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Introduction: The Venus Emissivity Mapper (VEM) 
is the first flight instrument specially designed to map 
the surface of Venus using the narrow atmospheric 
windows around 1 µm [1]. VEM is proposed for the 
European Space Agency’s M5/EnVision proposal in 
combination with a high-resolution radar mapper (see 
Abstract #1937). Mapping of Venus with VEx/VIRTIS 
using the 1.02 µm thermal emission band can be viewed 
as a proof-of-concept for an orbital remote sensing 
approach to surface composition and weathering studies 
for Venus [2-7].  

Thermal brightness on Venus' night side is mainly 
modulated by the lower clouds, imaged at 2.3 µm by the 
Akatsuki IR2 camera [8]. Thanks to the circular polar 
orbit geometry of M5/EnVision, VEM has the unique 
capability to (1) better constrain the microphysics of the 
lower cloud particles in three spectral bands at 1.195, 
1.310 and 1.510 µm at a spatial resolution of ~10 km, 
and (2) investigate short-timescale cloud dynamics and 
thus local wind speeds by tracking cloud features in 
both polar regions.  

Cloud parameters: Global cloud layers (~45 to 70 
km) drive the energy balance of the atmosphere and 
hence climate at the Venus' surface [9]. While much 
progress has been made since the early suggestion that 
the Venus clouds are H2O-H2SO4 liquid droplets [10], 
several cloud parameters are still poorly constrained, 
particularly in the lower cloud layer and optically thick-
er polar regions [11-13]. Observations at small horizon-
tal scales are of great importance to microphysical mod-
els of cloud and haze systems [14]. VEM has the capa-
bility to better constrain the microphysics (vertical, 
horizontal, time dependence of particle size distribution, 
or/and composition) of the lower cloud particles in three 
spectral bands at 1.195, 1.310 and 1.510 µm at a spatial 
resolution of ~10 km.  

Wind measurements: Venus displays the best-
known case of polar vortices evolving in a fast-rotating 
atmosphere. Few wind measurements exist in the polar 
region due to unfavorable viewing geometry of currently 
available observations. Cloud-tracking data indicate 
circumpolar circulation close to solid-body rotation. E-
W winds decrease to zero velocity close to the poles. N-
S circulation is marginal, with extremely variable mor-
phology and complex vorticity patterns [15-17] (Fig. 1). 

Circular polar orbit geometry would provide an unprec-
edented study of both polar regions within the same 
mission. VEM’s pushbroom method will allow short-
timescale cloud dynamics to be assessed, as well as local 
wind speeds, using repeated imagery at 90 minute inter-
vals. 

Tracking lower cloud motions as proxies for wind 
measurements at high spatial resolutions will greatly 
benefit modeling of the vortices' physics. Convective 
modeling demonstrates that there will be cloud-level 

convection at high latitudes, so repeated imagery at 90 
minute intervals will help constrain the time evolution of 
cloud-level convection as well as wave-generating dy-
namical instabilities [17]. This will also allow a direct 
comparison of the N-S wind regimes and their temporal 
evolution at several time scales. 
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Figure 1 - Polar projection of  South vortex morphology and 
cloud tracking zonal wind velocities near 1.74 µm [17]. 
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