form as 

L (s, ̂  q ) = δ( ̂  q −̂ s ) C c (s ) + n 0 

∫ s 

0 

[ ∫ 
t ( ̂  q , s − s ′ ) · A ( ̂  q , ̂  q 

′ ) 

· �L (s ′ , ̂  q 

′ ) · A 

† 
( ̂  q , ̂  q 

′ ) · t 
† 
( ̂  q , s − s ′ ) d 

2 ̂ q 

′ 
] 

d s ′ . (148) 

ifferentiating Eq. (148) with respect to s yields 

d �L (s, ̂  q ) 

d s 
= j k ( ̂  q ) · �L (s , ̂  q ) − j �L (s , ̂  q ) · k 

† 
( ̂  q ) 

+ n 0 

∫ 
A ( ̂  q , ̂  q 

′ ) · �L (s, ̂  q 

′ ) · A 

† 
( ̂  q , ̂  q 

′ ) d 

2 ̂ q 

′ . (149) 

For the diffuse specific coherency dyadic, defined by (cf.

q. (118) ) 

dL (s, ̂  q ) = �L (s, ̂  q ) − δ( ̂  q −̂ s ) C c (s ) , 

qs. (148) and (149) translate into 

dL (s, ̂  q ) = n 0 

∫ s 

0 

t ( ̂  q , s − s ′ ) · A ( ̂  q , ̂  s ) 
· C c 

(
s ′ 
)

· A 

† 
( ̂  q , ̂  s ) · t 

† 
( ̂  q , s − s ′ ) d s ′ 

+ n 0 

∫ s 

0 

[ ∫ 
t ( ̂  q , s − s ′ ) · A ( ̂  q , ̂  q 

′ ) 

· ΣdL (s ′ , ̂  q 

′ ) · A 

† 
( ̂  q , ̂  q 

′ ) · t 
† 
( ̂  q , s − s ′ ) d 

2 ̂ q 

′ 
] 

d s ′ (150) 

nd 

d ΣdL (s, ̂  q ) 

d s 
= j k ( ̂  q ) · ΣdL (s , ̂  q ) − j �dL (s , ̂  q ) · k 

† 
( ̂  q ) 

+ n 0 A ( ̂  q , ̂  s ) · C c ( s ) · A 

† 
( ̂  q , ̂  s ) 

+ n 0 

∫ 
A ( ̂  q , ̂  q 

′ ) · ΣdL (s, ̂  q 

′ ) · A 

† 
( ̂  q , ̂  q 

′ ) d 

2 ̂ q 

′ , (151) 

espectively. 

To obtain the vector radiative transfer equation we put s → r ,

nd pass from the dyadic form representation (151) to a matrix

orm representation. For doing this, we take into account that the

iffuse specific coherency dyadic ΣdL (r , ̂  q ) and the coherent part

f the coherency dyadic C c ( r ) are transverse dyadics, i.e., 

dL (r , ̂  q ) = 

∑ 

η,μ= θ,ϕ 

Σημ(r , ̂  q ) ̂  η( ̂  q ) � ̂ μ( ̂  q ) (152)

nd 

 c ( r ) = 

∑ 

η,μ= θ,ϕ 

E c η(r ) E � c μ(r ) ̂  η( ̂  q ) � ̂ μ( ̂  q ) . (153)

hese representations together with the representation of the far-

eld scattering dyadic A ( ̂  q , ̂  q 

′ ) in terms of the amplitude matrix

 ( ̂  q , ̂  q 

′ ) , give 

d ΣdL (r , ̂  q ) 

d s 
= j k ( ̂  q ) ΣdL (r , ̂  q ) − j ΣdL (r , ̂  q ) k † ( ̂  q ) 

+ n 0 S ( ̂  q , ̂  s ) C c ( r ) S 
† ( ̂  q , ̂  s ) 

+ n 0 

∫ 
S ( ̂  q , ̂  q 

′ ) ΣdL (r , ̂  q 

′ ) S † ( ̂  q , ̂  q 

′ ) d 

2 ̂ q 

′ , (154) 

here k ( ̂  q ) is the propagation constant matrix. Eq. (154) can be

xpressed in terms of the elements of the diffuse specific co-

erency matrix ΣdL (r , ̂  q ) encapsulated in the diffuse specific co-

erency column vector 

 d (r , ̂  q ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ ⎢ ⎣ 

Σθθ (r , ̂  q ) 
Σθϕ (r , ̂  q ) 
Σϕθ (r , ̂  q ) 
Σϕϕ (r , ̂  q ) 

