Grafische Benutzeroberfläche für das Versagenskriterium nach Cuntze im ebenen Spannungszustand

Wissenschaftlicher Bericht

Josef Koord
Institut für Faserverbundleichtbau und Adaptronik

DLR-IB-FA-BS-2018-117

Grafische Benutzeroberfläche für das Versagenskriterium nach Cuntze im ebenen Spannungszustand

Zugänglichkeit:

Stufe 2 DLR intern zugänglich: analog „allgemein zugänglich“, allerdings ist dieser in ELIB nur für intern zugänglich abzulegen.

Braunschweig, Juli, 2018

Abteilungsleiter:

Prof. Dr.-Ing. Christian Hühne

Der Bericht umfasst: 34 Seiten

Autoren:

Josef Koord

Deutsches Zentrum für Luft- und Raumfahrt

MH-FA-56-FB03_v1.3
<table>
<thead>
<tr>
<th>Dokumenteigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel</td>
</tr>
<tr>
<td>Betreff</td>
</tr>
<tr>
<td>Institut</td>
</tr>
<tr>
<td>Erstellt von</td>
</tr>
<tr>
<td>Beteiligte</td>
</tr>
<tr>
<td>Geprüft von</td>
</tr>
<tr>
<td>Freigabe von</td>
</tr>
<tr>
<td>Datum</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Dateipfad</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Dokumenteigenschaften

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

1. Einleitung

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

2. Das Cuntze Versagenskriterium

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

2.1. Invariantenschreibweise

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

2.2. Versagensarten nach Cuntze

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

2.3. Bestimmung der Cuntze Parameter

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

3. Implementierung des Cuntze Kriteriums in 2D

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

3.1. Das Cuntze Kriterium für den ebenen Spannungszustand

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

3.2. Bestimmung der Bruchkurven (2D)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

3.2.1. Bruchkurve \(\tau 21 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

3.2.2. Bruchkurve \(\tau 21 = f(\sigma 2) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

3.2.3. Bruchkurve \(\sigma 2 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

3.3. Bestimmung des Bruchkörpers (2D)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

3.4. Visualisierung des Belastungsvektors in den Bruchebenen

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

3.4.1. Projektion auf die Bruchkurve \(\tau 21 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

3.4.2. Projektion auf die Bruchkurve \(\tau 21 = f(\sigma 2) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

3.4.3. Projektion auf die Bruchkurve \(\sigma 2 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

3.5. Bestimmung der Materialanstrengungen und Reservefaktoren

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

3.5.1. Reservefaktor in der Bruchebene \(\tau 21 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

3.5.2. Anstrengung in der Bruchebene \(\tau 21 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

3.5.3. Reservefaktor in der Bruchebene \(\tau 21 = f(\sigma 2) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

3.5.4. Anstrengung in der Bruchebene \(\tau 21 = f(\sigma 2) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

3.5.5. Reservefaktor in der Bruchebene \(\sigma 2 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

3.5.6. Anstrengung in der Bruchebene \(\sigma 2 = f(\sigma 1) \)

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

4. Grafische Benutzeroberfläche

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

4.1. Materialdateneingabe

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
</tr>
</tbody>
</table>

4.2. Berechnung der Materialanstrengungen

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
</tr>
</tbody>
</table>

4.3. Darstellung der Bruchkurven

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
</tr>
</tbody>
</table>

4.4. Darstellung des Bruchkörpers

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

5. Zusammenfassung

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
</tr>
</tbody>
</table>

Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
</tbody>
</table>

Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
</tbody>
</table>

Literaturverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
</tbody>
</table>
1. Einleitung

Dieser Bericht beschreibt die Entwicklung einer grafischen Benutzeroberfläche (engl. Graphical User Interface, GUI) für das Versagenskriterium nach Cuntze.

2. Das Cuntze Versagenskriterium

Das Versagensverhalten orthotroper Faserverbundwerkstoffe unterscheidet sich grundlegend vom Verhalten isotroper Metalle. Aufgrund ihrer inhomogenen Struktur weisen Faserverbundwerkstoffe im Vergleich zu Metallen eine deutlich größere Abhängigkeit vom Fertigungsprozess auf, was zu größeren Streuungen in den Materialeigenschaften führt. Dies erschwert die Beschreibung der Versagensmechanismen im Material sowie die Vorhersage von Materialversagen [1].

Im Rahmen der World Wide Failure Exercise (WWFE) ist eine große Streuung in der Vorhersagefähigkeit etablierter und neuartiger Versagenskriterien deutlich geworden. Diese Erkenntnis zeigt die Notwendigkeit auf, mehrachsige Spannungszustände und Versagensmoden, und in der Folge die Interaktion unterschiedlicher Versagensmoden akkurat beschreiben zu können. Dazu ist es erforderlich, die auf mikromechanischer Ebene aktiven Phänomene zu erfassen [1].

Eine weitere Erkenntnis aus den WWFE-I und –II (I: 2D Versagen, II: 3D Versagen) ist die Feststellung der außerordentlich guten Vorhersagegenauigkeit des Cuntze Versagenskriteriums (Cuntze Failure Mode Concept) [1,3-4]. Das Cuntze Kriterium ist ein phänomenologisches, invarianten-basiertes Versagenskriterium, das für die Versagensvorhersage in isotropen, transversal-isotropen sowie rhombisch-isotropen Materialien verwendet werden kann. Dabei stellt dieses Kriterium eine globale Formulierung zur Verfügung, die aus unabhängigen Versagensmoden zusammengesetzt ist, ohne die Schwächen globaler Versagenskriterien aufzuweisen, die zum Teil unabhängige Versagensmodi mathematisch kombinieren (Maximum-Strain, Maximum-Stress, Tsai-Hill, Tsai-Wu) [2].

2.1. Invariantenschreibweise

Es gibt eine Reihe unterschiedlicher Spannungsgrößen, die für die Vorhersage von Festigkeitsversagen herangezogen werden können. Für isotrope Materialien sind es die Größen des Spannungstensors im jeweils zugrundeliegenden Koordinatensystem, die Hauptspannungen in den Hauptachsrichtungen oder die Mohr’schen Spannungen. Für transversal-isotope Laminate werden für die Versagensvorhersage nach Cuntze die Spannungen im Laminatkoordinatensystem genutzt, siehe dazu Abbildung 2-1.

\[
\begin{align*}
I_1 &= \sigma_1 \\
I_2 &= \sigma_2 + \sigma_3 \\
I_3 &= \tau_{21}^2 + \tau_{31}^2 \\
I_4 &= (\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2 \\
I_5 &= (\sigma_2 - \sigma_3)(\tau_{31}^2 - \tau_{21}^2) - 4\tau_{23}\tau_{31}\tau_{21}
\end{align*}
\]

2.2. Versagensarten nach Cuntze

Jeder Versagensmode ist mathematisch beschrieben durch die Invarianten des transversal-isotropen Materials, die dem jeweiligen Mode zugrundeliegender Materialfestigkeit sowie den internen Reibparametern, die die physikalischen Phänomene im Material erfassen. Die Indizes \perp und \parallel stehen für fasersenkrechte bzw. faserparallele Eigenschaften, während c und t Druck- bzw. Zugbelastung beschreiben. Das Cuntze Kriterium mit den modeweisen Materialanstrengungen Eff^mode für einen dreidimensionalen Spannungs-stand lautet wie folgt:

