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a b s t r a c t 

For a macroscopically plane-parallel discrete random medium, the boundary conditions for the specific 

coherency dyadic at a rough interface are derived. The derivation is based on a modification of the Twer- 

sky approximation for a scattering system consisting of a group of particles and the rough surface, and 

reduces to the solution of the scattering problem for a rough surface illuminated by a plane electromag- 

netic wave propagating in a discrete random medium with non-scattering boundaries. In a matrix-form 

setting, the boundary conditions for the specific coherency dyadic imply the boundary conditions for 

specific intensity column vectors which in turn, yield the expressions for the reflection and transmission 

matrices. The derived expressions are shown to be identical to those obtained by applying a phenomeno- 

logical approach based on a facet model to the solution of the scattering problem for a rough surface 

illuminated by a plane electromagnetic wave. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The main goal of a radiative transfer model for a discrete ran-

dom medium (as defined in Ref. [1] ), confined to a layer with

rough optical interfaces as its boundaries is the derivation of equa-

tions describing the electromagnetic energy budget of a finite vol-

ume of space or the reading of a specific detector of electro-

magnetic energy flow such as a well-collimated radiometer [2,3] .

This is usually accomplished by arriving, in the final analysis, at a

transport-type equation for the specific coherency dyadic � (de-

fined through the angular spectrum of the coherency dyadic C ). 

The procedure adopted in Ref. [4–6] is to write the Maxwell

equations in an integral form with the help of Green functions

and apply the Wigner transform to the equation thus derived.

Then, by differentiating this equation, the transport equation is ob-

tained. The coupling between the random medium and the rough

boundaries is described through the scattering operators of the

rough surfaces. Boundary conditions for � at the rough interfaces

are added to the transport equation in order to guarantee the

uniqueness of solution. In particular, the boundary conditions are

obtained from the integral equations for the specific coherency

dyadics in the upward and downward directions written at the av-

erage planes of the rough surfaces. The transport equation for a
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parse discrete random layer is obtained by specializing the results

or dense media, i.e., by assuming that the particle concentration is

ow and the positions of the particles are uncorrelated. In this case,

he matrix form representation of the transport equation for � is

nalogous to the vector radiative transfer equation for the specific

ntensity column vector I , while the boundary conditions coincide

ith those for dense media. The main weakness of the approach

n Refs. [4–6] is that it is based on the phenomenological postu-

ation of the so-called quasi-uniform field approximation [7] . This

llows for the use of the Wigner transform, but amounts to making

 priori assumptions about the random electromagnetic field rather

han specific macro- and microphysical assumptions about the dis-

rete random medium. This makes it problematic (if even possible)

o establish definitively the physical meaning of various quantities

ntroduced on an ad hoc basis and clarify their relevance to solving

he main problem summarized in the first sentence of this section.

A self-consistent radiative transfer theory for sparse discrete

andom media with non-scattering boundaries, otherwise known

s the microphysical radiative transfer theory, has been developed

n Refs. [2,8,9] . Taking into account that for sparse media, (i) the

articles are widely spaced so that each of them is situated in

he far-field region of all the other particles, and (ii) the field

observation) point is situated in the far-field region of all the

articles, the far-field Neumann expansion in conjunction with the

wersky approximation is used from the very outset to represent

he total field inside the particulate medium. In the rest of the

erivation, (i) the coherency dyadic C is computed under the

https://doi.org/10.1016/j.jqsrt.2018.07.016
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Fig. 1. Left: scattering geometry of a discrete random layer with a non-scattering lower plane boundary z = 0 and an upper rough surface boundary S . Right: local coordinate 

system attached to M . 
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adder approximation, (ii) an order-of-scattering expansion for the

pecific coherency dyadic � is derived, (iii) the order-of-scattering

xpansion for � is cast into an integral equation for �, and finally,

iv) the integral equation for � is used to obtain the integral form

f the vector radiative transfer equation for I . 

To the extent that the correspondence with the standard phe-

omenological transfer equation is demonstrated, the boundary

onditions for I are then typically obtained by considering a sepa-

ate problem, namely the scattering by a rough surface illuminated

y a plane electromagnetic wave. This specific problem is solved

y using either an electromagnetic scattering model [10–12] or an

d hoc geometrical-optics approach based on a facet model for the

ough surface [13–18] . The reflected and incident specific inten-

ity column vectors as well as the transmitted and incident spe-

ific intensity column vectors are related via the reflection and

ransmission matrices, respectively. The obvious weakness of this

henomenological approach is that it is based on ad hoc manip-

lations with second moments in the electromagnetic field rather

han with the field itself. 

The goal of this paper is to derive the boundary conditions for

he specific coherency dyadic at a rough interface in the case of a

parse discrete random medium by adopting several aspects of the

icrophysical approach outlined in Refs. [2,8,9] . The derivation is

ased on a modified Twersky approximation for a scattering sys-

em consisting of a group of particles and a rough surface. Essen-

ially, we apply the microphysical approach to solve the scattering

roblem for a rough surface illuminated by a plane electromag-

etic wave propagating in a discrete random medium with non-

cattering boundaries. In a matrix-form setting, the boundary con-

itions for the specific coherency dyadic yield the boundary condi-

ions for the specific intensity column vector, and hence analytical

xpressions for the reflection and transmission matrices. 

. Boundary conditions for the specific coherency dyadic at a 

ough interface 

We consider a system of N identical homogeneous particles

laced in a domain D 1 and centered at R 1 , R 2 , ..., R N ( Fig. 1 ). For

implicity we assume that the particles have the same orientation

nd that the particle coordinate system is aligned with the global

oordinate system. The origins of the particles are confined to a

ayer with a non-scattering lower plane boundary z = 0 and an up-

er rough surface boundary S . The surface S separates the non-

agnetic domains D 1 and D 2 of wavenumbers k 1 = ω 

√ 

ε 1 μ0 and
 2 = ω 

√ 

ε 2 μ0 , respectively, where ω is the angular frequency, ε1 

nd ε2 are the electric permittivities in domains D 1 and D 2 , re-

pectively, and μ0 is the magnetic permeability of a vacuum. The

elative refractive index of domain D 2 with respect to domain D 1 is

enoted by m = k 2 /k 1 . The incident wave illuminating the discrete

andom layer from below is a plane electromagnetic wave with the

irection specified by a unit vector ̂  s and an amplitude E 0 ( ̂  s ) : 

 0 (r ) = E 0 ( ̂  s ) e j k 1 ̂
 s · r . (1)

ote that we imply and suppress throughout the paper the com-

lex time-harmonic factor exp (−j ωt) , where t is time. The average

lane of the rough surface S is the plane z = H, denoted by Σ . If M

s a point on Σ, we let M S be the corresponding point on the sur-

ace characterized by the random function z = H + h (r M⊥ ) , where

 M 

is the position vector of M and r M ⊥ the transverse component

f r M 

, i.e., r M 

= r M⊥ + (r M 

·̂ z ) ̂  z . 