⎤ ⎥ ⎦ 

. (155)

o this end, we consider the transformation T mapping a 2 × 2 ma-

rix into a 4-dimensional vector, i.e., 

 : 

[
x θθ x θϕ 

x ϕθ x ϕϕ 

]
� −→ 

⎡ ⎢ ⎣ 

x θθ

x θϕ 

x ϕθ

x ϕϕ 

⎤ ⎥ ⎦ 

. (156)

hen, using the transformation rules 

1 

2 

√ 

ε 1 
μ0 

S ( ̂  q , ̂  s ) C c ( r ) S 
† ( ̂  q , ̂  s ) 

T � −→ Z J ( ̂  q , ̂  s ) J c ( r ) , 

1 

2 

√ 

ε 1 
μ0 

S ( ̂  q , ̂  q 

′ ) ΣdL (r , ̂  q 

′ ) S † ( ̂  q , ̂  q 

′ ) T � −→ Z J ( ̂  q , ̂  q 

′ ) J d (r , ̂  q 

′ ) , 

1 

2 

√ 

ε 1 
μ0 

[j k ( ̂  q ) ΣdL (r , ̂  q ) − j ΣdL (r , ̂  q ) k † ( ̂  q )] 
T � −→ −n 0 K J ( ̂  q ) J d (r , ̂  q ) , 

here as in Eq. (54) , J c is the coherency column vector of the co-

erent field, Z J is the coherency phase matrix, and K J is the co-

erency extinction matrix, a radiative transfer equation for the dif-

use specific coherency column vector 

 d (r , ̂  q ) = J (r , ̂  q ) − δ( ̂  q −̂ s ) J c (r ) (157)



136 A. Doicu, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 220 (2018) 123–139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

�

 

a  

l

P  

 

c  

b

I  

L  

t

E  

t

E

=  

 

s  

r  

i  

t

a  

E  

a  

r  

e  

w

C

 

i

�

 

w  

a  

h

E  

w  

p

E

is obtained. This equation is then transformed into the vector ra-

diative transfer equation for the diffuse specific intensity column

vector 

I d = DJ d = 

1 

2 

√ 

ε 1 
μ0 

⎡ ⎢ ⎣ 

Σθθ + Σϕϕ 

Σθθ − Σϕϕ 

−Σθϕ − Σϕθ

j(Σϕθ − Σθϕ ) 

⎤ ⎥ ⎦ 

, (158)

that is, 

d I d (r , ̂  q ) 

d s 
= −n 0 K ( ̂  q ) I d (r , ̂  q ) + n 0 Z ( ̂  q , ̂  s ) I c ( r ) 

+ n 0 

∫ 
Z ( ̂  q , ̂  q 

′ ) I d (r , ̂  q 

′ ) d 

2 ̂ q 

′ , (159)

where as in Eq. (55) , I c = DJ c is the Stokes column vector of

the coherent field, while Z = DZ J D 
−1 and K = DK J D 

−1 are the phase

and the extinction matrix of a non-spherical particle in a fixed

orientation. 

11.4. Ensemble-averaged Poynting–Stokes dyadic 

In classical electromagnetics, the instantaneous local directional

flow of electromagnetic energy is described by the ensemble-

averaged Poynting vector involving both the electric and the mag-

netic field at the observation point, 

S ( r ) = 

1 

2 

〈
E ( r ) × H 

� ( r ) 
〉
. (160)

Unfortunately, by virtue of being a vector product of the electric

and magnetic fields, the Poynting vector does not carry explicit

information on the polarization state of the scattered electromag-

netic field and the field itself. A more appropriate quantity having

the dimension of electromagnetic energy flux and serving this pur-

pose is the Poynting–Stokes dyadic. The Poynting–Stokes dyadic,

introduced in [18] , is defined as the ensemble-averaged dyadic

product of the magnetic field and the complex conjugate of the

electric field, that is, 

P (r ) = 

1 

2 

〈 H ( r ) � E 

� ( r ) 〉 . (161)