FF1: $Eff^{\parallel\sigma} = \frac{\sigma_{eq}^{\parallel\sigma}}{R^{t_{\parallel}}} \quad \text{mit} \quad \sigma_{eq}^{\parallel\sigma} = E^{t_{\parallel}}$,

FF2: $Eff^{\parallel\tau} = \frac{\sigma_{eq}^{\parallel\tau}}{R^{c_{\parallel}}} \quad \text{mit} \quad \sigma_{eq}^{\parallel\tau} = E^{c_{\parallel}}$,

IFF1: $Eff^{\perp\sigma} = \frac{\sigma_{eq}^{\perp\sigma}}{R^{i_{\perp}}} \quad \text{mit} \quad \sigma_{eq}^{\perp\sigma} = [\sigma_2 + \sigma_3 + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]$,

IFF2: $Eff^{\perp\tau} = \frac{\sigma_{eq}^{\perp\tau}}{R^{c_{\perp}}} \quad \text{mit} \quad \sigma_{eq}^{\perp\tau} = [b_{\perp} \cdot \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2} + (b_{\perp} - 1) (\sigma_2 + \sigma_3)]$,

IFF3: $Eff^{\perp\parallel} = \frac{\sigma_{eq}^{\perp\parallel}}{R^{i_{\parallel}}} \quad \text{mit} \quad \sigma_{eq}^{\perp\parallel} = \left(\frac{b_{\perp}^2 \tau_{23}^2 + 4 R_{i_{\parallel}}^2 (\tau_{21}^2 + \tau_{31}^2) + b_{\perp} \tau_{23}^2}{2 R_{i_{\parallel}}^2}\right)^{0.5}$,
und $I_{23-5} = 2\sigma_2\tau_{21}^2 + 2\sigma_3\tau_{31}^2 + 4\tau_{23}\tau_{31}\tau_{21}$. Die Indizes σ und τ kennzeichnen die treibende Größe in den äquivalenten Spannungen, die zu den Versagensarten Normal- und Schubbruch gehören. In den Faserbruchmoden erfolgt die Bestimmung der äquivalenten Spannung mit Hilfe der FIlamentspannung. Auf diese Weise wird berücksichtigt, dass Faserbrüche oftmals bereits vor Erreichen der Auslegungslasten des homogenisierten Materials auftreten. So können Faserbrüche auch ohne eine äußere Last in Faserrichtung auftreten, wenn nämlich eine biaxiale Druckbelastung in Kombination mit dem Poisseneffekt vorliegt [2].

Die verschiedenen Versagensmoden lassen sich zu einem globalen Kriterium für Versagen im Laminat zusammenfassen. Die Interaktion der Materialanstrengungen zur Gesamtanstrengung Eff wird mit dem Interaktionsexponenten m beschrieben. Diese Größe sollte experimentell bestimmt werden. Mit Hilfe des Interaktionsexponenten ist es möglich, die Schädigung aus jedem aktiven Mode in angemessener Höhe zu berücksichtigen. Die globale Materialanstrengung Eff ergibt sich in der Folge zu:

$$Eff^m = \sum_{i=1}^{5} Eff^{mode} = \left(\frac{\sigma_{eq}^\parallel}{R_\parallel}\right)^m + \left(\frac{\sigma_{eq}^\parallel}{R_\parallel}\right)^m + \left(\frac{\sigma_{eq}^\parallel}{R_\parallel}\right)^m + \left(\frac{\sigma_{eq}^\parallel}{R_\parallel}\right)^m + \left(\frac{\sigma_{eq}^\parallel}{R_\parallel}\right)^m$$

Bei der Betrachtung von Faserverbundlaminaten ist oftmals nur der zweidimensionale Lastfall von Interesse, da in den meisten Fällen der ebene Spannungszustand vorausgesetzt werden kann. Mit dieser Vereinfachung entfallen alle Termine mit Komponenten in Dickenrichtung, so dass sich das Cuntze Kriterium für den ebenen Spannungszustand wie folgt verkürzt beschreiben lässt [8]:

FF1: $Eff^\parallel\sigma^\parallel = \frac{\sigma_{eq}^\parallel}{R_\parallel} = \frac{\sigma_1}{R(1,t)}$, für $\sigma_1 \geq 0$

FF2: $Eff^\parallel\tau^\parallel = \frac{\sigma_{eq}^\parallel}{R_\parallel} = \frac{\sigma_1}{R(1,c)}$, für $\sigma_1 < 0$

IFF1: $Eff^\perp\sigma^\parallel = \frac{\sigma_{eq}^\parallel}{R_\parallel} = \frac{\sigma_2}{R(2,t)}$, für $\sigma_2 \geq 0$

IFF2: $Eff^\perp\tau^\parallel = \frac{\sigma_{eq}^\parallel}{R_\parallel} = \frac{\sigma_2}{R(2,c)}$, für $\sigma_2 < 0$

IFF3: $Eff^\perp\parallel = \frac{\sigma_{eq}^\parallel}{R_\parallel} = \frac{\tau_{21}}{R(2,1) - \mu_{21} \cdot \sigma_2}$

Die Interaktion zur Bestimmung der globalen Materialanstrengung (Gesamtmaterialanstrengung) Eff erfolgt analog zur Betrachtung im dreidimensionalen Fall.
2.3. Bestimmung der Cuntze Parameter

Für transversal-isotrope Materialien erfordert die Anwendung des Cuntze Versagenskriteriums fünf Materialfestigkeiten, die durch statische Versuche zu bestimmen sind. Dabei handelt es sich um Zug- sowie Druckfestigkeiten parallel und quer zur Faserrichtung einer UD-Lage, sowie die Scherfestigkeit des Laminats. Zur Bestimmung dieser Größen ist ein homogener, möglichst nur aus der zu untersuchenden Spannung bestehender Belastungszustand anzustreben [1,7].

Zur Bestimmung der Zugfestigkeiten kann das Verfahren in der EN ISO 527-5 herangezogen werden. Eigenschaften in Faserrichtung können unter Anwendung der DIN EN 2561 und quer zur Faserrichtung anhand DIN EN 2597 bestimmt werden. Da im Rahmen dieser Versuche lediglich ein Versagen in gewissem Abstand von der Lasteinleitung sicherzustellen ist und beispielsweise seitliches Ausweichen der Probe nicht berücksichtigt werden muss, ist die Durchführung der Festigkeitsbestimmung relativ einfach [7].

Mit der DIN ESO 14126 ist die Bestimmung der Druckeigenschaften parallel sowie senkrecht zur Faserrichtung eines UD-Laminats möglich. Alternativ bietet die DIN EN 2850 eine Methode zur Ermittlung der faserparallelen Eigenschaften. Bei der Bestimmung der Druckeigenschaften ist besonderes Augenmerk auf die Stabilität des Probekörpers zu legen. Strenggenommen stellt die Bestimmung des Druckkennwerts einen Mikrostabilitätskennwert dar, da Versagen auf mikromechanischer Ebene durch ein seitliches Ausweichen der Fasern mit resultierendem Materialversagen eintritt. Werden jedoch homogenisierte Lagenfestigkeiten betrachtet, kann der so ermittelte Kennwert als Grenze der Festigkeit verwendet werden [7].