.1. Reflection 

We consider a downward reflection direction 

̂ q R = ̂

 q R (θR , ϕ R )

haracterized by the polar and azimuthal angles θR and ϕ R , re-

pectively, with θR > π/ 2 , an elementary solid angle � � around
 

 R , and a field point P along the direction ̂

 q R situated at a distance

with respect to M ( Fig. 1 ). The field point P is specified in the

lobal coordinate system by the position vector r and in the local

oordinate system attached to M by the position vector ρ = ρ̂ q R . 

As the first step of our analysis, we derive a series repre-

entation for the specific coherency dyadic in the upward direc-

ion 

̂ q , �(r M 

, ̂  q ) , while as the second step, we relate the spe-

ific coherency dyadic in the downward direction ̂

 q R , �(r M 

, ̂  q R ) to

(r M 

, ̂  q ) . 

Step 1. In the Twersky approximation for an isolated group of

articles [8,9] , only self-avoiding scattering paths (i.e., the paths

hat go through a scatterer only once) are considered. As a re-

ult, the field exciting a particle at a point near the particle is

he total field that would exist at that point if the particle were

emoved from the group. For a scattering system consisting of a

roup of particles and a rough surface, we use a modified Twer-

ky approximation implying that (i) the field exciting (illuminat-

ng) the rough surface is the total field produced by the group of

articles in the absence of the rough surface, and (ii) the field scat-

ered by the surface is not scattered by the particles as it propa-

ates at the field point P . In other words, the total field exciting

he rough surface corresponds to a discrete random layer with the
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Fig. 2. Geometry for computing the configuration average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Ladder approximation for the coherency dyadic. 
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non-scattering boundaries z = 0 and z = H and being illuminated

by a plane electromagnetic wave as in Eq. (1) . Furthermore, be-

cause our goal is to derive the boundary condition for the specific

coherency dyadic, we consider the waves scattered by the surface

in an elementary solid angle � � around 

̂ q R and propagating in

a non-scattering medium at P . It is clear that a scattering model

based on the modified Twersky approximation is more compre-

hensive than the conventional model dealing with the scattering

by a rough surface illuminated by a plane electromagnetic wave

propagating in free space. 

For a discrete random layer with the non-scattering boundaries

z = 0 and z = H and being illuminated by a plane electromagnetic

wave given by Eq. (1) , the total field at M (residing on the average

plane of the rough surface) is given by 

E (r M 

) = E 0 (r M 

) + 

∑ 

i 

E sct i (r M 

) . (2)

In the standard Twersky approximation for the group of particles,

the order-of-scattering expansion for the total field is 

E (r M 

) = E 0 ( r M 

) + 

∑ 

i 

U ( ρ0 i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

i 

∑ 

j � = i 
U ( ρ0 i , ̂

 R i j ) · U (R i j , ̂  s ) · E 0 (R j ) + . . . , (3)

where we use the notation of Fig. 2 , R i j = R i − R j and 

U ( ρ0 i , ̂  q ) = 

e j k 1 ρ0 i 

ρ0 i 

A ( ̂  ρ0 i , ̂  q ) (4)

for any incident direction 

̂ q . In the above definition of the dyadic

U , A is the far-field scattering dyadic [2,9] . A diagramatic represen-

tation of the expansion (3) is 

(5)

where the symbol represents the incident field E 0 , while the

composed symbol denotes multiplying a field by the dyadic

U . In the radiative transfer theory of discrete random media the

key quantity is the coherency dyadic. To compute the coherent

field, the procedure of configuration averaging based on the as-

sumption of ergodicity and requiring the computation of integrals

over particle positions, is considered. To integrate over all positions

of particle i we use a local coordinate system with the origin at M ,

to integrate over all positions of particle j we use a local coordi-

nate system with the origin at particle i , and so on ( Fig. 2 ). In this

regard, we make the changes of variables 

R i = r M 

+ p , R j = R i + R ji , etc. (6)
he integration domain is the whole D 1 . Therefore, for the direc-

ion 

̂ p , p ranges from zero at M to the corresponding value at

he point C (where the straight line with the direction vector p̂

rosses the lower plane boundary); for the direction ̂

 R ji , R ji ranges

rom zero at the origin at particle i to the corresponding value at

he point C i (where the straight line with the direction vector ̂ R ji 

rosses the lower plane boundary), etc. Referring to Fig. 2 , the co-

erency dyadic in the ladder approximation is given by 

 (r M 

) = 〈 E (r M 

) � E 


 (r M 

) 〉 
= 

∫ 
�−

δ( ̂  p + ̂

 s ) C c ( r M 

) d 

2 ̂ p 

+ n 0 

∫ 
�−

[ ∫ 
V ( −p , ̂  s ) · C c (R i ) · V 

† 
( −p , ̂  s ) p 2 d p 

] 
d 

2 ̂ p 

+ n 

2 
0 

∫ 
�−

[ ∫ 
V (−p , −̂ R ji ) · V (−R ji , ̂  s ) · C c (R j ) 

· V 

† 
(−R ji , ̂  s ) · V 

† 
(−p , −̂ R ji ) p 

2 R 

2 
ji d R ji d 

2 ̂ R ji d p 

] 
d 

2 ̂ p + . . . , 

(7)

here �− is the lower unit half-sphere, C c (r M 

) = 〈 E (r M 

) 〉 �
 E 


 (r M 

) 〉 is the coherent part of the coherency dyadic, E c (r M 

) =
 E (r M 

) 〉 is the coherent field, i.e., 

(8)

·〉 means the configuration average, 
 and † stand for the complex

onjugate and the complex conjugate transpose (Hermitian trans-

ose), respectively, and ( ρ0 i = −p ) 