In the first step of our analysis we intend to establish a rela-

tionship between the specific coherency dyadic �L (and so, the

specific intensity column vector) and the Poynting–Stokes dyadic

P . Considering the order-of-scattering expansion for the magnetic

field 

H (r ) = 

√ 

ε 1 
μ0 

[ ̂  s × E 0 ( r ) + 

∑ 

i 

̂ r i × U (r i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

i 

∑ 

j � = i ̂
 r i × U (r i , ̂  R i j ) · U (R i j , ̂  s ) · E 0 (R j ) 

+ 

∑ 

i 

∑ 

j � = i 

∑ 

l � = i, j ̂

 r i × U (r i , ̂  R i j ) · U (R i j , ̂
 R jl ) 

· U (R jl , ̂  s ) · E 0 (R l ) + · · · ] , (162)

we find that in the ladder approximation, the Poynting–Stokes

dyadic possesses the series representation 

P (r ) = 

1 

2 

√ 

ε 1 
μ0 

[ ̂ s × C c (r ) + n 0 

∫ 
D ̂

 r i × V (r i , ̂  s ) · C c (R i ) 

· V 

† 
(r i , ̂  s ) d 

3 
R i + n 

2 
0 

∫ 
D ̂

 r i × V (r i , ̂  R i j ) · V (R i j , ̂  s ) 

· C c (R j ) · V 

† 
(R i j , ̂  s ) · V 

† 
(r i , ̂  R i j ) d 

3 
R j d 

3 
R i + · · ·

] 
. (163)

Using the series expansion for the specific coherency dyadic

(which follows from Eq. (145) with R = r + p , that is, with p = −r 
i i 
nd d 

3 R i = p 2 d p d 

2 ̂ p ) 

L (r , −̂ p ) = δ( ̂  p + ̂

 s ) C c (r ) + n 0 

∫ 
V (r i , ̂  s ) · C c (R i ) 

· V 

† 
(r i , ̂  s ) p 2 d p + n 

2 
0 

∫ 
V (r i , ̂  R i j ) · V (R i j , ̂  s ) 

· C c (R j ) · V 

† 
(R i j , ̂  s ) · V 

† 
(r i , ̂  R i j ) d 

3 
R j p 

2 d p + · · · , (164)

nd combining this result with Eq. (163) we obtain the desired re-

ation, namely 

 ( r ) = −1 

2 

√ 

ε 1 
μ0 

∫ ̂ p × �L (r , −̂ p ) d 

2 ̂ p . (165)

The first element of the specific intensity column vector I is

alled the specific intensity, and analogously to Eq. (158) , is given

y 

(r , −̂ p ) = 

1 

2 

√ 

ε 1 
μ0 

[�θθ (r , −̂ p ) + �ϕϕ (r , −̂ p )] . (166)

et us derive a series expansion for the specific intensity. For doing

his we introduce the single-scattering field 

 i (r i , R i ) = 

i ◦ � = r i V (r i , ̂  s ) · E c (R i ) , (167)

he double-scattering field 

 i j (r i , R i j , R j ) = 

i ◦ j ◦ �

 r i R i j V (r i , ̂  R i j ) · V (R i j , ̂  s ) · E c (R j ) , (168)

and so on. In Eqs. (167) and (168) , the symbol � repre-

ents the coherent field, but now and in view of the relation

 i V (r i , ̂  s ) = t ( ̂  r i , r i ) · A ( ̂  r i , ̂  s ) , the symbols ◦ and mean multiply-

ng the coherent field by the far-field scattering dyadic A ( ̂  r i , ̂  s ) , and

he coherent transmission dyadic t ( ̂  r i , r i ) (in contrast to t ( ̂  r i , r i ) /r i 
ppearing in Eq. (120) ), respectively. Excepting the factor r i in

q. (167) , E i ( r i , R i ) is the field scattered by particle i and prop-

gating to the observation point r = R i + r i through the discrete

andom medium when the particle is illuminated by the coher-

nt field E c (R i ) . In terms of these fields, the coherency dyadic is

ritten as 

 L (r ) = C c (r ) + n 0 

∫ 
D 

1 

r 2 
i 

E i (r i , R i ) � E 

� 
i (r i , R i ) d 

3 
R i 

+ n 

2 
0 

∫ 
D 

1 

r 2 
i 
R 

2 
i j 

E i j (r i , R i j , R j ) � E 

� 
i j (r i , R i j , R j ) d 

3 
R j d 

3 
R i 

+ · · · , (169)

mplying 

L (r , −̂ p ) = δ( ̂  p + ̂

 s ) C c (r ) + n 0 

∫ 
E i (−p , R i ) � E 

� 
i (−p , R i ) d p 

+ n 

2 
0 

∫ 
E i j (−p , −R ji , R j ) � E 

� 
i j (−p , −R ji , R j ) 