Für die Bestimmung der Schubfestigkeit wird aufgrund seines einfachen Aufbaus häufig auf den ±45°-Zugversuch nach DIN EN 6031 oder DIN EN ISO 14129 zurückgegriffen. Weitere Methoden zur Bestimmung der Schubfestigkeit sind der nicht genormte 10°-off-axis-Zugversuch, der Isogepcu-Schubversuch sowie die Abscherversuche Double-Notch nach ASTM D3846 oder der Rail-Shear nach ASTM D4255 [7].

Zur Bestimmung der Cuntze Parameter $\mu_{\perp \parallel}$ und $\mu_{\perp \perp}$ kann der ARCAN Versuchsaufbau herangezogen werden. Ein einachsiger Versuchsaufbau ermöglicht die Bestimmung des Cuntze Reibparameters $\mu_{\perp \parallel}$ aus dem Bruchwinkel im Versuch. Der bi-axiale ARCAN-Aufbau kann dazu genutzt werden, Spannungszustände in den Moden IFF2 und IFF3 zu erzeugen, um die Reibparameter $\mu_{\perp \parallel}$ und $\mu_{\perp \perp}$ aus dem vorliegenden Spannungszustand zu ermitteln [1,7].

Der Interaktionsexponent m kann durch Versuche in einem Zwei-Mode-Bereich durch Curve-Fitting abgeschätzt werden. Die Erfahrung zeigt, dass Werte zwischen 2.5 und 3 eine hohe Vorhersagegenauigkeit versprechen. Dabei führt ein kleinerer Wert für m aufgrund der kleineren Versagensspannungen zu konservativen Ergebnissen [1].

3. Implementierung des Cuntze Kriteriums in 2D

3.1. Das Cuntze Kriterium für den ebenen Spannungszustand

In Abschnitt 2.2 wurden die Grundgleichungen des Cuntze Versagenskriteriums für den ebenen Spannungszustand in 2D und für ein Kontinuum in 3D eingeführt. Die GUI ist auf den Fall des ebenen Spannungszustandes beschränkt, so dass im Folgenden nur der 2D Fall betrachtet wird. In Tabelle 3-1) werden die Parameter, wie sie im Code verwendet werden, aufgelistet und erläutert, um eine einheitliche Notation zu gewährleisten.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1)</td>
<td>(N/mm^2)</td>
<td>Längsspannung</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>(N/mm^2)</td>
<td>Querspannung</td>
</tr>
<tr>
<td>(\tau_{21})</td>
<td>(N/mm^2)</td>
<td>Schubspannung</td>
</tr>
<tr>
<td>(R(1,t))</td>
<td>(N/mm^2)</td>
<td>Längszugfestigkeit (X_T)</td>
</tr>
<tr>
<td>(R(1,c))</td>
<td>(N/mm^2)</td>
<td>Längsdruckfestigkeit (X_C)</td>
</tr>
<tr>
<td>(R(2,t))</td>
<td>(N/mm^2)</td>
<td>Querzugfestigkeit (Y_T)</td>
</tr>
<tr>
<td>(R(2,c))</td>
<td>(N/mm^2)</td>
<td>Querdruckfestigkeit (Y_C)</td>
</tr>
<tr>
<td>(R(2,1))</td>
<td>(N/mm^2)</td>
<td>Scherfestigkeit (S)</td>
</tr>
<tr>
<td>(m)</td>
<td>–</td>
<td>Interaktionsexponent</td>
</tr>
<tr>
<td>(\mu_{21})</td>
<td>–</td>
<td>Reibparameter</td>
</tr>
<tr>
<td>(Eff(i))</td>
<td>(N/mm^2)</td>
<td>Materialanstrengung in Mode (i) (i \in { FF1, FF2, IFF1, IFF2, IFF3 })</td>
</tr>
<tr>
<td>(RF)</td>
<td>–</td>
<td>Reservefaktor</td>
</tr>
</tbody>
</table>

Die Versagensbedingungen des Cuntze Kriteriums ergeben sich für die neue Notation zu:

\[
E_{ff}(FF1) = \frac{\sigma_1}{R(1,t)}, \quad \text{für} \ \sigma_1 \geq 0
\]
Für die globale Materialanstrengung \(E_{ff}(ges) \) (Gesamtmaterialanstrengung) folgt mit dem Interaktionsexponenten \(m \):

\[
E_{ff}(ges)^m = E_{ff}(FF1)^m + E_{ff}(FF2)^m + E_{ff}(IFF1)^m + E_{ff}(IFF2)^m + E_{ff}(IFF3)^m
\]

\[
E_{ff}(ges) = \left[E_{ff}(FF1)^m + E_{ff}(FF2)^m + E_{ff}(IFF1)^m + E_{ff}(IFF2)^m + E_{ff}(IFF3)^m \right]^{\frac{1}{m}}
\]

3.2. Bestimmung der Bruchkurven (2D)

Im zweidimensionalen Fall können drei Bruchebenen betrachtet werden. Dabei werden jeweils zwei Spannungen unter Vernachlässigung der dritten Spannungsgröße gegeneinander in ein Diagramm aufgetragen. Die Bruchkurven zu den drei Bruchebenen \(\tau_{21} = f(\sigma_1) \), \(\tau_{21} = f(\sigma_2) \) und \(\sigma_2 = f(\sigma_1) \) werden im Folgenden hergeleitet, damit die Formeln später für die Visualisierung der Kurven in der GUI herangezogen werden können.

3.2.1. Bruchkurve \(\tau_{21} = f(\sigma_1) \)

In der Bruchebene \(\tau_{21} = f(\sigma_1) \) wird die Schubspannung \(\tau_{21} \) über der Längsspannung \(\sigma_1 \) aufgetragen. Um die Abhängigkeit dieser Größen mathematisch formulieren zu können, werden für den Zug- und Druckfall zwei Versagensbedingungen aufgestellt:

\[
E_{ff}(FF1) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_1 \geq 0
\]

\[
E_{ff}(FF2) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_1 < 0
\]

Durch Umformen erhält man die Abhängigkeit \(\tau_{21} = f(\sigma_1) \) für den Zug- und Druckfall:
\[\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 \geq 0 \]

\[\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 < 0 \]

Da in dieser Bruchebene jedoch lediglich die Abhängigkeit zwischen Schub- und Längsspannung betrachtet werden soll, wird die Komponente der Querspannung vernachlässigt \((\sigma_2 = 0)\). Die mathematische Beschreibung für die Bruchkurve in der Ebene \(\tau_{21} = f(\sigma_1)\) vereinfacht sich somit zu:

\[\tau_{21} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 \geq 0 \]

\[\tau_{21} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 < 0 \]

Dabei sind die Gleichungen für das Intervall \([R(1,c), R(1,t)]\) gültig. In Abbildung 3-1 ist die Bruchkurve für das Material T700/M21 aus Tabelle 3-2 in der Ebene \(\tau_{21} = f(\sigma_1)\) dargestellt.