V ( ρ0 i , ̂  s ) = 

t ( ̂  ρ0 i , ρ0 i ) 

ρ0 i 

· A ( ̂  ρ0 i , ̂  s ) , (9)

 ( ̂  ρ0 i , ρ0 i ) = exp 

{ 

j 

[ 
k 1 I + 

2 π

k 1 
n 0 A ( ̂  ρ0 i , ̂  ρ0 i ) 

] 
ρ0 i 

} 

, (10)

ith I being the identity dyadic and n 0 the number concentration

f particles. A diagramatic illustration of the coherency dyadic is

hown in Fig. 3 . The specific coherency dyadic at point M and in

he upward direction ̂

 q = −̂ p , �(r M 

, −̂ p ) is defined through the in-

egral representation 

 (r M 

) = 

∫ 
�−

�( r M 

, −̂ p ) d 

2 ̂ p , (11)

o that from Eq. (7) , we have 

( r M 

, −̂ p ) = δ( ̂  p + ̂

 s ) C c (r M 

) 

+ n 0 

∫ 
V ( −p , ̂  s ) · C c (R i ) · V 

† 
( −p , ̂  s ) p 2 d p 
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the illuminated surface � A . 

Fig. 5. Ladder approximation of 〈 E ∞ R � E ∞ 
 R 〉 . 
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�

+ n 

2 
0 

∫ 
V (−p , −̂ R ji ) · V (−R ji , ̂  s ) · C c (R j ) 

· V 

† 
(−R ji , ̂  s ) · V 

† 
(−p , −̂ R ji ) p 

2 R 

2 
ji d R ji d 

2 ̂ R ji d p + . . . . 

(12) 

t should be pointed out that under the Twersky approximation

or the scattering system, the total field is evaluated at the point

 on the average plane and not at the point M S on the rough sur-

ace; therefore, �(r M 

, −̂ p ) is a deterministic quantity with respect

o surface fluctuations. 

Step 2. In the local coordinate system attached to M , the field

cattered by particle i in its far-field region is a locally plane elec-

romagnetic of amplitude E 0 i propagating in the direction ̂

 ρ0 i , 

 

(M) 
sct i 

( ρ0 ) = E 0 i e 
j k 1 ̂  ρ0 i ·ρ0 , (13)

ith 

 0 i = E sct i (r M 

) = 

e j k 1 ρ0 i 

ρ0 i 

E 

∞ 

sct i ( ̂  ρ0 i ) , (14)

eing the scattered field at M . Similarly, the incident field is a

lane electromagnetic wave of amplitude E 0 ( r M 

) propagating in the

irection ̂

 s , 

 

(M) 
0 

( ρ0 ) = E 0 (r M 

) e j k 1 ̂ s ·ρ0 . (15)

n general, for an incident plane electromagnetic wave E 0 ( r ) as in

q. (1) , the field reflected by a rough surface is given by 

 R ( ρ) = 

e j k 1 ρ

ρ
A SR ( ̂  q R , ̂  s ) · E 0 (r M 

) , (16)

here A SR is the local scattering reflection dyadic of the rough sur-

ace. We assume that each elementary element of the rough inter-

ace scatters a plane electromagnetic wave as if the rest of the sur-

ace did not exist. Taking into account that the incident field at M

s a superposition of the incident plane electromagnetic wave and

f local plane electromagnetic waves coming from all the particles,

e deduce that the reflected field at P is 

 R ( ρ) = 

e j k 1 ρ

ρ
E 

∞ 

R ( ̂  q R ) , (17)

here the far-field pattern E 

∞ 

R is 

 

∞ 

R ( ̂  q R ) = A SR ( ̂  q R , ̂  s ) · E 0 (r M 

) + 

∑ 

i 

A SR ( ̂  q R , ̂  ρ0 i ) · E 0 i . (18)

y means of the Twersky approximation, an order-of-scattering ex-

ansion for E 

∞ 

R reads as 

 

∞ 

R ( ̂  q R ) = A SR ( ̂  q R , ̂  s ) · E 0 (r M 

) 

+ 

∑ 

i 

A SR ( ̂  q R , ̂  ρ0 i ) ·
e j k 1 ρ0 i 

ρ0 i 

A ( ̂  ρ0 i , ̂  s ) · E 0 (R i ) 

+ 

∑ 

i, j, j � = i 
A SR ( ̂  q R , ̂  ρ0 i ) ·

e j k 1 ρ0 i 

ρ0 i 

A ( ̂  ρ0 i , ̂
 R i j ) 

· e j k 1 R i j 

R i j 

A ( ̂  R i j , ̂  s ) · E 0 (R j ) + . . . , (19) 

r in diagramatic representation, 

(20) 

here, the symbol 
M 

♦ means multiplying a field at M by the scat-

ering reflection dyadic A . From Eq. (8) , it is apparent that the
SR 
onfiguration average of E 

∞ 

R is 

(21) 

hat is, 

 E 

∞ 

R ( ̂  q R ) 〉 = A SR ( ̂  q R , ̂  s ) · E c (r M 

) . (22)

We define the (elementary) reflection coherency dyadic at M in

n elementary solid angle � � around ̂

 q R by (cf. Eq. (17) ) 

 C ( r M 

, ̂  q R ) := �( r M 

, ̂  q R ) � � = 

1 

ρ2 
〈 E 

∞ 

R ( ̂  q R ) � E 

∞ 
 
R ( ̂  q R ) 〉 , (23)

here �(r M 

, ̂  q R ) is the specific reflection coherency dyadic. Here,

e do not use a special notation for the (specific) reflection co-

erency dyadic; the argument ̂ q R , indicating a downward reflec-

ion direction, specifies the type of the (specific) coherency dyadic.

sing 

 � = 

� A 

ρ2 
| cos θR | , (24)

here � A is the (elementary) area of the illuminated surface

 Fig. 4 ), we find that the specific reflection coherency dyadic can

e written as 

( r M 

, ̂  q R ) = 

1 

� A | cos θR | 〈 E 

∞ 

R ( ̂  q R ) � E 

∞ 
 
R ( ̂  q R ) 〉 . (25)

o compute 〈 E 

∞ 

R � E 

∞ 
 
R 〉 , appearing on the right-hand side of

q. (25) , we employ the ladder approximation, illustrated diagra-

atically in Fig. 5 . By means of Eq. (12) , we find 

( r M 

, ̂  q R ) = 

1 

� A | cos θR | 
{ 

∫ 
�−

δ( ̂  p + ̂

 s ) A SR ( ̂  q R , −̂ p ) · C c (r M 

) 