× d R ji d 

2 ̂ R ji d p + · · · , (170)

here, as usual, R i = r + p , R j = R i + R ji , etc. The fields E i , E ij , etc.

re orthogonal to the direction 

̂ r i , e.g., from 

̂ r i · t ( ̂  r i , r i ) = 0 , we

ave ̂  r i · E i = 0 . Moreover, assuming for example, that 

 i (r i , ·) = E iθ (r i , ·) ̂  θ( ̂  r i ) + E iϕ (r i , ·) ̂  ϕ ( ̂  r i ) , (171)

e have the following matrix-form representation for the dyadic

roduct E i � E 

� 
i 
: 

 i (r i , ·) � E 

� 
i (r i , ·) = 

∣∣E iθ (r i , ·) 
∣∣2 ̂ θ( ̂  r i ) �

̂ θ( ̂  r i ) 

+ 

∣∣E iϕ (r i , ·) 
∣∣2 ̂ ϕ ( ̂  r i ) � ̂ ϕ ( ̂  r i ) 
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+ E iθ (r i , ·) E ∗iϕ (r i , ·) ̂  θ( ̂  r i ) � ̂ ϕ ( ̂  r i ) 

+ E iϕ (r i , ·) E ∗iθ (r i , ·) ̂  ϕ ( ̂  r i ) �
̂ θ( ̂  r i ) . (172) 

imilar representations hold for all multiple-scattering terms in the

eries (170) . Noting for example that ( p = −r i ) 

 E i (−p , R i ) | 2 = | E iθ (−p , R i ) | 2 + | E iϕ (−p , R i ) | 2 , (173)

e obtain from Eq. (170) in conjunction with Eqs. (166) and (172) ,

he following series expansion for the specific intensity: 

(r , −̂ p ) = 

1 

2 

√ 

ε 1 
μ0 

[ 
δ( ̂  p + ̂

 s ) 
∣∣E c (r ) 

∣∣2 + n 0 

∫ ∣∣E i (−p , R i ) 
∣∣2 d p 

+ n 

2 
0 

∫ ∣∣E i j (−p , −R ji , R j ) 
∣∣2 d R ji d 

2 ̂ R ji d p + · · ·
] 
. (174) 

As the next step, we aim to establish a relationship between the

pecific intensity and the configuration-averaged Poynting vector.

n the ladder approximation, the configuration-averaged Poynting

ector S of Eq. (160) can be written in terms of the fields E i , E ij ,

tc. as 

 ( r ) = 

1 

2 

√ 

ε 1 
μ0 

{ 
E c ( r ) × [ ̂  s × E 

� 
c ( r ) ] 

+ n 0 

∫ 
D 

1 

r 2 
i 

E i (r i , R i ) × [ ̂  r i × E 

� 
i (r i , R i )] d 

3 
R i 

+ n 

2 
0 

∫ 
D 

1 

r 2 
i 
R 

2 
i j 

E i j (r i , R i j , R j ) × [ ̂  r i × E 

� 
i j (r i , R i j , R j )] 

× d 

3 
R j d 

3 
R i + · · ·

} 
, (175) 

o that by means of the vector identity a × ( ̂  b × a � ) = | a | 2 ̂ b for a ·
 

 = 0 , we infer that 

 (r ) = 

1 

2 

√ 

ε 1 
μ0 

[ ∣∣E c (r ) 
∣∣2 ̂ s + n 0 

∫ 
D 

1 

r 2 
i 

∣∣E i (r i , R i ) 
∣∣2 ̂ r i d 

3 
R i 

+ n 

2 
0 

∫ 
D 

1 

r 2 
i 
R 

2 
i j 

∣∣E i j (r i , R i j , R j ) 
∣∣2 ̂ r i d 

3 
R j d 

3 
R i + · · ·

] 
. (176) 

rom Eqs. (174) and (176) , we obtain the following angular spec-

rum representation for the configuration-averaged Poynting vector

n terms of the specific intensity: 

 ( r ) = −
∫ ̂ p I(r , −̂ p ) d 

2 ̂ p . (177)

he above derivation shows that to compute the configuration-

veraged Poynting vector, we have to solve the vector radiative

ransfer equation for the direction-dependent specific intensity col-

mn vector, and then to integrate the direction-weighted specific

ntensity over all directions. 