Abbildung 3-1 Bruchkurve für T700/M21 in der Bruchebene \(\tau_{21} = f(\sigma_1)\)
Tabelle 3-2 Materialdaten für T700/M21 [4]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(1, t)$</td>
<td>N/mm²</td>
<td>2232,3</td>
</tr>
<tr>
<td>$R(1, c)$</td>
<td>N/mm²</td>
<td>-1327</td>
</tr>
<tr>
<td>$R(2, t)$</td>
<td>N/mm²</td>
<td>71</td>
</tr>
<tr>
<td>$R(2, c)$</td>
<td>N/mm²</td>
<td>-201,6</td>
</tr>
<tr>
<td>$R(2,1)$</td>
<td>N/mm²</td>
<td>155,2</td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>3,1</td>
</tr>
<tr>
<td>μ_{21}</td>
<td>-</td>
<td>0,125</td>
</tr>
</tbody>
</table>

3.2.2. Bruchkurve $\tau_{21} = f(\sigma_2)$

Für die Bruchebene $\tau_{21} = f(\sigma_2)$ werden die Versagensmoden IFF1, IFF2 und IFF3 für die Formulierung der Bruchkurve verwendet. Dabei lautet die Versagensbedingung für diese Ebene:

$$E_{ff}(IFF1) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_2 \geq 0$$

$$E_{ff}(IFF2) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_2 < 0$$

Durch Einsetzen und Auflösen nach der Schubspannung erhält man die mathematischen Formulierungen für die Bruchkurve in der Ebene $\tau_{21} = f(\sigma_2)$. Die Gleichungen unterscheiden auch hier zwischen Zug- und Druckbelastung in Querrichtung und sind für das Intervall $[R(2, c), R(2, t)]$ gültig.

$$\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_2}{R(2, t)}\right)^m\right)^\frac{1}{m}, \quad \text{für } \sigma_2 \geq 0$$

$$\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_2}{R(2, c)}\right)^m\right)^\frac{1}{m}, \quad \text{für } \sigma_2 < 0$$

In Abbildung 3-2 ist die Bruchkurve für das Material T700/M21 aus Tabelle 3-2 in der Ebene $\tau_{21} = f(\sigma_2)$ dargestellt.
3.2.3. **Bruchkurve \(\sigma_2 = f(\sigma_1) \)**

Die Bestimmung der Bruchkurve für die Bruchebene \(\sigma_2 = f(\sigma_1) \) erfolgt mit den Versagensmoden FF1, FF2, IFF1 und IFF2. Aufgrund der Fallunterscheidung zwischen Zug- und Druckspannungen in Längs- sowie in Querrichtung, beschreiben insgesamt vier Versagensbedingungen die Bruchkurve:

\[
E_{ff}(FF1) + E_{ff}(IFF1) = 1, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 \geq 0
\]

\[
E_{ff}(FF2) + E_{ff}(IFF1) = 1, \quad \text{für } \sigma_1 < 0 \text{ und } \sigma_2 \geq 0
\]

\[
E_{ff}(FF1) + E_{ff}(IFF2) = 1, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 < 0
\]

\[
E_{ff}(FF2) + E_{ff}(IFF2) = 1, \quad \text{für } \sigma_1 < 0 \text{ und } \sigma_2 < 0
\]

Die mathematische Formulierung der Bruchkurve ist für das Intervall \([R(1,c), R(1,t)]\) gültig und ergibt sich durch Einsetzen und Auflösen der vier Versagensbedingungen:

\[
\sigma_2 = R(2,t) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)}\right)^m\right)^{\frac{1}{m}}, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 \geq 0
\]

\[
\sigma_2 = R(2,c) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)}\right)^m\right)^{\frac{1}{m}}, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 < 0
\]
\[\sigma_2 = R(2, t) \cdot \left(1 - \left(\frac{\sigma_1}{R(1, c)}\right)^m\right)^{\frac{1}{m}}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 \geq 0 \]

\[\sigma_2 = R(2, c) \cdot \left(1 - \left(\frac{\sigma_1}{R(1, c)}\right)^m\right)^{\frac{1}{m}}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 < 0 \]

In Abbildung 3-3 ist die Bruchkurve für das Material T700/M21 aus Tabelle 3-2 in der Ebene \(\sigma_2 = f(\sigma_1) \) dargestellt.

Abbildung 3-3 Bruchkurve für T700/M21 in der Bruchebene \(\sigma_2 = f(\sigma_1) \)

3.3. Bestimmung des Bruchkörpers (2D)

Der Bruchkörper zum Cuntze Kriterium für den ebenen Spannungszustand entsteht durch die Interaktion aller Spannungsgrößen. Der zweidimensionale Spannungszustand kann dabei durch ein dreidimensionales Diagramm visualisiert werden. Die Bruchebenen aus Abschnitt 3.2 finden sich im dreidimensionalen Bruchkörper wieder. Die Ebene, die durch die Achsen \(\tau_{21} \) und \(\sigma_1 \) aufgespannt wird, ergibt unter der Randbedingung \(\sigma_2 = 0 \) die Bruchebene \(\tau_{21} = f(\sigma_1) \) aus dem vorangegangenen Abschnitt. Dasselbe gilt für die Ebenen \(\tau_{21} - \sigma_2 \) und \(\sigma_2 - \sigma_1 \), die mit den Randbedingungen \(\sigma_1 = 0 \) bzw. \(\tau_{21} = 0 \), die Bruchflächen \(\tau_{21} = f(\sigma_2) \) und \(\sigma_2 = f(\sigma_1) \) beschreiben.
Um die Interaktion der Spannungen korrekt einfangen zu können, erfolgt die Bestimmung der Punkte auf der Oberfläche des Bruchkörpers in zwei Stufen. Der Bruchkörper wird auf der Ebene \(\sigma_1 - \sigma_2 \) aufgespannt und ist daher im Intervall \(\sigma_1 = [R(1,c), R(1,t)] \) und \(\sigma_2 = [R(2,c), R(2,t)] \) gültig. Die mathematische Beschreibung des Bruchkörpers erfolgt mit dem folgenden funktionalen Zusammenhang:

\[
\tau_{21} = f(\sigma_1, \sigma_2, \tau_{21}(\sigma_1))
\]