· A 

† 

SR ( ̂  q R , −̂ p ) d 

2 ̂ p 

+ n 0 

∫ 
−

[ ∫ 
A SR ( ̂  q R , −̂ p ) · V ( −p , ̂  s ) · C c (R i ) 
�
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p  

q̂  

ϕ  
· V 

† 
( −p , ̂  s ) · A 

† 

SR ( ̂  q R , −̂ p ) p 2 d p 

] 
d 

2 ̂ p 

+ n 

2 
0 

∫ 
�−

[ ∫ 
A SR ( ̂  q R , −̂ p ) · V (−p , −̂ R ji ) · V (−R ji , ̂  s ) 

· C c (R j ) · V 

† 
(−R ji , ̂  s ) · V 

† 
(−p , −̂ R ji ) · A 

† 

SR ( ̂  q R , −̂ p ) 

× p 2 R 

2 
ji d R ji d 

2 ̂ R ji d p 

] 
d 

2 ̂ p + . . . 

} 

= 

1 

� A | cos θR | 
∫ 
�+ 

A SR ( ̂  q R , ̂  q ) · �( r M 

, ̂  q ) · A 

† 

SR ( ̂  q R , ̂  q ) d 

2 ̂ q , 

(26)

where �+ is the upper unit half-sphere. Finally, taking the average

over surface fluctuations, applying the dyadic identity ( A � B ) · C =
A · C · B 

T 
, where A 

T 
is the transpose of A , and using 〈 �(r M 

, ̂  q ) 〉 S =
�(r M 

, ̂  q ) (because �(r M 

, ̂  q ) is deterministic), we obtain 

〈 �( r M 

, ̂  q R ) 〉 S = 

1 

� A | cos θR | 
∫ 
�+ 

〈 A SR ( ̂  q R , ̂  q ) � A 

∗
SR ( ̂  q R , ̂  q ) 〉 S 

· 〈 �( r M 

, ̂  q ) 〉 S d 

2 ̂ q , (27)

where 〈·〉 S means the average over surface fluctuations. 

To compute 〈 A SR � A 


 

SR 〉 S , any asymptotic method available in

rough surface scattering theory can be used [10,11,19,20] . In the

Kirchhoff approach and the geometrical optics approximation, the

scattering reflection dyadic is given by [11] 

A SR ( ̂  q R , ̂  q ) = −2 π j k 1 | cos θR | R 21 ( k 1 ̂  q R ⊥ , k 1 ̂  q ⊥ ) 

= 

j k 1 
4 π

c R ( ̂  q R , ̂  q ) I h R ( ̂  q R , ̂  q ) r 21 ( ̂  q R , ̂  q ) , (28)

where R 21 is the reflection dyadic, ̂  q R = ̂

 q R ⊥ + ( ̂  q R ·̂ z ) ̂  z , 

c R ( ̂  q R , ̂  q ) = 

| ̂  q −̂ q R | 2 
| ̂  q ×̂ q R | 2 | ( ̂  q −̂ q R ) ·̂ z | , (29)

I h R ( ̂  q R , ̂  q ) = 

∫ 
� A 

e j k 1 ( ̂ q −̂ q R ) ·ρ0 d 

2 ρ0 ⊥ , (30)

ρ0 = ρ0 ⊥ + h ( ρ0 ⊥ ) ̂  z , and r 21 is the two-dimensional dyadic 

r 21 ( ̂  q R , ̂  q ) = 

∑ 

η,μ= ϕ,θ

r ημ( ̂  q R , ̂  q ) ̂  η( ̂  q R ) � ̂ μ( ̂  q ) (31)

with entries 

r ϕϕ ( ̂  q R , ̂  q ) = r ‖ [ ̂ ϕ ( ̂  q ) ·̂ q R ][ ̂ ϕ ( ̂  q R ) ·̂ q ] + r ⊥ [ ̂ θ( ̂  q ) ·̂ q R ][ 
̂ θ( ̂  q R ) ·̂ q ] , 

(32)

r ϕθ ( ̂  q R , ̂  q ) = r ‖ [ ̂ θ( ̂  q ) ·̂ q R ][ ̂ ϕ ( ̂  q R ) ·̂ q ] − r ⊥ [ ̂ ϕ ( ̂  q ) ·̂ q R ][ 
̂ θ( ̂  q R ) ·̂ q ] , 

(33)

r θϕ ( ̂  q R , ̂  q ) = r ‖ [ ̂ ϕ ( ̂  q ) ·̂ q R ][ 
̂ θ( ̂  q R ) ·̂ q ] − r ⊥ [ ̂ θ( ̂  q ) ·̂ q R ][ ̂ ϕ ( ̂  q R ) ·̂ q ] , 

(34)

r θθ ( ̂  q R , ̂  q ) = r ‖ [ ̂ θ( ̂  q ) ·̂ q R ][ 
̂ θ( ̂  q R ) ·̂ q ] + r ⊥ [ ̂ ϕ ( ̂  q ) ·̂ q R ][ ̂ ϕ ( ̂  q R ) ·̂ q ] . 