1.5. Scalar radiative transfer equation 

The scalar radiative transfer equation can be obtained from

he vector equation by neglecting polarization, that is, by assum-

ng that the light is unpolarized. If in Eq. (159) we apply the

ransformations 

 d = 

⎡ ⎢ ⎣ 

I d 
Q d 

U d 

V d 

⎤ ⎥ ⎦ 

→ 

⎡ ⎢ ⎣ 

I d 
0 

0 

0 

⎤ ⎥ ⎦ 

and I c = 

⎡ ⎢ ⎣ 

I c 
Q c 

U c 

V c 

⎤ ⎥ ⎦ 

→ 

⎡ ⎢ ⎣ 

I c 
0 

0 

0 

⎤ ⎥ ⎦ 

, 

e get a radiative transfer equation for the diffuse specific inten-

ity I d involving the (1,1) element Z 11 of the normalized phase

atrix (the phase function). This simplification is used when the

edium is illuminated by unpolarized light and only the specific

ntensity of the multiply scattered light needs to be computed. It
s clear that the specific intensities obtained by solving the vector

nd the scalar radiative transfer equations are different because the

quations that they are satisfying are different. 

In the last step of our analysis we present a more strict deriva-

ion of the scalar radiative transfer equation with the goal of em-

hasizing the underlying assumptions. To simplify the analysis, we

ssume that the particles are spherical. The procedure is to ob-

ain representations of the “energetic” quantities | E i | 
2 , | E ij | 

2 , etc.

ppearing in the series (174) for unpolarized light. We begin with

ome preliminary results characterizing the propagation and scat-

ering of unpolarized light in a discrete random medium consist-

ng of spherical particles. For this purpose, we express the single-

cattering field E i of Eq. (167) as 

 i (r i , R i ) = t ( ̂  r i , r i ) · E 

∞ 

sct i ( ̂  r i ) , (178)

ith 

 

∞ 

sct i ( ̂  r i ) = A ( ̂  r i , ̂  s ) · E c (R i ) . (179)

bviously, we have ̂  r i · E 

∞ 

sct i 
( ̂  r i ) = 0 , and from t ( ̂  r i , 0) = I , we get

 i (0 , R i ) = E 

∞ 

sct ( ̂  r i ) . 

1. The Stokes column vector I c associated with the coherent field

E c , defined by (cf. Eq. (37) ), 

E c (r ) = t ( ̂  s , s (r , −̂  s )) · E 0 (r A ) (180)

and satisfying E c (r A ) = E 0 (r A ) , solves the differential equation

(cf. Eq. (57) ) 

d I c (r ) 

d s 
= −n 0 C ext I c (r ) , (181)

where s = s (r , −̂  s ) and C ext is the extinction cross section. In

(181) we used the fact that for spherical particles, the extinc-

tion matrix is K = C ext I 4 , where I 4 is the 4 × 4 identity matrix

( K is diagonal and does not depend on the incidence direction).

Taking into account the similarity between Eqs. (178) and (180) ,

we deduce that the specific intensity column vector I i = I i (r i )

associated with E i = E i (r i , R i ) , i.e., 

I i = 

1 

2 

√ 

ε 1 
μ0 

⎡ ⎢ ⎢ ⎣ 

∣∣E iθ ∣∣2 + 

∣∣E iϕ ∣∣2 ∣∣E iθ ∣∣2 − ∣∣E iϕ ∣∣2 
−E iθ E � 

iϕ − E iϕ E 
� 
iθ

j[E i ϕ E 

� 
i θ

− E i θ E 

� 
i ϕ ] 

⎤ ⎥ ⎥ ⎦ 

, 

satisfies the differential equation 

d I i (r i ) 

d r i 
= −n 0 C ext I i (r i ) . (182)

For the first component of I i , 

I i (r i ) = 

1 

2 

√ 

ε 1 
μ0 

∣∣E i (r i , R i ) 
∣∣2 , (183)

the differential equation (182) gives 

d I i (r i ) 

d r i 
= −n 0 C ext I i (r i ) . (184)