Bei der Beschreibung des Bruchkörpers wird zwischen Zug- und Druckbelastung in Längs- und Querrichtung unterschieden. Des Weiteren wird die Interaktion der Versagensmoden und die daraus resultierende Festigkeitsreduzierung mit Hilfe der Variablen \(\tau_{21,\text{var}} \) und \(\sigma_{2,\text{var}} \) berücksichtigt. Dabei resultiert \(\tau_{21,\text{var}} \) durch die Bedingung

\[
E_{ff}(FF1) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_1 \geq 0, \text{ bzw.}
\]

\[
E_{ff}(FF2) + E_{ff}(IFF3) = 1, \quad \text{für } \sigma_1 < 0
\]

und beschreibt die Reduzierung der Scherfestigkeit \(R(2,1) \). Somit ist der Einfluss der Versagensmoden FF1 und FF2 auf IFF3 erfasst. Der Einfluss der Längsspannung \(\sigma_1 \) auf die Querfestigkeit und somit der Einfluss der Moden FF1 und FF2 auf IFF1 und IFF2 werden mit Hilfe der Variable \(\sigma_{2,\text{var}} \) berücksichtigt. Es ergeben sich vier Bedingungen

\[
E_{ff}(FF1) + E_{ff}(IFF1) = 1, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 \geq 0,
\]

\[
E_{ff}(FF2) + E_{ff}(IFF1) = 1, \quad \text{für } \sigma_1 < 0 \text{ und } \sigma_2 \geq 0,
\]

\[
E_{ff}(FF1) + E_{ff}(IFF2) = 1, \quad \text{für } \sigma_1 \geq 0 \text{ und } \sigma_2 < 0,
\]

\[
E_{ff}(FF2) + E_{ff}(IFF2) = 1, \quad \text{für } \sigma_1 < 0 \text{ und } \sigma_2 < 0,
\]

die genutzt werden, um den Einfluss auf die Querzug- bzw. Querdruckfestigkeit zu ermitteln. Die so abhängig vom Lastfall ermittelten Hilfsgrößen \(\tau_{21,\text{var}} \) und \(\sigma_{2,\text{var}} \) ersetzen die Festigkeiten \(R(2,1) \) und \(R(2,c) \) bzw. \(R(2,t) \). Der dreidimensionale Bruchkörper für das Cuntze Kriterium im ebenen Spannungszustand setzt sich aus den folgenden vier Elementen der Schubspannung zusammen. Dabei werden im ersten Schritt die Hilfsgrößen \(\tau_{21,\text{var}} \) und \(\sigma_{2,\text{var}} \) bestimmt und diese in einem zweiten Schritt in die Gleichung zur Bestimmung der Schubspannung eingesetzt.

Für \(\sigma_1 \geq 0 \) und \(\sigma_2 \geq 0 \) gilt für die Bruchkurve

\[
\tau_{21} = (\tau_{21,\text{var}} - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_2}{\sigma_{2,\text{var}}} \right) \right)^{\frac{1}{n}}
\]
mit
\[\tau_{21,\text{var}} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)} \right)^m \right)^\frac{1}{m} \]

und
\[\sigma_{2,\text{var}} = R(2,t) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)} \right)^m \right)^\frac{1}{m}. \]

Für \(\sigma_1 \geq 0 \) und \(\sigma_2 < 0 \) gilt für die Bruchkurve
\[\tau_{21} = \left(\tau_{21,\text{var}} - \mu_{21} \cdot \sigma_2 \right) \cdot \left(1 - \left(\frac{\sigma_2}{\sigma_{2,\text{var}}} \right)^m \right)^\frac{1}{m} \]
mit
\[\tau_{21,\text{var}} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)} \right)^m \right)^\frac{1}{m} \]
und
\[\sigma_{2,\text{var}} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)} \right)^m \right)^\frac{1}{m}. \]

Für \(\sigma_1 < 0 \) und \(\sigma_2 \geq 0 \) gilt für die Bruchkurve
\[\tau_{21} = \left(\tau_{21,\text{var}} - \mu_{21} \cdot \sigma_2 \right) \cdot \left(1 - \left(\frac{\sigma_2}{\sigma_{2,\text{var}}} \right)^m \right)^\frac{1}{m} \]
mit
\[\tau_{21,\text{var}} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)} \right)^m \right)^\frac{1}{m} \]
und
\[\sigma_{2,\text{var}} = R(2,t) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)} \right)^m \right)^\frac{1}{m}. \]

Für \(\sigma_1 < 0 \) und \(\sigma_2 < 0 \) gilt für die Bruchkurve
\[\tau_{21} = \left(\tau_{21,\text{var}} - \mu_{21} \cdot \sigma_2 \right) \cdot \left(1 - \left(\frac{\sigma_2}{\sigma_{2,\text{var}}} \right)^m \right)^\frac{1}{m} \]
mit
\[\tau_{21,\text{var}} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)} \right)^m \right)^\frac{1}{m} \]
und
\[\sigma_{2,\text{var}} = R(2,c) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)} \right)^m \right)^\frac{1}{m}. \]
Die Darstellung des Bruchkörpers für das Material T700/M21 erfolgt in Abbildung 3-4.

Abbildung 3-4 Bruchkörper für das Material T700/M21

3.4. Visualisierung des Belastungsvektors in den Bruchebenen

Eine der Anforderungen an die grafische Benutzeroberfläche ist die Möglichkeit zur Visualisierung eines Belastungsvektors bei der Überprüfung nutzerdefinierter Lastfälle in den Bruchebenen $\tau_{21} = f(\sigma_1)$, $\tau_{21} = f(\sigma_2)$ und $\sigma_2 = f(\sigma_1)$. Die Nutzereingabe $(\sigma_1, \sigma_2, \tau_{21})$ wird dabei durch einen Vektor in der Darstellung der entsprechenden Bruchebene dargestellt. Weiterhin erfolgt eine Projektion des Vektors auf die Bruchkurve, wie in Abbildung 3-5 zu sehen ist. Der auf diese Weise ermittelte Punkt auf der Bruchkurve kann in der Folge für die Bestimmung der Materialanstrengung sowie des Reservefaktors herangezogen werden.
3.4.1. **Projektion auf die Bruchkurve \(\tau_{21} = f(\sigma_1) \)**

Die Projektion des Belastungsvektors auf die Bruchkurve erfordert die Kenntnis des Schnittpunkts der Verlängerung des Belastungsvektors mit der Bruchkurve. Dieser Schnittpunkt wird für die Bruchkurve \(\tau_{21} = f(\sigma_1) \) analytisch bestimmt. Dazu wird die Steigung des Belastungsvektors in Abbildung 3-5 herangezogen, um eine Gerade in der Form \(mx + b \) für \(\sigma_1 \geq 0 \) (bzw. \(-mx + b \) für \(\sigma_1 < 0 \)) durch den Belastungsektor zu legen, wobei die Konstante \(b \) stets den Wert 0 hat. Die Steigung \(m \) lässt sich für diesen Fall stets mit den Größen des Belastungsvektors bestimmen:

\[
m = \frac{\tau_{21}^{BV}}{\sigma_1^{BV}}.
\]

Gleichzeitig wird die Bruchkurve durch

\[
\tau_{21} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,t)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 \geq 0
\]

bzw.