(35)

The lower subscripts in the notations of the dyadics R 21 and r 21 

indicate that the incident wave propagates from medium D 1 to

medium D 2 . In Eqs. (32) –(35) , 

r ⊥ = r ⊥ (θL 0 ) = 

cos θL 0 −
√ 

m 

2 − 1 + cos 2 θL 0 

cos θL 0 + 

√ 

m 

2 − 1 + cos 2 θL 0 
, (36)

r ‖ = r ‖ (θL 0 ) = 

m 

2 cos θL 0 −
√ 

m 

2 − 1 + cos 2 θL 0 

m 

2 cos θL 0 + 

√ 

m 

2 − 1 + cos 2 θL 0 
, (37)
re the Fresnel reflection coefficients, cos θL 0 = −̂ n 0 ·̂ q is the cosine

f the local incident angle θL 0 , and 

 

 0 = 

̂ q R −̂ q 

| ̂  q R −̂ q | (38)

he surface normal unit vector at M S pointing in D 1 . Eq. (38) re-

eals that the incident and reflected wave directions form a spec-

lar reflection. From Eq. (28) it is apparent that the computa-

ion of 〈 A SR ( ̂  q R , ̂  q ) � A 


 

SR ( ̂  q R , ̂  q ) 〉 S reduces to the computation of

 I h R ( ̂  q R , ̂  q ) I h
 
R ( ̂  q R , ̂  q ) 〉 S . For doing this, the integral 

 

h 
R ( ̂  q R , ̂  q ) I h
 

R ( ̂  q R , ̂  q ) = 

∫ 
� A 

e j t ⊥ ·( ρ0 ⊥ −ρ′ 
0 ⊥ ) 

× e j t z [ h ( ρ0 ⊥ ) −h ( ρ′ 
0 ⊥ ) ] d 

2 ρ′ 
0 ⊥ d 

2 ρ0 ⊥ , (39)

ith 

 = k 1 ( ̂  q −̂ q R ) = t ⊥ + t z ̂  z , (40)

 ⊥ = t x ̂  x + t y ̂  y , (41)

 z = t ·̂ z = k 1 ( ̂  q −̂ q R ) ·̂ z , (42)

s first computed by the asymptotic method, and then the average

ver surface fluctuations is taken; the result is 

 I h R ( ̂  q R , ̂  q ) I h
 
R ( ̂  q R , ̂  q ) 〉 S = 

(2 π) 2 � A 

t 2 z 
p 

(
− t x 

t z 
, − t y 

t z 

)
. (43)

here p ( α, β) is the probability density function for the slopes of

he surface. For the Gaussian probability density function 

p(α, β) = 

1 

2 πs 2 
exp 

(
−α2 + β2 

2 s 2 

)
, (44)

here s 2 is the mean square surface slope, we end up with 

 I h R ( ̂  q R , ̂  q ) I h
 
R ( ̂  q R , ̂  q ) 〉 S = 

2 π� A 

t 2 z s 
2 

exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
. (45)

aking account of Eq. (45) , we then obtain 

 �( r M 

, ̂  q R ) 〉 S = 

1 

8 π | cos θR | 
∫ 
�+ 

| ̂  q −̂ q R | 4 
| ̂  q ×̂ q R | 4 | ( ̂  q −̂ q R ) ·̂ z | 4 s 2 

× exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
r 21 ( ̂  q R , ̂  q ) · 〈 �(r M 

, ̂  q ) 〉 S 
· r 

† 
21 ( ̂  q R , ̂  q ) d 

2 ̂ q . (46)

For a plane surface, the scattering reflection dyadic is 

 SR ( ̂  q R , ̂  q ) = −2 π j k 1 | cos θR | δ( q ⊥ − q R ⊥ ) R 21 ( q R ⊥ , q ⊥ ) , (47)

here q ⊥ = k 1 ̂  q ⊥ and q R ⊥ = k 1 ̂  q R ⊥ , while the reflection dyadic R 21 

s 

 21 (q R ⊥ , q ⊥ ) = r ‖ ̂  θ( ̂  q R ) �
̂ θ( ̂  q ) + r ⊥ ̂  ϕ ( ̂  q R ) � ̂ ϕ ( ̂  q ) . (48)

f the illuminated area is infinite, we have then to replace � A in

q. (26) by (2 π) 2 δ(q ⊥ − q R ⊥ ) , so that inserting Eq. (47) in (26) and

aking account of 

 

2 ̂ q = 

1 

k 2 
1 

cos θ
d 

2 
q ⊥ , (49)

e get the boundary condition for the specific coherency dyadic 

(r M 

, ̂  q R ) = R 21 (q R ⊥ , q ⊥ ) · �(r M 

, ̂  q ) · R 

† 

21 (q R ⊥ , q ⊥ ) , (50)

here ( ̂  q , ̂  q R , ̂  n 0 = −̂  z ) is a system of specular reflection directions.

.2. Transmission 

To establish the boundary condition for the transmitted field we

roceed analogously. For the upward transmission direction 

̂ q T =
 

 T (θT , ϕ T ) characterized by the polar and azimuthal angles θT and

 T , respectively, with θT < π/ 2 ( Fig. 6 ), we define the (elementary)
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Fig. 6. Incidence and transmission directions ̂  q and ̂  q T , respectively, and the area 

of the illuminated surface � A . 

t  

�

�  

w  

�  

s

〈

w  

f

 

m

A

w

c

I

a

n̂

i  

(  

a  

e

t

a  

F

t

t

i  

r

〈

t

t

t

w  

d

〈

 

S  

t  

a  

i  

m  

s  

f

A

w

T  

i  

c

�  

w  

t

3

 

m  

b  

[  

c

J

a

J

w  

a

I  
ransmission coherency dyadic at M in an elementary solid angle

 � around ̂

 q T by 

 C ( r M 

, ̂  q T ) := �( r M 

, ̂  q T ) � � = 

1 

ρ2 
〈 E 

∞ 

T ( ̂  q T ) � E 

∞ 
 
T ( ̂  q T ) 〉 , (51)

here E 

∞ 

T is the far-field pattern of the transmitted field and

(r M 

, ̂  q T ) the specific transmission coherency dyadic. The final re-

ult is 

 �(r M 

, ̂  q T ) 〉 S = 

1 

� A cos θT 

∫ 
�+ 

〈 A ST ( ̂  q T , ̂  q ) � A 


 

ST ( ̂  q T , ̂  q ) 〉 S (52) 

· 〈 �(r M 

, ̂  q ) 〉 S d 

2 ̂ q , 

here A ST is the scattering transmission dyadic of the rough sur-

ace. 