The solution to Eq. (184) is 

I i (r i ) = e −n 0 C ext r i I i (0) ; (185)

whence, by using the initial condition (cf. E i (0 , R i ) = E 

∞ 

sct ( ̂  r i ) ) 

I i (0) = 

1 

2 

√ 

ε 1 
μ0 

| E 

∞ 

sct ( ̂  r i ) | 2 , (186)

we find ∣∣E i (r i , R i ) 
∣∣2 = e −n 0 C ext r i 

∣∣E 

∞ 

sct ( ̂  r i ) 
∣∣2 , (187)

or equivalently, ∣∣t ( ̂  r i , r i ) · E 

∞ 

sct ( ̂  r i ) 
∣∣2 = e −n 0 C ext r i 

∣∣E 

∞ 

sct ( ̂  r i ) 
∣∣2 . (188)
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s  
Eq. (188) describes the propagation (attenuation) of the field

scattered by the spherical particle i at the observation point

through a discrete random medium. 

2. For the far-field pattern E 

∞ 

sct i 
( ̂  r i ) , we have the representation ∣∣E 

∞ 

sct i ( ̂  r i ) 
∣∣2 = 

C sct 

4 π
p( ̂  r i , ̂  s ) 

∣∣E c (R i ) 
∣∣2 , (189)

where C sct is the scattering cross section and p( ̂  r i , ̂  s ) is the

phase function. Using E 

∞ 

sct i 
( ̂  r i ) = A ( ̂  r i , ̂  s ) · E c (R i ) , we express

Eq. (189) as ∣∣A ( ̂  r i , ̂  s ) · E c (R i ) 
∣∣2 = 

C sct 

4 π
p( ̂  r i , ̂  s ) 

∣∣E c (R i ) 
∣∣2 . (190)

In general, for polarized light and in terms of the Stokes col-

umn vector I c (R i ) = [ I c , Q c , U c , V c ] 
T associated with E c (R i ) ,

the scattering cross section C sct ( ̂  s ) and the phase function

p( ̂  r i , ̂  s ) are given respectively, by [1–3] 

C sct ( ̂  s ) = 

1 

I c 

∫ [
Z 11 ( ̂  r i , ̂  s ) I c + Z 12 ( ̂  r i , ̂  s ) Q c 

+ Z 13 ( ̂  r i , ̂  s ) U c + Z 14 ( ̂  r i , ̂  s ) V c 

]
d 

2 ̂ r i , (191)

and 

p( ̂  r i , ̂  s ) = 

4 π

C sct ( ̂  s ) 

1 

I c 

[
Z 11 ( ̂  r i , ̂  s ) I c + Z 12 ( ̂  r i , ̂  s ) Q c 

+ Z 13 ( ̂  r i , ̂  s ) U c + Z 14 ( ̂  r i , ̂  s ) V c 

]
, (192)

where Z ij are elements of the phase matrix Z . For unpolarized

light, we have Q c = U c = V c = 0 ; hence, Eq. (189) is still valid,

but with 

C sct ( ̂  s ) = 

∫ 
Z 11 ( ̂  r i , ̂  s ) d 

2 ̂ r i , (193)

and 

p( ̂  r i , ̂  s ) = 

4 π

C sct ( ̂  s ) 
Z 11 ( ̂  r i , ̂  s ) . (194)

If, moreover, the particles are spherical, the scattering cross

section does not depend on the incidence direction. Thus, for

unpolarized light, Eq. (190) with the phase function as in

Eq. (194) , describes the scattering by particle i illuminated by

the coherent field E c (R i ) . 

We compute now all terms | E i | 
2 , | E ij | 

2 , etc. in the series (174) by

means of Eqs. (188) and (190) . The assumption that we make is

that all scattering processes (e.g., the scattering by particle j when

excited by the field coming from i) correspond to unpolarized light . In

this case, for the single-scattering field, we have ∣∣E i (r i , R i ) 
∣∣2 = e −n 0 C ext r i 

C sct 

4 π
p( ̂  r i , ̂  s ) 

∣∣E c (R i ) 
∣∣2 , (195)

while for the double-scattering field, we have ∣∣E i j (r i , R i j , R j ) 
∣∣2 = e −n 0 C ext r i e −n 0 C ext R i j 