\[
\tau_{21} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_1}{R(1,c)}\right)^{\frac{1}{m}}\right), \quad \text{für } \sigma_1 < 0
\]

beschrieben. Durch Gleichsetzen der Geradengleichung mit der Beschreibung der Bruchkurve und Auflösen nach der \(\sigma_1 \)-Komponente kann der Schnittpunkt auf der Bruchkurve \(\sigma_{1,BK} \) analytisch bestimmt werden:
\[\sigma_{1,BK} = \frac{R(2,1)}{\left(\frac{R(2,1)}{R(1,t)} \right)^m + \left(\frac{\tau_{21}}{\alpha_1} \right)^m} \cdot \frac{1}{m}, \quad \text{für } \sigma_{1,BV} \geq 0 \]

\[\sigma_{1,BK} = \frac{R(2,1)}{-\left(\frac{R(2,1)}{R(1,t)} \right)^m + \left(-\frac{\tau_{21}}{\alpha_1} \right)^m} \cdot \frac{1}{m}, \quad \text{für } \sigma_{1,BV} < 0 \]

Mit der \(\sigma_1 \)-Komponente des Schnittpunkts \(\sigma_{1,BK} \) lässt sich die \(\tau_{21} \)-Komponente des Schnittpunkts wie folgt berechnen:

\[\tau_{21,BK} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_{1,BK}}{R(1,t)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_{1,BK} \geq 0 \]

\[\tau_{21,BK} = R(2,1) \cdot \left(1 - \left(\frac{\sigma_{1,BK}}{R(1,c)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_{1,BK} < 0 \]

Somit ergibt sich der Schnittpunkt auf der Bruchkurve - und damit der Endpunkt der Projektion - zu \(\sigma_{1,BK}, \tau_{21,BK} \). Der Anfangspunkt der Projektion ist durch den Endpunkt des Belastungsvektors vorgegeben.

3.4.2. Projektion auf die Bruchkurve \(\tau_{21} = f(\sigma_2) \)

Die Berechnung des projizierten Punkts auf der Bruchkurve für die Bruchebene \(\tau_{21} = f(\sigma_2) \) erfolgt geometrisch, da für diese Ebene keine eindeutige analytische Lösung vorliegt. Die Bruchkurve \(\tau_{21} = f(\sigma_2) \), beschrieben durch

\[\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_2}{R(2,t)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_2 \geq 0 \]

bzw.

\[\tau_{21} = (R(2,1) - \mu_{21} \cdot \sigma_2) \cdot \left(1 - \left(\frac{\sigma_2}{R(2,c)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_2 < 0, \]

wird im Intervall \([R(2,c), R(2,t)]\) mit der Schrittweite 0,0001 bestimmt. Gleichzeitig wird eine Gerade in der Form \(mx + b \) für \(\sigma_2 \geq 0 \) (bzw. \(-mx + b \) für \(\sigma_2 < 0 \)) und \(b = 0 \) mit einer Schrittweite von 0,0001 durch den Ursprung des Koordinatensystems gelegt. Die Steigung \(m \) lässt sich wie in Abschnitt mit Hilfe des Belastungsvektors bestimmen: \(m = \tau_{21}^{BV}/\sigma_{2,BV}^{BV} \). Als Schnittpunkt \((\sigma_{1,BK}, \tau_{21,BK}) \) wird der Punkt im betrachteten Intervall festgelegt, an dem der Abstand zwischen den beiden Graphen minimiert ist.
Diese Art der Bestimmung des projizierten Punktes auf der Bruchkurve ist stets mit einem Fehler behaftet, der insbesondere in Kurvenabschnitten mit großer Steigung unter Umständen nicht vernachlässigbar ist. Die gewählte Schrittweite von 0,0001 soll auch bei großen Steigungen eine möglichst geringe Ungenauigkeit sicherstellen. Bei Bedarf kann die Schrittweite weiter reduziert werden, um die Genauigkeit zu erhöhen.

3.4.3. Projektion auf die Bruchkurve $\sigma_2 = f(\sigma_1)$

Die Projektion des Belastungsvektors auf die Bruchkurve $\sigma_2 = f(\sigma_1)$ erfolgt auf dieselbe Weise, wie in Abschnitt 3.4.1 bereits erläutert. Da in der vorliegenden Bruchebene sowohl die Kompomente der Abszisse σ_1 als auch die Komponenten der Ordinate σ_2 positive und negative Werte annehmen können, liegen insgesamt vier Formeln zur Bestimmung der σ_1-Komponente des Schnittpunkts auf der Bruchkurve vor:

\[
\sigma_{1,BK} = \frac{R(2,t)}{\left[\left(\frac{\sigma_{2,BV}}{\sigma_{1,BV}} \right)^m + (\frac{R(2,t)}{R(1,t)})^m \right]^{\frac{1}{m}}}, \quad \text{für } \sigma_{1,BV} \geq 0 \text{ und } \sigma_{2,BV} \geq 0
\]

\[
\sigma_{1,BK} = -\frac{R(2,c)}{\left[\left(\frac{-\sigma_{2,BV}}{\sigma_{1,BV}} \right)^m + (\frac{-R(2,c)}{R(1,c)})^m \right]^{\frac{1}{m}}}, \quad \text{für } \sigma_{1,BV} \geq 0 \text{ und } \sigma_{2,BV} < 0
\]

\[
\sigma_{1,BK} = -\frac{R(2,t)}{\left[\left(\frac{-\sigma_{2,BV}}{\sigma_{1,BV}} \right)^m + (\frac{-R(2,t)}{R(1,t)})^m \right]^{\frac{1}{m}}}, \quad \text{für } \sigma_{1,BV} < 0 \text{ und } \sigma_{2,BV} \geq 0
\]

\[
\sigma_{1,BK} = \frac{R(2,c)}{\left[\left(\frac{-\sigma_{2,BV}}{\sigma_{1,BV}} \right)^m + (\frac{-R(2,c)}{R(1,c)})^m \right]^{\frac{1}{m}}}, \quad \text{für } \sigma_{1,BV} < 0 \text{ und } \sigma_{2,BV} < 0
\]

Die σ_2-Komponente des Schnittpunkts auf der Bruchkurve erhält man durch Einsetzen von $\sigma_{1,BK}$ in eine der folgenden Gleichungen, abhängig vom Vorzeichen der Elemente des Belastungsvektors ($\sigma_{1,BV}^{BV}$, $\sigma_{2,BV}^{BV}$).

\[
\sigma_{2,BK} = R(2,t) \cdot \left(1 - \left(\frac{\sigma_{1,BK}}{R(1,t)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_{1,BV}^{BV} \geq 0 \text{ und } \sigma_{2,BV}^{BV} \geq 0
\]

\[
\sigma_{2,BK} = R(2,c) \cdot \left(1 - \left(\frac{\sigma_{1,BK}}{R(1,c)} \right)^m \right)^{\frac{1}{m}}, \quad \text{für } \sigma_{1,BV}^{BV} \geq 0 \text{ und } \sigma_{2,BV}^{BV} < 0
\]
\[\sigma_{2,\text{BK}} = R(2, t) \cdot \left(1 - \left(\frac{\sigma_{1,\text{BK}}}{R(1, c)} \right)^m \right)^{1/m}, \quad \text{für } \sigma_1^{BV} < 0 \text{ und } \sigma_2^{BV} \geq 0 \]

\[\sigma_{2,\text{BK}} = R(2, c) \cdot \left(1 - \left(\frac{\sigma_{1,\text{BK}}}{R(1, c)} \right)^m \right)^{1/m}, \quad \text{für } \sigma_1^{BV} < 0 \text{ und } \sigma_2^{BV} < 0 \]

3.5. Bestimmung der Materialanstrengungen und Reservefaktoren

An dieser Stelle werden die Reservefaktoren sowie die Faktoren zur Beschreibung der Materialanstrengung für die verschiedenen Bruchebenen eingeführt.