In the Kirchhoff approach and the geometrical optics approxi-

ation, the scattering transmission dyadic is given by [11] 

 ST ( ̂  q T , ̂  q ) = −2 π j k 2 cos θT T 21 ( k 2 ̂  q T ⊥ , k 1 ̂  q ⊥ ) 

= − j k 2 
4 π

c T ( ̂  q T , ̂  q ) I h T ( ̂  q T , ̂  s ) t 21 ( ̂  q T , ̂  q ) , (53) 

here T 21 is the transmission dyadic, 

 T ( ̂  q T , ̂  q ) = 

2 

∣∣̂ n 0 ·̂ q T 

∣∣∣∣̂
 q − m ̂

 q T 

∣∣
| ̂  q ×̂ q T | 2 | ( ̂  q − m ̂

 q T ) ·̂ z | , (54) 

 

h 
T ( ̂  q T , ̂  q ) = 

∫ 
� A 

e j ( k 1 ̂  q −k 2 ̂  q T ) ·ρ0 d 

2 ρ0 ⊥ , (55) 

nd 

 

 0 = 

k 1 ̂  q − k 2 ̂  q T ∣∣k 1 ̂  q − k 2 ̂  q T 

∣∣ = 

̂ q − m ̂

 q T ∣∣̂
 q − m ̂

 q T 

∣∣ (56) 

s the surface normal unit vector at M S pointing in D 1 . The relation

56) is an equivalent statement of Snell’s law; thus, the incident

nd transmitted wave directions form a specular transmission. The

ntries of the two-dimensional dyadic 

 21 ( ̂  q T , ̂  q ) = 

∑ 

η,μ= ϕ,θ

t ημ( ̂  q T , ̂  q ) ̂  η( ̂  q T ) � ̂ μ( ̂  q ) (57) 

re given by Eqs. (32) –(35) with 

̂ q T in place of ̂ q R , and with the

resnel transmission coefficients ( cos θL 0 = −̂ n 0 ·̂ q ) 

 ⊥ (θL 0 ) = 

2 cos θL 0 

cos θL 0 + 

√ 

m 

2 − 1 + cos 2 θL 0 
= 1 + r ⊥ (θL 0 ) (58) 

 ‖ (θL 0 ) = 

2m cos θL 0 

m 

2 cos θL 0 + 

√ 

m 

2 − 1 + cos 2 θL 0 
= 

1 

m 

[1 + r ‖ (θL 0 )] 

(59) 

n place of the Fresnel reflection coefficients r ⊥ (θL 0 ) and r ‖ (θL 0 ) ,
espectively. By using 

 I h T ( ̂  q T , ̂  q ) I h
 
T ( ̂  q T , ̂  q ) 〉 S = 

2 π� A 

t 2 z s 
2 

exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
, (60) 
 = k 1 ̂  q − k 2 ̂  q T = k 1 ( ̂  q − m ̂

 q T ) = t ⊥ + t z ̂  z , (61) 

 ⊥ = t x ̂  x + t y ̂  y , (62) 

 z = t ·̂ z = k 1 ( ̂  q − m ̂

 q T ) ·̂ z , (63) 

e obtain the boundary condition for the specific coherency

yadic 

 �( r M 

, ̂  q T ) 〉 S = 

m 

2 

2 π cos θT 

∫ 
�+ 

∣∣( ̂  q − m ̂

 q T ) ·̂ q T 

∣∣2 

| ̂  q ×̂ q T | 4 | ( ̂  q − m ̂

 q T ) ·̂ z | 4 s 2 

× exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
t 21 ( ̂  q T , ̂  q ) · 〈 �( r M 

, ̂  q ) 〉 S 

· t 
† 

21 ( ̂  q T , ̂  q ) d 

2 ̂ q . (64) 

At this stage of our presentation, a brief remark is in order.

trictly speaking, the geometrical optics approximation applies if

he domain D 2 is non-absorbing, since otherwise, at the station-

ry point, the surface slopes are complex quantities. However, as

n the Snell law, when the transmission angle can be complex, we

ay admit, by an analytic continuation procedure, that the surface

lopes can be also complex. In this case, the above results are valid

or an absorbing domain D 2 . 

For a plane surface, the scattering transmission dyadic is 

 ST ( ̂  q T , ̂  q ) = −2 π j k 2 cos θT δ( q ⊥ − q T ⊥ ) T 21 ( k 2 ̂  q T ⊥ , k 1 ̂  q ⊥ ) , (65) 

here, for q ⊥ = k 1 ̂  q ⊥ and q T ⊥ = k 2 ̂  q T ⊥ , 

 21 (q T ⊥ , q ⊥ ) = t ‖ ̂  θ( ̂  q T ) �
̂ θ( ̂  q ) + t ⊥ ̂  ϕ ( ̂  q T ) � ̂ ϕ ( ̂  q ) , (66)

s the transmission dyadic. The boundary condition for the specific

oherency dyadic reads as 

(r M 

, ̂  q T ) = m 

2 cos θT 
cos θ

T 21 (q T ⊥ , q ⊥ ) · �(r M 

, ̂  q ) · T 

† 

21 (q T ⊥ , q ⊥ ) , (67)

here ( ̂  q , ̂  q T , ̂  n 0 = −̂  z ) is a system of specular transmission direc-

ions. 

. Reflection and transmission matrices 

To derive the expressions of the reflection and transmission

atrices, we switch from the dyadic-form representations of the

oundary conditions (46) and (64) to matrix-form representations

2,8,9] . In the case of reflection, we define the specific coherency

olumn vectors in domain D 1 by 

 ( r M 

, ̂  q R ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ 

⎢ ⎣ 

Σθθ (r M 

, ̂  q R ) 
Σθϕ (r M 

, ̂  q R ) 
Σϕθ (r M 

, ̂  q R ) 
Σϕϕ (r M 

, ̂  q R ) 

⎤ 

⎥ ⎦ 

, (68) 

nd 

 ( r M 

, ̂  q ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ 

⎢ ⎣ 

Σθθ (r M 

, ̂  q ) 
Σθϕ (r M 

, ̂  q ) 
Σϕθ (r M 

, ̂  q ) 
Σϕϕ (r M 

, ̂  q ) 

⎤ 

⎥ ⎦ 

, (69) 

here Σημ are the entries of the specific coherency dyadic 〈 �〉 S ,
nd the specific intensity column vectors by 

 (r M 

, ·) = DJ (r M 

, ·) = 

1 

2 

√ 

ε 1 
μ0 

⎡ 

⎢ ⎣ 

Σθθ (r M 

, ·) + Σϕϕ (r M 

, ·) 
Σθθ (r M 

, ·) − Σϕϕ (r M 

, ·) 
−Σθϕ (r M 

, ·) − Σϕθ (r M 

, ·) 
j [ Σϕθ (r M 

, ·) − Σθϕ (r M 

, ·)] 