(
C sct 

4 π

)2 

× p( ̂  r i , ̂  R i j ) p( ̂  R i j , ̂  s ) 
∣∣E c (R j ) 

∣∣2 . (196)

Then, we find that the specific intensity, given by (cf. Eq. (174) ) 

I(r , −̂ p ) = 

1 

2 

√ 

ε 1 
μ0 

[ 
δ( ̂  p + ̂

 s ) 
∣∣E c (r ) 

∣∣2 
+ n 0 

C sct 

4 π

∫ 
e −n 0 C ext p p(−̂ p , ̂  s ) 

∣∣E c (R i ) 
∣∣2 d p 

+ n 

2 
0 

(
C sct 

4 π

)2 ∫ 
e −n 0 C ext p e −n 0 C ext R ji p(−̂ p , −̂ R ji ) 

× p(−̂ R ji , ̂  s ) 
∣∣E c (R j ) 

∣∣2 d R ji d 

2 ̂ R ji d p + · · ·
] 
, (197)
t

olves the integral equation 

(r , −̂ p ) = δ( ̂  p + ̂

 s ) I c (r ) 

+ 

C sct 

4 π

∫ 
e −n 0 C ext p p(−̂ p , −̂ p 

′ ) I(r + p , −̂ p 

′ ) d 

2 ̂ p 

′ d p, (198)

ith 

 c (r ) = 

1 

2 

√ 

ε 1 
μ0 

| E c (r ) | 2 . 
he differential form of Eq. (198) gives the scalar radiative transfer

quation for the diffuse specific intensity 

 d (r , ̂  q ) = I(r , ̂  q ) − δ( ̂  q −̂ s ) I c (r ) , (199)

hat is, 

d I d (r , ̂  q ) 

d s 
= −n 0 C ext I d (r , ̂  q ) + 

C sct 

4 π
p( ̂  q , ̂  s ) I c (r ) 

+ 

C sct 

4 π

∫ 
p( ̂  q , ̂  q 

′ ) I d (r , ̂  q 

′ ) d 

2 ̂ q 

′ , (200)

here p( ̂  q , ̂  q 

′ ) = (4 π/C sct ) Z 11 ( ̂  q , ̂  q 

′ ) (the (1,1) element of the nor-

alized phase matrix). 

2. Conclusions 

The vector radiative transfer theory has been derived for a dis-

rete random layer with non-scattering boundaries and a sparse

oncentration of particles by using the far-field Foldy equations.

he sequential steps of the derivation are summarized below. 

1. By means of the far-field approximation, we derived the far-

field Foldy equations for the total field and the exciting fields. 

2. Considering an iterated solution of the exciting fields equa-

tion and employing the Twersky approximation, we obtained

an order-of-scattering expansion for the total field. In the Twer-

sky approximation, all scattering paths involving a particle two

or more times are neglected. 

3. By averaging the Twersky expansion for the total field under

the assumption that the positions of the particles are uncor-

related, we computed the coherent field. We discussed several

topics related to this issue as for example, the cases of inhomo-

geneous media and multiple species of particles, the continuous

extension of the far-field representation to the near field, the

Foldy approximation, and the Foldy integral equation for the

coherent field. 

4. We computed the coherency dyadic under the ladder approxi-

mation, that is, in a Feynman diagram representation, the dia-

grams with crossing connectors having been neglected. For rea-

sons of clarification, we presented an analytical proof of the

ladder approximation. From the ladder expansion, we derived

an integral equation for the diffuse specific coherency dyadic,

defined through an angular spectrum representation of the co-

herency dyadic. This integral equation gives the vector radiative

transfer equation for the diffuse specific intensity column vec-

tor. Finally, we deduced the angular spectrum representations

for the Poynting–Stokes dyadic and the configuration-averaged

Poynting vector in terms of the specific intensity column vector

and the specific intensity, respectively, and derived the scalar

radiative transfer equation. 

In summary, the main assumptions and approximations of the

olution method are (i) the assumption that the positions of the

articles are statistically independent (including the assumption

hat the particles are uniformly distributed), (ii) the far-field ap-

roximation, (iii) the Twersky approximation for the total field, and

iv) the ladder approximation for the coherency dyadic. The Twer-

ky approximation as well as the ladder approximation are valid if

he number of particles N is very large. 
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