3.5.1. Reservefaktor in der Bruchebene \(\tau_{21} = f(\sigma_1) \)

Der Reservefaktor \(RF \) ist wie folgt definiert:

\[
RF = \frac{\sqrt{\sigma_{1,\text{BK}}^2 + \tau_{21,\text{BK}}^2}}{\sqrt{\sigma_1^2 + \tau_{21}^2}}
\]

Dabei beschreiben \(\sigma_1 \) und \(\tau_{21} \) den durch den Nutzer eingegebenen Lastfall, während \(\sigma_{1,\text{BK}} \) und \(\tau_{21,\text{BK}} \) die Projektion des Belastungsvektors auf die Bruchkurve darstellen. Anschaulich lässt sich der Reservefaktor als Quotient aus der Länge der Projektion \((0,0)(\sigma_1, \tau_{21})\) und des Belastungsvektors \((0,0)(\sigma_1, \tau_{21})\) beschreiben.

3.5.2. Anstrengung in der Bruchebene \(\tau_{21} = f(\sigma_1) \)

Die Anstrengung \(AF \) in der Bruchebene \(\tau_{21} = f(\sigma_1) \) setzt sich aus den Anstrengungen \(E_{\text{ff}}(\text{FF}1), E_{\text{ff}}(\text{FF}2) \) sowie \(E_{\text{ff}}(\text{IFF}3) \) zusammen:

\[
AF = \left[\left(\frac{\sigma_1}{R(1, t)} \right)^m + \left(\frac{\tau_{21}}{R(2,1) - \mu_{21} \cdot \sigma_2} \right)^{1/m} \right], \quad \text{für } \sigma_1 \geq 0
\]

\[
AF = \left[\left(\frac{\sigma_1}{R(1, c)} \right)^m + \left(\frac{\tau_{21}}{R(2,1) - \mu_{21} \cdot \sigma_2} \right)^{1/m} \right], \quad \text{für } \sigma_1 < 0
\]

3.5.3. Reservefaktor in der Bruchebene \(\tau_{21} = f(\sigma_2) \)

Der Reservefaktor \(RF \) ist wie folgt definiert:
3.5.4. Anstrengung in der Bruchebene $\tau_{21} = f(\sigma_2)$

Die Anstrengung AF in der Bruchebene $\tau_{21} = f(\sigma_2)$ setzt sich aus den Anstrengungen $E_{eff}(IFF1)$, $E_{ff}(IFF2)$ sowie $E_{ff}(IFF3)$ zusammen:

$$AF = \left[\left(\frac{\sigma_2}{R(2,t)} \right)^m + \left(\frac{\tau_{21}}{R(2,1) - \mu_{21} \cdot \sigma_2} \right)^{m/2} \right]^{1/m}, \text{ für } \sigma_2 \geq 0$$

$$AF = \left[\left(\frac{\sigma_2}{R(2,c)} \right)^m + \left(\frac{\tau_{21}}{R(2,1) - \mu_{21} \cdot \sigma_2} \right)^{m/2} \right]^{1/m}, \text{ für } \sigma_2 < 0$$

3.5.5. Reservefaktor in der Bruchebene $\sigma_2 = f(\sigma_1)$

Der Reservefaktor RF ist wie folgt definiert:

$$RF = \frac{\sigma_{2, BK}^2 + \tau_{21, BK}^2}{\sigma_2^2 + \tau_{21}^2}$$

3.5.6. Anstrengung in der Bruchebene $\sigma_2 = f(\sigma_1)$

Die Anstrengung AF in der Bruchebene $\sigma_2 = f(\sigma_1)$ setzt sich aus den Anstrengungen $E_{ff}(IFF1)$, $E_{ff}(IFF2)$ sowie $E_{ff}(IFF3)$ und $E_{ff}(IFF3)$ zusammen:

$$AF = \left[\left(\frac{\sigma_1}{R(1,t)} \right)^m + \left(\frac{\sigma_2}{R(2,t)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 \geq 0 \text{ und } \sigma_2 \geq 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,c)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 \geq 0 \text{ und } \sigma_2 < 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,t)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 \geq 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,c)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 < 0$$

Reservefaktor in der Bruchebene $\sigma_2 = f(\sigma_1)$

Der Reservefaktor RF ist wie folgt definiert:

$$RF = \frac{\sigma_{2, BK}^2 + \tau_{21, BK}^2}{\sigma_2^2 + \tau_{21}^2}$$

Anstrengung in der Bruchebene $\sigma_2 = f(\sigma_1)$

Die Anstrengung AF in der Bruchebene $\sigma_2 = f(\sigma_1)$ setzt sich aus den Anstrengungen $E_{ff}(IFF1)$, $E_{ff}(IFF2)$ sowie $E_{ff}(IFF3)$ und $E_{ff}(IFF3)$ zusammen:

$$AF = \left[\left(\frac{\sigma_1}{R(1,t)} \right)^m + \left(\frac{\sigma_2}{R(2,t)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 \geq 0 \text{ und } \sigma_2 \geq 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,c)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 \geq 0 \text{ und } \sigma_2 < 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,t)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 \geq 0$$

$$AF = \left[\left(\frac{\sigma_1}{R(1,c)} \right)^m + \left(\frac{\sigma_2}{R(2,c)} \right)^m \right]^{1/m}, \text{ für } \sigma_1 < 0 \text{ und } \sigma_2 < 0$$
4. Grafische Benutzeroberfläche

In Abbildung 4-1 ist die GUI für das Cuntze Kriterium im ebenen Spannungszustand (2D) dargestellt. Die Kopfzeile enthält den Titel, das DLR-Logo sowie die Information über die Version der vorliegenden GUI. Unterhalb der Kopfzeile sind drei Blöcke zu sehen: „Dateneingabe“, „Anstrengungen“ und „Versagensmodi nach Cuntze“. Wie die Namen vermuten lassen, erfolgt im ersten Block die Eingabe der Materialdaten. Im zweiten Block können Materialanstrengungen nach Cuntze bestimmt werden, während der dritte Block eine Übersicht der Versagensmodi nach Cuntze bereitstellt, um dem Nutzer die Interpretation der Informationen zu erleichtern. Zwischen dem Block „Versagensmodi nach Cuntze“ und der Kopfzeile ist ein Hilfe-Button zu sehen. Durch Anklicken des Buttons öffnet sich ein PDF-Dokument mit einer Dokumentation zur GUI. Die Dokumentation ist eine kompakte Sammlung der der GUI zugrundeliegenden Formeln und enthält eine Anleitung zur Bedienung der einzelnen Funktionalitäten der GUI. Die untere Hälfte der GUI ist der „Diagramme“-Bereich und in 4 Tabs unterteilt. Während die ersten drei Tabs die Bruchkurven in den Bruchebenen des 2D Spannungszustands enthalten, ist im vierten Tab der dreidimensionale Bruchkörper visualisiert. In den folgenden Anschnitten werden die Funktionalitäten des Tools vorgestellt und erläutert.
4.1. Materialdateneingabe