⎤ 

⎥ ⎦ 

, (70)
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where 

D = 

⎡ 

⎢ ⎣ 

1 0 0 1 

1 0 0 −1 

0 −1 −1 0 

0 −j j 0 

⎤ 

⎥ ⎦ 

(71)

is a transformation matrix. We find 

I (r M 

, ̂  q R ) = 

1 

π

∫ 
�+ 

R ( ̂  q R , ̂  q ) I (r M 

, ̂  q ) cos θ d 

2 ̂ q , (72)

where, for ̂  q = ̂

 q (θ, ϕ) , the reflection matrix R ( ̂  q R , ̂  q ) is given by 

R ( ̂  q R , ̂  q ) = 

1 

8 | cos θR | cos θ

| ̂  q −̂ q R | 4 
| ̂  q ×̂ q R | 4 | ( ̂  q −̂ q R ) ·̂ z | 4 s 2 

× exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
M (r ημ) . (73)

The explicit expressions of the entries of the 4 × 4 matrix M (r ημ) ,

η, μ = ϕ, θ are listed in the Appendix. The representation (51) of

the reflection matrix can be also found in Ref. [12] . 

In the case of transmission, we define the specific coherency

column vector in domain D 2 by 

J (r M 

, ̂  q T ) = 

1 

2 

√ 

ε 2 
μ0 

⎡ 

⎢ ⎣ 

Σθθ (r M 

, ̂  q T ) 
Σθϕ (r M 

, ̂  q T ) 
Σϕθ (r M 

, ̂  q T ) 
Σϕϕ (r M 

, ̂  q T ) 

⎤ 

⎥ ⎦ 

, (74)

and obtain the following boundary condition for the specific inten-

sity column vector: 

I (r M 

, ̂  q T ) = 

1 

π

∫ 
�+ 

T ( ̂  q T , ̂  q ) I (r M 

, ̂  q ) cos θ d 

2 ̂ q , (75)

with the transmission matrix being given by 

T ( ̂  q T , ̂  q ) = 

m 

3 

2 cos θT cos θ

| ( ̂  q − m ̂

 q T ) ·̂ q T | 2 
| ̂  q ×̂ q T | 4 | ( ̂  q − m ̂

 q T ) ·̂ z | 4 s 2 

× exp 

(
− t 2 x + t 2 y 

2 t 2 z s 
2 

)
M (t αβ ) . (76)

4. Final remarks 

We conclude our analysis with some comments. 

1. In the conventional derivation of the reflection matrix, a rough

surface illuminated by a plane electromagnetic wave as in

Eq. (1) is considered. In that case, the far-field pattern of the

reflected field at P is (cf. Eq. (16) ) 

E 

∞ 

R ( ̂  q R ) = A SR ( ̂  q R , ̂  s ) · E 0 (r M 

) , (77)

and the specific reflection coherency dyadic is (cf. Eq. (25) ) 

�( ̂  q R ) = 

1 

� A | cos θR | A SR ( ̂  q R , ̂  s ) · C 0 ( ̂  s ) · A 

† 

SR ( ̂  q R , ̂  s ) , (78)

where 

C 0 ( ̂  s ) = E 0 (r M 

) � E 


 
0 (r M 

) = E 0 ( ̂  s ) � E 
 0 ( ̂  s ) . (79)

Using the representation E 0 ( ̂  s ) = E 0 θ̂ θ( ̂  s ) + E 0 ϕ ̂  ϕ ( ̂  s ) , implying

(say, for complex amplitudes E 0 η, η = ϕ, θ ) 

C 0 ( ̂  s ) = 

∑ 

η,μ= ϕ,θ

E 0 ηE 
 0 μ
̂ η( ̂  s ) � ̂ μ( ̂  s ) , (80)

and putting 

I 0 ( ̂  s ) = 

1 

2 

√ 

ε 1 
μ0 

⎡ 

⎢ ⎣ 

E 0 θE 
 0 θ
+ E 0 ϕ E 
 0 ϕ 

E 0 θE 
 0 θ
− E 0 ϕ E 
 0 ϕ 

−E 0 θE 
 0 ϕ − E 0 ϕ E 
 0 θ

j [ E 0 ϕ E 
 0 θ
− E 0 θE 
 0 ϕ ] 

⎤ 

⎥ ⎦ 

, (81)
we conclude that 

I ( ̂  q R ) = 

1 

π
R ( ̂  q R , ̂  s ) I 0 ( ̂  s ) cos θ0 , (82)

with R ( ̂  q R , ̂  s ) as in Eq. (73) . 

2. The Kirchhoff approach does not account for shadowing of the

incident light by the surface undulations. Attempts to include

corrections for shadowing have been made in the literature by

multiplying the reflection and transmission matrices by a shad-

owing function depending on the mean square surface slope

[21,22] . The usage of a shadowing function extends the valid-

ity of the Kirchhoff approach to larger angles of incidence. 

3. From Eqs. (50) and (67) we find that for a plane surface, the

reflection matrix, defined by 

I (r M 

, ̂  q R ) = 

1 

π
R ( ̂  q R , ̂  q ) I (r M 

, ̂  q ) cos θ, (83)

is 

R ( ̂  q R , ̂  q ) = 

π

cos θ
M (r ημ) , (84)

with r θθ = r ‖ , r ϕϕ = r ⊥ , and r θϕ = r ϕθ = 0 , while the transmis-

sion matrix, defined by 

I (r M 

, ̂  q T ) = 

1 

π
T ( ̂  q T , ̂  q ) I (r M 

, ̂  q ) cos θ (85)

is 

T ( ̂  q R , ̂  q ) = πm 

3 cos θT 
cos 2 θ

M (t ημ) , (86)

with t θθ = t ‖ , t ϕϕ = t ⊥ , and t θϕ = t ϕθ = 0 . 