Tabelle 4-1 Materialdaten für M21/T700, BSL914C/T300 und 8551-7/IM7 aus [4]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>M21/T700</th>
<th>BSL914C/T300</th>
<th>8551-7/IM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(1, t)$</td>
<td>N/mm^2</td>
<td>2232.3</td>
<td>1500</td>
<td>2760</td>
</tr>
<tr>
<td>$R(1, c)$</td>
<td>N/mm^2</td>
<td>-1327</td>
<td>-900</td>
<td>-1620</td>
</tr>
<tr>
<td>$R(2, t)$</td>
<td>N/mm^2</td>
<td>71</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>$R(2, c)$</td>
<td>N/mm^2</td>
<td>-201.6</td>
<td>-200</td>
<td>-180.5</td>
</tr>
<tr>
<td>$R(2,1)$</td>
<td>N/mm^2</td>
<td>155.2</td>
<td>80</td>
<td>79.71</td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>3.1</td>
<td>3.0</td>
<td>0.125</td>
</tr>
<tr>
<td>μ_{21}</td>
<td>-</td>
<td>0.125</td>
<td>0.2</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Abbildung 4-2 Grafische Benutzeroberfläche – Dateneingabe
4.2. Berechnung der Materialanstrengungen

Die Bestimmung der Materialanstrengungen erfolgt wie in Abschnitt 3.1 beschrieben. Dazu ist ein Belastungszustand \((\sigma_1, \sigma_2, \tau_{21})\) zu definieren, der zur Berechnung der Materialanstrengungen herangezogen wird. Durch Betätigen des Buttons „Anstrengung berechnen“ werden die Anstrengungen für das unter „Dateneingabe“ definierte Material ermittelt. Dabei erfolgt die Ausgabe der Anstrengungen in den einzelnen Versagensmoden (FF1, FF2, IFF1, IFF2 und IFF3) sowie global als Gesamtmaterialanstrengung. Die Versagensarten sind in der Abbildung unter „Versagensmodi nach Cuntze“ dargestellt, so dass eine Interpretation der Anstrengungen für dem Cuntze Kriterium untervertrauten Nutzern erleichtert wird.

Abbildung 4-3 Grafische Benutzeroberfläche – Materialanstrengungen
4.3. Darstellung der Bruchkurven

In Abbildung 4-4 ist die Visualisierung der Bruchkurven in der GUI gezeigt. Für das unter ‘Daten-eingabe’ definierte Material werden die Bruchkurven in den Ebenen $\tau_{21} - \sigma_1$, $\tau_{21} - \sigma_2$ sowie $\sigma_2 - \sigma_1$ jeweils in den ersten drei Tabs unter 'Diagramme' dargestellt. Zur erstmaligen Bestimmung der Bruchkurven ist der Button 'Tool Aktualisieren' zu betätigen. Bei jeder Veränderung der Werte in der Dateneingabe ist ein wiederholtes Betätigen des 'Tool Aktualisieren' Buttons erforderlich, um die Darstellung der Bruchkurven an die neuen Materialdaten anzupassen. Die Bestimmung der Bruchkurven erfolgt anhand des in Abschnitt 3.2 beschriebenen Vorgehens.

Abbildung 4-4 Grafische Benutzeroberfläche – Bruchkurven

Die Visualisierung der Bruchkurven aus Abbildung 4-4 kann um die Darstellung experimenteller Versuchsdaten sowie um die Überprüfung einer Belastung in der jeweiligen Ebene erweitert wer-
den. Für die Darstellung von Datenpunkten im Diagramm der Bruchkurven ist in jedem Tab ein Eingabebereich unter „Versuchsdaten‘ vorhanden. In diese Eingabeboxen können die Werte für die Größen der Abszisse und Ordinate eingetragen werden. In Abbildung 4-5 ist zu sehen, dass insgesamt 15 Datenpunkte eingetragen werden können. Für die Bruchebene \(\tau_{21} - \sigma_1 \) setzen sich die Punkte aus \(\sigma_1 \)- und \(\tau_{21} \)-Komponenten zusammen. Die so eingegebenen Datenpunkte werden im Diagramm der Bruchkurve rot angezeigt.

Abbildung 4-5 Grafische Benutzeroberfläche – Erweiterung der Bruchkurven

Vektors auf die Bruchkurve als grüne Punktlinie angezeigt. Für die Belastung in der Ebene werden zudem die Anstrengung sowie der Reservefaktor berechnet und unterhalb des Eingabebereichs sichtbar gemacht. Die Bestimmung dieser Größen erfolgt nach den Ausführungen aus Abschnitt 3.5.

4.4. Darstellung des Bruchkörpers

Während die ersten drei Tabs unter ‘Diagramme’ die Bruchkurven des Cuntze Kriteriums zeigen, erfolgt im vierten Tab (Abbildung 4-6) die Darstellung des dreidimensionalen Bruchkörpers, der die Interaktion aller Spannungsgrößen im ebenen Spannungszustand beschreibt. In Abschnitt 3.3 ist das Vorgehen zur Visualisierung des Bruchkörpers beschrieben.

Abbildung 4-6 Grafische Benutzeroberfläche – Bruchkörper
5. Zusammenfassung

Abbildungsverzeichnis

Abbildung 2-1 Spannungen eines räumlichen Kontinuums bei transversaler Isotropie 7
Abbildung 2-2 Versagensmodi für transversal-isotropes, sprödes Material 8
Abbildung 3-1 Bruchkurve für T700/M21 in der Bruchebene $\sigma_{21} = f(\sigma_{1})$ 13
Abbildung 3-2 Bruchkurve für T700/M21 in der Bruchebene $\tau_{21} = f(\sigma_{1})$ 15
Abbildung 3-3 Bruchkurve für T700/M21 in der Bruchebene $\sigma_{2} = f(\sigma_{1})$ 16
Abbildung 3-4 Bruchkörper für das Material T700/M21 .. 19
Abbildung 3-5 Darstellung des Belastungsvektors ... 20
Abbildung 4-1 Grafische Benutzeroberfläche für das Cuntze Kriterium in 2D 26
Abbildung 4-2 Grafische Benutzeroberfläche – Dateneingabe ... 27
Abbildung 4-3 Grafische Benutzeroberfläche – Materialanstrengungen .. 28
Abbildung 4-4 Grafische Benutzeroberfläche – Bruchkurven .. 29
Abbildung 4-5 Grafische Benutzeroberfläche – Erweiterung der Bruchkurven 30
Abbildung 4-6 Grafische Benutzeroberfläche – Bruchkörper .. 31

Tabellenverzeichnis

Tabelle 3-1 Übersicht der erforderlichen Größen für das Cuntze Kriterium 11
Tabelle 3-2 Materialdaten für T700/M21 ... 14
Tabelle 4-1 Materialdaten für M21/T700, BSL914C/T300 und 8551-7/IM7 27

Literaturverzeichnis