4. Letting cos � = ̂

 q ·̂ q R = cos θ cos θR + sin θ sin θR cos (ϕ − ϕ R ) be

the cosine of the scattering angle, and defining 

cos β = 

cos θ − cos θR √ 

2(1 − cos �) 
, (87)

we obtain an equivalent representation for the reflection ma-

trix: 

R ( ̂  q R , ̂  q ) = 

1 

8 | cos θR | cos θ

1 

sin 

4 � cos 4 β s 2 

× exp 

(
−1 − cos 2 β

2 s 2 cos 2 β

)
M (r ημ) . (88)

Similarly, defining 

cos β = 

cos θ − m cos θT √ 

1 + m 

2 − 2m cos �
, (89)

with cos � = ̂

 q ·̂ q T , we obtain an equivalent representation for

the transmission matrix: 

T ( ̂  q T , ̂  q ) = 

m 

3 

2 cos θT cos θ

(m − cos �) 2 

sin 

4 �( cos θ − m cos θT ) 4 s 2 

× exp 

(
−1 − cos 2 β

2 s 2 cos 2 β

)
M (t ημ) . (90)

The relations (88) and (90) are practical formulas for comput-

ing the reflection and transmission matrices for a rough sur-

face and coincide with those of the phenomenological approach

(based on a facet model for the rough surface) described in

[18] . It should be pointed out that in [18] , the Fresnel reflection

and transmission coefficients are replaced by the corresponding

reflection and transmission matrices, which in turn, are multi-

plied by the rotation matrices corresponding to the transforma-

tion of the radiance vectors from the scattering to the meridian

planes. In our derivation, these transformations are already en-

capsulated in the matrices M (r ημ) and M (t ημ) . 
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5. In the scalar radiative transfer, the quantities of interest are the

first element of the specific intensity column vector (the spe-

cific intensity) and the (1,1) element of the reflection (trans-

mission) matrix. This simplification is widely used when the

medium is illuminated by unpolarized light and only the spe-

cific intensity of the multiply scattered light needs to be com-

puted. Using 

∑ 

η,μ= ϕ,θ

r 2 ημ = 

r 2 ‖ + r 2 ⊥ 
2 

sin 

4 �, (91) 

in Eq. (88) gives 

[ R ( ̂  q R , ̂  q )] 11 = 

1 

8 | cos θR | cos θ

1 

cos 4 β s 2 

× exp 

(
−1 − cos 2 β

2 s 2 cos 2 β

)
r 2 ‖ + r 2 ⊥ 

2 

, (92) 

while using 

∑ 

η,μ= ϕ,θ

t 2 ημ = 

t 2 ‖ + t 2 ⊥ 
2 

sin 

4 �, (93) 

in Eq. (90) yields 

[ T ( ̂  q R , ̂  q )] 11 = 

m 

3 

2 cos θT cos θ

(m − cos �) 2 

( cos θ − m cos θT ) 4 s 2 

× exp 

(
−1 − cos 2 β

2 s 2 cos 2 β

)
t 2 ‖ + t 2 ⊥ 

2 

. (94) 

Note that the relations (92) and (94) can be found in Ref. [18] . 

ppendix A 

The entries of the 4 × 4 matrix M (r ημ) , η, μ = ϕ, θ are given

y 

 M ] 11 = 

1 

2 

(| r θθ | 2 + | r θϕ | 2 + | r ϕθ | 2 + | r ϕϕ | 2 ) , (95) 

 M ] 12 = 

1 

2 

(| r θθ | 2 − | r θϕ | 2 + | r ϕθ | 2 − | r ϕϕ | 2 ) , (96) 

 M ] 13 = −Re (r θθ r 
 θϕ + r ϕϕ r 

 
ϕθ ) , (97) 

 M ] 14 = −Im (r θθ r 
 θϕ − r ϕϕ r 

 
ϕθ ) , (98) 

 M ] 21 = 

1 

2 

(| r θθ | 2 + | r θϕ | 2 − | r ϕθ | 2 − | r ϕϕ | 2 ) , (99) 

 M ] 22 = 

1 

2 

(| r θθ | 2 − | r θϕ | 2 − | r ϕθ | 2 + | r ϕϕ | 2 ) , (100) 

 M ] 23 = −Re (r θθ r 
 θϕ − r ϕϕ r 

 
ϕθ ) , (101) 

 M ] 24 = −Im (r θθ r 
 θϕ + r ϕϕ r 

 
ϕθ ) , (102) 

 M ] 31 = −Re (r θθ r 
 ϕθ + r ϕϕ r 

 
θϕ ) , (103) 

 M ] 32 = −Re (r θθ r 
 ϕθ − r ϕϕ r 

 
θϕ ) , (104) 
 M ] 33 = Re (r θθ r 
 ϕϕ + r θϕ r 

 
ϕθ ) , (105) 

 M ] 34 = Im (r θθ r 
 ϕϕ + r θϕ r 

 
ϕθ ) , (106) 

 M ] 41 = −Im (r ϕθ r 
 θθ + r ϕϕ r 

 
θϕ ) , (107) 

 M ] 42 = −Im (r ϕθ r 
 θθ − r ϕϕ r 

 
θϕ ) , (108) 

 M ] 43 = Im (r ϕϕ r 

 
θθ − r θϕ r 


 
ϕθ ) , (109) 

 M ] 44 = Re (r ϕϕ r 

 
θθ − r θϕ r 


 
ϕθ ) . (110) 

or practical applications, it is important to note that r ημ =
 ημ(θ, θR , ϕ − ϕ R ) , and so, that an azimuthal expansion of M (r ημ)

n terms of the relative azimuthal angle ϕ − ϕ R is appropriate. This

ecomes apparent from the explicit expressions of the quantities

hich enter in Eqs. (32) –(35) , namely 

cos θL 0 = 

√ 

1 − cos �

2 

, (111) 

̂ 

 ( ̂  q ) ·̂ q R = − sin θR sin (ϕ − ϕ R ) , (112) 

̂ ( ̂  q ) ·̂ q R = cos θ sin θR cos (ϕ − ϕ R ) − sin θ cos θR , (113) 

̂ 

 ( ̂  q R ) ·̂ q = sin θ sin (ϕ − ϕ R ) , (114) 

̂ ( ̂  q R ) ·̂ q = cos θR sin θ cos (ϕ − ϕ R ) − sin θR cos θ . (115) 

he matrix M (t ημ) has the same property. The scalars ̂  η( ̂  q ) ·̂ q T and
 ( ̂  q T ) ·̂ q are as in Eqs. (112) –(115) but with θT and ϕ T replacing θR 
nd ϕ R , respectively, while the cosine of the local incident angle

L 0 is given by 

os θL 0 = 

m cos � − 1 √ 

1 + m 

2 − 2m cos �
. (116) 
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